aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/draft/glpspm.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/draft/glpspm.c')
-rw-r--r--test/monniaux/glpk-4.65/src/draft/glpspm.c847
1 files changed, 847 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/draft/glpspm.c b/test/monniaux/glpk-4.65/src/draft/glpspm.c
new file mode 100644
index 00000000..c6cfd25d
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/draft/glpspm.c
@@ -0,0 +1,847 @@
+/* glpspm.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "glphbm.h"
+#include "glprgr.h"
+#include "glpspm.h"
+#include "env.h"
+
+/***********************************************************************
+* NAME
+*
+* spm_create_mat - create general sparse matrix
+*
+* SYNOPSIS
+*
+* #include "glpspm.h"
+* SPM *spm_create_mat(int m, int n);
+*
+* DESCRIPTION
+*
+* The routine spm_create_mat creates a general sparse matrix having
+* m rows and n columns. Being created the matrix is zero (empty), i.e.
+* has no elements.
+*
+* RETURNS
+*
+* The routine returns a pointer to the matrix created. */
+
+SPM *spm_create_mat(int m, int n)
+{ SPM *A;
+ xassert(0 <= m && m < INT_MAX);
+ xassert(0 <= n && n < INT_MAX);
+ A = xmalloc(sizeof(SPM));
+ A->m = m;
+ A->n = n;
+ if (m == 0 || n == 0)
+ { A->pool = NULL;
+ A->row = NULL;
+ A->col = NULL;
+ }
+ else
+ { int i, j;
+ A->pool = dmp_create_pool();
+ A->row = xcalloc(1+m, sizeof(SPME *));
+ for (i = 1; i <= m; i++) A->row[i] = NULL;
+ A->col = xcalloc(1+n, sizeof(SPME *));
+ for (j = 1; j <= n; j++) A->col[j] = NULL;
+ }
+ return A;
+}
+
+/***********************************************************************
+* NAME
+*
+* spm_new_elem - add new element to sparse matrix
+*
+* SYNOPSIS
+*
+* #include "glpspm.h"
+* SPME *spm_new_elem(SPM *A, int i, int j, double val);
+*
+* DESCRIPTION
+*
+* The routine spm_new_elem adds a new element to the specified sparse
+* matrix. Parameters i, j, and val specify the row number, the column
+* number, and a numerical value of the element, respectively.
+*
+* RETURNS
+*
+* The routine returns a pointer to the new element added. */
+
+SPME *spm_new_elem(SPM *A, int i, int j, double val)
+{ SPME *e;
+ xassert(1 <= i && i <= A->m);
+ xassert(1 <= j && j <= A->n);
+ e = dmp_get_atom(A->pool, sizeof(SPME));
+ e->i = i;
+ e->j = j;
+ e->val = val;
+ e->r_prev = NULL;
+ e->r_next = A->row[i];
+ if (e->r_next != NULL) e->r_next->r_prev = e;
+ e->c_prev = NULL;
+ e->c_next = A->col[j];
+ if (e->c_next != NULL) e->c_next->c_prev = e;
+ A->row[i] = A->col[j] = e;
+ return e;
+}
+
+/***********************************************************************
+* NAME
+*
+* spm_delete_mat - delete general sparse matrix
+*
+* SYNOPSIS
+*
+* #include "glpspm.h"
+* void spm_delete_mat(SPM *A);
+*
+* DESCRIPTION
+*
+* The routine deletes the specified general sparse matrix freeing all
+* the memory allocated to this object. */
+
+void spm_delete_mat(SPM *A)
+{ /* delete sparse matrix */
+ if (A->pool != NULL) dmp_delete_pool(A->pool);
+ if (A->row != NULL) xfree(A->row);
+ if (A->col != NULL) xfree(A->col);
+ xfree(A);
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* spm_test_mat_e - create test sparse matrix of E(n,c) class
+*
+* SYNOPSIS
+*
+* #include "glpspm.h"
+* SPM *spm_test_mat_e(int n, int c);
+*
+* DESCRIPTION
+*
+* The routine spm_test_mat_e creates a test sparse matrix of E(n,c)
+* class as described in the book: Ole 0sterby, Zahari Zlatev. Direct
+* Methods for Sparse Matrices. Springer-Verlag, 1983.
