aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/simplex
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/simplex')
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/simplex.h39
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spxat.c265
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spxat.h80
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spxchuzc.c381
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spxchuzc.h85
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spxchuzr.c594
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spxchuzr.h77
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spxlp.c819
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spxlp.h234
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spxnt.c303
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spxnt.h96
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spxprim.c1860
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spxprob.c679
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spxprob.h64
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spychuzc.c567
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spychuzc.h85
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spychuzr.c483
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spychuzr.h97
-rw-r--r--test/monniaux/glpk-4.65/src/simplex/spydual.c2101
19 files changed, 8909 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/simplex/simplex.h b/test/monniaux/glpk-4.65/src/simplex/simplex.h
new file mode 100644
index 00000000..9a5acdb2
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/simplex.h
@@ -0,0 +1,39 @@
+/* simplex.h */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#ifndef SIMPLEX_H
+#define SIMPLEX_H
+
+#include "prob.h"
+
+#define spx_primal _glp_spx_primal
+int spx_primal(glp_prob *P, const glp_smcp *parm);
+/* driver to the primal simplex method */
+
+#define spy_dual _glp_spy_dual
+int spy_dual(glp_prob *P, const glp_smcp *parm);
+/* driver to the dual simplex method */
+
+#endif
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spxat.c b/test/monniaux/glpk-4.65/src/simplex/spxat.c
new file mode 100644
index 00000000..3570a18c
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spxat.c
@@ -0,0 +1,265 @@
+/* spxat.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "spxat.h"
+
+/***********************************************************************
+* spx_alloc_at - allocate constraint matrix in sparse row-wise format
+*
+* This routine allocates the memory for arrays needed to represent the
+* constraint matrix in sparse row-wise format. */
+
+void spx_alloc_at(SPXLP *lp, SPXAT *at)
+{ int m = lp->m;
+ int n = lp->n;
+ int nnz = lp->nnz;
+ at->ptr = talloc(1+m+1, int);
+ at->ind = talloc(1+nnz, int);
+ at->val = talloc(1+nnz, double);
+ at->work = talloc(1+n, double);
+ return;
+}
+
+/***********************************************************************
+* spx_build_at - build constraint matrix in sparse row-wise format
+*
+* This routine builds sparse row-wise representation of the constraint
+* matrix A using its sparse column-wise representation stored in the
+* lp object, and stores the result in the at object. */
+
+void spx_build_at(SPXLP *lp, SPXAT *at)
+{ int m = lp->m;
+ int n = lp->n;
+ int nnz = lp->nnz;
+ int *A_ptr = lp->A_ptr;
+ int *A_ind = lp->A_ind;
+ double *A_val = lp->A_val;
+ int *AT_ptr = at->ptr;
+ int *AT_ind = at->ind;
+ double *AT_val = at->val;
+ int i, k, ptr, end, pos;
+ /* calculate AT_ptr[i] = number of non-zeros in i-th row */
+ memset(&AT_ptr[1], 0, m * sizeof(int));
+ for (k = 1; k <= n; k++)
+ { ptr = A_ptr[k];
+ end = A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ AT_ptr[A_ind[ptr]]++;
+ }
+ /* set AT_ptr[i] to position after last element in i-th row */
+ AT_ptr[1]++;
+ for (i = 2; i <= m; i++)
+ AT_ptr[i] += AT_ptr[i-1];
+ xassert(AT_ptr[m] == nnz+1);
+ AT_ptr[m+1] = nnz+1;
+ /* build row-wise representation and re-arrange AT_ptr[i] */
+ for (k = n; k >= 1; k--)
+ { /* copy elements from k-th column to corresponding rows */
+ ptr = A_ptr[k];
+ end = A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ { pos = --AT_ptr[A_ind[ptr]];
+ AT_ind[pos] = k;
+ AT_val[pos] = A_val[ptr];
+ }
+ }
+ xassert(AT_ptr[1] == 1);
+ return;
+}
+
+/***********************************************************************
+* spx_at_prod - compute product y := y + s * A'* x
+*
+* This routine computes the product:
+*
+* y := y + s * A'* x,
+*
+* where A' is a matrix transposed to the mxn-matrix A of constraint
+* coefficients, x is a m-vector, s is a scalar, y is a n-vector.
+*
+* The routine uses the row-wise representation of the matrix A and
+* computes the product as a linear combination:
+*
+* y := y + s * (A'[1] * x[1] + ... + A'[m] * x[m]),
+*
+* where A'[i] is i-th row of A, 1 <= i <= m. */
+
+void spx_at_prod(SPXLP *lp, SPXAT *at, double y[/*1+n*/], double s,
+ const double x[/*1+m*/])
+{ int m = lp->m;
+ int *AT_ptr = at->ptr;
+ int *AT_ind = at->ind;
+ double *AT_val = at->val;
+ int i, ptr, end;
+ double t;
+ for (i = 1; i <= m; i++)
+ { if (x[i] != 0.0)
+ { /* y := y + s * (i-th row of A) * x[i] */
+ t = s * x[i];
+ ptr = AT_ptr[i];
+ end = AT_ptr[i+1];
+ for (; ptr < end; ptr++)
+ y[AT_ind[ptr]] += AT_val[ptr] * t;
+ }
+ }
+ return;
+}
+
+/***********************************************************************
+* spx_nt_prod1 - compute product y := y + s * N'* x
+*
+* This routine computes the product:
+*
+* y := y + s * N'* x,
+*
+* where N' is a matrix transposed to the mx(n-m)-matrix N composed
+* from non-basic columns of the constraint matrix A, x is a m-vector,
+* s is a scalar, y is (n-m)-vector.
+*
+* If the flag ign is non-zero, the routine ignores the input content
+* of the array y assuming that y = 0. */
+
+void spx_nt_prod1(SPXLP *lp, SPXAT *at, double y[/*1+n-m*/], int ign,
+ double s, const double x[/*1+m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ int *head = lp->head;
+ double *work = at->work;
+ int j, k;
+ for (k = 1; k <= n; k++)
+ work[k] = 0.0;
+ if (!ign)
+ { for (j = 1; j <= n-m; j++)
+ work[head[m+j]] = y[j];
+ }
+ spx_at_prod(lp, at, work, s, x);
+ for (j = 1; j <= n-m; j++)
+ y[j] = work[head[m+j]];
+ return;
+}
+
+/***********************************************************************
+* spx_eval_trow1 - compute i-th row of simplex table
+*
+* This routine computes i-th row of the current simplex table
+* T = (T[i,j]) = - inv(B) * N, 1 <= i <= m, using representation of
+* the constraint matrix A in row-wise format.
+*
+* The vector rho = (rho[j]), which is i-th row of the basis inverse
+* inv(B), should be previously computed with the routine spx_eval_rho.
+* It is assumed that elements of this vector are stored in the array
+* locations rho[1], ..., rho[m].
+*
+* There exist two ways to compute the simplex table row.
+*
+* 1. T[i,j], j = 1,...,n-m, is computed as inner product:
+*
+* m
+* T[i,j] = - sum a[i,k] * rho[i],
+* i=1
+*
+* where N[j] = A[k] is a column of the constraint matrix corresponding
+* to non-basic variable xN[j]. The estimated number of operations in
+* this case is:
+*
+* n1 = (n - m) * (nnz(A) / n),
+*
+* (n - m) is the number of columns of N, nnz(A) / n is the average
+* number of non-zeros in one column of A and, therefore, of N.
+*
+* 2. The simplex table row is computed as part of a linear combination
+* of rows of A with coefficients rho[i] != 0. The estimated number
+* of operations in this case is:
+*
+* n2 = nnz(rho) * (nnz(A) / m),
+*
+* where nnz(rho) is the number of non-zeros in the vector rho,
+* nnz(A) / m is the average number of non-zeros in one row of A.
+*
+* If n1 < n2, the routine computes the simples table row using the
+* first way (like the routine spx_eval_trow). Otherwise, the routine
+* uses the second way calling the routine spx_nt_prod1.
+*
+* On exit components of the simplex table row are stored in the array
+* locations trow[1], ... trow[n-m]. */
+
+void spx_eval_trow1(SPXLP *lp, SPXAT *at, const double rho[/*1+m*/],
+ double trow[/*1+n-m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ int nnz = lp->nnz;
+ int i, j, nnz_rho;
+ double cnt1, cnt2;
+ /* determine nnz(rho) */
+ nnz_rho = 0;
+ for (i = 1; i <= m; i++)
+ { if (rho[i] != 0.0)
+ nnz_rho++;
+ }
+ /* estimate the number of operations for both ways */
+ cnt1 = (double)(n - m) * ((double)nnz / (double)n);
+ cnt2 = (double)nnz_rho * ((double)nnz / (double)m);
+ /* compute i-th row of simplex table */
+ if (cnt1 < cnt2)
+ { /* as inner products */
+ int *A_ptr = lp->A_ptr;
+ int *A_ind = lp->A_ind;
+ double *A_val = lp->A_val;
+ int *head = lp->head;
+ int k, ptr, end;
+ double tij;
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ /* compute t[i,j] = - N'[j] * pi */
+ tij = 0.0;
+ ptr = A_ptr[k];
+ end = A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ tij -= A_val[ptr] * rho[A_ind[ptr]];
+ trow[j] = tij;
+ }
+ }
+ else
+ { /* as linear combination */
+ spx_nt_prod1(lp, at, trow, 1, -1.0, rho);
+ }
+ return;
+}
+
+/***********************************************************************
+* spx_free_at - deallocate constraint matrix in sparse row-wise format
+*
+* This routine deallocates the memory used for arrays of the program
+* object at. */
+
+void spx_free_at(SPXLP *lp, SPXAT *at)
+{ xassert(lp == lp);
+ tfree(at->ptr);
+ tfree(at->ind);
+ tfree(at->val);
+ tfree(at->work);
+ return;
+}
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spxat.h b/test/monniaux/glpk-4.65/src/simplex/spxat.h
new file mode 100644
index 00000000..98d5b003
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spxat.h
@@ -0,0 +1,80 @@
+/* spxat.h */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#ifndef SPXAT_H
+#define SPXAT_H
+
+#include "spxlp.h"
+
+typedef struct SPXAT SPXAT;
+
+struct SPXAT
+{ /* mxn-matrix A of constraint coefficients in sparse row-wise
+ * format */
+ int *ptr; /* int ptr[1+m+1]; */
+ /* ptr[0] is not used;
+ * ptr[i], 1 <= i <= m, is starting position of i-th row in
+ * arrays ind and val; note that ptr[1] is always 1;
+ * ptr[m+1] indicates the position after the last element in
+ * arrays ind and val, i.e. ptr[m+1] = nnz+1, where nnz is the
+ * number of non-zero elements in matrix A;
+ * the length of i-th row (the number of non-zero elements in
+ * that row) can be calculated as ptr[i+1] - ptr[i] */
+ int *ind; /* int ind[1+nnz]; */
+ /* column indices */
+ double *val; /* double val[1+nnz]; */
+ /* non-zero element values */
+ double *work; /* double work[1+n]; */
+ /* working array */
+};
+
+#define spx_alloc_at _glp_spx_alloc_at
+void spx_alloc_at(SPXLP *lp, SPXAT *at);
+/* allocate constraint matrix in sparse row-wise format */
+
+#define spx_build_at _glp_spx_build_at
+void spx_build_at(SPXLP *lp, SPXAT *at);
+/* build constraint matrix in sparse row-wise format */
+
+#define spx_at_prod _glp_spx_at_prod
+void spx_at_prod(SPXLP *lp, SPXAT *at, double y[/*1+n*/], double s,
+ const double x[/*1+m*/]);
+/* compute product y := y + s * A'* x */
+
+#define spx_nt_prod1 _glp_spx_nt_prod1
+void spx_nt_prod1(SPXLP *lp, SPXAT *at, double y[/*1+n-m*/], int ign,
+ double s, const double x[/*1+m*/]);
+/* compute product y := y + s * N'* x */
+
+#define spx_eval_trow1 _glp_spx_eval_trow1
+void spx_eval_trow1(SPXLP *lp, SPXAT *at, const double rho[/*1+m*/],
+ double trow[/*1+n-m*/]);
+/* compute i-th row of simplex table */
+
+#define spx_free_at _glp_spx_free_at
+void spx_free_at(SPXLP *lp, SPXAT *at);
+/* deallocate constraint matrix in sparse row-wise format */
+
+#endif
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spxchuzc.c b/test/monniaux/glpk-4.65/src/simplex/spxchuzc.c
new file mode 100644
index 00000000..c60ccabc
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spxchuzc.c
@@ -0,0 +1,381 @@
+/* spxchuzc.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "spxchuzc.h"
+
+/***********************************************************************
+* spx_chuzc_sel - select eligible non-basic variables
+*
+* This routine selects eligible non-basic variables xN[j], whose
+* reduced costs d[j] have "wrong" sign, i.e. changing such xN[j] in
+* feasible direction improves (decreases) the objective function.
+*
+* Reduced costs of non-basic variables should be placed in the array
+* locations d[1], ..., d[n-m].
+*
+* Non-basic variable xN[j] is considered eligible if:
+*
+* d[j] <= -eps[j] and xN[j] can increase
+*
+* d[j] >= +eps[j] and xN[j] can decrease
+*
+* for
+*
+* eps[j] = tol + tol1 * |cN[j]|,
+*
+* where cN[j] is the objective coefficient at xN[j], tol and tol1 are
+* specified tolerances.
+*
+* On exit the routine stores indices j of eligible non-basic variables
+* xN[j] to the array locations list[1], ..., list[num] and returns the
+* number of such variables 0 <= num <= n-m. (If the parameter list is
+* specified as NULL, no indices are stored.) */
+
+int spx_chuzc_sel(SPXLP *lp, const double d[/*1+n-m*/], double tol,
+ double tol1, int list[/*1+n-m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ int j, k, num;
+ double ck, eps;
+ num = 0;
+ /* walk thru list of non-basic variables */
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ if (l[k] == u[k])
+ { /* xN[j] is fixed variable; skip it */
+ continue;
+ }
+ /* determine absolute tolerance eps[j] */
+ ck = c[k];
+ eps = tol + tol1 * (ck >= 0.0 ? +ck : -ck);
+ /* check if xN[j] is eligible */
+ if (d[j] <= -eps)
+ { /* xN[j] should be able to increase */
+ if (flag[j])
+ { /* but its upper bound is active */
+ continue;
+ }
+ }
+ else if (d[j] >= +eps)
+ { /* xN[j] should be able to decrease */
+ if (!flag[j] && l[k] != -DBL_MAX)
+ { /* but its lower bound is active */
+ continue;
+ }
+ }
+ else /* -eps < d[j] < +eps */
+ { /* xN[j] does not affect the objective function within the
+ * specified tolerance */
+ continue;
+ }
+ /* xN[j] is eligible non-basic variable */
+ num++;
+ if (list != NULL)
+ list[num] = j;
+ }
+ return num;
+}
+
+/***********************************************************************
+* spx_chuzc_std - choose non-basic variable (Dantzig's rule)
+*
+* This routine chooses most eligible non-basic variable xN[q]
+* according to Dantzig's ("standard") rule:
+*
+* d[q] = max |d[j]|,
+* j in J
+*
+* where J <= {1, ..., n-m} is the set of indices of eligible non-basic
+* variables, d[j] is the reduced cost of non-basic variable xN[j] in
+* the current basis.
+*
+* Reduced costs of non-basic variables should be placed in the array
+* locations d[1], ..., d[n-m].
+*
+* Indices of eligible non-basic variables j in J should be placed in
+* the array locations list[1], ..., list[num], where num = |J| > 0 is
+* the total number of such variables.
