aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/misc/okalg.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/misc/okalg.c')
-rw-r--r--test/monniaux/glpk-4.65/src/misc/okalg.c382
1 files changed, 382 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/misc/okalg.c b/test/monniaux/glpk-4.65/src/misc/okalg.c
new file mode 100644
index 00000000..8eecd6df
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/misc/okalg.c
@@ -0,0 +1,382 @@
+/* okalg.c (out-of-kilter algorithm) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2009-2013 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "okalg.h"
+
+/***********************************************************************
+* NAME
+*
+* okalg - out-of-kilter algorithm
+*
+* SYNOPSIS
+*
+* #include "okalg.h"
+* int okalg(int nv, int na, const int tail[], const int head[],
+* const int low[], const int cap[], const int cost[], int x[],
+* int pi[]);
+*
+* DESCRIPTION
+*
+* The routine okalg implements the out-of-kilter algorithm to find a
+* minimal-cost circulation in the specified flow network.
+*
+* INPUT PARAMETERS
+*
+* nv is the number of nodes, nv >= 0.
+*
+* na is the number of arcs, na >= 0.
+*
+* tail[a], a = 1,...,na, is the index of tail node of arc a.
+*
+* head[a], a = 1,...,na, is the index of head node of arc a.
+*
+* low[a], a = 1,...,na, is an lower bound to the flow through arc a.
+*
+* cap[a], a = 1,...,na, is an upper bound to the flow through arc a,
+* which is the capacity of the arc.
+*
+* cost[a], a = 1,...,na, is a per-unit cost of the flow through arc a.
+*
+* NOTES
+*
+* 1. Multiple arcs are allowed, but self-loops are not allowed.
+*
+* 2. It is required that 0 <= low[a] <= cap[a] for all arcs.
+*
+* 3. Arc costs may have any sign.
+*
+* OUTPUT PARAMETERS
+*
+* x[a], a = 1,...,na, is optimal value of the flow through arc a.
+*
+* pi[i], i = 1,...,nv, is Lagrange multiplier for flow conservation
+* equality constraint corresponding to node i (the node potential).
+*
+* RETURNS
+*
+* 0 optimal circulation found;
+*
+* 1 there is no feasible circulation;
+*
+* 2 integer overflow occured;
+*
+* 3 optimality test failed (logic error).
+*
+* REFERENCES
+*
+* L.R.Ford, Jr., and D.R.Fulkerson, "Flows in Networks," The RAND
+* Corp., Report R-375-PR (August 1962), Chap. III "Minimal Cost Flow
+* Problems," pp.113-26. */
+
+static int overflow(int u, int v)
+{ /* check for integer overflow on computing u + v */
+ if (u > 0 && v > 0 && u + v < 0) return 1;
+ if (u < 0 && v < 0 && u + v > 0) return 1;
+ return 0;
+}
+
+int okalg(int nv, int na, const int tail[], const int head[],
+ const int low[], const int cap[], const int cost[], int x[],
+ int pi[])
+{ int a, aok, delta, i, j, k, lambda, pos1, pos2, s, t, temp, ret,
+ *ptr, *arc, *link, *list;
+ /* sanity checks */
+ xassert(nv >= 0);
+ xassert(na >= 0);
+ for (a = 1; a <= na; a++)
+ { i = tail[a], j = head[a];
+ xassert(1 <= i && i <= nv);
+ xassert(1 <= j && j <= nv);
+ xassert(i != j);
+ xassert(0 <= low[a] && low[a] <= cap[a]);
+ }
+ /* allocate working arrays */
+ ptr = xcalloc(1+nv+1, sizeof(int));
+ arc = xcalloc(1+na+na, sizeof(int));
+ link = xcalloc(1+nv, sizeof(int));
+ list = xcalloc(1+nv, sizeof(int));
+ /* ptr[i] := (degree of node i) */
+ for (i = 1; i <= nv; i++)
+ ptr[i] = 0;
+ for (a = 1; a <= na; a++)
