aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/npp/npp2.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/npp/npp2.c')
-rw-r--r--test/monniaux/glpk-4.65/src/npp/npp2.c1433
1 files changed, 1433 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/npp/npp2.c b/test/monniaux/glpk-4.65/src/npp/npp2.c
new file mode 100644
index 00000000..4efcf1d1
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/npp/npp2.c
@@ -0,0 +1,1433 @@
+/* npp2.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2009-2017 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "npp.h"
+
+/***********************************************************************
+* NAME
+*
+* npp_free_row - process free (unbounded) row
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* void npp_free_row(NPP *npp, NPPROW *p);
+*
+* DESCRIPTION
+*
+* The routine npp_free_row processes row p, which is free (i.e. has
+* no finite bounds):
+*
+* -inf < sum a[p,j] x[j] < +inf. (1)
+* j
+*
+* PROBLEM TRANSFORMATION
+*
+* Constraint (1) cannot be active, so it is redundant and can be
+* removed from the original problem.
+*
+* Removing row p leads to removing a column of multiplier pi[p] for
+* this row in the dual system. Since row p has no bounds, pi[p] = 0,
+* so removing the column does not affect the dual solution.
+*
+* RECOVERING BASIC SOLUTION
+*
+* In solution to the original problem row p is inactive constraint,
+* so it is assigned status GLP_BS, and multiplier pi[p] is assigned
+* zero value.
+*
+* RECOVERING INTERIOR-POINT SOLUTION
+*
+* In solution to the original problem row p is inactive constraint,
+* so its multiplier pi[p] is assigned zero value.
+*
+* RECOVERING MIP SOLUTION
+*
+* None needed. */
+
+struct free_row
+{ /* free (unbounded) row */
+ int p;
+ /* row reference number */
+};
+
+static int rcv_free_row(NPP *npp, void *info);
+
+void npp_free_row(NPP *npp, NPPROW *p)
+{ /* process free (unbounded) row */
+ struct free_row *info;
+ /* the row must be free */
+ xassert(p->lb == -DBL_MAX && p->ub == +DBL_MAX);
+ /* create transformation stack entry */
+ info = npp_push_tse(npp,
+ rcv_free_row, sizeof(struct free_row));
+ info->p = p->i;
+ /* remove the row from the problem */
+ npp_del_row(npp, p);
+ return;
+}
+
+static int rcv_free_row(NPP *npp, void *_info)
+{ /* recover free (unbounded) row */
+ struct free_row *info = _info;
+ if (npp->sol == GLP_SOL)
+ npp->r_stat[info->p] = GLP_BS;
+ if (npp->sol != GLP_MIP)
+ npp->r_pi[info->p] = 0.0;
+ return 0;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_geq_row - process row of 'not less than' type
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* void npp_geq_row(NPP *npp, NPPROW *p);
+*
+* DESCRIPTION
+*
+* The routine npp_geq_row processes row p, which is 'not less than'
+* inequality constraint:
+*
+* L[p] <= sum a[p,j] x[j] (<= U[p]), (1)
+* j
+*
+* where L[p] < U[p], and upper bound may not exist (U[p] = +oo).
+*
+* PROBLEM TRANSFORMATION
+*
+* Constraint (1) can be replaced by equality constraint:
+*
+* sum a[p,j] x[j] - s = L[p], (2)
+* j
+*
+* where
+*
+* 0 <= s (<= U[p] - L[p]) (3)
+*
+* is a non-negative surplus variable.
+*
+* Since in the primal system there appears column s having the only
+* non-zero coefficient in row p, in the dual system there appears a
+* new row:
+*
+* (-1) pi[p] + lambda = 0, (4)
+*
+* where (-1) is coefficient of column s in row p, pi[p] is multiplier
+* of row p, lambda is multiplier of column q, 0 is coefficient of
+* column s in the objective row.
+*
+* RECOVERING BASIC SOLUTION
+*
+* Status of row p in solution to the original problem is determined
+* by its status and status of column q in solution to the transformed
+* problem as follows:
+*
+* +--------------------------------------+------------------+
+* | Transformed problem | Original problem |
+* +-----------------+--------------------+------------------+
+* | Status of row p | Status of column s | Status of row p |
+* +-----------------+--------------------+------------------+
+* | GLP_BS | GLP_BS | N/A |
+* | GLP_BS | GLP_NL | GLP_BS |
+* | GLP_BS | GLP_NU | GLP_BS |
+* | GLP_NS | GLP_BS | GLP_BS |
+* | GLP_NS | GLP_NL | GLP_NL |
+* | GLP_NS | GLP_NU | GLP_NU |
+* +-----------------+--------------------+------------------+
+*
+* Value of row multiplier pi[p] in solution to the original problem
+* is the same as in solution to the transformed problem.
+*
+* 1. In solution to the transformed problem row p and column q cannot
+* be basic at the same time; otherwise the basis matrix would have
+* two linear dependent columns: unity column of auxiliary variable
+* of row p and unity column of variable s.
+*
+* 2. Though in the transformed problem row p is equality constraint,
+* it may be basic due to primal degenerate solution.
+*
+* RECOVERING INTERIOR-POINT SOLUTION
+*
+* Value of row multiplier pi[p] in solution to the original problem
+* is the same as in solution to the transformed problem.