+*
+* On exit the routine returns q, the index of the non-basic variable
+* xN[q] chosen. */
+
+int spx_chuzc_std(SPXLP *lp, const double d[/*1+n-m*/], int num,
+ const int list[])
+{ int m = lp->m;
+ int n = lp->n;
+ int j, q, t;
+ double abs_dj, abs_dq;
+ xassert(0 < num && num <= n-m);
+ q = 0, abs_dq = -1.0;
+ for (t = 1; t <= num; t++)
+ { j = list[t];
+ abs_dj = (d[j] >= 0.0 ? +d[j] : -d[j]);
+ if (abs_dq < abs_dj)
+ q = j, abs_dq = abs_dj;
+ }
+ xassert(q != 0);
+ return q;
+}
+
+/***********************************************************************
+* spx_alloc_se - allocate pricing data block
+*
+* This routine allocates the memory for arrays used in the pricing
+* data block. */
+
+void spx_alloc_se(SPXLP *lp, SPXSE *se)
+{ int m = lp->m;
+ int n = lp->n;
+ se->valid = 0;
+ se->refsp = talloc(1+n, char);
+ se->gamma = talloc(1+n-m, double);
+ se->work = talloc(1+m, double);
+ return;
+}
+
+/***********************************************************************
+* spx_reset_refsp - reset reference space
+*
+* This routine resets (re-initializes) the reference space composing
+* it from variables which are non-basic in the current basis, and sets
+* all weights gamma[j] to 1. */
+
+void spx_reset_refsp(SPXLP *lp, SPXSE *se)
+{ int m = lp->m;
+ int n = lp->n;
+ int *head = lp->head;
+ char *refsp = se->refsp;
+ double *gamma = se->gamma;
+ int j, k;
+ se->valid = 1;
+ memset(&refsp[1], 0, n * sizeof(char));
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ refsp[k] = 1;
+ gamma[j] = 1.0;
+ }
+ return;
+}
+
+/***********************************************************************
+* spx_eval_gamma_j - compute projected steepest edge weight directly
+*
+* This routine computes projected steepest edge weight gamma[j],
+* 1 <= j <= n-m, for the current basis directly with the formula:
+*
+* m
+* gamma[j] = delta[j] + sum eta[i] * T[i,j]**2,
+* i=1
+*
+* where T[i,j] is element of the current simplex table, and
+*
+* ( 1, if xB[i] is in the reference space
+* eta[i] = {
+* ( 0, otherwise
+*
+* ( 1, if xN[j] is in the reference space
+* delta[j] = {
+* ( 0, otherwise
+*
+* NOTE: For testing/debugging only. */
+
+double spx_eval_gamma_j(SPXLP *lp, SPXSE *se, int j)
+{ int m = lp->m;
+ int n = lp->n;
+ int *head = lp->head;
+ char *refsp = se->refsp;
+ double *tcol = se->work;
+ int i, k;
+ double gamma_j;
+ xassert(se->valid);
+ xassert(1 <= j && j <= n-m);
+ k = head[m+j]; /* x[k] = xN[j] */
+ gamma_j = (refsp[k] ? 1.0 : 0.0);
+ spx_eval_tcol(lp, j, tcol);
+ for (i = 1; i <= m; i++)
+ { k = head[i]; /* x[k] = xB[i] */
+ if (refsp[k])
+ gamma_j += tcol[i] * tcol[i];
+ }
+ return gamma_j;
+}
+
+/***********************************************************************
+* spx_chuzc_pse - choose non-basic variable (projected steepest edge)
+*
+* This routine chooses most eligible non-basic variable xN[q]
+* according to the projected steepest edge method:
+*
+* d[q]**2 d[j]**2
+* -------- = max -------- ,
+* gamma[q] j in J gamma[j]
+*
+* where J <= {1, ..., n-m} is the set of indices of eligible non-basic
+* variable, d[j] is the reduced cost of non-basic variable xN[j] in
+* the current basis, gamma[j] is the projected steepest edge weight.
+*
+* Reduced costs of non-basic variables should be placed in the array
+* locations d[1], ..., d[n-m].
+*
+* Indices of eligible non-basic variables j in J should be placed in
+* the array locations list[1], ..., list[num], where num = |J| > 0 is
+* the total number of such variables.
+*
+* On exit the routine returns q, the index of the non-basic variable
+* xN[q] chosen. */
+
+int spx_chuzc_pse(SPXLP *lp, SPXSE *se, const double d[/*1+n-m*/],
+ int num, const int list[])
+{ int m = lp->m;
+ int n = lp->n;
+ double *gamma = se->gamma;
+ int j, q, t;
+ double best, temp;
+ xassert(se->valid);
+ xassert(0 < num && num <= n-m);
+ q = 0, best = -1.0;
+ for (t = 1; t <= num; t++)
+ { j = list[t];
+ /* FIXME */
+ if (gamma[j] < DBL_EPSILON)
+ temp = 0.0;
+ else
+ temp = (d[j] * d[j]) / gamma[j];
+ if (best < temp)
+ q = j, best = temp;
+ }
+ xassert(q != 0);
+ return q;
+}
+
+/***********************************************************************
+* spx_update_gamma - update projected steepest edge weights exactly
+*
+* This routine updates the vector gamma = (gamma[j]) of projected
+* steepest edge weights exactly, for the adjacent basis.
+*
+* On entry to the routine the content of the se object should be valid
+* and should correspond to the current basis.
+*
+* The parameter 1 <= p <= m specifies basic variable xB[p] which
+* becomes non-basic variable xN[q] in the adjacent basis.
+*
+* The parameter 1 <= q <= n-m specified non-basic variable xN[q] which
+* becomes basic variable xB[p] in the adjacent basis.
+*
+* It is assumed that the array trow contains elements of p-th (pivot)
+* row T'[p] of the simplex table in locations trow[1], ..., trow[n-m].
+* It is also assumed that the array tcol contains elements of q-th
+* (pivot) column T[q] of the simple table in locations tcol[1], ...,
+* tcol[m]. (These row and column should be computed for the current
+* basis.)
+*
+* For details about the formulae used see the program documentation.
+*
+* The routine also computes the relative error:
+*
+* e = |gamma[q] - gamma'[q]| / (1 + |gamma[q]|),
+*
+* where gamma'[q] is the weight for xN[q] on entry to the routine,
+* and returns e on exit. (If e happens to be large enough, the calling
+* program may reset the reference space, since other weights also may
+* be inaccurate.) */
+
+double spx_update_gamma(SPXLP *lp, SPXSE *se, int p, int q,
+ const double trow[/*1+n-m*/], const double tcol[/*1+m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ int *head = lp->head;
+ char *refsp = se->refsp;
+ double *gamma = se->gamma;
+ double *u = se->work;
+ int i, j, k, ptr, end;
+ double gamma_q, delta_q, e, r, s, t1, t2;
+ xassert(se->valid);
+ xassert(1 <= p && p <= m);
+ xassert(1 <= q && q <= n-m);
+ /* compute gamma[q] in current basis more accurately; also
+ * compute auxiliary vector u */
+ k = head[m+q]; /* x[k] = xN[q] */
+ gamma_q = delta_q = (refsp[k] ? 1.0 : 0.0);
+ for (i = 1; i <= m; i++)
+ { k = head[i]; /* x[k] = xB[i] */
+ if (refsp[k])
+ { gamma_q += tcol[i] * tcol[i];
+ u[i] = tcol[i];
+ }
+ else
+ u[i] = 0.0;
+ }
+ bfd_btran(lp->bfd, u);
+ /* compute relative error in gamma[q] */
+ e = fabs(gamma_q - gamma[q]) / (1.0 + gamma_q);
+ /* compute new gamma[q] */
+ gamma[q] = gamma_q / (tcol[p] * tcol[p]);
+ /* compute new gamma[j] for all j != q */
+ for (j = 1; j <= n-m; j++)
+ { if (j == q)
+ continue;
+ if (-1e-9 < trow[j] && trow[j] < +1e-9)
+ { /* T[p,j] is close to zero; gamma[j] is not changed */
+ continue;
+ }
+ /* compute r[j] = T[p,j] / T[p,q] */
+ r = trow[j] / tcol[p];
+ /* compute inner product s[j] = N'[j] * u, where N[j] = A[k]
+ * is constraint matrix column corresponding to xN[j] */
+ s = 0.0;
+ k = head[m+j]; /* x[k] = xN[j] */
+ ptr = lp->A_ptr[k];
+ end = lp->A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ s += lp->A_val[ptr] * u[lp->A_ind[ptr]];
+ /* compute new gamma[j] */
+ t1 = gamma[j] + r * (r * gamma_q + s + s);
+ t2 = (refsp[k] ? 1.0 : 0.0) + delta_q * r * r;
+ gamma[j] = (t1 >= t2 ? t1 : t2);
+ }
+ return e;
+}
+
+/***********************************************************************
+* spx_free_se - deallocate pricing data block
+*
+* This routine deallocates the memory used for arrays in the pricing
+* data block. */
+
+void spx_free_se(SPXLP *lp, SPXSE *se)
+{ xassert(lp == lp);
+ tfree(se->refsp);
+ tfree(se->gamma);
+ tfree(se->work);
+ return;
+}
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spxchuzc.h b/test/monniaux/glpk-4.65/src/simplex/spxchuzc.h
new file mode 100644
index 00000000..c09cca9a
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spxchuzc.h
@@ -0,0 +1,85 @@
+/* spxchuzc.h */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#ifndef SPXCHUZC_H
+#define SPXCHUZC_H
+
+#include "spxlp.h"
+
+#define spx_chuzc_sel _glp_spx_chuzc_sel
+int spx_chuzc_sel(SPXLP *lp, const double d[/*1+n-m*/], double tol,
+ double tol1, int list[/*1+n-m*/]);
+/* select eligible non-basic variables */
+
+#define spx_chuzc_std _glp_spx_chuzc_std
+int spx_chuzc_std(SPXLP *lp, const double d[/*1+n-m*/], int num,
+ const int list[]);
+/* choose non-basic variable (Dantzig's rule) */
+
+typedef struct SPXSE SPXSE;
+
+struct SPXSE
+{ /* projected steepest edge and Devex pricing data block */
+ int valid;
+ /* content validity flag */
+ char *refsp; /* char refsp[1+n]; */
+ /* refsp[0] is not used;
+ * refsp[k], 1 <= k <= n, is the flag meaning that variable x[k]
+ * is in the reference space */
+ double *gamma; /* double gamma[1+n-m]; */
+ /* gamma[0] is not used;
+ * gamma[j], 1 <= j <= n-m, is the weight for reduced cost d[j]
+ * of non-basic variable xN[j] in the current basis */
+ double *work; /* double work[1+m]; */
+ /* working array */
+};
+
+#define spx_alloc_se _glp_spx_alloc_se
+void spx_alloc_se(SPXLP *lp, SPXSE *se);
+/* allocate pricing data block */
+
+#define spx_reset_refsp _glp_spx_reset_refsp
+void spx_reset_refsp(SPXLP *lp, SPXSE *se);
+/* reset reference space */
+
+#define spx_eval_gamma_j _glp_spx_eval_gamma_j
+double spx_eval_gamma_j(SPXLP *lp, SPXSE *se, int j);
+/* compute projeted steepest edge weight directly */
+
+#define spx_chuzc_pse _glp_spx_chuzc_pse
+int spx_chuzc_pse(SPXLP *lp, SPXSE *se, const double d[/*1+n-m*/],
+ int num, const int list[]);
+/* choose non-basic variable (projected steepest edge) */
+
+#define spx_update_gamma _glp_spx_update_gamma
+double spx_update_gamma(SPXLP *lp, SPXSE *se, int p, int q,
+ const double trow[/*1+n-m*/], const double tcol[/*1+m*/]);
+/* update projected steepest edge weights exactly */
+
+#define spx_free_se _glp_spx_free_se
+void spx_free_se(SPXLP *lp, SPXSE *se);
+/* deallocate pricing data block */
+
+#endif
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spxchuzr.c b/test/monniaux/glpk-4.65/src/simplex/spxchuzr.c
new file mode 100644
index 00000000..8bef77ba
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spxchuzr.c
@@ -0,0 +1,594 @@
+/* spxchuzr.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015-2018 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "spxchuzr.h"
+
+/***********************************************************************
+* spx_chuzr_std - choose basic variable (textbook ratio test)
+*
+* This routine implements an improved textbook ratio test to choose
+* basic variable xB[p].
+*
+* The parameter phase specifies the search phase:
+*
+* 1 - searching for feasible basic solution. In this case the routine
+* uses artificial bounds of basic variables that correspond to
+* breakpoints of the penalty function:
+*
+* ( lB[i], if cB[i] = 0
+* (
+* lB'[i] = { uB[i], if cB[i] > 0
+* (
+* ( -inf, if cB[i] < 0
+*
+* ( uB[i], if cB[i] = 0
+* (
+* uB'[i] = { +inf, if cB[i] > 0
+* (
+* ( lB[i], if cB[i] < 0
+*
+* where lB[i] and uB[i] are original bounds of variable xB[i],
+* cB[i] is the penalty (objective) coefficient of that variable.
+*
+* 2 - searching for optimal basic solution. In this case the routine
+* uses original bounds of basic variables.
+*
+* Current values of basic variables should be placed in the array
+* locations beta[1], ..., beta[m].
+*
+* The parameter 1 <= q <= n-m specifies the index of non-basic
+* variable xN[q] chosen.
+*
+* The parameter s specifies the direction in which xN[q] changes:
+* s = +1.0 means xN[q] increases, and s = -1.0 means xN[q] decreases.
+* (Thus, the corresponding ray parameter is theta = s (xN[q] - f[q]),
+* where f[q] is the active bound of xN[q] in the current basis.)
+*
+* Elements of q-th simplex table column T[q] = (t[i,q]) corresponding
+* to non-basic variable xN[q] should be placed in the array locations
+* tcol[1], ..., tcol[m].
+*
+* The parameter tol_piv specifies a tolerance for elements of the
+* simplex table column T[q]. If |t[i,q]| < tol_piv, basic variable
+* xB[i] is skipped, i.e. it is assumed that it does not depend on the
+* ray parameter theta.
+*
+* The parameters tol and tol1 specify tolerances used to increase the
+* choice freedom by simulating an artificial degeneracy as follows.
+* If beta[i] <= lB[i] + delta[i], where delta[i] = tol + tol1 |lB[i]|,
+* it is assumed that beta[i] is exactly the same as lB[i]. Similarly,
+* if beta[i] >= uB[i] - delta[i], where delta[i] = tol + tol1 |uB[i]|,
+* it is assumed that beta[i] is exactly the same as uB[i].
+*
+* The routine determines the index 1 <= p <= m of basic variable xB[p]
+* that reaches its (lower or upper) bound first on increasing the ray
+* parameter theta, stores the bound flag (0 - lower bound or fixed
+* value, 1 - upper bound) to the location pointed to by the pointer
+* p_flag, and returns the index p. If non-basic variable xN[q] is
+* double-bounded and reaches its opposite bound first, the routine
+* returns (-1). And if the ray parameter may increase unlimitedly, the
+* routine returns zero.