+*
+* Matrix of E(n,c) class is a symmetric positive definite matrix of
+* the order n. It has the number 4 on its main diagonal and the number
+* -1 on its four co-diagonals, two of which are neighbour to the main
+* diagonal and two others are shifted from the main diagonal on the
+* distance c.
+*
+* It is necessary that n >= 3 and 2 <= c <= n-1.
+*
+* RETURNS
+*
+* The routine returns a pointer to the matrix created. */
+
+SPM *spm_test_mat_e(int n, int c)
+{ SPM *A;
+ int i;
+ xassert(n >= 3 && 2 <= c && c <= n-1);
+ A = spm_create_mat(n, n);
+ for (i = 1; i <= n; i++)
+ spm_new_elem(A, i, i, 4.0);
+ for (i = 1; i <= n-1; i++)
+ { spm_new_elem(A, i, i+1, -1.0);
+ spm_new_elem(A, i+1, i, -1.0);
+ }
+ for (i = 1; i <= n-c; i++)
+ { spm_new_elem(A, i, i+c, -1.0);
+ spm_new_elem(A, i+c, i, -1.0);
+ }
+ return A;
+}
+
+/***********************************************************************
+* NAME
+*
+* spm_test_mat_d - create test sparse matrix of D(n,c) class
+*
+* SYNOPSIS
+*
+* #include "glpspm.h"
+* SPM *spm_test_mat_d(int n, int c);
+*
+* DESCRIPTION
+*
+* The routine spm_test_mat_d creates a test sparse matrix of D(n,c)
+* class as described in the book: Ole 0sterby, Zahari Zlatev. Direct
+* Methods for Sparse Matrices. Springer-Verlag, 1983.
+*
+* Matrix of D(n,c) class is a non-singular matrix of the order n. It
+* has unity main diagonal, three co-diagonals above the main diagonal
+* on the distance c, which are cyclically continued below the main
+* diagonal, and a triangle block of the size 10x10 in the upper right
+* corner.
+*
+* It is necessary that n >= 14 and 1 <= c <= n-13.
+*
+* RETURNS
+*
+* The routine returns a pointer to the matrix created. */
+
+SPM *spm_test_mat_d(int n, int c)
+{ SPM *A;
+ int i, j;
+ xassert(n >= 14 && 1 <= c && c <= n-13);
+ A = spm_create_mat(n, n);
+ for (i = 1; i <= n; i++)
+ spm_new_elem(A, i, i, 1.0);
+ for (i = 1; i <= n-c; i++)
+ spm_new_elem(A, i, i+c, (double)(i+1));
+ for (i = n-c+1; i <= n; i++)
+ spm_new_elem(A, i, i-n+c, (double)(i+1));
+ for (i = 1; i <= n-c-1; i++)
+ spm_new_elem(A, i, i+c+1, (double)(-i));
+ for (i = n-c; i <= n; i++)
+ spm_new_elem(A, i, i-n+c+1, (double)(-i));
+ for (i = 1; i <= n-c-2; i++)
+ spm_new_elem(A, i, i+c+2, 16.0);
+ for (i = n-c-1; i <= n; i++)
+ spm_new_elem(A, i, i-n+c+2, 16.0);
+ for (j = 1; j <= 10; j++)
+ for (i = 1; i <= 11-j; i++)
+ spm_new_elem(A, i, n-11+i+j, 100.0 * (double)j);
+ return A;
+}
+
+/***********************************************************************
+* NAME
+*
+* spm_show_mat - write sparse matrix pattern in BMP file format
+*
+* SYNOPSIS
+*
+* #include "glpspm.h"
+* int spm_show_mat(const SPM *A, const char *fname);
+*
+* DESCRIPTION
+*
+* The routine spm_show_mat writes pattern of the specified sparse
+* matrix in uncompressed BMP file format (Windows bitmap) to a binary
+* file whose name is specified by the character string fname.