+*
+* RECOVERING MIP SOLUTION
+*
+* None needed. */
+
+struct ineq_row
+{ /* inequality constraint row */
+ int p;
+ /* row reference number */
+ int s;
+ /* column reference number for slack/surplus variable */
+};
+
+static int rcv_geq_row(NPP *npp, void *info);
+
+void npp_geq_row(NPP *npp, NPPROW *p)
+{ /* process row of 'not less than' type */
+ struct ineq_row *info;
+ NPPCOL *s;
+ /* the row must have lower bound */
+ xassert(p->lb != -DBL_MAX);
+ xassert(p->lb < p->ub);
+ /* create column for surplus variable */
+ s = npp_add_col(npp);
+ s->lb = 0.0;
+ s->ub = (p->ub == +DBL_MAX ? +DBL_MAX : p->ub - p->lb);
+ /* and add it to the transformed problem */
+ npp_add_aij(npp, p, s, -1.0);
+ /* create transformation stack entry */
+ info = npp_push_tse(npp,
+ rcv_geq_row, sizeof(struct ineq_row));
+ info->p = p->i;
+ info->s = s->j;
+ /* replace the row by equality constraint */
+ p->ub = p->lb;
+ return;
+}
+
+static int rcv_geq_row(NPP *npp, void *_info)
+{ /* recover row of 'not less than' type */
+ struct ineq_row *info = _info;
+ if (npp->sol == GLP_SOL)
+ { if (npp->r_stat[info->p] == GLP_BS)
+ { if (npp->c_stat[info->s] == GLP_BS)
+ { npp_error();
+ return 1;
+ }
+ else if (npp->c_stat[info->s] == GLP_NL ||
+ npp->c_stat[info->s] == GLP_NU)
+ npp->r_stat[info->p] = GLP_BS;
+ else
+ { npp_error();
+ return 1;
+ }
+ }
+ else if (npp->r_stat[info->p] == GLP_NS)
+ { if (npp->c_stat[info->s] == GLP_BS)
+ npp->r_stat[info->p] = GLP_BS;
+ else if (npp->c_stat[info->s] == GLP_NL)
+ npp->r_stat[info->p] = GLP_NL;
+ else if (npp->c_stat[info->s] == GLP_NU)
+ npp->r_stat[info->p] = GLP_NU;
+ else
+ { npp_error();
+ return 1;
+ }
+ }
+ else
+ { npp_error();
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_leq_row - process row of 'not greater than' type
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* void npp_leq_row(NPP *npp, NPPROW *p);
+*
+* DESCRIPTION
+*
+* The routine npp_leq_row processes row p, which is 'not greater than'
+* inequality constraint:
+*
+* (L[p] <=) sum a[p,j] x[j] <= U[p], (1)
+* j
+*
+* where L[p] < U[p], and lower bound may not exist (L[p] = +oo).
+*
+* PROBLEM TRANSFORMATION
+*
+* Constraint (1) can be replaced by equality constraint:
+*
+* sum a[p,j] x[j] + s = L[p], (2)
+* j
+*
+* where
+*
+* 0 <= s (<= U[p] - L[p]) (3)
+*
+* is a non-negative slack variable.
+*
+* Since in the primal system there appears column s having the only
+* non-zero coefficient in row p, in the dual system there appears a
+* new row:
+*
+* (+1) pi[p] + lambda = 0, (4)
+*
+* where (+1) is coefficient of column s in row p, pi[p] is multiplier
+* of row p, lambda is multiplier of column q, 0 is coefficient of
+* column s in the objective row.
+*
+* RECOVERING BASIC SOLUTION
+*
+* Status of row p in solution to the original problem is determined
+* by its status and status of column q in solution to the transformed
+* problem as follows:
+*
+* +--------------------------------------+------------------+
+* | Transformed problem | Original problem |
+* +-----------------+--------------------+------------------+
+* | Status of row p | Status of column s | Status of row p |
+* +-----------------+--------------------+------------------+
+* | GLP_BS | GLP_BS | N/A |
+* | GLP_BS | GLP_NL | GLP_BS |
+* | GLP_BS | GLP_NU | GLP_BS |
+* | GLP_NS | GLP_BS | GLP_BS |
+* | GLP_NS | GLP_NL | GLP_NU |
+* | GLP_NS | GLP_NU | GLP_NL |
+* +-----------------+--------------------+------------------+
+*
+* Value of row multiplier pi[p] in solution to the original problem
+* is the same as in solution to the transformed problem.
+*
+* 1. In solution to the transformed problem row p and column q cannot
+* be basic at the same time; otherwise the basis matrix would have
+* two linear dependent columns: unity column of auxiliary variable
+* of row p and unity column of variable s.
+*
+* 2. Though in the transformed problem row p is equality constraint,
+* it may be basic due to primal degeneracy.
+*
+* RECOVERING INTERIOR-POINT SOLUTION
+*
+* Value of row multiplier pi[p] in solution to the original problem
+* is the same as in solution to the transformed problem.