+*
+* Should note that the bound flag stored to the location pointed to by
+* p_flag corresponds to the original (not artficial) bound of variable
+* xB[p] and defines the active bound flag lp->flag[q] to be set in the
+* adjacent basis for that basic variable. */
+
+int spx_chuzr_std(SPXLP *lp, int phase, const double beta[/*1+m*/],
+ int q, double s, const double tcol[/*1+m*/], int *p_flag,
+ double tol_piv, double tol, double tol1)
+{ int m = lp->m;
+ int n = lp->n;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ int i, i_flag, k, p;
+ double alfa, biga, delta, lk, uk, teta, teta_min;
+ xassert(phase == 1 || phase == 2);
+ xassert(1 <= q && q <= n-m);
+ xassert(s == +1.0 || s == -1.0);
+ /* determine initial teta_min */
+ k = head[m+q]; /* x[k] = xN[q] */
+ if (l[k] == -DBL_MAX || u[k] == +DBL_MAX)
+ { /* xN[q] has no opposite bound */
+ p = 0, *p_flag = 0, teta_min = DBL_MAX, biga = 0.0;
+ }
+ else
+ { /* xN[q] have both lower and upper bounds */
+ p = -1, *p_flag = 0, teta_min = fabs(l[k] - u[k]), biga = 1.0;
+ }
+ /* walk thru the list of basic variables */
+ for (i = 1; i <= m; i++)
+ { k = head[i]; /* x[k] = xB[i] */
+ /* determine alfa such that delta xB[i] = alfa * teta */
+ alfa = s * tcol[i];
+ if (alfa <= -tol_piv)
+ { /* xB[i] decreases */
+ /* determine actual lower bound of xB[i] */
+ if (phase == 1 && c[k] < 0.0)
+ { /* xB[i] has no actual lower bound */
+ continue;
+ }
+ else if (phase == 1 && c[k] > 0.0)
+ { /* actual lower bound of xB[i] is its upper bound */
+ lk = u[k];
+ xassert(lk != +DBL_MAX);
+ i_flag = 1;
+ }
+ else
+ { /* actual lower bound of xB[i] is its original bound */
+ lk = l[k];
+ if (lk == -DBL_MAX)
+ continue;
+ i_flag = 0;
+ }
+ /* determine teta on which xB[i] reaches its lower bound */
+ delta = tol + tol1 * (lk >= 0.0 ? +lk : -lk);
+ if (beta[i] <= lk + delta)
+ teta = 0.0;
+ else
+ teta = (lk - beta[i]) / alfa;
+ }
+ else if (alfa >= +tol_piv)
+ { /* xB[i] increases */
+ /* determine actual upper bound of xB[i] */
+ if (phase == 1 && c[k] < 0.0)
+ { /* actual upper bound of xB[i] is its lower bound */
+ uk = l[k];
+ xassert(uk != -DBL_MAX);
+ i_flag = 0;
+ }
+ else if (phase == 1 && c[k] > 0.0)
+ { /* xB[i] has no actual upper bound */
+ continue;
+ }
+ else
+ { /* actual upper bound of xB[i] is its original bound */
+ uk = u[k];
+ if (uk == +DBL_MAX)
+ continue;
+ i_flag = 1;
+ }
+ /* determine teta on which xB[i] reaches its upper bound */
+ delta = tol + tol1 * (uk >= 0.0 ? +uk : -uk);
+ if (beta[i] >= uk - delta)
+ teta = 0.0;
+ else
+ teta = (uk - beta[i]) / alfa;
+ }
+ else
+ { /* xB[i] does not depend on teta */
+ continue;
+ }
+ /* choose basic variable xB[p] for which teta is minimal */
+ xassert(teta >= 0.0);
+ alfa = (alfa >= 0.0 ? +alfa : -alfa);
+ if (teta_min > teta || (teta_min == teta && biga < alfa))
+ p = i, *p_flag = i_flag, teta_min = teta, biga = alfa;
+ }
+ /* if xB[p] is fixed variable, adjust its bound flag */
+ if (p > 0)
+ { k = head[p];
+ if (l[k] == u[k])
+ *p_flag = 0;
+ }
+ return p;
+}
+
+/***********************************************************************
+* spx_chuzr_harris - choose basic variable (Harris' ratio test)
+*
+* This routine implements Harris' ratio test to choose basic variable
+* xB[p].
+*
+* All the parameters, except tol and tol1, as well as the returned
+* value have the same meaning as for the routine spx_chuzr_std (see
+* above).
+*
+* The parameters tol and tol1 specify tolerances on bound violations
+* for basic variables. For the lower bound of basic variable xB[i] the
+* tolerance is delta[i] = tol + tol1 |lB[i]|, and for the upper bound
+* the tolerance is delta[i] = tol + tol1 |uB[i]|. */
+
+int spx_chuzr_harris(SPXLP *lp, int phase, const double beta[/*1+m*/],
+ int q, double s, const double tcol[/*1+m*/], int *p_flag,
+ double tol_piv, double tol, double tol1)
+{ int m = lp->m;
+ int n = lp->n;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ int i, i_flag, k, p;
+ double alfa, biga, delta, lk, uk, teta, teta_min;
+ xassert(phase == 1 || phase == 2);
+ xassert(1 <= q && q <= n-m);
+ xassert(s == +1.0 || s == -1.0);
+ /*--------------------------------------------------------------*/
+ /* first pass: determine teta_min for relaxed bounds */
+ /*--------------------------------------------------------------*/
+ teta_min = DBL_MAX;
+ /* walk thru the list of basic variables */
+ for (i = 1; i <= m; i++)
+ { k = head[i]; /* x[k] = xB[i] */
+ /* determine alfa such that delta xB[i] = alfa * teta */
+ alfa = s * tcol[i];
+ if (alfa <= -tol_piv)
+ { /* xB[i] decreases */
+ /* determine actual lower bound of xB[i] */
+ if (phase == 1 && c[k] < 0.0)
+ { /* xB[i] has no actual lower bound */
+ continue;
+ }
+ else if (phase == 1 && c[k] > 0.0)
+ { /* actual lower bound of xB[i] is its upper bound */
+ lk = u[k];
+ xassert(lk != +DBL_MAX);
+ }
+ else
+ { /* actual lower bound of xB[i] is its original bound */
+ lk = l[k];
+ if (lk == -DBL_MAX)
+ continue;
+ }
+ /* determine teta on which xB[i] reaches its relaxed lower
+ * bound */
+ delta = tol + tol1 * (lk >= 0.0 ? +lk : -lk);
+ if (beta[i] < lk)
+ teta = - delta / alfa;
+ else
+ teta = ((lk - delta) - beta[i]) / alfa;
+ }
+ else if (alfa >= +tol_piv)
+ { /* xB[i] increases */
+ /* determine actual upper bound of xB[i] */
+ if (phase == 1 && c[k] < 0.0)
+ { /* actual upper bound of xB[i] is its lower bound */
+ uk = l[k];
+ xassert(uk != -DBL_MAX);
+ }
+ else if (phase == 1 && c[k] > 0.0)
+ { /* xB[i] has no actual upper bound */
+ continue;
+ }
+ else
+ { /* actual upper bound of xB[i] is its original bound */
+ uk = u[k];
+ if (uk == +DBL_MAX)
+ continue;
+ }
+ /* determine teta on which xB[i] reaches its relaxed upper
+ * bound */
+ delta = tol + tol1 * (uk >= 0.0 ? +uk : -uk);
+ if (beta[i] > uk)
+ teta = + delta / alfa;
+ else
+ teta = ((uk + delta) - beta[i]) / alfa;
+ }
+ else
+ { /* xB[i] does not depend on teta */
+ continue;
+ }
+ xassert(teta >= 0.0);
+ if (teta_min > teta)
+ teta_min = teta;
+ }
+ /*--------------------------------------------------------------*/
+ /* second pass: choose basic variable xB[p] */
+ /*--------------------------------------------------------------*/
+ k = head[m+q]; /* x[k] = xN[q] */
+ if (l[k] != -DBL_MAX && u[k] != +DBL_MAX)
+ { /* xN[q] has both lower and upper bounds */
+ if (fabs(l[k] - u[k]) <= teta_min)
+ { /* and reaches its opposite bound */
+ p = -1, *p_flag = 0;
+ goto done;
+ }
+ }
+ if (teta_min == DBL_MAX)
+ { /* teta may increase unlimitedly */
+ p = 0, *p_flag = 0;
+ goto done;
+ }
+ /* nothing is chosen so far */
+ p = 0, *p_flag = 0, biga = 0.0;
+ /* walk thru the list of basic variables */
+ for (i = 1; i <= m; i++)
+ { k = head[i]; /* x[k] = xB[i] */
+ /* determine alfa such that delta xB[i] = alfa * teta */
+ alfa = s * tcol[i];
+ if (alfa <= -tol_piv)
+ { /* xB[i] decreases */
+ /* determine actual lower bound of xB[i] */
+ if (phase == 1 && c[k] < 0.0)
+ { /* xB[i] has no actual lower bound */
+ continue;
+ }
+ else if (phase == 1 && c[k] > 0.0)
+ { /* actual lower bound of xB[i] is its upper bound */
+ lk = u[k];
+ xassert(lk != +DBL_MAX);
+ i_flag = 1;
+ }
+ else
+ { /* actual lower bound of xB[i] is its original bound */
+ lk = l[k];
+ if (lk == -DBL_MAX)
+ continue;
+ i_flag = 0;
+ }
+ /* determine teta on which xB[i] reaches its lower bound */
+ teta = (lk - beta[i]) / alfa;
+ }
+ else if (alfa >= +tol_piv)
+ { /* xB[i] increases */
+ /* determine actual upper bound of xB[i] */
+ if (phase == 1 && c[k] < 0.0)
+ { /* actual upper bound of xB[i] is its lower bound */
+ uk = l[k];
+ xassert(uk != -DBL_MAX);
+ i_flag = 0;
+ }
+ else if (phase == 1 && c[k] > 0.0)
+ { /* xB[i] has no actual upper bound */
+ continue;
+ }
+ else
+ { /* actual upper bound of xB[i] is its original bound */
+ uk = u[k];
+ if (uk == +DBL_MAX)
+ continue;
+ i_flag = 1;
+ }
+ /* determine teta on which xB[i] reaches its upper bound */
+ teta = (uk - beta[i]) / alfa;
+ }
+ else
+ { /* xB[i] does not depend on teta */
+ continue;
+ }
+ /* choose basic variable for which teta is not greater than
+ * teta_min determined for relaxed bounds and which has best
+ * (largest in magnitude) pivot */
+ alfa = (alfa >= 0.0 ? +alfa : -alfa);
+ if (teta <= teta_min && biga < alfa)
+ p = i, *p_flag = i_flag, biga = alfa;
+ }
+ /* something must be chosen */
+ xassert(1 <= p && p <= m);
+ /* if xB[p] is fixed variable, adjust its bound flag */
+ k = head[p];
+ if (l[k] == u[k])
+ *p_flag = 0;
+done: return p;
+}
+
+#if 1 /* 22/VI-2017 */
+/***********************************************************************
+* spx_ls_eval_bp - determine penalty function break points
+*
+* This routine determines break points of the penalty function (which
+* is the sum of primal infeasibilities).
+*
+* The parameters lp, beta, q, dq, tcol, and tol_piv have the same
+* meaning as for the routine spx_chuzr_std (see above).
+*
+* The routine stores the break-points determined to the array elements
+* bp[1], ..., bp[nbp] in *arbitrary* order, where 0 <= nbp <= 2*m+1 is
+* the number of break-points returned by the routine on exit. */
+
+int spx_ls_eval_bp(SPXLP *lp, const double beta[/*1+m*/],
+ int q, double dq, const double tcol[/*1+m*/], double tol_piv,
+ SPXBP bp[/*1+2*m+1*/])
+{ int m = lp->m;
+ int n = lp->n;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ int i, k, nbp;
+ double s, alfa;
+ xassert(1 <= q && q <= n-m);
+ xassert(dq != 0.0);
+ s = (dq < 0.0 ? +1.0 : -1.0);
+ nbp = 0;
+ /* if chosen non-basic variable xN[q] is double-bounded, include
+ * it in the list, because it can cross its opposite bound */
+ k = head[m+q]; /* x[k] = xN[q] */
+ if (l[k] != -DBL_MAX && u[k] != +DBL_MAX)
+ { nbp++;
+ bp[nbp].i = 0;
+ xassert(l[k] < u[k]); /* xN[q] cannot be fixed */
+ bp[nbp].teta = u[k] - l[k];
+ bp[nbp].dc = s;
+ }
+ /* build the list of all basic variables xB[i] that can cross
+ * their bound(s) for the ray parameter 0 <= teta < teta_max */
+ for (i = 1; i <= m; i++)
+ { k = head[i]; /* x[k] = xB[i] */
+ xassert(l[k] <= u[k]);
+ /* determine alfa such that (delta xB[i]) = alfa * teta */
+ alfa = s * tcol[i];
+ if (alfa >= +tol_piv)
+ { /* xB[i] increases on increasing teta */
+ if (l[k] == u[k])
+ { /* xB[i] is fixed at lB[i] = uB[i] */
+ if (c[k] <= 0.0)
+ { /* increasing xB[i] can cross its fixed value lB[i],
+ * because currently xB[i] <= lB[i] */
+ nbp++;
+ bp[nbp].i = +i;
+ bp[nbp].teta = (l[k] - beta[i]) / alfa;
+ /* if xB[i] > lB[i] then cB[i] = +1 */
+ bp[nbp].dc = +1.0 - c[k];
+ }
+ }
+ else
+ { if (l[k] != -DBL_MAX && c[k] < 0.0)
+ { /* increasing xB[i] can cross its lower bound lB[i],
+ * because currently xB[i] < lB[i] */
+ nbp++;
+ bp[nbp].i = +i;
+ bp[nbp].teta = (l[k] - beta[i]) / alfa;
+ bp[nbp].dc = +1.0;
+ }
+ if (u[k] != +DBL_MAX && c[k] <= 0.0)
+ { /* increasing xB[i] can cross its upper bound uB[i],
+ * because currently xB[i] does not violate it */
+ nbp++;
+ bp[nbp].i = -i;
+ bp[nbp].teta = (u[k] - beta[i]) / alfa;
+ bp[nbp].dc = +1.0;
+ }
+ }
+ }
+ else if (alfa <= -tol_piv)
+ { /* xB[i] decreases on increasing teta */
+ if (l[k] == u[k])
+ { /* xB[i] is fixed at lB[i] = uB[i] */
+ if (c[k] >= 0.0)
+ { /* decreasing xB[i] can cross its fixed value lB[i],
+ * because currently xB[i] >= lB[i] */
+ nbp++;
+ bp[nbp].i = +i;
+ bp[nbp].teta = (l[k] - beta[i]) / alfa;
+ /* if xB[i] < lB[i] then cB[i] = -1 */
+ bp[nbp].dc = -1.0 - c[k];
+ }
+ }
+ else
+ { if (l[k] != -DBL_MAX && c[k] >= 0.0)
+ { /* decreasing xB[i] can cross its lower bound lB[i],
+ * because currently xB[i] does not violate it */
+ nbp++;
+ bp[nbp].i = +i;
+ bp[nbp].teta = (l[k] - beta[i]) / alfa;
+ bp[nbp].dc = -1.0;
+ }
+ if (u[k] != +DBL_MAX && c[k] > 0.0)
+ { /* decreasing xB[i] can cross its upper bound uB[i],
+ * because currently xB[i] > uB[i] */
+ nbp++;
+ bp[nbp].i = -i;
+ bp[nbp].teta = (u[k] - beta[i]) / alfa;
+ bp[nbp].dc = -1.0;
+ }
+ }
+ }
+ else
+ { /* xB[i] does not depend on teta within a tolerance */
+ continue;
+ }
+ /* teta < 0 may happen only due to round-off errors when the
+ * current value of xB[i] is *close* to its (lower or upper)
+ * bound; in this case we replace teta by exact zero */
+ if (bp[nbp].teta < 0.0)
+ bp[nbp].teta = 0.0;
+ }
+ xassert(nbp <= 2*m+1);
+ return nbp;
+}
+#endif
+
+#if 1 /* 22/VI-2017 */
+/***********************************************************************
+* spx_ls_select_bp - select and process penalty function break points
+*
+* This routine selects a next portion of the penalty function break
+* points and processes them.
+*
+* On entry to the routine it is assumed that break points bp[1], ...,
+* bp[num] are already processed, and slope is the penalty function
+* slope to the right of the last processed break point bp[num].
+* (Initially, when num = 0, slope should be specified as -fabs(d[q]),
+* where d[q] is the reduced cost of chosen non-basic variable xN[q].)
+*
+* The routine selects break points among bp[num+1], ..., bp[nbp], for
+* which teta <= teta_lim, and moves these break points to the array
+* elements bp[num+1], ..., bp[num1], where num <= num1 <= 2*m+1 is the
+* new number of processed break points returned by the routine on
+* exit. Then the routine sorts the break points by ascending teta and
+* computes the change of the penalty function relative to its value at
+* teta = 0.