+*
+* Each pixel corresponds to one matrix element. The pixel colors have
+* the following meaning:
+*
+* Black structurally zero element
+* White positive element
+* Cyan negative element
+* Green zero element
+* Red duplicate element
+*
+* RETURNS
+*
+* If no error occured, the routine returns zero. Otherwise, it prints
+* an appropriate error message and returns non-zero. */
+
+int spm_show_mat(const SPM *A, const char *fname)
+{ int m = A->m;
+ int n = A->n;
+ int i, j, k, ret;
+ char *map;
+ xprintf("spm_show_mat: writing matrix pattern to '%s'...\n",
+ fname);
+ xassert(1 <= m && m <= 32767);
+ xassert(1 <= n && n <= 32767);
+ map = xmalloc(m * n);
+ memset(map, 0x08, m * n);
+ for (i = 1; i <= m; i++)
+ { SPME *e;
+ for (e = A->row[i]; e != NULL; e = e->r_next)
+ { j = e->j;
+ xassert(1 <= j && j <= n);
+ k = n * (i - 1) + (j - 1);
+ if (map[k] != 0x08)
+ map[k] = 0x0C;
+ else if (e->val > 0.0)
+ map[k] = 0x0F;
+ else if (e->val < 0.0)
+ map[k] = 0x0B;
+ else
+ map[k] = 0x0A;
+ }
+ }
+ ret = rgr_write_bmp16(fname, m, n, map);
+ xfree(map);
+ return ret;
+}
+
+/***********************************************************************
+* NAME
+*
+* spm_read_hbm - read sparse matrix in Harwell-Boeing format
+*
+* SYNOPSIS
+*
+* #include "glpspm.h"
+* SPM *spm_read_hbm(const char *fname);
+*
+* DESCRIPTION
+*
+* The routine spm_read_hbm reads a sparse matrix in the Harwell-Boeing
+* format from a text file whose name is the character string fname.
+*
+* Detailed description of the Harwell-Boeing format recognised by this
+* routine can be found in the following report:
+*
+* I.S.Duff, R.G.Grimes, J.G.Lewis. User's Guide for the Harwell-Boeing
+* Sparse Matrix Collection (Release I), TR/PA/92/86, October 1992.
+*
+* NOTE
+*
+* The routine spm_read_hbm reads the matrix "as is", due to which zero
+* and/or duplicate elements can appear in the matrix.
+*
+* RETURNS
+*
+* If no error occured, the routine returns a pointer to the matrix
+* created. Otherwise, the routine prints an appropriate error message
+* and returns NULL. */
+
+SPM *spm_read_hbm(const char *fname)
+{ SPM *A = NULL;
+ HBM *hbm;
+ int nrow, ncol, nnzero, i, j, beg, end, ptr, *colptr, *rowind;
+ double val, *values;
+ char *mxtype;
+ hbm = hbm_read_mat(fname);
+ if (hbm == NULL)
+ { xprintf("spm_read_hbm: unable to read matrix\n");
+ goto fini;
+ }
+ mxtype = hbm->mxtype;
+ nrow = hbm->nrow;
+ ncol = hbm->ncol;
+ nnzero = hbm->nnzero;
+ colptr = hbm->colptr;
+ rowind = hbm->rowind;
+ values = hbm->values;
+ if (!(strcmp(mxtype, "RSA") == 0 || strcmp(mxtype, "PSA") == 0 ||
+ strcmp(mxtype, "RUA") == 0 || strcmp(mxtype, "PUA") == 0 ||
+ strcmp(mxtype, "RRA") == 0 || strcmp(mxtype, "PRA") == 0))
+ { xprintf("spm_read_hbm: matrix type '%s' not supported\n",
+ mxtype);
+ goto fini;
+ }
