aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/misc/keller.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/misc/keller.c')
-rw-r--r--test/monniaux/glpk-4.65/src/misc/keller.c235
1 files changed, 235 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/misc/keller.c b/test/monniaux/glpk-4.65/src/misc/keller.c
new file mode 100644
index 00000000..d64d3c1e
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/misc/keller.c
@@ -0,0 +1,235 @@
+/* keller.c (cover edges by cliques, Kellerman's heuristic) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2009-2013 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "glpk.h"
+#include "env.h"
+#include "keller.h"
+
+/***********************************************************************
+* NAME
+*
+* kellerman - cover edges by cliques with Kellerman's heuristic
+*
+* SYNOPSIS
+*
+* #include "keller.h"
+* int kellerman(int n, int (*func)(void *info, int i, int ind[]),
+* void *info, glp_graph *H);
+*
+* DESCRIPTION
+*
+* The routine kellerman implements Kellerman's heuristic algorithm
+* to find a minimal set of cliques which cover all edges of specified
+* graph G = (V, E).
+*
+* The parameter n specifies the number of vertices |V|, n >= 0.
+*
+* Formal routine func specifies the set of edges E in the following
+* way. Running the routine kellerman calls the routine func and passes
+* to it parameter i, which is the number of some vertex, 1 <= i <= n.
+* In response the routine func should store numbers of all vertices
+* adjacent to vertex i to locations ind[1], ind[2], ..., ind[len] and
+* return the value of len, which is the number of adjacent vertices,
+* 0 <= len <= n. Self-loops are allowed, but ignored. Multiple edges
+* are not allowed.
+*
+* The parameter info is a transit pointer (magic cookie) passed to the
+* formal routine func as its first parameter.
+*
+* The result provided by the routine kellerman is the bipartite graph
+* H = (V union C, F), which defines the covering found. (The program
+* object of type glp_graph specified by the parameter H should be
+* previously created with the routine glp_create_graph. On entry the
+* routine kellerman erases the content of this object with the routine
+* glp_erase_graph.) Vertices of first part V correspond to vertices of
+* the graph G and have the same ordinal numbers 1, 2, ..., n. Vertices
+* of second part C correspond to cliques and have ordinal numbers
+* n+1, n+2, ..., n+k, where k is the total number of cliques in the
+* edge covering found. Every edge f in F in the program object H is
+* represented as arc f = (i->j), where i in V and j in C, which means
+* that vertex i of the graph G is in clique C[j], 1 <= j <= k. (Thus,
+* if two vertices of the graph G are in the same clique, these vertices
+* are adjacent in G, and corresponding edge is covered by that clique.)
+*
+* RETURNS
+*
+* The routine Kellerman returns k, the total number of cliques in the
+* edge covering found.
+*
+* REFERENCE
+*
+* For more details see: glpk/doc/notes/keller.pdf (in Russian). */
+
+struct set
+{ /* set of vertices */
+ int size;
+ /* size (cardinality) of the set, 0 <= card <= n */
+ int *list; /* int list[1+n]; */
+ /* the set contains vertices list[1,...,size] */
+ int *pos; /* int pos[1+n]; */
+ /* pos[i] > 0 means that vertex i is in the set and
+ * list[pos[i]] = i; pos[i] = 0 means that vertex i is not in
+ * the set */
+};
+
+int kellerman(int n, int (*func)(void *info, int i, int ind[]),
+ void *info, void /* glp_graph */ *H_)
+{ glp_graph *H = H_;
+ struct set W_, *W = &W_, V_, *V = &V_;
+ glp_arc *a;
+ int i, j, k, m, t, len, card, best;
+ xassert(n >= 0);
+ /* H := (V, 0; 0), where V is the set of vertices of graph G */
+ glp_erase_graph(H, H->v_size, H->a_size);
+ glp_add_vertices(H, n);
+ /* W := 0 */
+ W->size = 0;
+ W->list = xcalloc(1+n, sizeof(int));