+*
+* On exit the routine also replaces the parameter slope with a new
+* value that corresponds to the new last break-point bp[num1]. */
+
+static int CDECL fcmp(const void *v1, const void *v2)
+{ const SPXBP *p1 = v1, *p2 = v2;
+ if (p1->teta < p2->teta)
+ return -1;
+ else if (p1->teta > p2->teta)
+ return +1;
+ else
+ return 0;
+}
+
+int spx_ls_select_bp(SPXLP *lp, const double tcol[/*1+m*/],
+ int nbp, SPXBP bp[/*1+m+m+1*/], int num, double *slope, double
+ teta_lim)
+{ int m = lp->m;
+ int i, t, num1;
+ double teta, dz;
+ xassert(0 <= num && num <= nbp && nbp <= m+m+1);
+ /* select a new portion of break points */
+ num1 = num;
+ for (t = num+1; t <= nbp; t++)
+ { if (bp[t].teta <= teta_lim)
+ { /* move break point to the beginning of the new portion */
+ num1++;
+ i = bp[num1].i, teta = bp[num1].teta, dz = bp[num1].dc;
+ bp[num1].i = bp[t].i, bp[num1].teta = bp[t].teta,
+ bp[num1].dc = bp[t].dc;
+ bp[t].i = i, bp[t].teta = teta, bp[t].dc = dz;
+ }
+ }
+ /* sort new break points bp[num+1], ..., bp[num1] by ascending
+ * the ray parameter teta */
+ if (num1 - num > 1)
+ qsort(&bp[num+1], num1 - num, sizeof(SPXBP), fcmp);
+ /* calculate the penalty function change at the new break points
+ * selected */
+ for (t = num+1; t <= num1; t++)
+ { /* calculate the penalty function change relative to its value
+ * at break point bp[t-1] */
+ dz = (*slope) * (bp[t].teta - (t == 1 ? 0.0 : bp[t-1].teta));
+ /* calculate the penalty function change relative to its value
+ * at teta = 0 */
+ bp[t].dz = (t == 1 ? 0.0 : bp[t-1].dz) + dz;
+ /* calculate a new slope of the penalty function to the right
+ * of the current break point bp[t] */
+ i = (bp[t].i >= 0 ? bp[t].i : -bp[t].i);
+ xassert(0 <= i && i <= m);
+ if (i == 0)
+ *slope += fabs(1.0 * bp[t].dc);
+ else
+ *slope += fabs(tcol[i] * bp[t].dc);
+ }
+ return num1;
+}
+#endif
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spxchuzr.h b/test/monniaux/glpk-4.65/src/simplex/spxchuzr.h
new file mode 100644
index 00000000..3ec90050
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spxchuzr.h
@@ -0,0 +1,77 @@
+/* spxchuzr.h */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015-2017 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#ifndef SPXCHUZR_H
+#define SPXCHUZR_H
+
+#include "spxlp.h"
+
+#define spx_chuzr_std _glp_spx_chuzr_std
+int spx_chuzr_std(SPXLP *lp, int phase, const double beta[/*1+m*/],
+ int q, double s, const double tcol[/*1+m*/], int *p_flag,
+ double tol_piv, double tol, double tol1);
+/* choose basic variable (textbook ratio test) */
+
+#define spx_chuzr_harris _glp_spx_chuzr_harris
+int spx_chuzr_harris(SPXLP *lp, int phase, const double beta[/*1+m*/],
+ int q, double s, const double tcol[/*1+m*/], int *p_flag,
+ double tol_piv, double tol, double tol1);
+/* choose basic variable (Harris' ratio test) */
+
+#if 1 /* 22/VI-2017 */
+typedef struct SPXBP SPXBP;
+
+struct SPXBP
+{ /* penalty function (sum of infeasibilities) break point */
+ int i;
+ /* basic variable xB[i], 1 <= i <= m, that intersects its bound
+ * at this break point
+ * i > 0 if xB[i] intersects its lower bound (or fixed value)
+ * i < 0 if xB[i] intersects its upper bound
+ * i = 0 if xN[q] intersects its opposite bound */
+ double teta;
+ /* ray parameter value, teta >= 0, at this break point */
+ double dc;
+ /* increment of the penalty function coefficient cB[i] at this
+ * break point */
+ double dz;
+ /* increment, z[t] - z[0], of the penalty function at this break
+ * point */
+};
+
+#define spx_ls_eval_bp _glp_spx_ls_eval_bp
+int spx_ls_eval_bp(SPXLP *lp, const double beta[/*1+m*/],
+ int q, double dq, const double tcol[/*1+m*/], double tol_piv,
+ SPXBP bp[/*1+2*m+1*/]);
+/* determine penalty function break points */
+
+#define spx_ls_select_bp _glp_spx_ls_select_bp
+int spx_ls_select_bp(SPXLP *lp, const double tcol[/*1+m*/],
+ int nbp, SPXBP bp[/*1+m+m+1*/], int num, double *slope, double
+ teta_lim);
+/* select and process penalty function break points */
+#endif
+
+#endif
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spxlp.c b/test/monniaux/glpk-4.65/src/simplex/spxlp.c
new file mode 100644
index 00000000..90ce2636
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spxlp.c
@@ -0,0 +1,819 @@
+/* spxlp.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "spxlp.h"
+
+/***********************************************************************
+* spx_factorize - compute factorization of current basis matrix
+*
+* This routine computes factorization of the current basis matrix B.
+*
+* If the factorization has been successfully computed, the routine
+* validates it and returns zero. Otherwise, the routine invalidates
+* the factorization and returns the code provided by the factorization
+* driver (bfd_factorize). */
+
+static int jth_col(void *info, int j, int ind[], double val[])
+{ /* provide column B[j] */
+ SPXLP *lp = info;
+ int m = lp->m;
+ int *A_ptr = lp->A_ptr;
+ int *head = lp->head;
+ int k, ptr, len;
+ xassert(1 <= j && j <= m);
+ k = head[j]; /* x[k] = xB[j] */
+ ptr = A_ptr[k];
+ len = A_ptr[k+1] - ptr;
+ memcpy(&ind[1], &lp->A_ind[ptr], len * sizeof(int));
+ memcpy(&val[1], &lp->A_val[ptr], len * sizeof(double));
+ return len;
+}
+
+int spx_factorize(SPXLP *lp)
+{ int ret;
+ ret = bfd_factorize(lp->bfd, lp->m, jth_col, lp);
+ lp->valid = (ret == 0);
+ return ret;
+}
+
+/***********************************************************************
+* spx_eval_beta - compute current values of basic variables
+*
+* This routine computes vector beta = (beta[i]) of current values of
+* basic variables xB = (xB[i]). (Factorization of the current basis
+* matrix should be valid.)
+*
+* First the routine computes a modified vector of right-hand sides:
+*
+* n-m
+* y = b - N * f = b - sum N[j] * f[j],
+* j=1
+*
+* where b = (b[i]) is the original vector of right-hand sides, N is
+* a matrix composed from columns of the original constraint matrix A,
+* which (columns) correspond to non-basic variables, f = (f[j]) is the
+* vector of active bounds of non-basic variables xN = (xN[j]),
+* N[j] = A[k] is a column of matrix A corresponding to non-basic
+* variable xN[j] = x[k], f[j] is current active bound lN[j] = l[k] or
+* uN[j] = u[k] of non-basic variable xN[j] = x[k]. The matrix-vector
+* product N * f is computed as a linear combination of columns of N,
+* so if f[j] = 0, column N[j] can be skipped.
+*
+* Then the routine performs FTRAN to compute the vector beta:
+*
+* beta = inv(B) * y.
+*
+* On exit the routine stores components of the vector beta to array
+* locations beta[1], ..., beta[m]. */
+
+void spx_eval_beta(SPXLP *lp, double beta[/*1+m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ int *A_ptr = lp->A_ptr;
+ int *A_ind = lp->A_ind;
+ double *A_val = lp->A_val;
+ double *b = lp->b;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ int j, k, ptr, end;
+ double fj, *y;
+ /* compute y = b - N * xN */
+ /* y := b */
+ y = beta;
+ memcpy(&y[1], &b[1], m * sizeof(double));
+ /* y := y - N * f */
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ /* f[j] := active bound of xN[j] */
+ fj = flag[j] ? u[k] : l[k];
+ if (fj == 0.0 || fj == -DBL_MAX)
+ { /* either xN[j] has zero active bound or it is unbounded;
+ * in the latter case its value is assumed to be zero */
+ continue;
+ }
+ /* y := y - N[j] * f[j] */
+ ptr = A_ptr[k];
+ end = A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ y[A_ind[ptr]] -= A_val[ptr] * fj;
+ }
+ /* compute beta = inv(B) * y */
+ xassert(lp->valid);
+ bfd_ftran(lp->bfd, beta);
+ return;
+}
+
+/***********************************************************************
+* spx_eval_obj - compute current value of objective function
+*
+* This routine computes the value of the objective function in the
+* current basic solution:
+*
+* z = cB'* beta + cN'* f + c[0] =
+*
+* m n-m
+* = sum cB[i] * beta[i] + sum cN[j] * f[j] + c[0],
+* i=1 j=1
+*
+* where cB = (cB[i]) is the vector of objective coefficients at basic
+* variables, beta = (beta[i]) is the vector of current values of basic
+* variables, cN = (cN[j]) is the vector of objective coefficients at
+* non-basic variables, f = (f[j]) is the vector of current active
+* bounds of non-basic variables, c[0] is the constant term of the
+* objective function.
+*
+* It as assumed that components of the vector beta are stored in the
+* array locations beta[1], ..., beta[m]. */
+
+double spx_eval_obj(SPXLP *lp, const double beta[/*1+m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ int i, j, k;
+ double fj, z;
+ /* compute z = cB'* beta + cN'* f + c0 */
+ /* z := c0 */
+ z = c[0];
+ /* z := z + cB'* beta */
+ for (i = 1; i <= m; i++)
+ { k = head[i]; /* x[k] = xB[i] */
+ z += c[k] * beta[i];
+ }
+ /* z := z + cN'* f */
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ /* f[j] := active bound of xN[j] */
+ fj = flag[j] ? u[k] : l[k];
+ if (fj == 0.0 || fj == -DBL_MAX)
+ { /* either xN[j] has zero active bound or it is unbounded;
+ * in the latter case its value is assumed to be zero */
+ continue;
+ }
+ z += c[k] * fj;
+ }
+ return z;
+}
+
+/***********************************************************************
+* spx_eval_pi - compute simplex multipliers in current basis
+*
+* This routine computes vector pi = (pi[i]) of simplex multipliers in
+* the current basis. (Factorization of the current basis matrix should
+* be valid.)
+*
+* The vector pi is computed by performing BTRAN:
+*
+* pi = inv(B') * cB,
+*
+* where cB = (cB[i]) is the vector of objective coefficients at basic
+* variables xB = (xB[i]).
+*
+* On exit components of vector pi are stored in the array locations
+* pi[1], ..., pi[m]. */
+
+void spx_eval_pi(SPXLP *lp, double pi[/*1+m*/])
+{ int m = lp->m;
+ double *c = lp->c;
+ int *head = lp->head;
+ int i;
+ double *cB;
+ /* construct cB */
+ cB = pi;
+ for (i = 1; i <= m; i++)
+ cB[i] = c[head[i]];
+ /* compute pi = inv(B) * cB */
+ bfd_btran(lp->bfd, pi);
+ return;
+}
+
+/***********************************************************************
+* spx_eval_dj - compute reduced cost of j-th non-basic variable
+*
+* This routine computes reduced cost d[j] of non-basic variable
+* xN[j] = x[k], 1 <= j <= n-m, in the current basic solution:
+*
+* d[j] = c[k] - A'[k] * pi,
+*
+* where c[k] is the objective coefficient at x[k], A[k] is k-th column
+* of the constraint matrix, pi is the vector of simplex multipliers in
+* the current basis.
+*
+* It as assumed that components of the vector pi are stored in the
+* array locations pi[1], ..., pi[m]. */
+
+double spx_eval_dj(SPXLP *lp, const double pi[/*1+m*/], int j)
+{ int m = lp->m;
+ int n = lp->n;
+ int *A_ptr = lp->A_ptr;
+ int *A_ind = lp->A_ind;
+ double *A_val = lp->A_val;
+ int k, ptr, end;
+ double dj;
+ xassert(1 <= j && j <= n-m);
+ k = lp->head[m+j]; /* x[k] = xN[j] */
+ /* dj := c[k] */
+ dj = lp->c[k];
+ /* dj := dj - A'[k] * pi */
+ ptr = A_ptr[k];
+ end = A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ dj -= A_val[ptr] * pi[A_ind[ptr]];
+ return dj;
+}
+
+/***********************************************************************
+* spx_eval_tcol - compute j-th column of simplex table
+*
+* This routine computes j-th column of the current simplex table
+* T = (T[i,j]) = - inv(B) * N, 1 <= j <= n-m. (Factorization of the
+* current basis matrix should be valid.)
+*
+* The simplex table column is computed by performing FTRAN:
+*
+* tcol = - inv(B) * N[j],
+*
+* where B is the current basis matrix, N[j] = A[k] is a column of the
+* constraint matrix corresponding to non-basic variable xN[j] = x[k].
+*
+* On exit components of the simplex table column are stored in the
+* array locations tcol[1], ... tcol[m]. */
+
+void spx_eval_tcol(SPXLP *lp, int j, double tcol[/*1+m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ int *A_ptr = lp->A_ptr;
+ int *A_ind = lp->A_ind;
+ double *A_val = lp->A_val;
+ int *head = lp->head;
+ int i, k, ptr, end;
+ xassert(1 <= j && j <= n-m);
+ k = head[m+j]; /* x[k] = xN[j] */
+ /* compute tcol = - inv(B) * N[j] */
+ for (i = 1; i <= m; i++)
+ tcol[i] = 0.0;
+ ptr = A_ptr[k];
+ end = A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ tcol[A_ind[ptr]] = -A_val[ptr];
+ bfd_ftran(lp->bfd, tcol);
+ return;
+}
+
+/***********************************************************************
+* spx_eval_rho - compute i-th row of basis matrix inverse
+*
+* This routine computes i-th row of the matrix inv(B), where B is
+* the current basis matrix, 1 <= i <= m. (Factorization of the current
+* basis matrix should be valid.)
+*
+* The inverse row is computed by performing BTRAN:
+*
+* rho = inv(B') * e[i],
+*
+* where e[i] is i-th column of unity matrix.
+*
+* On exit components of the row are stored in the array locations
+* row[1], ..., row[m]. */
+
+void spx_eval_rho(SPXLP *lp, int i, double rho[/*1+m*/])
+{ int m = lp->m;
+ int j;
+ xassert(1 <= i && i <= m);
+ /* compute rho = inv(B') * e[i] */
+ for (j = 1; j <= m; j++)
+ rho[j] = 0.0;
+ rho[i] = 1.0;
+ bfd_btran(lp->bfd, rho);
+ return;
+}
+
+#if 1 /* 31/III-2016 */
+void spx_eval_rho_s(SPXLP *lp, int i, FVS *rho)
+{ /* sparse version of spx_eval_rho */
+ int m = lp->m;
+ xassert(1 <= i && i <= m);
+ /* compute rho = inv(B') * e[i] */
+ xassert(rho->n == m);
+ fvs_clear_vec(rho);
+ rho->nnz = 1;
+ rho->ind[1] = i;
+ rho->vec[i] = 1.0;
+ bfd_btran_s(lp->bfd, rho);
+ return;
+}
+#endif
+
+/***********************************************************************
+* spx_eval_tij - compute element T[i,j] of simplex table
+*
+* This routine computes element T[i,j] of the current simplex table
+* T = - inv(B) * N, 1 <= i <= m, 1 <= j <= n-m, with the following
+* formula:
+*
+* T[i,j] = - N'[j] * rho, (1)
+*
+* where N[j] = A[k] is a column of the constraint matrix corresponding
+* to non-basic variable xN[j] = x[k], rho is i-th row of the inverse
+* matrix inv(B).