+ A = spm_create_mat(nrow, ncol);
+ if (mxtype[1] == 'S' || mxtype[1] == 'U')
+ xassert(nrow == ncol);
+ for (j = 1; j <= ncol; j++)
+ { beg = colptr[j];
+ end = colptr[j+1];
+ xassert(1 <= beg && beg <= end && end <= nnzero + 1);
+ for (ptr = beg; ptr < end; ptr++)
+ { i = rowind[ptr];
+ xassert(1 <= i && i <= nrow);
+ if (mxtype[0] == 'R')
+ val = values[ptr];
+ else
+ val = 1.0;
+ spm_new_elem(A, i, j, val);
+ if (mxtype[1] == 'S' && i != j)
+ spm_new_elem(A, j, i, val);
+ }
+ }
+fini: if (hbm != NULL) hbm_free_mat(hbm);
+ return A;
+}
+
+/***********************************************************************
+* NAME
+*
+* spm_count_nnz - determine number of non-zeros in sparse matrix
+*
+* SYNOPSIS
+*
+* #include "glpspm.h"
+* int spm_count_nnz(const SPM *A);
+*
+* RETURNS
+*
+* The routine spm_count_nnz returns the number of structural non-zero
+* elements in the specified sparse matrix. */
+
+int spm_count_nnz(const SPM *A)
+{ SPME *e;
+ int i, nnz = 0;
+ for (i = 1; i <= A->m; i++)
+ for (e = A->row[i]; e != NULL; e = e->r_next) nnz++;
+ return nnz;
+}
+
+/***********************************************************************
+* NAME
+*
+* spm_drop_zeros - remove zero elements from sparse matrix
+*
+* SYNOPSIS
+*
+* #include "glpspm.h"
+* int spm_drop_zeros(SPM *A, double eps);
+*
+* DESCRIPTION
+*
+* The routine spm_drop_zeros removes all elements from the specified
+* sparse matrix, whose absolute value is less than eps.
+*
+* If the parameter eps is 0, only zero elements are removed from the
+* matrix.
+*
+* RETURNS
+*
+* The routine returns the number of elements removed. */
+
+int spm_drop_zeros(SPM *A, double eps)
+{ SPME *e, *next;
+ int i, count = 0;
+ for (i = 1; i <= A->m; i++)
+ { for (e = A->row[i]; e != NULL; e = next)
+ { next = e->r_next;
+ if (e->val == 0.0 || fabs(e->val) < eps)
+ { /* remove element from the row list */
+ if (e->r_prev == NULL)
+ A->row[e->i] = e->r_next;
+ else
+ e->r_prev->r_next = e->r_next;
+ if (e->r_next == NULL)
+ ;
+ else
+ e->r_next->r_prev = e->r_prev;
+ /* remove element from the column list */
+ if (e->c_prev == NULL)
+ A->col[e->j] = e->c_next;
+ else
+ e->c_prev->c_next = e->c_next;
+ if (e->c_next == NULL)
+ ;
+ else
+ e->c_next->c_prev = e->c_prev;
+ /* return element to the memory pool */
+ dmp_free_atom(A->pool, e, sizeof(SPME));
+ count++;
+ }
+ }
+ }
+ return count;
+}
+
+/***********************************************************************
+* NAME
+*
+* spm_read_mat - read sparse matrix from text file
+*
+* SYNOPSIS
+*
+* #include "glpspm.h"
+* SPM *spm_read_mat(const char *fname);
+*
+* DESCRIPTION
+*
+* The routine reads a sparse matrix from a text file whose name is
+* specified by the parameter fname.
+*
+* For the file format see description of the routine spm_write_mat.