+*
+* RECOVERING MIP SOLUTION
+*
+* None needed. */
+
+static int rcv_leq_row(NPP *npp, void *info);
+
+void npp_leq_row(NPP *npp, NPPROW *p)
+{ /* process row of 'not greater than' type */
+ struct ineq_row *info;
+ NPPCOL *s;
+ /* the row must have upper bound */
+ xassert(p->ub != +DBL_MAX);
+ xassert(p->lb < p->ub);
+ /* create column for slack variable */
+ s = npp_add_col(npp);
+ s->lb = 0.0;
+ s->ub = (p->lb == -DBL_MAX ? +DBL_MAX : p->ub - p->lb);
+ /* and add it to the transformed problem */
+ npp_add_aij(npp, p, s, +1.0);
+ /* create transformation stack entry */
+ info = npp_push_tse(npp,
+ rcv_leq_row, sizeof(struct ineq_row));
+ info->p = p->i;
+ info->s = s->j;
+ /* replace the row by equality constraint */
+ p->lb = p->ub;
+ return;
+}
+
+static int rcv_leq_row(NPP *npp, void *_info)
+{ /* recover row of 'not greater than' type */
+ struct ineq_row *info = _info;
+ if (npp->sol == GLP_SOL)
+ { if (npp->r_stat[info->p] == GLP_BS)
+ { if (npp->c_stat[info->s] == GLP_BS)
+ { npp_error();
+ return 1;
+ }
+ else if (npp->c_stat[info->s] == GLP_NL ||
+ npp->c_stat[info->s] == GLP_NU)
+ npp->r_stat[info->p] = GLP_BS;
+ else
+ { npp_error();
+ return 1;
+ }
+ }
+ else if (npp->r_stat[info->p] == GLP_NS)
+ { if (npp->c_stat[info->s] == GLP_BS)
+ npp->r_stat[info->p] = GLP_BS;
+ else if (npp->c_stat[info->s] == GLP_NL)
+ npp->r_stat[info->p] = GLP_NU;
+ else if (npp->c_stat[info->s] == GLP_NU)
+ npp->r_stat[info->p] = GLP_NL;
+ else
+ { npp_error();
+ return 1;
+ }
+ }
+ else
+ { npp_error();
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_free_col - process free (unbounded) column
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* void npp_free_col(NPP *npp, NPPCOL *q);
+*
+* DESCRIPTION
+*
+* The routine npp_free_col processes column q, which is free (i.e. has
+* no finite bounds):
+*
+* -oo < x[q] < +oo. (1)
+*
+* PROBLEM TRANSFORMATION
+*
+* Free (unbounded) variable can be replaced by the difference of two
+* non-negative variables:
+*
+* x[q] = s' - s'', s', s'' >= 0. (2)
+*
+* Assuming that in the transformed problem x[q] becomes s',
+* transformation (2) causes new column s'' to appear, which differs
+* from column s' only in the sign of coefficients in constraint and
+* objective rows. Thus, if in the dual system the following row
+* corresponds to column s':
+*
+* sum a[i,q] pi[i] + lambda' = c[q], (3)
+* i
+*
+* the row which corresponds to column s'' is the following:
+*
+* sum (-a[i,q]) pi[i] + lambda'' = -c[q]. (4)
+* i
+*
+* Then from (3) and (4) it follows that:
+*
+* lambda' + lambda'' = 0 => lambda' = lmabda'' = 0, (5)
+*
+* where lambda' and lambda'' are multipliers for columns s' and s'',
+* resp.
+*
+* RECOVERING BASIC SOLUTION
+*
+* With respect to (5) status of column q in solution to the original
+* problem is determined by statuses of columns s' and s'' in solution
+* to the transformed problem as follows:
+*
+* +--------------------------------------+------------------+
+* | Transformed problem | Original problem |
+* +------------------+-------------------+------------------+
+* | Status of col s' | Status of col s'' | Status of col q |
+* +------------------+-------------------+------------------+
+* | GLP_BS | GLP_BS | N/A |
+* | GLP_BS | GLP_NL | GLP_BS |
+* | GLP_NL | GLP_BS | GLP_BS |
+* | GLP_NL | GLP_NL | GLP_NF |
+* +------------------+-------------------+------------------+
+*
+* Value of column q is computed with formula (2).
+*
+* 1. In solution to the transformed problem columns s' and s'' cannot
+* be basic at the same time, because they differ only in the sign,
+* hence, are linear dependent.
+*
+* 2. Though column q is free, it can be non-basic due to dual
+* degeneracy.
+*
+* 3. If column q is integral, columns s' and s'' are also integral.
+*
+* RECOVERING INTERIOR-POINT SOLUTION
+*
+* Value of column q is computed with formula (2).
+*
+* RECOVERING MIP SOLUTION
+*
+* Value of column q is computed with formula (2). */
+
+struct free_col
+{ /* free (unbounded) column */
+ int q;
+ /* column reference number for variables x[q] and s' */
+ int s;
+ /* column reference number for variable s'' */
+};
+
+static int rcv_free_col(NPP *npp, void *info);
+
+void npp_free_col(NPP *npp, NPPCOL *q)
+{ /* process free (unbounded) column */
+ struct free_col *info;
+ NPPCOL *s;
+ NPPAIJ *aij;
+ /* the column must be free */
+ xassert(q->lb == -DBL_MAX && q->ub == +DBL_MAX);
+ /* variable x[q] becomes s' */
+ q->lb = 0.0, q->ub = +DBL_MAX;
+ /* create variable s'' */
+ s = npp_add_col(npp);
+ s->is_int = q->is_int;
+ s->lb = 0.0, s->ub = +DBL_MAX;
+ /* duplicate objective coefficient */
+ s->coef = -q->coef;
+ /* duplicate column of the constraint matrix */
+ for (aij = q->ptr; aij != NULL; aij = aij->c_next)
+ npp_add_aij(npp, aij->row, s, -aij->val);
+ /* create transformation stack entry */
+ info = npp_push_tse(npp,
+ rcv_free_col, sizeof(struct free_col));
+ info->q = q->j;
+ info->s = s->j;
+ return;
+}
+
+static int rcv_free_col(NPP *npp, void *_info)
+{ /* recover free (unbounded) column */
+ struct free_col *info = _info;
+ if (npp->sol == GLP_SOL)
+ { if (npp->c_stat[info->q] == GLP_BS)
+ { if (npp->c_stat[info->s] == GLP_BS)
+ { npp_error();
+ return 1;
+ }
+ else if (npp->c_stat[info->s] == GLP_NL)
+ npp->c_stat[info->q] = GLP_BS;
+ else
+ { npp_error();
+ return -1;
+ }
+ }
+ else if (npp->c_stat[info->q] == GLP_NL)
+ { if (npp->c_stat[info->s] == GLP_BS)
+ npp->c_stat[info->q] = GLP_BS;
+ else if (npp->c_stat[info->s] == GLP_NL)
+ npp->c_stat[info->q] = GLP_NF;
+ else
+ { npp_error();
+ return -1;
+ }
+ }
+ else
+ { npp_error();
+ return -1;
+ }
+ }
+ /* compute value of x[q] with formula (2) */
+ npp->c_value[info->q] -= npp->c_value[info->s];
+ return 0;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_lbnd_col - process column with (non-zero) lower bound
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* void npp_lbnd_col(NPP *npp, NPPCOL *q);
+*
+* DESCRIPTION
+*
+* The routine npp_lbnd_col processes column q, which has (non-zero)
+* lower bound:
+*
+* l[q] <= x[q] (<= u[q]), (1)
+*
+* where l[q] < u[q], and upper bound may not exist (u[q] = +oo).