+*
+* It as assumed that components of the inverse row rho = (rho[j]) are
+* stored in the array locations rho[1], ..., rho[m]. */
+
+double spx_eval_tij(SPXLP *lp, const double rho[/*1+m*/], int j)
+{ int m = lp->m;
+ int n = lp->n;
+ int *A_ptr = lp->A_ptr;
+ int *A_ind = lp->A_ind;
+ double *A_val = lp->A_val;
+ int k, ptr, end;
+ double tij;
+ xassert(1 <= j && j <= n-m);
+ k = lp->head[m+j]; /* x[k] = xN[j] */
+ /* compute t[i,j] = - N'[j] * pi */
+ tij = 0.0;
+ ptr = A_ptr[k];
+ end = A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ tij -= A_val[ptr] * rho[A_ind[ptr]];
+ return tij;
+}
+
+/***********************************************************************
+* spx_eval_trow - compute i-th row of simplex table
+*
+* This routine computes i-th row of the current simplex table
+* T = (T[i,j]) = - inv(B) * N, 1 <= i <= m.
+*
+* Elements of the row T[i] = (T[i,j]), j = 1, ..., n-m, are computed
+* directly with the routine spx_eval_tij.
+*
+* The vector rho = (rho[j]), which is i-th row of the basis inverse
+* inv(B), should be previously computed with the routine spx_eval_rho.
+* It is assumed that elements of this vector are stored in the array
+* locations rho[1], ..., rho[m].
+*
+* On exit components of the simplex table row are stored in the array
+* locations trow[1], ... trow[n-m].
+*
+* NOTE: For testing/debugging only. */
+
+void spx_eval_trow(SPXLP *lp, const double rho[/*1+m*/], double
+ trow[/*1+n-m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ int j;
+ for (j = 1; j <= n-m; j++)
+ trow[j] = spx_eval_tij(lp, rho, j);
+ return;
+}
+
+/***********************************************************************
+* spx_update_beta - update values of basic variables
+*
+* This routine updates the vector beta = (beta[i]) of values of basic
+* variables xB = (xB[i]) for the adjacent basis.
+*
+* On entry to the routine components of the vector beta in the current
+* basis should be placed in array locations beta[1], ..., beta[m].
+*
+* The parameter 1 <= p <= m specifies basic variable xB[p] which
+* becomes non-basic variable xN[q] in the adjacent basis. The special
+* case p < 0 means that non-basic variable xN[q] goes from its current
+* active bound to opposite one in the adjacent basis.
+*
+* If the flag p_flag is set, the active bound of xB[p] in the adjacent
+* basis is set to its upper bound. (In this case xB[p] should have its
+* upper bound and should not be fixed.)
+*
+* The parameter 1 <= q <= n-m specifies non-basic variable xN[q] which
+* becomes basic variable xB[p] in the adjacent basis (if 1 <= p <= m),
+* or goes to its opposite bound (if p < 0). (In the latter case xN[q]
+* should have both lower and upper bounds and should not be fixed.)
+*
+* It is assumed that the array tcol contains elements of q-th (pivot)
+* column T[q] of the simple table in locations tcol[1], ..., tcol[m].
+* (This column should be computed for the current basis.)
+*
+* First, the routine determines the increment of basic variable xB[p]
+* in the adjacent basis (but only if 1 <= p <= m):
+*
+* ( - beta[p], if -inf < xB[p] < +inf
+* (
+* delta xB[p] = { lB[p] - beta[p], if p_flag = 0
+* (
+* ( uB[p] - beta[p], if p_flag = 1
+*
+* where beta[p] is the value of xB[p] in the current basis, lB[p] and
+* uB[p] are its lower and upper bounds. Then, the routine determines
+* the increment of non-basic variable xN[q] in the adjacent basis:
+*
+* ( delta xB[p] / T[p,q], if 1 <= p <= m
+* (
+* delta xN[q] = { uN[q] - lN[q], if p < 0 and f[q] = lN[q]
+* (
+* ( lN[q] - uN[q], if p < 0 and f[q] = uN[q]
+*
+* where T[p,q] is the pivot element of the simplex table, f[q] is the
+* active bound of xN[q] in the current basis.
+*
+* If 1 <= p <= m, in the adjacent basis xN[q] becomes xB[p], so:
+*
+* new beta[p] = f[q] + delta xN[q].
+*
+* Values of other basic variables xB[i] for 1 <= i <= m, i != p, are
+* updated as follows:
+*
+* new beta[i] = beta[i] + T[i,q] * delta xN[q].
+*
+* On exit the routine stores updated components of the vector beta to
+* the same locations, where the input vector beta was stored. */
+
+void spx_update_beta(SPXLP *lp, double beta[/*1+m*/], int p,
+ int p_flag, int q, const double tcol[/*1+m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ int i, k;
+ double delta_p, delta_q;
+ if (p < 0)
+ { /* special case: xN[q] goes to its opposite bound */
+ xassert(1 <= q && q <= n-m);
+ /* xN[q] should be double-bounded variable */
+ k = head[m+q]; /* x[k] = xN[q] */
+ xassert(l[k] != -DBL_MAX && u[k] != +DBL_MAX && l[k] != u[k]);
+ /* determine delta xN[q] */
+ if (flag[q])
+ { /* xN[q] goes from its upper bound to its lower bound */
+ delta_q = l[k] - u[k];
+ }
+ else
+ { /* xN[q] goes from its lower bound to its upper bound */
+ delta_q = u[k] - l[k];
+ }
+ }
+ else
+ { /* xB[p] leaves the basis, xN[q] enters the basis */
+ xassert(1 <= p && p <= m);
+ xassert(1 <= q && q <= n-m);
+ /* determine delta xB[p] */
+ k = head[p]; /* x[k] = xB[p] */
+ if (p_flag)
+ { /* xB[p] goes to its upper bound */
+ xassert(l[k] != u[k] && u[k] != +DBL_MAX);
+ delta_p = u[k] - beta[p];
+ }
+ else if (l[k] == -DBL_MAX)
+ { /* unbounded xB[p] becomes non-basic (unusual case) */
+ xassert(u[k] == +DBL_MAX);
+ delta_p = 0.0 - beta[p];
+ }
+ else
+ { /* xB[p] goes to its lower bound or becomes fixed */
+ delta_p = l[k] - beta[p];
+ }
+ /* determine delta xN[q] */
+ delta_q = delta_p / tcol[p];
+ /* compute new beta[p], which is the value of xN[q] in the
+ * adjacent basis */
+ k = head[m+q]; /* x[k] = xN[q] */
+ if (flag[q])
+ { /* xN[q] has its upper bound active */
+ xassert(l[k] != u[k] && u[k] != +DBL_MAX);
+ beta[p] = u[k] + delta_q;
+ }
+ else if (l[k] == -DBL_MAX)
+ { /* xN[q] is non-basic unbounded variable */
+ xassert(u[k] == +DBL_MAX);
+ beta[p] = 0.0 + delta_q;
+ }
+ else
+ { /* xN[q] has its lower bound active or is fixed (latter
+ * case is unusual) */
+ beta[p] = l[k] + delta_q;
+ }
+ }
+ /* compute new beta[i] for all i != p */
+ for (i = 1; i <= m; i++)
+ { if (i != p)
+ beta[i] += tcol[i] * delta_q;
+ }
+ return;
+}
+
+#if 1 /* 30/III-2016 */
+void spx_update_beta_s(SPXLP *lp, double beta[/*1+m*/], int p,
+ int p_flag, int q, const FVS *tcol)
+{ /* sparse version of spx_update_beta */
+ int m = lp->m;
+ int n = lp->n;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ int nnz = tcol->nnz;
+ int *ind = tcol->ind;
+ double *vec = tcol->vec;
+ int i, k;
+ double delta_p, delta_q;
+ xassert(tcol->n == m);
+ if (p < 0)
+ { /* special case: xN[q] goes to its opposite bound */
+#if 0 /* 11/VI-2017 */
+ /* FIXME: not tested yet */
+ xassert(0);
+#endif
+ xassert(1 <= q && q <= n-m);
+ /* xN[q] should be double-bounded variable */
+ k = head[m+q]; /* x[k] = xN[q] */
+ xassert(l[k] != -DBL_MAX && u[k] != +DBL_MAX && l[k] != u[k]);
+ /* determine delta xN[q] */
+ if (flag[q])
+ { /* xN[q] goes from its upper bound to its lower bound */
+ delta_q = l[k] - u[k];
+ }
+ else
+ { /* xN[q] goes from its lower bound to its upper bound */
+ delta_q = u[k] - l[k];
+ }
+ }
+ else
+ { /* xB[p] leaves the basis, xN[q] enters the basis */
+ xassert(1 <= p && p <= m);
+ xassert(1 <= q && q <= n-m);
+ /* determine delta xB[p] */
+ k = head[p]; /* x[k] = xB[p] */
+ if (p_flag)
+ { /* xB[p] goes to its upper bound */
+ xassert(l[k] != u[k] && u[k] != +DBL_MAX);
+ delta_p = u[k] - beta[p];
+ }
+ else if (l[k] == -DBL_MAX)
+ { /* unbounded xB[p] becomes non-basic (unusual case) */
+ xassert(u[k] == +DBL_MAX);
+ delta_p = 0.0 - beta[p];
+ }
+ else
+ { /* xB[p] goes to its lower bound or becomes fixed */
+ delta_p = l[k] - beta[p];
+ }
+ /* determine delta xN[q] */
+ delta_q = delta_p / vec[p];
+ /* compute new beta[p], which is the value of xN[q] in the
+ * adjacent basis */
+ k = head[m+q]; /* x[k] = xN[q] */
+ if (flag[q])
+ { /* xN[q] has its upper bound active */
+ xassert(l[k] != u[k] && u[k] != +DBL_MAX);
+ beta[p] = u[k] + delta_q;
+ }
+ else if (l[k] == -DBL_MAX)
+ { /* xN[q] is non-basic unbounded variable */
+ xassert(u[k] == +DBL_MAX);
+ beta[p] = 0.0 + delta_q;
+ }
+ else
+ { /* xN[q] has its lower bound active or is fixed (latter
+ * case is unusual) */
+ beta[p] = l[k] + delta_q;
+ }
+ }
+ /* compute new beta[i] for all i != p */
+ for (k = 1; k <= nnz; k++)
+ { i = ind[k];
+ if (i != p)
+ beta[i] += vec[i] * delta_q;
+ }
+ return;
+}
+#endif
+
+/***********************************************************************
+* spx_update_d - update reduced costs of non-basic variables
+*
+* This routine updates the vector d = (d[j]) of reduced costs of
+* non-basic variables xN = (xN[j]) for the adjacent basis.
+*
+* On entry to the routine components of the vector d in the current
+* basis should be placed in locations d[1], ..., d[n-m].
+*
+* The parameter 1 <= p <= m specifies basic variable xB[p] which
+* becomes non-basic variable xN[q] in the adjacent basis.
+*
+* The parameter 1 <= q <= n-m specified non-basic variable xN[q] which
+* becomes basic variable xB[p] in the adjacent basis.
+*
+* It is assumed that the array trow contains elements of p-th (pivot)
+* row T'[p] of the simplex table in locations trow[1], ..., trow[n-m].
+* It is also assumed that the array tcol contains elements of q-th
+* (pivot) column T[q] of the simple table in locations tcol[1], ...,
+* tcol[m]. (These row and column should be computed for the current
+* basis.)
+*
+* First, the routine computes more accurate reduced cost d[q] in the
+* current basis using q-th column of the simplex table:
+*
+* n-m
+* d[q] = cN[q] + sum t[i,q] * cB[i],
+* i=1
+*
+* where cN[q] and cB[i] are objective coefficients at variables xN[q]
+* and xB[i], resp. The routine also computes the relative error:
+*
+* e = |d[q] - d'[q]| / (1 + |d[q]|),
+*
+* where d'[q] is the reduced cost of xN[q] on entry to the routine,
+* and returns e on exit. (If e happens to be large enough, the calling
+* program may compute the reduced costs directly, since other reduced
+* costs also may be inaccurate.)
+*
+* In the adjacent basis xB[p] becomes xN[q], so:
+*
+* new d[q] = d[q] / T[p,q],
+*
+* where T[p,q] is the pivot element of the simplex table (it is taken
+* from column T[q] as more accurate). Reduced costs of other non-basic
+* variables xN[j] for 1 <= j <= n-m, j != q, are updated as follows:
+*
+* new d[j] = d[j] + T[p,j] * new d[q].
+*
+* On exit the routine stores updated components of the vector d to the
+* same locations, where the input vector d was stored. */
+
+double spx_update_d(SPXLP *lp, double d[/*1+n-m*/], int p, int q,
+ const double trow[/*1+n-m*/], const double tcol[/*1+m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ double *c = lp->c;
+ int *head = lp->head;
+ int i, j, k;
+ double dq, e;
+ xassert(1 <= p && p <= m);
+ xassert(1 <= q && q <= n);
+ /* compute d[q] in current basis more accurately */
+ k = head[m+q]; /* x[k] = xN[q] */
+ dq = c[k];
+ for (i = 1; i <= m; i++)
+ dq += tcol[i] * c[head[i]];
+ /* compute relative error in d[q] */
+ e = fabs(dq - d[q]) / (1.0 + fabs(dq));
+ /* compute new d[q], which is the reduced cost of xB[p] in the
+ * adjacent basis */
+ d[q] = (dq /= tcol[p]);
+ /* compute new d[j] for all j != q */
+ for (j = 1; j <= n-m; j++)
+ { if (j != q)
+ d[j] -= trow[j] * dq;
+ }
+ return e;
+}
+
+#if 1 /* 30/III-2016 */
+double spx_update_d_s(SPXLP *lp, double d[/*1+n-m*/], int p, int q,
+ const FVS *trow, const FVS *tcol)
+{ /* sparse version of spx_update_d */
+ int m = lp->m;
+ int n = lp->n;
+ double *c = lp->c;
+ int *head = lp->head;
+ int trow_nnz = trow->nnz;
+ int *trow_ind = trow->ind;
+ double *trow_vec = trow->vec;
+ int tcol_nnz = tcol->nnz;
+ int *tcol_ind = tcol->ind;
+ double *tcol_vec = tcol->vec;
+ int i, j, k;
+ double dq, e;
+ xassert(1 <= p && p <= m);
+ xassert(1 <= q && q <= n);
+ xassert(trow->n == n-m);
+ xassert(tcol->n == m);
+ /* compute d[q] in current basis more accurately */
+ k = head[m+q]; /* x[k] = xN[q] */
+ dq = c[k];
+ for (k = 1; k <= tcol_nnz; k++)
+ { i = tcol_ind[k];
+ dq += tcol_vec[i] * c[head[i]];
+ }
+ /* compute relative error in d[q] */
+ e = fabs(dq - d[q]) / (1.0 + fabs(dq));
+ /* compute new d[q], which is the reduced cost of xB[p] in the
+ * adjacent basis */
+ d[q] = (dq /= tcol_vec[p]);
+ /* compute new d[j] for all j != q */
+ for (k = 1; k <= trow_nnz; k++)
+ { j = trow_ind[k];
+ if (j != q)
+ d[j] -= trow_vec[j] * dq;
+ }
+ return e;
+}
+#endif
+
+/***********************************************************************
+* spx_change_basis - change current basis to adjacent one
+*
+* This routine changes the current basis to the adjacent one making
+* necessary changes in lp->head and lp->flag members.
+*
+* The parameters p, p_flag, and q have the same meaning as for the
+* routine spx_update_beta. */
+
+void spx_change_basis(SPXLP *lp, int p, int p_flag, int q)
+{ int m = lp->m;
+ int n = lp->n;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ int k;
+ if (p < 0)
+ { /* special case: xN[q] goes to its opposite bound */
+ xassert(1 <= q && q <= n-m);
+ /* xN[q] should be double-bounded variable */
+ k = head[m+q]; /* x[k] = xN[q] */
+ xassert(l[k] != -DBL_MAX && u[k] != +DBL_MAX && l[k] != u[k]);
+ /* change active bound flag */
+ flag[q] = 1 - flag[q];
+ }
+ else
+ { /* xB[p] leaves the basis, xN[q] enters the basis */
+ xassert(1 <= p && p <= m);
+ xassert(p_flag == 0 || p_flag == 1);
+ xassert(1 <= q && q <= n-m);
+ k = head[p]; /* xB[p] = x[k] */
+ if (p_flag)
+ { /* xB[p] goes to its upper bound */
+ xassert(l[k] != u[k] && u[k] != +DBL_MAX);
+ }
+ /* swap xB[p] and xN[q] in the basis */
+ head[p] = head[m+q], head[m+q] = k;
+ /* and set active bound flag for new xN[q] */
+ lp->flag[q] = p_flag;
+ }
+ return;
+}
+
+/***********************************************************************
+* spx_update_invb - update factorization of basis matrix
+*
+* This routine updates factorization of the basis matrix B when i-th
+* column of B is replaced by k-th column of the constraint matrix A.