+*
+* RETURNS
+*
+* On success the routine returns a pointer to the matrix created,
+* otherwise NULL. */
+
+#if 1
+SPM *spm_read_mat(const char *fname)
+{ xassert(fname != fname);
+ return NULL;
+}
+#else
+SPM *spm_read_mat(const char *fname)
+{ SPM *A = NULL;
+ PDS *pds;
+ jmp_buf jump;
+ int i, j, k, m, n, nnz, fail = 0;
+ double val;
+ xprintf("spm_read_mat: reading matrix from '%s'...\n", fname);
+ pds = pds_open_file(fname);
+ if (pds == NULL)
+ { xprintf("spm_read_mat: unable to open '%s' - %s\n", fname,
+ strerror(errno));
+ fail = 1;
+ goto done;
+ }
+ if (setjmp(jump))
+ { fail = 1;
+ goto done;
+ }
+ pds_set_jump(pds, jump);
+ /* number of rows, number of columns, number of non-zeros */
+ m = pds_scan_int(pds);
+ if (m < 0)
+ pds_error(pds, "invalid number of rows\n");
+ n = pds_scan_int(pds);
+ if (n < 0)
+ pds_error(pds, "invalid number of columns\n");
+ nnz = pds_scan_int(pds);
+ if (nnz < 0)
+ pds_error(pds, "invalid number of non-zeros\n");
+ /* create matrix */
+ xprintf("spm_read_mat: %d rows, %d columns, %d non-zeros\n",
+ m, n, nnz);
+ A = spm_create_mat(m, n);
+ /* read matrix elements */
+ for (k = 1; k <= nnz; k++)
+ { /* row index, column index, element value */
+ i = pds_scan_int(pds);
+ if (!(1 <= i && i <= m))
+ pds_error(pds, "row index out of range\n");
+ j = pds_scan_int(pds);
+ if (!(1 <= j && j <= n))
+ pds_error(pds, "column index out of range\n");
+ val = pds_scan_num(pds);
+ /* add new element to the matrix */
+ spm_new_elem(A, i, j, val);
+ }
+ xprintf("spm_read_mat: %d lines were read\n", pds->count);
+done: if (pds != NULL) pds_close_file(pds);
+ if (fail && A != NULL) spm_delete_mat(A), A = NULL;
+ return A;
+}
+#endif
+
+/***********************************************************************
+* NAME
+*
+* spm_write_mat - write sparse matrix to text file
+*
+* SYNOPSIS
+*
+* #include "glpspm.h"
+* int spm_write_mat(const SPM *A, const char *fname);
+*
+* DESCRIPTION
+*
+* The routine spm_write_mat writes the specified sparse matrix to a
+* text file whose name is specified by the parameter fname. This file
+* can be read back with the routine spm_read_mat.
+*
+* RETURNS
+*
+* On success the routine returns zero, otherwise non-zero.
+*
+* FILE FORMAT
+*
+* The file created by the routine spm_write_mat is a plain text file,
+* which contains the following information:
+*
+* m n nnz
+* row[1] col[1] val[1]
+* row[2] col[2] val[2]
+* . . .
+* row[nnz] col[nnz] val[nnz]
+*
+* where:
+* m is the number of rows;
+* n is the number of columns;
+* nnz is the number of non-zeros;
+* row[k], k = 1,...,nnz, are row indices;
+* col[k], k = 1,...,nnz, are column indices;
+* val[k], k = 1,...,nnz, are element values. */
+
+#if 1
+int spm_write_mat(const SPM *A, const char *fname)
+{ xassert(A != A);
+ xassert(fname != fname);
+ return 0;
+}
+#else
+int spm_write_mat(const SPM *A, const char *fname)
+{ FILE *fp;
+ int i, nnz, ret = 0;
+ xprintf("spm_write_mat: writing matrix to '%s'...\n", fname);
+ fp = fopen(fname, "w");
+ if (fp == NULL)
+ { xprintf("spm_write_mat: unable to create '%s' - %s\n", fname,
+ strerror(errno));
+ ret = 1;
+ goto done;
+ }
+ /* number of rows, number of columns, number of non-zeros */
+ nnz = spm_count_nnz(A);