+*
+* PROBLEM TRANSFORMATION
+*
+* Column q can be replaced as follows:
+*
+* x[q] = l[q] + s, (2)
+*
+* where
+*
+* 0 <= s (<= u[q] - l[q]) (3)
+*
+* is a non-negative variable.
+*
+* Substituting x[q] from (2) into the objective row, we have:
+*
+* z = sum c[j] x[j] + c0 =
+* j
+*
+* = sum c[j] x[j] + c[q] x[q] + c0 =
+* j!=q
+*
+* = sum c[j] x[j] + c[q] (l[q] + s) + c0 =
+* j!=q
+*
+* = sum c[j] x[j] + c[q] s + c~0,
+*
+* where
+*
+* c~0 = c0 + c[q] l[q] (4)
+*
+* is the constant term of the objective in the transformed problem.
+* Similarly, substituting x[q] into constraint row i, we have:
+*
+* L[i] <= sum a[i,j] x[j] <= U[i] ==>
+* j
+*
+* L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i] ==>
+* j!=q
+*
+* L[i] <= sum a[i,j] x[j] + a[i,q] (l[q] + s) <= U[i] ==>
+* j!=q
+*
+* L~[i] <= sum a[i,j] x[j] + a[i,q] s <= U~[i],
+* j!=q
+*
+* where
+*
+* L~[i] = L[i] - a[i,q] l[q], U~[i] = U[i] - a[i,q] l[q] (5)
+*
+* are lower and upper bounds of row i in the transformed problem,
+* resp.
+*
+* Transformation (2) does not affect the dual system.
+*
+* RECOVERING BASIC SOLUTION
+*
+* Status of column q in solution to the original problem is the same
+* as in solution to the transformed problem (GLP_BS, GLP_NL or GLP_NU).
+* Value of column q is computed with formula (2).
+*
+* RECOVERING INTERIOR-POINT SOLUTION
+*
+* Value of column q is computed with formula (2).
+*
+* RECOVERING MIP SOLUTION
+*
+* Value of column q is computed with formula (2). */
+
+struct bnd_col
+{ /* bounded column */
+ int q;
+ /* column reference number for variables x[q] and s */
+ double bnd;
+ /* lower/upper bound l[q] or u[q] */
+};
+
+static int rcv_lbnd_col(NPP *npp, void *info);
+
+void npp_lbnd_col(NPP *npp, NPPCOL *q)
+{ /* process column with (non-zero) lower bound */
+ struct bnd_col *info;
+ NPPROW *i;
+ NPPAIJ *aij;
+ /* the column must have non-zero lower bound */
+ xassert(q->lb != 0.0);
+ xassert(q->lb != -DBL_MAX);
+ xassert(q->lb < q->ub);
+ /* create transformation stack entry */
+ info = npp_push_tse(npp,
+ rcv_lbnd_col, sizeof(struct bnd_col));
+ info->q = q->j;
+ info->bnd = q->lb;
+ /* substitute x[q] into objective row */
+ npp->c0 += q->coef * q->lb;
+ /* substitute x[q] into constraint rows */
+ for (aij = q->ptr; aij != NULL; aij = aij->c_next)
+ { i = aij->row;
+ if (i->lb == i->ub)
+ i->ub = (i->lb -= aij->val * q->lb);
+ else
+ { if (i->lb != -DBL_MAX)
+ i->lb -= aij->val * q->lb;
+ if (i->ub != +DBL_MAX)
+ i->ub -= aij->val * q->lb;
+ }
+ }
+ /* column x[q] becomes column s */
+ if (q->ub != +DBL_MAX)
+ q->ub -= q->lb;
+ q->lb = 0.0;
+ return;
+}
+
+static int rcv_lbnd_col(NPP *npp, void *_info)
+{ /* recover column with (non-zero) lower bound */
+ struct bnd_col *info = _info;
+ if (npp->sol == GLP_SOL)
+ { if (npp->c_stat[info->q] == GLP_BS ||
+ npp->c_stat[info->q] == GLP_NL ||
+ npp->c_stat[info->q] == GLP_NU)
+ npp->c_stat[info->q] = npp->c_stat[info->q];
+ else
+ { npp_error();
+ return 1;
+ }
+ }
+ /* compute value of x[q] with formula (2) */
+ npp->c_value[info->q] = info->bnd + npp->c_value[info->q];
+ return 0;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_ubnd_col - process column with upper bound
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* void npp_ubnd_col(NPP *npp, NPPCOL *q);
+*
+* DESCRIPTION
+*
+* The routine npp_ubnd_col processes column q, which has upper bound:
+*
+* (l[q] <=) x[q] <= u[q], (1)
+*
+* where l[q] < u[q], and lower bound may not exist (l[q] = -oo).
+*
+* PROBLEM TRANSFORMATION
+*
+* Column q can be replaced as follows:
+*
+* x[q] = u[q] - s, (2)
+*
+* where
+*
+* 0 <= s (<= u[q] - l[q]) (3)
+*
+* is a non-negative variable.
