aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/intopt/gmicut.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/intopt/gmicut.c')
-rw-r--r--test/monniaux/glpk-4.65/src/intopt/gmicut.c284
1 files changed, 284 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/intopt/gmicut.c b/test/monniaux/glpk-4.65/src/intopt/gmicut.c
new file mode 100644
index 00000000..4ef0b746
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/intopt/gmicut.c
@@ -0,0 +1,284 @@
+/* gmicut.c (Gomory's mixed integer cut generator) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2002-2016 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "prob.h"
+
+/***********************************************************************
+* NAME
+*
+* glp_gmi_cut - generate Gomory's mixed integer cut (core routine)
+*
+* SYNOPSIS
+*
+* int glp_gmi_cut(glp_prob *P, int j, int ind[], double val[], double
+* phi[]);
+*
+* DESCRIPTION
+*
+* This routine attempts to generate a Gomory's mixed integer cut for
+* specified integer column (structural variable), whose primal value
+* in current basic solution is integer infeasible (fractional).
+*
+* On entry to the routine the basic solution contained in the problem
+* object P should be optimal, and the basis factorization should be
+* valid. The parameter j should specify the ordinal number of column
+* (structural variable x[j]), for which the cut should be generated,
+* 1 <= j <= n, where n is the number of columns in the problem object.
+* This column should be integer, non-fixed, and basic, and its primal
+* value should be fractional.
+*
+* The cut generated by the routine is the following inequality:
+*
+* sum a[j] * x[j] >= b,
+*
+* which is expected to be violated at the current basic solution.
+*
+* If the cut has been successfully generated, the routine stores its
+* non-zero coefficients a[j] and corresponding column indices j in the
+* array locations val[1], ..., val[len] and ind[1], ..., ind[len],
+* where 1 <= len <= n is the number of non-zero coefficients. The
+* right-hand side value b is stored in val[0], and ind[0] is set to 0.
+*
+* The working array phi should have 1+m+n locations (location phi[0]
+* is not used), where m and n is the number of rows and columns in the
+* problem object, resp.
+*
+* RETURNS
+*
+* If the cut has been successfully generated, the routine returns
+* len, the number of non-zero coefficients in the cut, 1 <= len <= n.
+*
+* Otherwise, the routine returns one of the following codes:
+*
+* -1 current basis factorization is not valid;
+*
+* -2 current basic solution is not optimal;
+*
+* -3 column ordinal number j is out of range;
+*
+* -4 variable x[j] is not of integral kind;
+*
+* -5 variable x[j] is either fixed or non-basic;
+*
+* -6 primal value of variable x[j] in basic solution is too close
+* to nearest integer;
+*
+* -7 some coefficients in the simplex table row corresponding to
+* variable x[j] are too large in magnitude;
+*
+* -8 some free (unbounded) variables have non-zero coefficients in
+* the simplex table row corresponding to variable x[j].
+*
+* ALGORITHM
+*
+* See glpk/doc/notes/gomory (in Russian). */
+
+#define f(x) ((x) - floor(x))
+/* compute fractional part of x */
+
+int glp_gmi_cut(glp_prob *P, int j,
+ int ind[/*1+n*/], double val[/*1+n*/], double phi[/*1+m+n*/])
+{ int m = P->m;
+ int n = P->n;
+ GLPROW *row;
+ GLPCOL *col;
+ GLPAIJ *aij;
+ int i, k, len, kind, stat;
+ double lb, ub, alfa, beta, ksi, phi1, rhs;
+ /* sanity checks */
+ if (!(P->m == 0 || P->valid))
+ { /* current basis factorization is not valid */
+ return -1;
+ }
+ if (!(P->pbs_stat == GLP_FEAS && P->dbs_stat == GLP_FEAS))
+ { /* current basic solution is not optimal */
+ return -2;
+ }
+ if (!(1 <= j && j <= n))
+ { /* column ordinal number is out of range */
+ return -3;
+ }
+ col = P->col[j];
+ if (col->kind != GLP_IV)
+ { /* x[j] is not of integral kind */
+ return -4;
+ }
+ if (col->type == GLP_FX || col->stat != GLP_BS)
+ { /* x[j] is either fixed or non-basic */
+ return -5;
+ }
+ if (fabs(col->prim - floor(col->prim + 0.5)) < 0.001)
+ { /* primal value of x[j] is too close to nearest integer */
+ return -6;
+ }
