aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/misc/mc21a.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/misc/mc21a.c')
-rw-r--r--test/monniaux/glpk-4.65/src/misc/mc21a.c301
1 files changed, 301 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/misc/mc21a.c b/test/monniaux/glpk-4.65/src/misc/mc21a.c
new file mode 100644
index 00000000..700d0f4e
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/misc/mc21a.c
@@ -0,0 +1,301 @@
+/* mc21a.c (permutations for zero-free diagonal) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* This code is the result of translation of the Fortran subroutines
+* MC21A and MC21B associated with the following paper:
+*
+* I.S.Duff, Algorithm 575: Permutations for zero-free diagonal, ACM
+* Trans. on Math. Softw. 7 (1981), 387-390.
+*
+* Use of ACM Algorithms is subject to the ACM Software Copyright and
+* License Agreement. See <http://www.acm.org/publications/policies>.
+*
+* The translation was made by Andrew Makhorin <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "mc21a.h"
+
+/***********************************************************************
+* NAME
+*
+* mc21a - permutations for zero-free diagonal
+*
+* SYNOPSIS
+*
+* #include "mc21a.h"
+* int mc21a(int n, const int icn[], const int ip[], const int lenr[],
+* int iperm[], int pr[], int arp[], int cv[], int out[]);
+*
+* DESCRIPTION
+*
+* Given the pattern of nonzeros of a sparse matrix, the routine mc21a
+* attempts to find a permutation of its rows that makes the matrix have
+* no zeros on its diagonal.
+*
+* INPUT PARAMETERS
+*
+* n order of matrix.
+*
+* icn array containing the column indices of the non-zeros. Those
+* belonging to a single row must be contiguous but the ordering
+* of column indices within each row is unimportant and wasted
+* space between rows is permitted.
+*
+* ip ip[i], i = 1,2,...,n, is the position in array icn of the
+* first column index of a non-zero in row i.
+*
+* lenr lenr[i], i = 1,2,...,n, is the number of non-zeros in row i.
+*
+* OUTPUT PARAMETER
+*
+* iperm contains permutation to make diagonal have the smallest
+* number of zeros on it. Elements (iperm[i], i), i = 1,2,...,n,
+* are non-zero at the end of the algorithm unless the matrix is
+* structurally singular. In this case, (iperm[i], i) will be
+* zero for n - numnz entries.
+*
+* WORKING ARRAYS
+*
+* pr working array of length [1+n], where pr[0] is not used.
+* pr[i] is the previous row to i in the depth first search.
+*
+* arp working array of length [1+n], where arp[0] is not used.
+* arp[i] is one less than the number of non-zeros in row i which
+* have not been scanned when looking for a cheap assignment.
+*
+* cv working array of length [1+n], where cv[0] is not used.
+* cv[i] is the most recent row extension at which column i was
+* visited.
+*
+* out working array of length [1+n], where out[0] is not used.
+* out[i] is one less than the number of non-zeros in row i
+* which have not been scanned during one pass through the main
+* loop.
+*
+* RETURNS
+*
+* The routine mc21a returns numnz, the number of non-zeros on diagonal
+* of permuted matrix. */
+
+int mc21a(int n, const int icn[], const int ip[], const int lenr[],
+ int iperm[], int pr[], int arp[], int cv[], int out[])
+{ int i, ii, in1, in2, j, j1, jord, k, kk, numnz;
+ /* Initialization of arrays. */
+ for (i = 1; i <= n; i++)
+ { arp[i] = lenr[i] - 1;
+ cv[i] = iperm[i] = 0;
+ }
+ numnz = 0;
+ /* Main loop. */
+ /* Each pass round this loop either results in a new assignment
+ * or gives a row with no assignment. */
+ for (jord = 1; jord <= n; jord++)
+ { j = jord;
+ pr[j] = -1;
+ for (k = 1; k <= jord; k++)
+ { /* Look for a cheap assignment. */
+ in1 = arp[j];
+ if (in1 >= 0)
+ { in2 = ip[j] + lenr[j] - 1;
+ in1 = in2 - in1;
+ for (ii = in1; ii <= in2; ii++)
+ { i = icn[ii];
+ if (iperm[i] == 0) goto L110;
+ }
+ /* No cheap assignment in row. */
+ arp[j] = -1;
+ }
+ /* Begin looking for assignment chain starting with row j.*/
+ out[j] = lenr[j] - 1;
+ /* Inner loop. Extends chain by one or backtracks. */