+*
+* Substituting x[q] from (2) into the objective row, we have:
+*
+* z = sum c[j] x[j] + c0 =
+* j
+*
+* = sum c[j] x[j] + c[q] x[q] + c0 =
+* j!=q
+*
+* = sum c[j] x[j] + c[q] (u[q] - s) + c0 =
+* j!=q
+*
+* = sum c[j] x[j] - c[q] s + c~0,
+*
+* where
+*
+* c~0 = c0 + c[q] u[q] (4)
+*
+* is the constant term of the objective in the transformed problem.
+* Similarly, substituting x[q] into constraint row i, we have:
+*
+* L[i] <= sum a[i,j] x[j] <= U[i] ==>
+* j
+*
+* L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i] ==>
+* j!=q
+*
+* L[i] <= sum a[i,j] x[j] + a[i,q] (u[q] - s) <= U[i] ==>
+* j!=q
+*
+* L~[i] <= sum a[i,j] x[j] - a[i,q] s <= U~[i],
+* j!=q
+*
+* where
+*
+* L~[i] = L[i] - a[i,q] u[q], U~[i] = U[i] - a[i,q] u[q] (5)
+*
+* are lower and upper bounds of row i in the transformed problem,
+* resp.
+*
+* Note that in the transformed problem coefficients c[q] and a[i,q]
+* change their sign. Thus, the row of the dual system corresponding to
+* column q:
+*
+* sum a[i,q] pi[i] + lambda[q] = c[q] (6)
+* i
+*
+* in the transformed problem becomes the following:
+*
+* sum (-a[i,q]) pi[i] + lambda[s] = -c[q]. (7)
+* i
+*
+* Therefore:
+*
+* lambda[q] = - lambda[s], (8)
+*
+* where lambda[q] is multiplier for column q, lambda[s] is multiplier
+* for column s.
+*
+* RECOVERING BASIC SOLUTION
+*
+* With respect to (8) status of column q in solution to the original
+* problem is determined by status of column s in solution to the
+* transformed problem as follows:
+*
+* +-----------------------+--------------------+
+* | Status of column s | Status of column q |
+* | (transformed problem) | (original problem) |
+* +-----------------------+--------------------+
+* | GLP_BS | GLP_BS |
+* | GLP_NL | GLP_NU |
+* | GLP_NU | GLP_NL |
+* +-----------------------+--------------------+
+*
+* Value of column q is computed with formula (2).
+*
+* RECOVERING INTERIOR-POINT SOLUTION
+*
+* Value of column q is computed with formula (2).
+*
+* RECOVERING MIP SOLUTION
+*
+* Value of column q is computed with formula (2). */
+
+static int rcv_ubnd_col(NPP *npp, void *info);
+
+void npp_ubnd_col(NPP *npp, NPPCOL *q)
+{ /* process column with upper bound */
+ struct bnd_col *info;
+ NPPROW *i;
+ NPPAIJ *aij;
+ /* the column must have upper bound */
+ xassert(q->ub != +DBL_MAX);
+ xassert(q->lb < q->ub);
+ /* create transformation stack entry */
+ info = npp_push_tse(npp,
+ rcv_ubnd_col, sizeof(struct bnd_col));
+ info->q = q->j;
+ info->bnd = q->ub;
+ /* substitute x[q] into objective row */
+ npp->c0 += q->coef * q->ub;
+ q->coef = -q->coef;
+ /* substitute x[q] into constraint rows */
+ for (aij = q->ptr; aij != NULL; aij = aij->c_next)
+ { i = aij->row;
+ if (i->lb == i->ub)
+ i->ub = (i->lb -= aij->val * q->ub);
+ else
+ { if (i->lb != -DBL_MAX)
+ i->lb -= aij->val * q->ub;
+ if (i->ub != +DBL_MAX)
+ i->ub -= aij->val * q->ub;
+ }
+ aij->val = -aij->val;
+ }
+ /* column x[q] becomes column s */
+ if (q->lb != -DBL_MAX)
+ q->ub -= q->lb;
+ else
+ q->ub = +DBL_MAX;
+ q->lb = 0.0;
+ return;
+}
+
+static int rcv_ubnd_col(NPP *npp, void *_info)
+{ /* recover column with upper bound */
+ struct bnd_col *info = _info;
+ if (npp->sol == GLP_BS)
+ { if (npp->c_stat[info->q] == GLP_BS)
+ npp->c_stat[info->q] = GLP_BS;
+ else if (npp->c_stat[info->q] == GLP_NL)
+ npp->c_stat[info->q] = GLP_NU;
+ else if (npp->c_stat[info->q] == GLP_NU)
+ npp->c_stat[info->q] = GLP_NL;
+ else
+ { npp_error();
+ return 1;
+ }
+ }
+ /* compute value of x[q] with formula (2) */
+ npp->c_value[info->q] = info->bnd - npp->c_value[info->q];
+ return 0;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_dbnd_col - process non-negative column with upper bound
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* void npp_dbnd_col(NPP *npp, NPPCOL *q);
+*
+* DESCRIPTION
+*
+* The routine npp_dbnd_col processes column q, which is non-negative
+* and has upper bound:
+*
+* 0 <= x[q] <= u[q], (1)
+*
+* where u[q] > 0.
+*
+* PROBLEM TRANSFORMATION
+*
+* Upper bound of column q can be replaced by the following equality
+* constraint:
+*
+* x[q] + s = u[q], (2)
+*
+* where s >= 0 is a non-negative complement variable.
+*
+* Since in the primal system along with new row (2) there appears a
+* new column s having the only non-zero coefficient in this row, in
+* the dual system there appears a new row:
+*
+* (+1)pi + lambda[s] = 0, (3)
+*
+* where (+1) is coefficient at column s in row (2), pi is multiplier
+* for row (2), lambda[s] is multiplier for column s, 0 is coefficient
+* at column s in the objective row.