+ fprintf(fp, "%d %d %d\n", A->m, A->n, nnz);
+ /* walk through rows of the matrix */
+ for (i = 1; i <= A->m; i++)
+ { SPME *e;
+ /* walk through elements of i-th row */
+ for (e = A->row[i]; e != NULL; e = e->r_next)
+ { /* row index, column index, element value */
+ fprintf(fp, "%d %d %.*g\n", e->i, e->j, DBL_DIG, e->val);
+ }
+ }
+ fflush(fp);
+ if (ferror(fp))
+ { xprintf("spm_write_mat: writing error on '%s' - %s\n", fname,
+ strerror(errno));
+ ret = 1;
+ goto done;
+ }
+ xprintf("spm_write_mat: %d lines were written\n", 1 + nnz);
+done: if (fp != NULL) fclose(fp);
+ return ret;
+}
+#endif
+
+/***********************************************************************
+* NAME
+*
+* spm_transpose - transpose sparse matrix
+*
+* SYNOPSIS
+*
+* #include "glpspm.h"
+* SPM *spm_transpose(const SPM *A);
+*
+* RETURNS
+*
+* The routine computes and returns sparse matrix B, which is a matrix
+* transposed to sparse matrix A. */
+
+SPM *spm_transpose(const SPM *A)
+{ SPM *B;
+ int i;
+ B = spm_create_mat(A->n, A->m);
+ for (i = 1; i <= A->m; i++)
+ { SPME *e;
+ for (e = A->row[i]; e != NULL; e = e->r_next)
+ spm_new_elem(B, e->j, i, e->val);
+ }
+ return B;
+}
+
+SPM *spm_add_sym(const SPM *A, const SPM *B)
+{ /* add two sparse matrices (symbolic phase) */
+ SPM *C;
+ int i, j, *flag;
+ xassert(A->m == B->m);
+ xassert(A->n == B->n);
+ /* create resultant matrix */
+ C = spm_create_mat(A->m, A->n);
+ /* allocate and clear the flag array */
+ flag = xcalloc(1+C->n, sizeof(int));
+ for (j = 1; j <= C->n; j++)
+ flag[j] = 0;
+ /* compute pattern of C = A + B */
+ for (i = 1; i <= C->m; i++)
+ { SPME *e;
+ /* at the beginning i-th row of C is empty */
+ /* (i-th row of C) := (i-th row of C) union (i-th row of A) */
+ for (e = A->row[i]; e != NULL; e = e->r_next)
+ { /* (note that i-th row of A may have duplicate elements) */
+ j = e->j;
+ if (!flag[j])
+ { spm_new_elem(C, i, j, 0.0);
+ flag[j] = 1;
+ }
+ }
+ /* (i-th row of C) := (i-th row of C) union (i-th row of B) */
+ for (e = B->row[i]; e != NULL; e = e->r_next)
+ { /* (note that i-th row of B may have duplicate elements) */
+ j = e->j;
+ if (!flag[j])
+ { spm_new_elem(C, i, j, 0.0);
+ flag[j] = 1;
+ }
+ }
+ /* reset the flag array */
+ for (e = C->row[i]; e != NULL; e = e->r_next)
+ flag[e->j] = 0;
+ }
+ /* check and deallocate the flag array */
+ for (j = 1; j <= C->n; j++)
+ xassert(!flag[j]);
+ xfree(flag);
+ return C;
+}
+
+void spm_add_num(SPM *C, double alfa, const SPM *A, double beta,
+ const SPM *B)
+{ /* add two sparse matrices (numeric phase) */
+ int i, j;
+ double *work;
+ /* allocate and clear the working array */
+ work = xcalloc(1+C->n, sizeof(double));
+ for (j = 1; j <= C->n; j++)
+ work[j] = 0.0;
+ /* compute matrix C = alfa * A + beta * B */
+ for (i = 1; i <= C->n; i++)
+ { SPME *e;
+ /* work := alfa * (i-th row of A) + beta * (i-th row of B) */
+ /* (note that A and/or B may have duplicate elements) */
+ for (e = A->row[i]; e != NULL; e = e->r_next)
+ work[e->j] += alfa * e->val;
+ for (e = B->row[i]; e != NULL; e = e->r_next)
+ work[e->j] += beta * e->val;
+ /* (i-th row of C) := work, work := 0 */
+ for (e = C->row[i]; e != NULL; e = e->r_next)
+ { j = e->j;
+ e->val = work[j];
+ work[j] = 0.0;
+ }
+ }