+ for (kk = 1; kk <= jord; kk++)
+ { in1 = out[j];
+ if (in1 >= 0)
+ { in2 = ip[j] + lenr[j] - 1;
+ in1 = in2 - in1;
+ /* Forward scan. */
+ for (ii = in1; ii <= in2; ii++)
+ { i = icn[ii];
+ if (cv[i] != jord)
+ { /* Column i has not yet been accessed during
+ * this pass. */
+ j1 = j;
+ j = iperm[i];
+ cv[i] = jord;
+ pr[j] = j1;
+ out[j1] = in2 - ii - 1;
+ goto L100;
+ }
+ }
+ }
+ /* Backtracking step. */
+ j = pr[j];
+ if (j == -1) goto L130;
+ }
+L100: ;
+ }
+L110: /* New assignment is made. */
+ iperm[i] = j;
+ arp[j] = in2 - ii - 1;
+ numnz++;
+ for (k = 1; k <= jord; k++)
+ { j = pr[j];
+ if (j == -1) break;
+ ii = ip[j] + lenr[j] - out[j] - 2;
+ i = icn[ii];
+ iperm[i] = j;
+ }
+L130: ;
+ }
+ /* If matrix is structurally singular, we now complete the
+ * permutation iperm. */
+ if (numnz < n)
+ { for (i = 1; i <= n; i++)
+ arp[i] = 0;
+ k = 0;
+ for (i = 1; i <= n; i++)
+ { if (iperm[i] == 0)
+ out[++k] = i;
+ else
+ arp[iperm[i]] = i;
+ }
+ k = 0;
+ for (i = 1; i <= n; i++)
+ { if (arp[i] == 0)
+ iperm[out[++k]] = i;
+ }
+ }
+ return numnz;
+}
+
+/**********************************************************************/
+
+#ifdef GLP_TEST
+#include "env.h"
+
+int sing;
+
+void ranmat(int m, int n, int icn[], int iptr[], int nnnp1, int *knum,
+ int iw[]);
+
+void fa01bs(int max, int *nrand);
+
+int main(void)
+{ /* test program for the routine mc21a */
+ /* these runs on random matrices cause all possible statements in
+ * mc21a to be executed */
+ int i, iold, j, j1, j2, jj, knum, l, licn, n, nov4, num, numnz;
+ int ip[1+21], icn[1+1000], iperm[1+20], lenr[1+20], iw1[1+80];
+ licn = 1000;
+ /* run on random matrices of orders 1 through 20 */
+ for (n = 1; n <= 20; n++)
+ { nov4 = n / 4;
+ if (nov4 < 1) nov4 = 1;
+L10: fa01bs(nov4, &l);
+ knum = l * n;
+ /* knum is requested number of non-zeros in random matrix */
+ if (knum > licn) goto L10;
+ /* if sing is false, matrix is guaranteed structurally
+ * non-singular */
+ sing = ((n / 2) * 2 == n);
+ /* call to subroutine to generate random matrix */
+ ranmat(n, n, icn, ip, n+1, &knum, iw1);
+ /* knum is now actual number of non-zeros in random matrix */
+ if (knum > licn) goto L10;
+ xprintf("n = %2d; nz = %4d; sing = %d\n", n, knum, sing);
+ /* set up array of row lengths */
+ for (i = 1; i <= n; i++)
+ lenr[i] = ip[i+1] - ip[i];
+ /* call to mc21a */
+ numnz = mc21a(n, icn, ip, lenr, iperm, &iw1[0], &iw1[n],
+ &iw1[n+n], &iw1[n+n+n]);
+ /* testing to see if there are numnz non-zeros on the diagonal
+ * of the permuted matrix. */
+ num = 0;
+ for (i = 1; i <= n; i++)
+ { iold = iperm[i];
+ j1 = ip[iold];
+ j2 = j1 + lenr[iold] - 1;
+ if (j2 < j1) continue;
+ for (jj = j1; jj <= j2; jj++)
+ { j = icn[jj];
+ if (j == i)
+ { num++;
+ break;
+ }
+ }
+ }
+ if (num != numnz)
+ xprintf("Failure in mc21a, numnz = %d instead of %d\n",
+ numnz, num);
+ }
+ return 0;
+}
+
+void ranmat(int m, int n, int icn[], int iptr[], int nnnp1, int *knum,
+ int iw[])
+{ /* subroutine to generate random matrix */
+ int i, ii, inum, j, lrow, matnum;
+ inum = (*knum / n) * 2;
+ if (inum > n-1) inum = n-1;
+ matnum = 1;
+ /* each pass through this loop generates a row of the matrix */
+ for (j = 1; j <= m; j++)
+ { iptr[j] = matnum;
+ if (!(sing || j > n))
+ icn[matnum++] = j;
+ if (n == 1) continue;
+ for (i = 1; i <= n; i++) iw[i] = 0;
+ if (!sing) iw[j] = 1;
+ fa01bs(inum, &lrow);
+ lrow--;
+ if (lrow == 0) continue;
+ /* lrow off-diagonal non-zeros in row j of the matrix */
+ for (ii = 1; ii <= lrow; ii++)
+ { for (;;)
+ { fa01bs(n, &i);
+ if (iw[i] != 1) break;
+ }
+ iw[i] = 1;
+ icn[matnum++] = i;
+ }
+ }
+ for (i = m+1; i <= nnnp1; i++)
+ iptr[i] = matnum;
+ *knum = matnum - 1;
+ return;
+}
+
+double g = 1431655765.0;
+
+double fa01as(int i)
+{ /* random number generator */
+ g = fmod(g * 9228907.0, 4294967296.0);
+ if (i >= 0)
+ return g / 4294967296.0;
+ else
+ return 2.0 * g / 4294967296.0 - 1.0;
+}
+
+void fa01bs(int max, int *nrand)
+{ *nrand = (int)(fa01as(1) * (double)max) + 1;
+ return;
+}
+#endif
+
+/* eof */