+ W->pos = xcalloc(1+n, sizeof(int));
+ memset(&W->pos[1], 0, sizeof(int) * n);
+ /* V := 0 */
+ V->size = 0;
+ V->list = xcalloc(1+n, sizeof(int));
+ V->pos = xcalloc(1+n, sizeof(int));
+ memset(&V->pos[1], 0, sizeof(int) * n);
+ /* main loop */
+ for (i = 1; i <= n; i++)
+ { /* W must be empty */
+ xassert(W->size == 0);
+ /* W := { j : i > j and (i,j) in E } */
+ len = func(info, i, W->list);
+ xassert(0 <= len && len <= n);
+ for (t = 1; t <= len; t++)
+ { j = W->list[t];
+ xassert(1 <= j && j <= n);
+ if (j >= i) continue;
+ xassert(W->pos[j] == 0);
+ W->list[++W->size] = j, W->pos[j] = W->size;
+ }
+ /* on i-th iteration we need to cover edges (i,j) for all
+ * j in W */
+ /* if W is empty, it is a special case */
+ if (W->size == 0)
+ { /* set k := k + 1 and create new clique C[k] = { i } */
+ k = glp_add_vertices(H, 1) - n;
+ glp_add_arc(H, i, n + k);
+ continue;
+ }
+ /* try to include vertex i into existing cliques */
+ /* V must be empty */
+ xassert(V->size == 0);
+ /* k is the number of cliques found so far */
+ k = H->nv - n;
+ for (m = 1; m <= k; m++)
+ { /* do while V != W; since here V is within W, we can use
+ * equivalent condition: do while |V| < |W| */
+ if (V->size == W->size) break;
+ /* check if C[m] is within W */
+ for (a = H->v[n + m]->in; a != NULL; a = a->h_next)
+ { j = a->tail->i;
+ if (W->pos[j] == 0) break;
+ }
+ if (a != NULL) continue;
+ /* C[m] is within W, expand clique C[m] with vertex i */
+ /* C[m] := C[m] union {i} */
+ glp_add_arc(H, i, n + m);
+ /* V is a set of vertices whose incident edges are already
+ * covered by existing cliques */
+ /* V := V union C[m] */
+ for (a = H->v[n + m]->in; a != NULL; a = a->h_next)
+ { j = a->tail->i;
+ if (V->pos[j] == 0)
+ V->list[++V->size] = j, V->pos[j] = V->size;
+ }
+ }
+ /* remove from set W the vertices whose incident edges are
+ * already covered by existing cliques */
+ /* W := W \ V, V := 0 */
+ for (t = 1; t <= V->size; t++)
+ { j = V->list[t], V->pos[j] = 0;
+ if (W->pos[j] != 0)
+ { /* remove vertex j from W */
+ if (W->pos[j] != W->size)
+ { int jj = W->list[W->size];
+ W->list[W->pos[j]] = jj;
+ W->pos[jj] = W->pos[j];
+ }
+ W->size--, W->pos[j] = 0;
+ }
+ }
+ V->size = 0;
+ /* now set W contains only vertices whose incident edges are
+ * still not covered by existing cliques; create new cliques
+ * to cover remaining edges until set W becomes empty */
+ while (W->size > 0)
+ { /* find clique C[m], 1 <= m <= k, which shares maximal
+ * number of vertices with W; to break ties choose clique
+ * having smallest number m */
+ m = 0, best = -1;
+ k = H->nv - n;
+ for (t = 1; t <= k; t++)
+ { /* compute cardinality of intersection of W and C[t] */
+ card = 0;
+ for (a = H->v[n + t]->in; a != NULL; a = a->h_next)
+ { j = a->tail->i;
+ if (W->pos[j] != 0) card++;
+ }
+ if (best < card)
+ m = t, best = card;
+ }
+ xassert(m > 0);
+ /* set k := k + 1 and create new clique:
+ * C[k] := (W intersect C[m]) union { i }, which covers all
+ * edges incident to vertices from (W intersect C[m]) */
+ k = glp_add_vertices(H, 1) - n;
+ for (a = H->v[n + m]->in; a != NULL; a = a->h_next)
+ { j = a->tail->i;
+ if (W->pos[j] != 0)
+ { /* vertex j is in both W and C[m]; include it in new
+ * clique C[k] */
+ glp_add_arc(H, j, n + k);
+ /* remove vertex j from W, since edge (i,j) will be
+ * covered by new clique C[k] */
+ if (W->pos[j] != W->size)
+ { int jj = W->list[W->size];
+ W->list[W->pos[j]] = jj;
+ W->pos[jj] = W->pos[j];
+ }
+ W->size--, W->pos[j] = 0;
+ }
+ }
+ /* include vertex i to new clique C[k] to cover edges (i,j)
+ * incident to all vertices j just removed from W */
+ glp_add_arc(H, i, n + k);
+ }
+ }
+ /* free working arrays */
+ xfree(W->list);
+ xfree(W->pos);
+ xfree(V->list);
+ xfree(V->pos);
+ /* return the number of cliques in the edge covering found */
+ return H->nv - n;
+}
+
+/* eof */