+ /* compute row of the simplex tableau, which (row) corresponds
+ * to specified basic variable xB[i] = x[j]; see (23) */
+ len = glp_eval_tab_row(P, m+j, ind, val);
+ /* determine beta[i], which a value of xB[i] in optimal solution
+ * to current LP relaxation; note that this value is the same as
+ * if it would be computed with formula (27); it is assumed that
+ * beta[i] is fractional enough */
+ beta = P->col[j]->prim;
+ /* compute cut coefficients phi and right-hand side rho, which
+ * correspond to formula (30); dense format is used, because rows
+ * of the simplex tableau are usually dense */
+ for (k = 1; k <= m+n; k++)
+ phi[k] = 0.0;
+ rhs = f(beta); /* initial value of rho; see (28), (32) */
+ for (j = 1; j <= len; j++)
+ { /* determine original number of non-basic variable xN[j] */
+ k = ind[j];
+ xassert(1 <= k && k <= m+n);
+ /* determine the kind, bounds and current status of xN[j] in
+ * optimal solution to LP relaxation */
+ if (k <= m)
+ { /* auxiliary variable */
+ row = P->row[k];
+ kind = GLP_CV;
+ lb = row->lb;
+ ub = row->ub;
+ stat = row->stat;
+ }
+ else
+ { /* structural variable */
+ col = P->col[k-m];
+ kind = col->kind;
+ lb = col->lb;
+ ub = col->ub;
+ stat = col->stat;
+ }
+ /* xN[j] cannot be basic */
+ xassert(stat != GLP_BS);
+ /* determine row coefficient ksi[i,j] at xN[j]; see (23) */
+ ksi = val[j];
+ /* if ksi[i,j] is too large in magnitude, report failure */
+ if (fabs(ksi) > 1e+05)
+ return -7;
+ /* if ksi[i,j] is too small in magnitude, skip it */
+ if (fabs(ksi) < 1e-10)
+ goto skip;
+ /* compute row coefficient alfa[i,j] at y[j]; see (26) */
+ switch (stat)
+ { case GLP_NF:
+ /* xN[j] is free (unbounded) having non-zero ksi[i,j];
+ * report failure */
+ return -8;
+ case GLP_NL:
+ /* xN[j] has active lower bound */
+ alfa = - ksi;
+ break;
+ case GLP_NU:
+ /* xN[j] has active upper bound */
+ alfa = + ksi;
+ break;
+ case GLP_NS:
+ /* xN[j] is fixed; skip it */
+ goto skip;
+ default:
+ xassert(stat != stat);
+ }
+ /* compute cut coefficient phi'[j] at y[j]; see (21), (28) */
+ switch (kind)
+ { case GLP_IV:
+ /* y[j] is integer */
+ if (fabs(alfa - floor(alfa + 0.5)) < 1e-10)
+ { /* alfa[i,j] is close to nearest integer; skip it */
+ goto skip;
+ }
+ else if (f(alfa) <= f(beta))
+ phi1 = f(alfa);
+ else
+ phi1 = (f(beta) / (1.0 - f(beta))) * (1.0 - f(alfa));
+ break;
+ case GLP_CV:
+ /* y[j] is continuous */
+ if (alfa >= 0.0)
+ phi1 = + alfa;
+ else
+ phi1 = (f(beta) / (1.0 - f(beta))) * (- alfa);
+ break;
+ default:
+ xassert(kind != kind);
+ }
+ /* compute cut coefficient phi[j] at xN[j] and update right-
+ * hand side rho; see (31), (32) */
+ switch (stat)
+ { case GLP_NL:
+ /* xN[j] has active lower bound */
+ phi[k] = + phi1;
+ rhs += phi1 * lb;
+ break;
+ case GLP_NU:
+ /* xN[j] has active upper bound */
+ phi[k] = - phi1;
+ rhs -= phi1 * ub;
+ break;
+ default:
+ xassert(stat != stat);
+ }
+skip: ;
+ }
+ /* now the cut has the form sum_k phi[k] * x[k] >= rho, where cut
+ * coefficients are stored in the array phi in dense format;
+ * x[1,...,m] are auxiliary variables, x[m+1,...,m+n] are struc-
+ * tural variables; see (30) */
+ /* eliminate auxiliary variables in order to express the cut only
+ * through structural variables; see (33) */
+ for (i = 1; i <= m; i++)
+ { if (fabs(phi[i]) < 1e-10)
+ continue;
+ /* auxiliary variable x[i] has non-zero cut coefficient */
+ row = P->row[i];
+ /* x[i] cannot be fixed variable */
+ xassert(row->type != GLP_FX);
+ /* substitute x[i] = sum_j a[i,j] * x[m+j] */
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ phi[m+aij->col->j] += phi[i] * aij->val;
+ }
+ /* convert the final cut to sparse format and substitute fixed
+ * (structural) variables */
+ len = 0;
+ for (j = 1; j <= n; j++)
+ { if (fabs(phi[m+j]) < 1e-10)
+ continue;
+ /* structural variable x[m+j] has non-zero cut coefficient */
+ col = P->col[j];
+ if (col->type == GLP_FX)
+ { /* eliminate x[m+j] */
+ rhs -= phi[m+j] * col->lb;
+ }
+ else
+ { len++;
+ ind[len] = j;
+ val[len] = phi[m+j];
+ }
+ }
+ if (fabs(rhs) < 1e-12)
+ rhs = 0.0;
+ ind[0] = 0, val[0] = rhs;
+ /* the cut has been successfully generated */
+ return len;
+}
+
+/* eof */