+*
+* The parameter 1 <= i <= m specifies the number of column of matrix B
+* to be replaced by a new column.
+*
+* The parameter 1 <= k <= n specifies the number of column of matrix A
+* to be used for replacement.
+*
+* If the factorization has been successfully updated, the routine
+* validates it and returns zero. Otherwise, the routine invalidates
+* the factorization and returns the code provided by the factorization
+* driver (bfd_update). */
+
+int spx_update_invb(SPXLP *lp, int i, int k)
+{ int m = lp->m;
+ int n = lp->n;
+ int *A_ptr = lp->A_ptr;
+ int *A_ind = lp->A_ind;
+ double *A_val = lp->A_val;
+ int ptr, len, ret;
+ xassert(1 <= i && i <= m);
+ xassert(1 <= k && k <= n);
+ ptr = A_ptr[k];
+ len = A_ptr[k+1] - ptr;
+ ret = bfd_update(lp->bfd, i, len, &A_ind[ptr-1], &A_val[ptr-1]);
+ lp->valid = (ret == 0);
+ return ret;
+}
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spxlp.h b/test/monniaux/glpk-4.65/src/simplex/spxlp.h
new file mode 100644
index 00000000..29a135fe
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spxlp.h
@@ -0,0 +1,234 @@
+/* spxlp.h */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#ifndef SPXLP_H
+#define SPXLP_H
+
+#include "bfd.h"
+
+/***********************************************************************
+* The structure SPXLP describes LP problem and its current basis.
+*
+* It is assumed that LP problem has the following formulation (this is
+* so called "working format"):
+*
+* z = c'* x + c0 -> min (1)
+*
+* A * x = b (2)
+*
+* l <= x <= u (3)
+*
+* where:
+*
+* x = (x[k]) is a n-vector of variables;
+*
+* z is an objective function;
+*
+* c = (c[k]) is a n-vector of objective coefficients;
+*
+* c0 is a constant term of the objective function;
+*
+* A = (a[i,k]) is a mxn-matrix of constraint coefficients;
+*
+* b = (b[i]) is a m-vector of right-hand sides;
+*
+* l = (l[k]) is a n-vector of lower bounds of variables;
+*
+* u = (u[k]) is a n-vector of upper bounds of variables.
+*
+* If variable x[k] has no lower (upper) bound, it is formally assumed
+* that l[k] = -inf (u[k] = +inf). Variable having no bounds is called
+* free (unbounded) variable. If l[k] = u[k], variable x[k] is assumed
+* to be fixed.
+*
+* It is also assumed that matrix A has full row rank: rank(A) = m,
+* i.e. all its rows are linearly independent, so m <= n.
+*
+* The (current) basis is defined by an appropriate permutation matrix
+* P of order n such that:
+*
+* ( xB )
+* P * x = ( ), (4)
+* ( xN )
+*
+* where xB = (xB[i]) is a m-vector of basic variables, xN = (xN[j]) is
+* a (n-m)-vector of non-basic variables. If a non-basic variable xN[j]
+* has both lower and upper bounds, there is used an additional flag to
+* indicate which bound is active.
+*
+* From (2) and (4) it follows that:
+*
+* A * P'* P * x = b <=> B * xB + N * xN = b, (5)
+*
+* where P' is a matrix transposed to P, and
+*
+* A * P' = (B | N). (6)
+*
+* Here B is the basis matrix, which is a square non-singular matrix
+* of order m composed from columns of matrix A that correspond to
+* basic variables xB, and N is a mx(n-m) matrix composed from columns
+* of matrix A that correspond to non-basic variables xN. */
+
+typedef struct SPXLP SPXLP;
+
+struct SPXLP
+{ /* LP problem data and its (current) basis */
+ int m;
+ /* number of equality constraints, m > 0 */
+ int n;
+ /* number of variables, n >= m */
+ int nnz;
+ /* number of non-zeros in constraint matrix A */
+ /*--------------------------------------------------------------*/
+ /* mxn-matrix A of constraint coefficients in sparse column-wise
+ * format */
+ int *A_ptr; /* int A_ptr[1+n+1]; */
+ /* A_ptr[0] is not used;
+ * A_ptr[k], 1 <= k <= n, is starting position of k-th column in
+ * arrays A_ind and A_val; note that A_ptr[1] is always 1;
+ * A_ptr[n+1] indicates the position after the last element in
+ * arrays A_ind and A_val, i.e. A_ptr[n+1] = nnz+1, where nnz is
+ * the number of non-zero elements in matrix A;
+ * the length of k-th column (the number of non-zero elements in
+ * that column) can be calculated as A_ptr[k+1] - A_ptr[k] */
+ int *A_ind; /* int A_ind[1+nnz]; */
+ /* row indices */
+ double *A_val; /* double A_val[1+nnz]; */
+ /* non-zero element values (constraint coefficients) */
+ /*--------------------------------------------------------------*/
+ /* principal vectors of LP formulation */
+ double *b; /* double b[1+m]; */
+ /* b[0] is not used;
+ * b[i], 1 <= i <= m, is the right-hand side of i-th equality
+ * constraint */
+ double *c; /* double c[1+n]; */
+ /* c[0] is the constant term of the objective function;
+ * c[k], 1 <= k <= n, is the objective function coefficient at
+ * variable x[k] */
+ double *l; /* double l[1+n]; */
+ /* l[0] is not used;
+ * l[k], 1 <= k <= n, is the lower bound of variable x[k];
+ * if x[k] has no lower bound, l[k] = -DBL_MAX */
+ double *u; /* double u[1+n]; */
+ /* u[0] is not used;
+ * u[k], 1 <= k <= n, is the upper bound of variable u[k];
+ * if x[k] has no upper bound, u[k] = +DBL_MAX;
+ * note that l[k] = u[k] means that x[k] is fixed variable */
+ /*--------------------------------------------------------------*/
+ /* LP basis */
+ int *head; /* int head[1+n]; */
+ /* basis header, which is permutation matrix P (4):
+ * head[0] is not used;
+ * head[i] = k means that xB[i] = x[k], 1 <= i <= m;
+ * head[m+j] = k, means that xN[j] = x[k], 1 <= j <= n-m */
+ char *flag; /* char flag[1+n-m]; */
+ /* flags of non-basic variables:
+ * flag[0] is not used;
+ * flag[j], 1 <= j <= n-m, indicates that non-basic variable
+ * xN[j] is non-fixed and has its upper bound active */
+ /*--------------------------------------------------------------*/
+ /* basis matrix B of order m stored in factorized form */
+ int valid;
+ /* factorization validity flag */
+ BFD *bfd;
+ /* driver to factorization of the basis matrix */
+};
+
+#define spx_factorize _glp_spx_factorize
+int spx_factorize(SPXLP *lp);
+/* compute factorization of current basis matrix */
+
+#define spx_eval_beta _glp_spx_eval_beta
+void spx_eval_beta(SPXLP *lp, double beta[/*1+m*/]);
+/* compute values of basic variables */
+
+#define spx_eval_obj _glp_spx_eval_obj
+double spx_eval_obj(SPXLP *lp, const double beta[/*1+m*/]);
+/* compute value of objective function */
+
+#define spx_eval_pi _glp_spx_eval_pi
+void spx_eval_pi(SPXLP *lp, double pi[/*1+m*/]);
+/* compute simplex multipliers */
+
+#define spx_eval_dj _glp_spx_eval_dj
+double spx_eval_dj(SPXLP *lp, const double pi[/*1+m*/], int j);
+/* compute reduced cost of j-th non-basic variable */
+
+#define spx_eval_tcol _glp_spx_eval_tcol
+void spx_eval_tcol(SPXLP *lp, int j, double tcol[/*1+m*/]);
+/* compute j-th column of simplex table */
+
+#define spx_eval_rho _glp_spx_eval_rho
+void spx_eval_rho(SPXLP *lp, int i, double rho[/*1+m*/]);
+/* compute i-th row of basis matrix inverse */
+
+#if 1 /* 31/III-2016 */
+#define spx_eval_rho_s _glp_spx_eval_rho_s
+void spx_eval_rho_s(SPXLP *lp, int i, FVS *rho);
+/* sparse version of spx_eval_rho */
+#endif
+
+#define spx_eval_tij _glp_spx_eval_tij
+double spx_eval_tij(SPXLP *lp, const double rho[/*1+m*/], int j);
+/* compute element T[i,j] of simplex table */
+
+#define spx_eval_trow _glp_spx_eval_trow
+void spx_eval_trow(SPXLP *lp, const double rho[/*1+m*/], double
+ trow[/*1+n-m*/]);
+/* compute i-th row of simplex table */
+
+#define spx_update_beta _glp_spx_update_beta
+void spx_update_beta(SPXLP *lp, double beta[/*1+m*/], int p,
+ int p_flag, int q, const double tcol[/*1+m*/]);
+/* update values of basic variables */
+
+#if 1 /* 30/III-2016 */
+#define spx_update_beta_s _glp_spx_update_beta_s
+void spx_update_beta_s(SPXLP *lp, double beta[/*1+m*/], int p,
+ int p_flag, int q, const FVS *tcol);
+/* sparse version of spx_update_beta */
+#endif
+
+#define spx_update_d _glp_spx_update_d
+double spx_update_d(SPXLP *lp, double d[/*1+n-m*/], int p, int q,
+ const double trow[/*1+n-m*/], const double tcol[/*1+m*/]);
+/* update reduced costs of non-basic variables */
+
+#if 1 /* 30/III-2016 */
+#define spx_update_d_s _glp_spx_update_d_s
+double spx_update_d_s(SPXLP *lp, double d[/*1+n-m*/], int p, int q,
+ const FVS *trow, const FVS *tcol);
+/* sparse version of spx_update_d */
+#endif
+
+#define spx_change_basis _glp_spx_change_basis
+void spx_change_basis(SPXLP *lp, int p, int p_flag, int q);
+/* change current basis to adjacent one */
+
+#define spx_update_invb _glp_spx_update_invb
+int spx_update_invb(SPXLP *lp, int i, int k);
+/* update factorization of basis matrix */
+
+#endif
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spxnt.c b/test/monniaux/glpk-4.65/src/simplex/spxnt.c
new file mode 100644
index 00000000..7eaac852
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spxnt.c
@@ -0,0 +1,303 @@
+/* spxnt.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "spxnt.h"
+
+/***********************************************************************
+* spx_alloc_nt - allocate matrix N in sparse row-wise format
+*
+* This routine allocates the memory for arrays needed to represent the
+* matrix N composed of non-basic columns of the constraint matrix A. */
+
+void spx_alloc_nt(SPXLP *lp, SPXNT *nt)
+{ int m = lp->m;
+ int nnz = lp->nnz;
+ nt->ptr = talloc(1+m, int);
+ nt->len = talloc(1+m, int);
+ nt->ind = talloc(1+nnz, int);
+ nt->val = talloc(1+nnz, double);
+ return;
+}
+
+/***********************************************************************
+* spx_init_nt - initialize row pointers for matrix N
+*
+* This routine initializes (sets up) row pointers for the matrix N
+* using column-wise representation of the constraint matrix A.
+*
+* This routine needs to be called only once. */
+
+void spx_init_nt(SPXLP *lp, SPXNT *nt)
+{ int m = lp->m;
+ int n = lp->n;
+ int nnz = lp->nnz;
+ int *A_ptr = lp->A_ptr;
+ int *A_ind = lp->A_ind;
+ int *NT_ptr = nt->ptr;
+ int *NT_len = nt->len;
+ int i, k, ptr, end;
+ /* calculate NT_len[i] = maximal number of non-zeros in i-th row
+ * of N = number of non-zeros in i-th row of A */
+ memset(&NT_len[1], 0, m * sizeof(int));
+ for (k = 1; k <= n; k++)
+ { ptr = A_ptr[k];
+ end = A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ NT_len[A_ind[ptr]]++;
+ }
+ /* initialize row pointers NT_ptr[i], i = 1,...,n-m */
+ NT_ptr[1] = 1;
+ for (i = 2; i <= m; i++)
+ NT_ptr[i] = NT_ptr[i-1] + NT_len[i-1];
+ xassert(NT_ptr[m] + NT_len[m] == nnz+1);
+ return;
+}
+
+/***********************************************************************
+* spx_nt_add_col - add column N[j] = A[k] to matrix N
+*
+* This routine adds elements of column N[j] = A[k], 1 <= j <= n-m,
+* 1 <= k <= n, to the row-wise represntation of the matrix N. It is
+* assumed (with no check) that elements of the specified column are
+* missing in the row-wise represntation of N. */
+
+void spx_nt_add_col(SPXLP *lp, SPXNT *nt, int j, int k)
+{ int m = lp->m;
+ int n = lp->n;
+ int nnz = lp->nnz;
+ int *A_ptr = lp->A_ptr;
+ int *A_ind = lp->A_ind;
+ double *A_val = lp->A_val;
+ int *NT_ptr = nt->ptr;
+ int *NT_len = nt->len;
+ int *NT_ind = nt->ind;
+ double *NT_val = nt->val;
+ int i, ptr, end, pos;
+ xassert(1 <= j && j <= n-m);
+ xassert(1 <= k && k <= n);
+ ptr = A_ptr[k];
+ end = A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ { i = A_ind[ptr];
+ /* add element N[i,j] = A[i,k] to i-th row of matrix N */
+ pos = NT_ptr[i] + (NT_len[i]++);
+ if (i < m)
+ xassert(pos < NT_ptr[i+1]);
+ else
+ xassert(pos <= nnz);
+ NT_ind[pos] = j;
+ NT_val[pos] = A_val[ptr];
+ }
+ return;
+}
+
+/***********************************************************************
+* spx_build_nt - build matrix N for current basis
+*
+* This routine builds the row-wise represntation of the matrix N
+* for the current basis by adding columns of the constraint matrix A
+* corresponding to non-basic variables. */
+
+void spx_build_nt(SPXLP *lp, SPXNT *nt)
+{ int m = lp->m;
+ int n = lp->n;
+ int *head = lp->head;
+ int *NT_len = nt->len;
+ int j, k;
+ /* N := 0 */
+ memset(&NT_len[1], 0, m * sizeof(int));
+ /* add non-basic columns N[j] = A[k] */
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ spx_nt_add_col(lp, nt, j, k);
+ }
+ return;
+}
+
+/***********************************************************************
+* spx_nt_del_col - remove column N[j] = A[k] from matrix N
+*
+* This routine removes elements of column N[j] = A[k], 1 <= j <= n-m,
+* 1 <= k <= n, from the row-wise representation of the matrix N. It is
+* assumed (with no check) that elements of the specified column are
+* present in the row-wise representation of N. */
+
+void spx_nt_del_col(SPXLP *lp, SPXNT *nt, int j, int k)
+{ int m = lp->m;
+ int n = lp->n;
+ int *A_ptr = lp->A_ptr;
+ int *A_ind = lp->A_ind;
+ int *NT_ptr = nt->ptr;
+ int *NT_len = nt->len;
+ int *NT_ind = nt->ind;
+ double *NT_val = nt->val;
+ int i, ptr, end, ptr1, end1;
+ xassert(1 <= j && j <= n-m);
+ xassert(1 <= k && k <= n);
+ ptr = A_ptr[k];
+ end = A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ { i = A_ind[ptr];
+ /* find element N[i,j] = A[i,k] in i-th row of matrix N */
+ ptr1 = NT_ptr[i];
+ end1 = ptr1 + NT_len[i];
+ for (; NT_ind[ptr1] != j; ptr1++)
+ /* nop */;
+ xassert(ptr1 < end1);
+ /* and remove it from i-th row element list */
+ NT_len[i]--;
+ NT_ind[ptr1] = NT_ind[end1-1];
+ NT_val[ptr1] = NT_val[end1-1];
+ }
+ return;
+}
+
+/***********************************************************************
+* spx_update_nt - update matrix N for adjacent basis
+*
+* This routine updates the row-wise represntation of matrix N for
+* the adjacent basis, where column N[q], 1 <= q <= n-m, is replaced by
+* column B[p], 1 <= p <= m, of the current basis matrix B. */
+
+void spx_update_nt(SPXLP *lp, SPXNT *nt, int p, int q)
+{ int m = lp->m;
+ int n = lp->n;
+ int *head = lp->head;
+ xassert(1 <= p && p <= m);
+ xassert(1 <= q && q <= n-m);
+ /* remove old column N[q] corresponding to variable xN[q] */
+ spx_nt_del_col(lp, nt, q, head[m+q]);
+ /* add new column N[q] corresponding to variable xB[p] */
+ spx_nt_add_col(lp, nt, q, head[p]);
+ return;
+}
+
+/***********************************************************************
+* spx_nt_prod - compute product y := y + s * N'* x
+*
+* This routine computes the product:
+*
+* y := y + s * N'* x,
+*
+* where N' is a matrix transposed to the mx(n-m)-matrix N composed
+* from non-basic columns of the constraint matrix A, x is a m-vector,
+* s is a scalar, y is (n-m)-vector.
