aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/misc/fp2rat.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/misc/fp2rat.c')
-rw-r--r--test/monniaux/glpk-4.65/src/misc/fp2rat.c164
1 files changed, 164 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/misc/fp2rat.c b/test/monniaux/glpk-4.65/src/misc/fp2rat.c
new file mode 100644
index 00000000..4699bbd1
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/misc/fp2rat.c
@@ -0,0 +1,164 @@
+/* fp2rat.c (convert floating-point number to rational number) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2000-2013 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "misc.h"
+
+/***********************************************************************
+* NAME
+*
+* fp2rat - convert floating-point number to rational number
+*
+* SYNOPSIS
+*
+* #include "misc.h"
+* int fp2rat(double x, double eps, double *p, double *q);
+*
+* DESCRIPTION
+*
+* Given a floating-point number 0 <= x < 1 the routine fp2rat finds
+* its "best" rational approximation p / q, where p >= 0 and q > 0 are
+* integer numbers, such that |x - p / q| <= eps.
+*
+* RETURNS
+*
+* The routine fp2rat returns the number of iterations used to achieve
+* the specified precision eps.
+*
+* EXAMPLES
+*
+* For x = sqrt(2) - 1 = 0.414213562373095 and eps = 1e-6 the routine
+* gives p = 408 and q = 985, where 408 / 985 = 0.414213197969543.
+*
+* BACKGROUND
+*
+* It is well known that every positive real number x can be expressed
+* as the following continued fraction:
+*
+* x = b[0] + a[1]
+* ------------------------
+* b[1] + a[2]
+* -----------------
+* b[2] + a[3]
+* ----------
+* b[3] + ...
+*
+* where:
+*
+* a[k] = 1, k = 0, 1, 2, ...
+*
+* b[k] = floor(x[k]), k = 0, 1, 2, ...
+*
+* x[0] = x,
+*
+* x[k] = 1 / frac(x[k-1]), k = 1, 2, 3, ...
+*
+* To find the "best" rational approximation of x the routine computes
+* partial fractions f[k] by dropping after k terms as follows:
+*
+* f[k] = A[k] / B[k],
+*
+* where:
+*
+* A[-1] = 1, A[0] = b[0], B[-1] = 0, B[0] = 1,
+*
+* A[k] = b[k] * A[k-1] + a[k] * A[k-2],
+*
+* B[k] = b[k] * B[k-1] + a[k] * B[k-2].
+*
+* Once the condition
+*
+* |x - f[k]| <= eps
+*
+* has been satisfied, the routine reports p = A[k] and q = B[k] as the
+* final answer.
+*
+* In the table below here is some statistics obtained for one million
+* random numbers uniformly distributed in the range [0, 1).
+*
+* eps max p mean p max q mean q max k mean k
+* -------------------------------------------------------------
+* 1e-1 8 1.6 9 3.2 3 1.4
+* 1e-2 98 6.2 99 12.4 5 2.4
+* 1e-3 997 20.7 998 41.5 8 3.4
+* 1e-4 9959 66.6 9960 133.5 10 4.4
+* 1e-5 97403 211.7 97404 424.2 13 5.3
+* 1e-6 479669 669.9 479670 1342.9 15 6.3
+* 1e-7 1579030 2127.3 3962146 4257.8 16 7.3
+* 1e-8 26188823 6749.4 26188824 13503.4 19 8.2
+*
+* REFERENCES
+*
+* W. B. Jones and W. J. Thron, "Continued Fractions: Analytic Theory
+* and Applications," Encyclopedia on Mathematics and Its Applications,
+* Addison-Wesley, 1980. */
+
+int fp2rat(double x, double eps, double *p, double *q)
+{ int k;
+ double xk, Akm1, Ak, Bkm1, Bk, ak, bk, fk, temp;
+ xassert(0.0 <= x && x < 1.0);
+ for (k = 0; ; k++)
+ { xassert(k <= 100);
+ if (k == 0)
+ { /* x[0] = x */
+ xk = x;
+ /* A[-1] = 1 */
+ Akm1 = 1.0;
+ /* A[0] = b[0] = floor(x[0]) = 0 */
+ Ak = 0.0;
+ /* B[-1] = 0 */
+ Bkm1 = 0.0;
+ /* B[0] = 1 */
+ Bk = 1.0;
+ }
+ else
+ { /* x[k] = 1 / frac(x[k-1]) */
+ temp = xk - floor(xk);
+ xassert(temp != 0.0);
+ xk = 1.0 / temp;
+ /* a[k] = 1 */
+ ak = 1.0;
+ /* b[k] = floor(x[k]) */
+ bk = floor(xk);
+ /* A[k] = b[k] * A[k-1] + a[k] * A[k-2] */
+ temp = bk * Ak + ak * Akm1;
+ Akm1 = Ak, Ak = temp;
+ /* B[k] = b[k] * B[k-1] + a[k] * B[k-2] */
+ temp = bk * Bk + ak * Bkm1;
+ Bkm1 = Bk, Bk = temp;
+ }
+ /* f[k] = A[k] / B[k] */
+ fk = Ak / Bk;
+#if 0
+ print("%.*g / %.*g = %.*g",
+ DBL_DIG, Ak, DBL_DIG, Bk, DBL_DIG, fk);
+#endif
+ if (fabs(x - fk) <= eps)
+ break;
+ }
+ *p = Ak;
+ *q = Bk;
+ return k;
+}
+
+/* eof */