+ { ptr[tail[a]]++;
+ ptr[head[a]]++;
+ }
+ /* initialize arc pointers */
+ ptr[1]++;
+ for (i = 1; i < nv; i++)
+ ptr[i+1] += ptr[i];
+ ptr[nv+1] = ptr[nv];
+ /* build arc lists */
+ for (a = 1; a <= na; a++)
+ { arc[--ptr[tail[a]]] = a;
+ arc[--ptr[head[a]]] = a;
+ }
+ xassert(ptr[1] == 1);
+ xassert(ptr[nv+1] == na+na+1);
+ /* now the indices of arcs incident to node i are stored in
+ * locations arc[ptr[i]], arc[ptr[i]+1], ..., arc[ptr[i+1]-1] */
+ /* initialize arc flows and node potentials */
+ for (a = 1; a <= na; a++)
+ x[a] = 0;
+ for (i = 1; i <= nv; i++)
+ pi[i] = 0;
+loop: /* main loop starts here */
+ /* find out-of-kilter arc */
+ aok = 0;
+ for (a = 1; a <= na; a++)
+ { i = tail[a], j = head[a];
+ if (overflow(cost[a], pi[i] - pi[j]))
+ { ret = 2;
+ goto done;
+ }
+ lambda = cost[a] + (pi[i] - pi[j]);
+ if (x[a] < low[a] || (lambda < 0 && x[a] < cap[a]))
+ { /* arc a = i->j is out of kilter, and we need to increase
+ * the flow through this arc */
+ aok = a, s = j, t = i;
+ break;
+ }
+ if (x[a] > cap[a] || (lambda > 0 && x[a] > low[a]))
+ { /* arc a = i->j is out of kilter, and we need to decrease
+ * the flow through this arc */
+ aok = a, s = i, t = j;
+ break;
+ }
+ }
+ if (aok == 0)
+ { /* all arcs are in kilter */
+ /* check for feasibility */
+ for (a = 1; a <= na; a++)
+ { if (!(low[a] <= x[a] && x[a] <= cap[a]))
+ { ret = 3;
+ goto done;
+ }
+ }
+ for (i = 1; i <= nv; i++)
+ { temp = 0;
+ for (k = ptr[i]; k < ptr[i+1]; k++)
+ { a = arc[k];
+ if (tail[a] == i)
+ { /* a is outgoing arc */
+ temp += x[a];
+ }
+ else if (head[a] == i)
+ { /* a is incoming arc */
+ temp -= x[a];
+ }
+ else
+ xassert(a != a);
+ }
+ if (temp != 0)
+ { ret = 3;
+ goto done;
+ }
+ }
+ /* check for optimality */
+ for (a = 1; a <= na; a++)
+ { i = tail[a], j = head[a];
+ lambda = cost[a] + (pi[i] - pi[j]);
+ if ((lambda > 0 && x[a] != low[a]) ||
+ (lambda < 0 && x[a] != cap[a]))
+ { ret = 3;
+ goto done;
+ }
+ }
+ /* current circulation is optimal */
+ ret = 0;
+ goto done;
+ }
+ /* now we need to find a cycle (t, a, s, ..., t), which allows
+ * increasing the flow along it, where a is the out-of-kilter arc
+ * just found */
+ /* link[i] = 0 means that node i is not labelled yet;
+ * link[i] = a means that arc a immediately precedes node i */
+ /* initially only node s is labelled */
+ for (i = 1; i <= nv; i++)
+ link[i] = 0;
+ link[s] = aok, list[1] = s, pos1 = pos2 = 1;
+ /* breadth first search */
+ while (pos1 <= pos2)
+ { /* dequeue node i */
+ i = list[pos1++];
+ /* consider all arcs incident to node i */
+ for (k = ptr[i]; k < ptr[i+1]; k++)
+ { a = arc[k];
+ if (tail[a] == i)
+ { /* a = i->j is a forward arc from s to t */
+ j = head[a];
+ /* if node j has been labelled, skip the arc */
+ if (link[j] != 0) continue;
+ /* if the arc does not allow increasing the flow through
+ * it, skip the arc */
+ if (x[a] >= cap[a]) continue;
+ if (overflow(cost[a], pi[i] - pi[j]))
+ { ret = 2;
+ goto done;
+ }
+ lambda = cost[a] + (pi[i] - pi[j]);
+ if (lambda > 0 && x[a] >= low[a]) continue;
+ }
+ else if (head[a] == i)
+ { /* a = i<-j is a backward arc from s to t */
+ j = tail[a];
+ /* if node j has been labelled, skip the arc */
+ if (link[j] != 0) continue;
+ /* if the arc does not allow decreasing the flow through
+ * it, skip the arc */