+*
+* RECOVERING BASIC SOLUTION
+*
+* Status of column q in solution to the original problem is determined
+* by its status and status of column s in solution to the transformed
+* problem as follows:
+*
+* +-----------------------------------+------------------+
+* | Transformed problem | Original problem |
+* +-----------------+-----------------+------------------+
+* | Status of col q | Status of col s | Status of col q |
+* +-----------------+-----------------+------------------+
+* | GLP_BS | GLP_BS | GLP_BS |
+* | GLP_BS | GLP_NL | GLP_NU |
+* | GLP_NL | GLP_BS | GLP_NL |
+* | GLP_NL | GLP_NL | GLP_NL (*) |
+* +-----------------+-----------------+------------------+
+*
+* Value of column q in solution to the original problem is the same as
+* in solution to the transformed problem.
+*
+* 1. Formally, in solution to the transformed problem columns q and s
+* cannot be non-basic at the same time, since the constraint (2)
+* would be violated. However, if u[q] is close to zero, violation
+* may be less than a working precision even if both columns q and s
+* are non-basic. In this degenerate case row (2) can be only basic,
+* i.e. non-active constraint (otherwise corresponding row of the
+* basis matrix would be zero). This allows to pivot out auxiliary
+* variable and pivot in column s, in which case the row becomes
+* active while column s becomes basic.
+*
+* 2. If column q is integral, column s is also integral.
+*
+* RECOVERING INTERIOR-POINT SOLUTION
+*
+* Value of column q in solution to the original problem is the same as
+* in solution to the transformed problem.
+*
+* RECOVERING MIP SOLUTION
+*
+* Value of column q in solution to the original problem is the same as
+* in solution to the transformed problem. */
+
+struct dbnd_col
+{ /* double-bounded column */
+ int q;
+ /* column reference number for variable x[q] */
+ int s;
+ /* column reference number for complement variable s */
+};
+
+static int rcv_dbnd_col(NPP *npp, void *info);
+
+void npp_dbnd_col(NPP *npp, NPPCOL *q)
+{ /* process non-negative column with upper bound */
+ struct dbnd_col *info;
+ NPPROW *p;
+ NPPCOL *s;
+ /* the column must be non-negative with upper bound */
+ xassert(q->lb == 0.0);
+ xassert(q->ub > 0.0);
+ xassert(q->ub != +DBL_MAX);
+ /* create variable s */
+ s = npp_add_col(npp);
+ s->is_int = q->is_int;
+ s->lb = 0.0, s->ub = +DBL_MAX;
+ /* create equality constraint (2) */
+ p = npp_add_row(npp);
+ p->lb = p->ub = q->ub;
+ npp_add_aij(npp, p, q, +1.0);
+ npp_add_aij(npp, p, s, +1.0);
+ /* create transformation stack entry */
+ info = npp_push_tse(npp,
+ rcv_dbnd_col, sizeof(struct dbnd_col));
+ info->q = q->j;
+ info->s = s->j;
+ /* remove upper bound of x[q] */
+ q->ub = +DBL_MAX;
+ return;
+}
+
+static int rcv_dbnd_col(NPP *npp, void *_info)
+{ /* recover non-negative column with upper bound */
+ struct dbnd_col *info = _info;
+ if (npp->sol == GLP_BS)
+ { if (npp->c_stat[info->q] == GLP_BS)
+ { if (npp->c_stat[info->s] == GLP_BS)
+ npp->c_stat[info->q] = GLP_BS;
+ else if (npp->c_stat[info->s] == GLP_NL)
+ npp->c_stat[info->q] = GLP_NU;
+ else
+ { npp_error();
+ return 1;
+ }
+ }
+ else if (npp->c_stat[info->q] == GLP_NL)
+ { if (npp->c_stat[info->s] == GLP_BS ||
+ npp->c_stat[info->s] == GLP_NL)
+ npp->c_stat[info->q] = GLP_NL;
+ else
+ { npp_error();
+ return 1;
+ }
+ }
+ else
+ { npp_error();
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_fixed_col - process fixed column
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* void npp_fixed_col(NPP *npp, NPPCOL *q);
+*
+* DESCRIPTION
+*
+* The routine npp_fixed_col processes column q, which is fixed:
+*
+* x[q] = s[q], (1)
+*
+* where s[q] is a fixed column value.
+*
+* PROBLEM TRANSFORMATION
+*
+* The value of a fixed column can be substituted into the objective
+* and constraint rows that allows removing the column from the problem.
+*
+* Substituting x[q] = s[q] into the objective row, we have:
+*
+* z = sum c[j] x[j] + c0 =
+* j
+*
+* = sum c[j] x[j] + c[q] x[q] + c0 =
+* j!=q
+*
+* = sum c[j] x[j] + c[q] s[q] + c0 =
+* j!=q
+*
+* = sum c[j] x[j] + c~0,
+* j!=q
+*
+* where
+*
+* c~0 = c0 + c[q] s[q] (2)
+*
+* is the constant term of the objective in the transformed problem.
+* Similarly, substituting x[q] = s[q] into constraint row i, we have:
+*
+* L[i] <= sum a[i,j] x[j] <= U[i] ==>
+* j
+*
+* L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i] ==>
+* j!=q
+*
+* L[i] <= sum a[i,j] x[j] + a[i,q] s[q] <= U[i] ==>
+* j!=q
+*
+* L~[i] <= sum a[i,j] x[j] + a[i,q] s <= U~[i],
+* j!=q
+*
+* where
+*
+* L~[i] = L[i] - a[i,q] s[q], U~[i] = U[i] - a[i,q] s[q] (3)
+*
+* are lower and upper bounds of row i in the transformed problem,
+* resp.