+*
+* If the flag ign is non-zero, the routine ignores the input content
+* of the array y assuming that y = 0.
+*
+* The routine uses the row-wise representation of the matrix N and
+* computes the product as a linear combination:
+*
+* y := y + s * (N'[1] * x[1] + ... + N'[m] * x[m]),
+*
+* where N'[i] is i-th row of N, 1 <= i <= m. */
+
+void spx_nt_prod(SPXLP *lp, SPXNT *nt, double y[/*1+n-m*/], int ign,
+ double s, const double x[/*1+m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ int *NT_ptr = nt->ptr;
+ int *NT_len = nt->len;
+ int *NT_ind = nt->ind;
+ double *NT_val = nt->val;
+ int i, j, ptr, end;
+ double t;
+ if (ign)
+ { /* y := 0 */
+ for (j = 1; j <= n-m; j++)
+ y[j] = 0.0;
+ }
+ for (i = 1; i <= m; i++)
+ { if (x[i] != 0.0)
+ { /* y := y + s * (i-th row of N) * x[i] */
+ t = s * x[i];
+ ptr = NT_ptr[i];
+ end = ptr + NT_len[i];
+ for (; ptr < end; ptr++)
+ y[NT_ind[ptr]] += NT_val[ptr] * t;
+ }
+ }
+ return;
+}
+
+#if 1 /* 31/III-2016 */
+void spx_nt_prod_s(SPXLP *lp, SPXNT *nt, FVS *y, int ign, double s,
+ const FVS *x, double eps)
+{ /* sparse version of spx_nt_prod */
+ int *NT_ptr = nt->ptr;
+ int *NT_len = nt->len;
+ int *NT_ind = nt->ind;
+ double *NT_val = nt->val;
+ int *x_ind = x->ind;
+ double *x_vec = x->vec;
+ int *y_ind = y->ind;
+ double *y_vec = y->vec;
+ int i, j, k, nnz, ptr, end;
+ double t;
+ xassert(x->n == lp->m);
+ xassert(y->n == lp->n-lp->m);
+ if (ign)
+ { /* y := 0 */
+ fvs_clear_vec(y);
+ }
+ nnz = y->nnz;
+ for (k = x->nnz; k >= 1; k--)
+ { i = x_ind[k];
+ /* y := y + s * (i-th row of N) * x[i] */
+ t = s * x_vec[i];
+ ptr = NT_ptr[i];
+ end = ptr + NT_len[i];
+ for (; ptr < end; ptr++)
+ { j = NT_ind[ptr];
+ if (y_vec[j] == 0.0)
+ y_ind[++nnz] = j;
+ y_vec[j] += NT_val[ptr] * t;
+ /* don't forget about numeric cancellation */
+ if (y_vec[j] == 0.0)
+ y_vec[j] = DBL_MIN;
+ }
+ }
+ y->nnz = nnz;
+ fvs_adjust_vec(y, eps);
+ return;
+}
+#endif
+
+/***********************************************************************
+* spx_free_nt - deallocate matrix N in sparse row-wise format
+*
+* This routine deallocates the memory used for arrays of the program
+* object nt. */
+
+void spx_free_nt(SPXLP *lp, SPXNT *nt)
+{ xassert(lp == lp);
+ tfree(nt->ptr);
+ tfree(nt->len);
+ tfree(nt->ind);
+ tfree(nt->val);
+ return;
+}
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spxnt.h b/test/monniaux/glpk-4.65/src/simplex/spxnt.h
new file mode 100644
index 00000000..857917b8
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spxnt.h
@@ -0,0 +1,96 @@
+/* spxnt.h */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#ifndef SPXNT_H
+#define SPXNT_H
+
+#include "spxlp.h"
+
+typedef struct SPXNT SPXNT;
+
+struct SPXNT
+{ /* mx(n-m)-matrix N composed of non-basic columns of constraint
+ * matrix A, in sparse row-wise format */
+ int *ptr; /* int ptr[1+m]; */
+ /* ptr[0] is not used;
+ * ptr[i], 1 <= i <= m, is starting position of i-th row in
+ * arrays ind and val; note that ptr[1] is always 1;
+ * these starting positions are set up *once* as if they would
+ * correspond to rows of matrix A stored without gaps, i.e.
+ * ptr[i+1] - ptr[i] is the number of non-zeros in i-th (i < m)
+ * row of matrix A, and (nnz+1) - ptr[m] is the number of
+ * non-zero in m-th (last) row of matrix A, where nnz is the
+ * total number of non-zeros in matrix A */
+ int *len; /* int len[1+m]; */
+ /* len[0] is not used;
+ * len[i], 1 <= i <= m, is the number of non-zeros in i-th row
+ * of current matrix N */
+ int *ind; /* int ind[1+nnz]; */
+ /* column indices */
+ double *val; /* double val[1+nnz]; */
+ /* non-zero element values */
+};
+
+#define spx_alloc_nt _glp_spx_alloc_nt
+void spx_alloc_nt(SPXLP *lp, SPXNT *nt);
+/* allocate matrix N in sparse row-wise format */
+
+#define spx_init_nt _glp_spx_init_nt
+void spx_init_nt(SPXLP *lp, SPXNT *nt);
+/* initialize row pointers for matrix N */
+
+#define spx_nt_add_col _glp_spx_nt_add_col
+void spx_nt_add_col(SPXLP *lp, SPXNT *nt, int j, int k);
+/* add column N[j] = A[k] */
+
+#define spx_build_nt _glp_spx_build_nt
+void spx_build_nt(SPXLP *lp, SPXNT *nt);
+/* build matrix N for current basis */
+
+#define spx_nt_del_col _glp_spx_nt_del_col
+void spx_nt_del_col(SPXLP *lp, SPXNT *nt, int j, int k);
+/* remove column N[j] = A[k] from matrix N */
+
+#define spx_update_nt _glp_spx_update_nt
+void spx_update_nt(SPXLP *lp, SPXNT *nt, int p, int q);
+/* update matrix N for adjacent basis */
+
+#define spx_nt_prod _glp_spx_nt_prod
+void spx_nt_prod(SPXLP *lp, SPXNT *nt, double y[/*1+n-m*/], int ign,
+ double s, const double x[/*1+m*/]);
+/* compute product y := y + s * N'* x */
+
+#if 1 /* 31/III-2016 */
+#define spx_nt_prod_s _glp_spx_nt_prod_s
+void spx_nt_prod_s(SPXLP *lp, SPXNT *nt, FVS *y, int ign, double s,
+ const FVS *x, double eps);
+/* sparse version of spx_nt_prod */
+#endif
+
+#define spx_free_nt _glp_spx_free_nt
+void spx_free_nt(SPXLP *lp, SPXNT *nt);
+/* deallocate matrix N in sparse row-wise format */
+
+#endif
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spxprim.c b/test/monniaux/glpk-4.65/src/simplex/spxprim.c
new file mode 100644
index 00000000..e1cdfb5a
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spxprim.c
@@ -0,0 +1,1860 @@
+/* spxprim.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015-2017 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#if 1 /* 18/VII-2017 */
+#define SCALE_Z 1
+#endif
+
+#include "env.h"
+#include "simplex.h"
+#include "spxat.h"
+#include "spxnt.h"
+#include "spxchuzc.h"
+#include "spxchuzr.h"
+#include "spxprob.h"
+
+#define CHECK_ACCURACY 0
+/* (for debugging) */
+
+struct csa
+{ /* common storage area */
+ SPXLP *lp;
+ /* LP problem data and its (current) basis; this LP has m rows
+ * and n columns */
+ int dir;
+ /* original optimization direction:
+ * +1 - minimization
+ * -1 - maximization */
+#if SCALE_Z
+ double fz;
+ /* factor used to scale original objective */
+#endif
+ double *orig_c; /* double orig_c[1+n]; */
+ /* copy of original objective coefficients */
+ double *orig_l; /* double orig_l[1+n]; */
+ /* copy of original lower bounds */
+ double *orig_u; /* double orig_u[1+n]; */
+ /* copy of original upper bounds */
+ SPXAT *at;
+ /* mxn-matrix A of constraint coefficients, in sparse row-wise
+ * format (NULL if not used) */
+ SPXNT *nt;
+ /* mx(n-m)-matrix N composed of non-basic columns of constraint
+ * matrix A, in sparse row-wise format (NULL if not used) */
+ int phase;
+ /* search phase:
+ * 0 - not determined yet
+ * 1 - searching for primal feasible solution
+ * 2 - searching for optimal solution */
+ double *beta; /* double beta[1+m]; */
+ /* beta[i] is a primal value of basic variable xB[i] */
+ int beta_st;
+ /* status of the vector beta:
+ * 0 - undefined
+ * 1 - just computed
+ * 2 - updated */
+ double *d; /* double d[1+n-m]; */
+ /* d[j] is a reduced cost of non-basic variable xN[j] */
+ int d_st;
+ /* status of the vector d:
+ * 0 - undefined
+ * 1 - just computed
+ * 2 - updated */
+ SPXSE *se;
+ /* projected steepest edge and Devex pricing data block (NULL if
+ * not used) */
+ int num;
+ /* number of eligible non-basic variables */
+ int *list; /* int list[1+n-m]; */
+ /* list[1], ..., list[num] are indices j of eligible non-basic
+ * variables xN[j] */
+ int q;
+ /* xN[q] is a non-basic variable chosen to enter the basis */
+#if 0 /* 11/VI-2017 */
+ double *tcol; /* double tcol[1+m]; */
+#else
+ FVS tcol; /* FVS tcol[1:m]; */
+#endif
+ /* q-th (pivot) column of the simplex table */
+#if 1 /* 23/VI-2017 */
+ SPXBP *bp; /* SPXBP bp[1+2*m+1]; */
+ /* penalty function break points */
+#endif
+ int p;
+ /* xB[p] is a basic variable chosen to leave the basis;
+ * p = 0 means that no basic variable reaches its bound;
+ * p < 0 means that non-basic variable xN[q] reaches its opposite
+ * bound before any basic variable */
+ int p_flag;
+ /* if this flag is set, the active bound of xB[p] in the adjacent
+ * basis should be set to the upper bound */
+#if 0 /* 11/VI-2017 */
+ double *trow; /* double trow[1+n-m]; */
+#else
+ FVS trow; /* FVS trow[1:n-m]; */
+#endif
+ /* p-th (pivot) row of the simplex table */
+#if 0 /* 09/VII-2017 */
+ double *work; /* double work[1+m]; */
+ /* working array */
+#else
+ FVS work; /* FVS work[1:m]; */
+ /* working vector */
+#endif
+ int p_stat, d_stat;
+ /* primal and dual solution statuses */
+ /*--------------------------------------------------------------*/
+ /* control parameters (see struct glp_smcp) */
+ int msg_lev;
+ /* message level */
+#if 0 /* 23/VI-2017 */
+ int harris;
+ /* ratio test technique:
+ * 0 - textbook ratio test
+ * 1 - Harris' two pass ratio test */
+#else
+ int r_test;
+ /* ratio test technique:
+ * GLP_RT_STD - textbook ratio test
+ * GLP_RT_HAR - Harris' two pass ratio test
+ * GLP_RT_FLIP - long-step ratio test (only for phase I) */
+#endif
+ double tol_bnd, tol_bnd1;
+ /* primal feasibility tolerances */
+ double tol_dj, tol_dj1;
+ /* dual feasibility tolerances */
+ double tol_piv;
+ /* pivot tolerance */
+ int it_lim;
+ /* iteration limit */
+ int tm_lim;
+ /* time limit, milliseconds */
+ int out_frq;
+#if 0 /* 15/VII-2017 */
+ /* display output frequency, iterations */
+#else
+ /* display output frequency, milliseconds */
+#endif
+ int out_dly;
+ /* display output delay, milliseconds */
+ /*--------------------------------------------------------------*/
+ /* working parameters */
+ double tm_beg;
+ /* time value at the beginning of the search */
+ int it_beg;
+ /* simplex iteration count at the beginning of the search */
+ int it_cnt;
+ /* simplex iteration count; it increases by one every time the
+ * basis changes (including the case when a non-basic variable
+ * jumps to its opposite bound) */
+ int it_dpy;
+ /* simplex iteration count at most recent display output */
+#if 1 /* 15/VII-2017 */
+ double tm_dpy;
+ /* time value at most recent display output */
+#endif
+ int inv_cnt;
+ /* basis factorization count since most recent display output */
+#if 1 /* 01/VII-2017 */
+ int degen;
+ /* count of successive degenerate iterations; this count is used
+ * to detect stalling */
+#endif
+#if 1 /* 23/VI-2017 */
+ int ns_cnt, ls_cnt;
+ /* normal and long-step iteration counts */
+#endif
+};
+
+/***********************************************************************
+* set_penalty - set penalty function coefficients
+*
+* This routine sets up objective coefficients of the penalty function,
+* which is the sum of primal infeasibilities, as follows:
+*
+* if beta[i] < l[k] - eps1, set c[k] = -1,
+*
+* if beta[i] > u[k] + eps2, set c[k] = +1,
+*
+* otherwise, set c[k] = 0,
+*
+* where beta[i] is current value of basic variable xB[i] = x[k], l[k]
+* and u[k] are original bounds of x[k], and
+*
+* eps1 = tol + tol1 * |l[k]|,
+*
+* eps2 = tol + tol1 * |u[k]|.
+*
+* The routine returns the number of non-zero objective coefficients,
+* which is the number of basic variables violating their bounds. Thus,
+* if the value returned is zero, the current basis is primal feasible
+* within the specified tolerances. */
+
+static int set_penalty(struct csa *csa, double tol, double tol1)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ double *beta = csa->beta;
+ int i, k, count = 0;
+ double t, eps;
+ /* reset objective coefficients */
+ for (k = 0; k <= n; k++)
+ c[k] = 0.0;
+ /* walk thru the list of basic variables */
+ for (i = 1; i <= m; i++)
+ { k = head[i]; /* x[k] = xB[i] */
+ /* check lower bound */
+ if ((t = l[k]) != -DBL_MAX)
+ { eps = tol + tol1 * (t >= 0.0 ? +t : -t);
+ if (beta[i] < t - eps)
+ { /* lower bound is violated */
+ c[k] = -1.0, count++;
+ }
+ }
+ /* check upper bound */
+ if ((t = u[k]) != +DBL_MAX)
+ { eps = tol + tol1 * (t >= 0.0 ? +t : -t);
+ if (beta[i] > t + eps)
+ { /* upper bound is violated */
+ c[k] = +1.0, count++;
+ }
+ }
+ }
+ return count;
+}
+
+/***********************************************************************
+* check_feas - check primal feasibility of basic solution
+*
+* This routine checks if the specified values of all basic variables
+* beta = (beta[i]) are within their bounds.