+ /* check and deallocate the working array */
+ for (j = 1; j <= C->n; j++)
+ xassert(work[j] == 0.0);
+ xfree(work);
+ return;
+}
+
+SPM *spm_add_mat(double alfa, const SPM *A, double beta, const SPM *B)
+{ /* add two sparse matrices (driver routine) */
+ SPM *C;
+ C = spm_add_sym(A, B);
+ spm_add_num(C, alfa, A, beta, B);
+ return C;
+}
+
+SPM *spm_mul_sym(const SPM *A, const SPM *B)
+{ /* multiply two sparse matrices (symbolic phase) */
+ int i, j, k, *flag;
+ SPM *C;
+ xassert(A->n == B->m);
+ /* create resultant matrix */
+ C = spm_create_mat(A->m, B->n);
+ /* allocate and clear the flag array */
+ flag = xcalloc(1+C->n, sizeof(int));
+ for (j = 1; j <= C->n; j++)
+ flag[j] = 0;
+ /* compute pattern of C = A * B */
+ for (i = 1; i <= C->m; i++)
+ { SPME *e, *ee;
+ /* compute pattern of i-th row of C */
+ for (e = A->row[i]; e != NULL; e = e->r_next)
+ { k = e->j;
+ for (ee = B->row[k]; ee != NULL; ee = ee->r_next)
+ { j = ee->j;
+ /* if a[i,k] != 0 and b[k,j] != 0 then c[i,j] != 0 */
+ if (!flag[j])
+ { /* c[i,j] does not exist, so create it */
+ spm_new_elem(C, i, j, 0.0);
+ flag[j] = 1;
+ }
+ }
+ }
+ /* reset the flag array */
+ for (e = C->row[i]; e != NULL; e = e->r_next)
+ flag[e->j] = 0;
+ }
+ /* check and deallocate the flag array */
+ for (j = 1; j <= C->n; j++)
+ xassert(!flag[j]);
+ xfree(flag);
+ return C;
+}
+
+void spm_mul_num(SPM *C, const SPM *A, const SPM *B)
+{ /* multiply two sparse matrices (numeric phase) */
+ int i, j;
+ double *work;
+ /* allocate and clear the working array */
+ work = xcalloc(1+A->n, sizeof(double));
+ for (j = 1; j <= A->n; j++)
+ work[j] = 0.0;
+ /* compute matrix C = A * B */
+ for (i = 1; i <= C->m; i++)
+ { SPME *e, *ee;
+ double temp;
+ /* work := (i-th row of A) */
+ /* (note that A may have duplicate elements) */
+ for (e = A->row[i]; e != NULL; e = e->r_next)
+ work[e->j] += e->val;
+ /* compute i-th row of C */
+ for (e = C->row[i]; e != NULL; e = e->r_next)
+ { j = e->j;
+ /* c[i,j] := work * (j-th column of B) */
+ temp = 0.0;
+ for (ee = B->col[j]; ee != NULL; ee = ee->c_next)
+ temp += work[ee->i] * ee->val;
+ e->val = temp;
+ }
+ /* reset the working array */
+ for (e = A->row[i]; e != NULL; e = e->r_next)
+ work[e->j] = 0.0;
+ }
+ /* check and deallocate the working array */
+ for (j = 1; j <= A->n; j++)
+ xassert(work[j] == 0.0);
+ xfree(work);
+ return;
+}
+
+SPM *spm_mul_mat(const SPM *A, const SPM *B)
+{ /* multiply two sparse matrices (driver routine) */
+ SPM *C;
+ C = spm_mul_sym(A, B);
+ spm_mul_num(C, A, B);
+ return C;
+}
+
+PER *spm_create_per(int n)
+{ /* create permutation matrix */
+ PER *P;
+ int k;
+ xassert(n >= 0);
+ P = xmalloc(sizeof(PER));
+ P->n = n;
+ P->row = xcalloc(1+n, sizeof(int));
+ P->col = xcalloc(1+n, sizeof(int));
+ /* initially it is identity matrix */
+ for (k = 1; k <= n; k++)
+ P->row[k] = P->col[k] = k;
+ return P;
+}
+
+void spm_check_per(PER *P)
+{ /* check permutation matrix for correctness */
+ int i, j;
+ xassert(P->n >= 0);
+ for (i = 1; i <= P->n; i++)
+ { j = P->row[i];
+ xassert(1 <= j && j <= P->n);
+ xassert(P->col[j] == i);
+ }
+ return;
+}
+
+void spm_delete_per(PER *P)
+{ /* delete permutation matrix */
+ xfree(P->row);
+ xfree(P->col);
+ xfree(P);
+ return;
+}
+
+/* eof */