+*
+* RECOVERING BASIC SOLUTION
+*
+* Column q is assigned status GLP_NS and its value is assigned s[q].
+*
+* RECOVERING INTERIOR-POINT SOLUTION
+*
+* Value of column q is assigned s[q].
+*
+* RECOVERING MIP SOLUTION
+*
+* Value of column q is assigned s[q]. */
+
+struct fixed_col
+{ /* fixed column */
+ int q;
+ /* column reference number for variable x[q] */
+ double s;
+ /* value, at which x[q] is fixed */
+};
+
+static int rcv_fixed_col(NPP *npp, void *info);
+
+void npp_fixed_col(NPP *npp, NPPCOL *q)
+{ /* process fixed column */
+ struct fixed_col *info;
+ NPPROW *i;
+ NPPAIJ *aij;
+ /* the column must be fixed */
+ xassert(q->lb == q->ub);
+ /* create transformation stack entry */
+ info = npp_push_tse(npp,
+ rcv_fixed_col, sizeof(struct fixed_col));
+ info->q = q->j;
+ info->s = q->lb;
+ /* substitute x[q] = s[q] into objective row */
+ npp->c0 += q->coef * q->lb;
+ /* substitute x[q] = s[q] into constraint rows */
+ for (aij = q->ptr; aij != NULL; aij = aij->c_next)
+ { i = aij->row;
+ if (i->lb == i->ub)
+ i->ub = (i->lb -= aij->val * q->lb);
+ else
+ { if (i->lb != -DBL_MAX)
+ i->lb -= aij->val * q->lb;
+ if (i->ub != +DBL_MAX)
+ i->ub -= aij->val * q->lb;
+ }
+ }
+ /* remove the column from the problem */
+ npp_del_col(npp, q);
+ return;
+}
+
+static int rcv_fixed_col(NPP *npp, void *_info)
+{ /* recover fixed column */
+ struct fixed_col *info = _info;
+ if (npp->sol == GLP_SOL)
+ npp->c_stat[info->q] = GLP_NS;
+ npp->c_value[info->q] = info->s;
+ return 0;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_make_equality - process row with almost identical bounds
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* int npp_make_equality(NPP *npp, NPPROW *p);
+*
+* DESCRIPTION
+*
+* The routine npp_make_equality processes row p:
+*
+* L[p] <= sum a[p,j] x[j] <= U[p], (1)
+* j
+*
+* where -oo < L[p] < U[p] < +oo, i.e. which is double-sided inequality
+* constraint.
+*
+* RETURNS
+*
+* 0 - row bounds have not been changed;
+*
+* 1 - row has been replaced by equality constraint.
+*
+* PROBLEM TRANSFORMATION
+*
+* If bounds of row (1) are very close to each other:
+*
+* U[p] - L[p] <= eps, (2)
+*
+* where eps is an absolute tolerance for row value, the row can be
+* replaced by the following almost equivalent equiality constraint:
+*
+* sum a[p,j] x[j] = b, (3)
+* j
+*
+* where b = (L[p] + U[p]) / 2. If the right-hand side in (3) happens
+* to be very close to its nearest integer:
+*
+* |b - floor(b + 0.5)| <= eps, (4)
+*
+* it is reasonable to use this nearest integer as the right-hand side.
+*
+* RECOVERING BASIC SOLUTION
+*
+* Status of row p in solution to the original problem is determined
+* by its status and the sign of its multiplier pi[p] in solution to
+* the transformed problem as follows:
+*
+* +-----------------------+---------+--------------------+
+* | Status of row p | Sign of | Status of row p |
+* | (transformed problem) | pi[p] | (original problem) |
+* +-----------------------+---------+--------------------+
+* | GLP_BS | + / - | GLP_BS |
+* | GLP_NS | + | GLP_NL |
+* | GLP_NS | - | GLP_NU |
+* +-----------------------+---------+--------------------+
+*
+* Value of row multiplier pi[p] in solution to the original problem is
+* the same as in solution to the transformed problem.
+*
+* RECOVERING INTERIOR POINT SOLUTION
+*
+* Value of row multiplier pi[p] in solution to the original problem is
+* the same as in solution to the transformed problem.
+*
+* RECOVERING MIP SOLUTION
+*
+* None needed. */
+
+struct make_equality
+{ /* row with almost identical bounds */
+ int p;
+ /* row reference number */
+};
+
+static int rcv_make_equality(NPP *npp, void *info);
+
+int npp_make_equality(NPP *npp, NPPROW *p)
+{ /* process row with almost identical bounds */
+ struct make_equality *info;
+ double b, eps, nint;
+ /* the row must be double-sided inequality */
+ xassert(p->lb != -DBL_MAX);
+ xassert(p->ub != +DBL_MAX);
+ xassert(p->lb < p->ub);
+ /* check row bounds */
+ eps = 1e-9 + 1e-12 * fabs(p->lb);
+ if (p->ub - p->lb > eps) return 0;
+ /* row bounds are very close to each other */
+ /* create transformation stack entry */
+ info = npp_push_tse(npp,
+ rcv_make_equality, sizeof(struct make_equality));
+ info->p = p->i;
+ /* compute right-hand side */
+ b = 0.5 * (p->ub + p->lb);
+ nint = floor(b + 0.5);
+ if (fabs(b - nint) <= eps) b = nint;
+ /* replace row p by almost equivalent equality constraint */
+ p->lb = p->ub = b;
+ return 1;
+}
+
+int rcv_make_equality(NPP *npp, void *_info)
+{ /* recover row with almost identical bounds */
+ struct make_equality *info = _info;
+ if (npp->sol == GLP_SOL)
+ { if (npp->r_stat[info->p] == GLP_BS)
+ npp->r_stat[info->p] = GLP_BS;
+ else if (npp->r_stat[info->p] == GLP_NS)
+ { if (npp->r_pi[info->p] >= 0.0)
+ npp->r_stat[info->p] = GLP_NL;
+ else
+ npp->r_stat[info->p] = GLP_NU;
+ }
+ else
+ { npp_error();
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_make_fixed - process column with almost identical bounds
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* int npp_make_fixed(NPP *npp, NPPCOL *q);
+*
+* DESCRIPTION
+*
+* The routine npp_make_fixed processes column q:
+*
+* l[q] <= x[q] <= u[q], (1)
+*
+* where -oo < l[q] < u[q] < +oo, i.e. which has both lower and upper
+* bounds.