+ if (x[a] <= low[a]) continue;
+ if (overflow(cost[a], pi[j] - pi[i]))
+ { ret = 2;
+ goto done;
+ }
+ lambda = cost[a] + (pi[j] - pi[i]);
+ if (lambda < 0 && x[a] <= cap[a]) continue;
+ }
+ else
+ xassert(a != a);
+ /* label node j and enqueue it */
+ link[j] = a, list[++pos2] = j;
+ /* check for breakthrough */
+ if (j == t) goto brkt;
+ }
+ }
+ /* NONBREAKTHROUGH */
+ /* consider all arcs, whose one endpoint is labelled and other is
+ * not, and determine maximal change of node potentials */
+ delta = 0;
+ for (a = 1; a <= na; a++)
+ { i = tail[a], j = head[a];
+ if (link[i] != 0 && link[j] == 0)
+ { /* a = i->j, where node i is labelled, node j is not */
+ if (overflow(cost[a], pi[i] - pi[j]))
+ { ret = 2;
+ goto done;
+ }
+ lambda = cost[a] + (pi[i] - pi[j]);
+ if (x[a] <= cap[a] && lambda > 0)
+ if (delta == 0 || delta > + lambda) delta = + lambda;
+ }
+ else if (link[i] == 0 && link[j] != 0)
+ { /* a = j<-i, where node j is labelled, node i is not */
+ if (overflow(cost[a], pi[i] - pi[j]))
+ { ret = 2;
+ goto done;
+ }
+ lambda = cost[a] + (pi[i] - pi[j]);
+ if (x[a] >= low[a] && lambda < 0)
+ if (delta == 0 || delta > - lambda) delta = - lambda;
+ }
+ }
+ if (delta == 0)
+ { /* there is no feasible circulation */
+ ret = 1;
+ goto done;
+ }
+ /* increase potentials of all unlabelled nodes */
+ for (i = 1; i <= nv; i++)
+ { if (link[i] == 0)
+ { if (overflow(pi[i], delta))
+ { ret = 2;
+ goto done;
+ }
+ pi[i] += delta;
+ }
+ }
+ goto loop;
+brkt: /* BREAKTHROUGH */
+ /* walk through arcs of the cycle (t, a, s, ..., t) found in the
+ * reverse order and determine maximal change of the flow */
+ delta = 0;
+ for (j = t;; j = i)
+ { /* arc a immediately precedes node j in the cycle */
+ a = link[j];
+ if (head[a] == j)
+ { /* a = i->j is a forward arc of the cycle */
+ i = tail[a];
+ lambda = cost[a] + (pi[i] - pi[j]);
+ if (lambda > 0 && x[a] < low[a])
+ { /* x[a] may be increased until its lower bound */
+ temp = low[a] - x[a];
+ }
+ else if (lambda <= 0 && x[a] < cap[a])
+ { /* x[a] may be increased until its upper bound */
+ temp = cap[a] - x[a];
+ }
+ else
+ xassert(a != a);
+ }
+ else if (tail[a] == j)
+ { /* a = i<-j is a backward arc of the cycle */
+ i = head[a];
+ lambda = cost[a] + (pi[j] - pi[i]);
+ if (lambda < 0 && x[a] > cap[a])
+ { /* x[a] may be decreased until its upper bound */
+ temp = x[a] - cap[a];
+ }
+ else if (lambda >= 0 && x[a] > low[a])
+ { /* x[a] may be decreased until its lower bound */
+ temp = x[a] - low[a];
+ }
+ else
+ xassert(a != a);
+ }
+ else
+ xassert(a != a);
+ if (delta == 0 || delta > temp) delta = temp;
+ /* check for end of the cycle */
+ if (i == t) break;
+ }
+ xassert(delta > 0);
+ /* increase the flow along the cycle */
+ for (j = t;; j = i)
+ { /* arc a immediately precedes node j in the cycle */
+ a = link[j];
+ if (head[a] == j)
+ { /* a = i->j is a forward arc of the cycle */
+ i = tail[a];
+ /* overflow cannot occur */
+ x[a] += delta;
+ }
+ else if (tail[a] == j)
+ { /* a = i<-j is a backward arc of the cycle */
+ i = head[a];
+ /* overflow cannot occur */
+ x[a] -= delta;
+ }
+ else
+ xassert(a != a);
+ /* check for end of the cycle */
+ if (i == t) break;
+ }
+ goto loop;
+done: /* free working arrays */
+ xfree(ptr);
+ xfree(arc);
+ xfree(link);
+ xfree(list);
+ return ret;
+}
+
+/* eof */