+*
+* RETURNS
+*
+* 0 - column bounds have not been changed;
+*
+* 1 - column has been fixed.
+*
+* PROBLEM TRANSFORMATION
+*
+* If bounds of column (1) are very close to each other:
+*
+* u[q] - l[q] <= eps, (2)
+*
+* where eps is an absolute tolerance for column value, the column can
+* be fixed:
+*
+* x[q] = s[q], (3)
+*
+* where s[q] = (l[q] + u[q]) / 2. And if the fixed column value s[q]
+* happens to be very close to its nearest integer:
+*
+* |s[q] - floor(s[q] + 0.5)| <= eps, (4)
+*
+* it is reasonable to use this nearest integer as the fixed value.
+*
+* RECOVERING BASIC SOLUTION
+*
+* In the dual system of the original (as well as transformed) problem
+* column q corresponds to the following row:
+*
+* sum a[i,q] pi[i] + lambda[q] = c[q]. (5)
+* i
+*
+* Since multipliers pi[i] are known for all rows from solution to the
+* transformed problem, formula (5) allows computing value of multiplier
+* (reduced cost) for column q:
+*
+* lambda[q] = c[q] - sum a[i,q] pi[i]. (6)
+* i
+*
+* Status of column q in solution to the original problem is determined
+* by its status and the sign of its multiplier lambda[q] in solution to
+* the transformed problem as follows:
+*
+* +-----------------------+-----------+--------------------+
+* | Status of column q | Sign of | Status of column q |
+* | (transformed problem) | lambda[q] | (original problem) |
+* +-----------------------+-----------+--------------------+
+* | GLP_BS | + / - | GLP_BS |
+* | GLP_NS | + | GLP_NL |
+* | GLP_NS | - | GLP_NU |
+* +-----------------------+-----------+--------------------+
+*
+* Value of column q in solution to the original problem is the same as
+* in solution to the transformed problem.
+*
+* RECOVERING INTERIOR POINT SOLUTION
+*
+* Value of column q in solution to the original problem is the same as
+* in solution to the transformed problem.
+*
+* RECOVERING MIP SOLUTION
+*
+* None needed. */
+
+struct make_fixed
+{ /* column with almost identical bounds */
+ int q;
+ /* column reference number */
+ double c;
+ /* objective coefficient at x[q] */
+ NPPLFE *ptr;
+ /* list of non-zero coefficients a[i,q] */
+};
+
+static int rcv_make_fixed(NPP *npp, void *info);
+
+int npp_make_fixed(NPP *npp, NPPCOL *q)
+{ /* process column with almost identical bounds */
+ struct make_fixed *info;
+ NPPAIJ *aij;
+ NPPLFE *lfe;
+ double s, eps, nint;
+ /* the column must be double-bounded */
+ xassert(q->lb != -DBL_MAX);
+ xassert(q->ub != +DBL_MAX);
+ xassert(q->lb < q->ub);
+ /* check column bounds */
+ eps = 1e-9 + 1e-12 * fabs(q->lb);
+ if (q->ub - q->lb > eps) return 0;
+ /* column bounds are very close to each other */
+ /* create transformation stack entry */
+ info = npp_push_tse(npp,
+ rcv_make_fixed, sizeof(struct make_fixed));
+ info->q = q->j;
+ info->c = q->coef;
+ info->ptr = NULL;
+ /* save column coefficients a[i,q] (needed for basic solution
+ only) */
+ if (npp->sol == GLP_SOL)
+ { for (aij = q->ptr; aij != NULL; aij = aij->c_next)
+ { lfe = dmp_get_atom(npp->stack, sizeof(NPPLFE));
+ lfe->ref = aij->row->i;
+ lfe->val = aij->val;
+ lfe->next = info->ptr;
+ info->ptr = lfe;
+ }
+ }
+ /* compute column fixed value */
+ s = 0.5 * (q->ub + q->lb);
+ nint = floor(s + 0.5);
+ if (fabs(s - nint) <= eps) s = nint;
+ /* make column q fixed */
+ q->lb = q->ub = s;
+ return 1;
+}
+
+static int rcv_make_fixed(NPP *npp, void *_info)
+{ /* recover column with almost identical bounds */
+ struct make_fixed *info = _info;
+ NPPLFE *lfe;
+ double lambda;
+ if (npp->sol == GLP_SOL)
+ { if (npp->c_stat[info->q] == GLP_BS)
+ npp->c_stat[info->q] = GLP_BS;
+ else if (npp->c_stat[info->q] == GLP_NS)
+ { /* compute multiplier for column q with formula (6) */
+ lambda = info->c;
+ for (lfe = info->ptr; lfe != NULL; lfe = lfe->next)
+ lambda -= lfe->val * npp->r_pi[lfe->ref];
+ /* assign status to non-basic column */
+ if (lambda >= 0.0)
+ npp->c_stat[info->q] = GLP_NL;
+ else
+ npp->c_stat[info->q] = GLP_NU;
+ }
+ else
+ { npp_error();
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/* eof */