+*
+* Let l[k] and u[k] be original bounds of basic variable xB[i] = x[k].
+* The actual bounds of x[k] are determined as follows:
+*
+* 1) if phase = 1 and c[k] < 0, x[k] violates its lower bound, so its
+* actual bounds are artificial: -inf < x[k] <= l[k];
+*
+* 2) if phase = 1 and c[k] > 0, x[k] violates its upper bound, so its
+* actual bounds are artificial: u[k] <= x[k] < +inf;
+*
+* 3) in all other cases (if phase = 1 and c[k] = 0, or if phase = 2)
+* actual bounds are original: l[k] <= x[k] <= u[k].
+*
+* The parameters tol and tol1 are bound violation tolerances. The
+* actual bounds l'[k] and u'[k] are considered as non-violated within
+* the specified tolerance if
+*
+* l'[k] - eps1 <= beta[i] <= u'[k] + eps2,
+*
+* where eps1 = tol + tol1 * |l'[k]|, eps2 = tol + tol1 * |u'[k]|.
+*
+* The routine returns one of the following codes:
+*
+* 0 - solution is feasible (no actual bounds are violated);
+*
+* 1 - solution is infeasible, however, only artificial bounds are
+* violated (this is possible only if phase = 1);
+*
+* 2 - solution is infeasible and at least one original bound is
+* violated. */
+
+static int check_feas(struct csa *csa, int phase, double tol, double
+ tol1)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ double *beta = csa->beta;
+ int i, k, orig, ret = 0;
+ double lk, uk, eps;
+ xassert(phase == 1 || phase == 2);
+ /* walk thru the list of basic variables */
+ for (i = 1; i <= m; i++)
+ { k = head[i]; /* x[k] = xB[i] */
+ /* determine actual bounds of x[k] */
+ if (phase == 1 && c[k] < 0.0)
+ { /* -inf < x[k] <= l[k] */
+ lk = -DBL_MAX, uk = l[k];
+ orig = 0; /* artificial bounds */
+ }
+ else if (phase == 1 && c[k] > 0.0)
+ { /* u[k] <= x[k] < +inf */
+ lk = u[k], uk = +DBL_MAX;
+ orig = 0; /* artificial bounds */
+ }
+ else
+ { /* l[k] <= x[k] <= u[k] */
+ lk = l[k], uk = u[k];
+ orig = 1; /* original bounds */
+ }
+ /* check actual lower bound */
+ if (lk != -DBL_MAX)
+ { eps = tol + tol1 * (lk >= 0.0 ? +lk : -lk);
+ if (beta[i] < lk - eps)
+ { /* actual lower bound is violated */
+ if (orig)
+ { ret = 2;
+ break;
+ }
+ ret = 1;
+ }
+ }
+ /* check actual upper bound */
+ if (uk != +DBL_MAX)
+ { eps = tol + tol1 * (uk >= 0.0 ? +uk : -uk);
+ if (beta[i] > uk + eps)
+ { /* actual upper bound is violated */
+ if (orig)
+ { ret = 2;
+ break;
+ }
+ ret = 1;
+ }
+ }
+ }
+ return ret;
+}
+
+/***********************************************************************
+* adjust_penalty - adjust penalty function coefficients
+*
+* On searching for primal feasible solution it may happen that some
+* basic variable xB[i] = x[k] has non-zero objective coefficient c[k]
+* indicating that xB[i] violates its lower (if c[k] < 0) or upper (if
+* c[k] > 0) original bound, but due to primal degenarcy the violation
+* is close to zero.
+*
+* This routine identifies such basic variables and sets objective
+* coefficients at these variables to zero that allows avoiding zero-
+* step simplex iterations.
+*
+* The parameters tol and tol1 are bound violation tolerances. The
+* original bounds l[k] and u[k] are considered as non-violated within
+* the specified tolerance if
+*
+* l[k] - eps1 <= beta[i] <= u[k] + eps2,
+*
+* where beta[i] is value of basic variable xB[i] = x[k] in the current
+* basis, eps1 = tol + tol1 * |l[k]|, eps2 = tol + tol1 * |u[k]|.
+*
+* The routine returns the number of objective coefficients which were
+* set to zero. */
+
+#if 0
+static int adjust_penalty(struct csa *csa, double tol, double tol1)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ double *beta = csa->beta;
+ int i, k, count = 0;
+ double t, eps;
+ xassert(csa->phase == 1);
+ /* walk thru the list of basic variables */
+ for (i = 1; i <= m; i++)
+ { k = head[i]; /* x[k] = xB[i] */
+ if (c[k] < 0.0)
+ { /* x[k] violates its original lower bound l[k] */
+ xassert((t = l[k]) != -DBL_MAX);
+ eps = tol + tol1 * (t >= 0.0 ? +t : -t);
+ if (beta[i] >= t - eps)
+ { /* however, violation is close to zero */
+ c[k] = 0.0, count++;
+ }
+ }
+ else if (c[k] > 0.0)
+ { /* x[k] violates its original upper bound u[k] */
+ xassert((t = u[k]) != +DBL_MAX);
+ eps = tol + tol1 * (t >= 0.0 ? +t : -t);
+ if (beta[i] <= t + eps)
+ { /* however, violation is close to zero */
+ c[k] = 0.0, count++;
+ }
+ }
+ }
+ return count;
+}
+#else
+static int adjust_penalty(struct csa *csa, int num, const int
+ ind[/*1+num*/], double tol, double tol1)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ double *beta = csa->beta;
+ int i, k, t, cnt = 0;
+ double lk, uk, eps;
+ xassert(csa->phase == 1);
+ /* walk thru the specified list of basic variables */
+ for (t = 1; t <= num; t++)
+ { i = ind[t];
+ xassert(1 <= i && i <= m);
+ k = head[i]; /* x[k] = xB[i] */
+ if (c[k] < 0.0)
+ { /* x[k] violates its original lower bound */
+ lk = l[k];
+ xassert(lk != -DBL_MAX);
+ eps = tol + tol1 * (lk >= 0.0 ? +lk : -lk);
+ if (beta[i] >= lk - eps)
+ { /* however, violation is close to zero */
+ c[k] = 0.0, cnt++;
+ }
+ }
+ else if (c[k] > 0.0)
+ { /* x[k] violates its original upper bound */
+ uk = u[k];
+ xassert(uk != +DBL_MAX);
+ eps = tol + tol1 * (uk >= 0.0 ? +uk : -uk);
+ if (beta[i] <= uk + eps)
+ { /* however, violation is close to zero */
+ c[k] = 0.0, cnt++;
+ }
+ }
+ }
+ return cnt;
+}
+#endif
+
+#if CHECK_ACCURACY
+/***********************************************************************
+* err_in_vec - compute maximal relative error between two vectors
+*
+* This routine computes and returns maximal relative error between
+* n-vectors x and y:
+*
+* err_max = max |x[i] - y[i]| / (1 + |x[i]|).
+*
+* NOTE: This routine is intended only for debugginig purposes. */
+
+static double err_in_vec(int n, const double x[], const double y[])
+{ int i;
+ double err, err_max;
+ err_max = 0.0;
+ for (i = 1; i <= n; i++)
+ { err = fabs(x[i] - y[i]) / (1.0 + fabs(x[i]));
+ if (err_max < err)
+ err_max = err;
+ }
+ return err_max;
+}
+#endif
+
+#if CHECK_ACCURACY
+/***********************************************************************
+* err_in_beta - compute maximal relative error in vector beta
+*
+* This routine computes and returns maximal relative error in vector
+* of values of basic variables beta = (beta[i]).
+*
+* NOTE: This routine is intended only for debugginig purposes. */
+
+static double err_in_beta(struct csa *csa)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ double err, *beta;
+ beta = talloc(1+m, double);
+ spx_eval_beta(lp, beta);
+ err = err_in_vec(m, beta, csa->beta);
+ tfree(beta);
+ return err;
+}
+#endif
+
+#if CHECK_ACCURACY
+/***********************************************************************
+* err_in_d - compute maximal relative error in vector d
+*
+* This routine computes and returns maximal relative error in vector
+* of reduced costs of non-basic variables d = (d[j]).
+*
+* NOTE: This routine is intended only for debugginig purposes. */
+
+static double err_in_d(struct csa *csa)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ int j;
+ double err, *pi, *d;
+ pi = talloc(1+m, double);
+ d = talloc(1+n-m, double);
+ spx_eval_pi(lp, pi);
+ for (j = 1; j <= n-m; j++)
+ d[j] = spx_eval_dj(lp, pi, j);
+ err = err_in_vec(n-m, d, csa->d);
+ tfree(pi);
+ tfree(d);
+ return err;
+}
+#endif
+
+#if CHECK_ACCURACY
+/***********************************************************************
+* err_in_gamma - compute maximal relative error in vector gamma
+*
+* This routine computes and returns maximal relative error in vector
+* of projected steepest edge weights gamma = (gamma[j]).
+*
+* NOTE: This routine is intended only for debugginig purposes. */
+
+static double err_in_gamma(struct csa *csa)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ SPXSE *se = csa->se;
+ int j;
+ double err, *gamma;
+ xassert(se != NULL);
+ gamma = talloc(1+n-m, double);
+ for (j = 1; j <= n-m; j++)
+ gamma[j] = spx_eval_gamma_j(lp, se, j);
+ err = err_in_vec(n-m, gamma, se->gamma);
+ tfree(gamma);
+ return err;
+}
+#endif
+
+#if CHECK_ACCURACY
+/***********************************************************************
+* check_accuracy - check accuracy of basic solution components
+*
+* This routine checks accuracy of current basic solution components.
+*
+* NOTE: This routine is intended only for debugginig purposes. */
+
+static void check_accuracy(struct csa *csa)
+{ double e_beta, e_d, e_gamma;
+ e_beta = err_in_beta(csa);
+ e_d = err_in_d(csa);
+ if (csa->se == NULL)
+ e_gamma = 0.;
+ else
+ e_gamma = err_in_gamma(csa);
+ xprintf("e_beta = %10.3e; e_d = %10.3e; e_gamma = %10.3e\n",
+ e_beta, e_d, e_gamma);
+ xassert(e_beta <= 1e-5 && e_d <= 1e-5 && e_gamma <= 1e-3);
+ return;
+}
+#endif
+
+/***********************************************************************
+* choose_pivot - choose xN[q] and xB[p]
+*
+* Given the list of eligible non-basic variables this routine first
+* chooses non-basic variable xN[q]. This choice is always possible,
+* because the list is assumed to be non-empty. Then the routine
+* computes q-th column T[*,q] of the simplex table T[i,j] and chooses
+* basic variable xB[p]. If the pivot T[p,q] is small in magnitude,
+* the routine attempts to choose another xN[q] and xB[p] in order to
+* avoid badly conditioned adjacent bases. */
+
+#if 1 /* 17/III-2016 */
+#define MIN_RATIO 0.0001
+
+static int choose_pivot(struct csa *csa)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ double *beta = csa->beta;
+ double *d = csa->d;
+ SPXSE *se = csa->se;
+ int *list = csa->list;
+#if 0 /* 09/VII-2017 */
+ double *tcol = csa->work;
+#else
+ double *tcol = csa->work.vec;
+#endif
+ double tol_piv = csa->tol_piv;
+ int try, nnn, /*i,*/ p, p_flag, q, t;
+ double big, /*temp,*/ best_ratio;
+#if 1 /* 23/VI-2017 */
+ double *c = lp->c;
+ int *head = lp->head;
+ SPXBP *bp = csa->bp;
+ int nbp, t_best, ret, k;
+ double dz_best;
+#endif
+ xassert(csa->beta_st);
+ xassert(csa->d_st);
+more: /* initial number of eligible non-basic variables */
+ nnn = csa->num;
+ /* nothing has been chosen so far */
+ csa->q = 0;
+ best_ratio = 0.0;
+#if 0 /* 23/VI-2017 */
+ try = 0;
+#else
+ try = ret = 0;
+#endif
+try: /* choose non-basic variable xN[q] */
+ xassert(nnn > 0);
+ try++;
+ if (se == NULL)
+ { /* Dantzig's rule */
+ q = spx_chuzc_std(lp, d, nnn, list);
+ }
+ else
+ { /* projected steepest edge */
+ q = spx_chuzc_pse(lp, se, d, nnn, list);
+ }
+ xassert(1 <= q && q <= n-m);
+ /* compute q-th column of the simplex table */
+ spx_eval_tcol(lp, q, tcol);
+#if 0
+ /* big := max(1, |tcol[1]|, ..., |tcol[m]|) */
+ big = 1.0;
+ for (i = 1; i <= m; i++)
+ { temp = tcol[i];
+ if (temp < 0.0)
+ temp = - temp;
+ if (big < temp)
+ big = temp;
+ }
+#else
+ /* this still puzzles me */
+ big = 1.0;
+#endif
+ /* choose basic variable xB[p] */
+#if 1 /* 23/VI-2017 */
+ if (csa->phase == 1 && csa->r_test == GLP_RT_FLIP && try <= 2)
+ { /* long-step ratio test */
+ int t, num, num1;
+ double slope, teta_lim;
+ /* determine penalty function break points */
+ nbp = spx_ls_eval_bp(lp, beta, q, d[q], tcol, tol_piv, bp);
+ if (nbp < 2)
+ goto skip;
+ /* set initial slope */
+ slope = - fabs(d[q]);
+ /* estimate initial teta_lim */
+ teta_lim = DBL_MAX;
+ for (t = 1; t <= nbp; t++)
+ { if (teta_lim > bp[t].teta)
+ teta_lim = bp[t].teta;
+ }
+ xassert(teta_lim >= 0.0);
+ if (teta_lim < 1e-3)
+ teta_lim = 1e-3;
+ /* nothing has been chosen so far */
+ t_best = 0, dz_best = 0.0, num = 0;
+ /* choose appropriate break point */
+ while (num < nbp)
+ { /* select and process a new portion of break points */
+ num1 = spx_ls_select_bp(lp, tcol, nbp, bp, num, &slope,
+ teta_lim);
+ for (t = num+1; t <= num1; t++)
+ { int i = (bp[t].i >= 0 ? bp[t].i : -bp[t].i);
+ xassert(0 <= i && i <= m);
+ if (i == 0 || fabs(tcol[i]) / big >= MIN_RATIO)
+ { if (dz_best > bp[t].dz)
+ t_best = t, dz_best = bp[t].dz;
+ }
+#if 0
+ if (i == 0)
+ { /* do not consider further break points beyond this
+ * point, where xN[q] reaches its opposite bound;
+ * in principle (see spx_ls_eval_bp), this break
+ * point should be the last one, however, due to
+ * round-off errors there may be other break points
+ * with the same teta beyond this one */
+ slope = +1.0;
+ }
+#endif
+ }
+ if (slope > 0.0)
+ { /* penalty function starts increasing */
+ break;
+ }
+ /* penalty function continues decreasing */
+ num = num1;
+ teta_lim += teta_lim;
+ }
+ if (dz_best == 0.0)
+ goto skip;
+ /* the choice has been made */
+ xassert(1 <= t_best && t_best <= num1);
+ if (t_best == 1)
+ { /* the very first break point was chosen; it is reasonable
+ * to use the short-step ratio test */
+ goto skip;
+ }
+ csa->q = q;
+ memcpy(&csa->tcol.vec[1], &tcol[1], m * sizeof(double));
+ fvs_gather_vec(&csa->tcol, DBL_EPSILON);
+ if (bp[t_best].i == 0)
+ { /* xN[q] goes to its opposite bound */
+ csa->p = -1;
+ csa->p_flag = 0;
+ best_ratio = 1.0;
+ }
+ else if (bp[t_best].i > 0)
+ { /* xB[p] leaves the basis and goes to its lower bound */
+ csa->p = + bp[t_best].i;
+ xassert(1 <= csa->p && csa->p <= m);
+ csa->p_flag = 0;
+ best_ratio = fabs(tcol[csa->p]) / big;
+ }
+ else
+ { /* xB[p] leaves the basis and goes to its upper bound */
+ csa->p = - bp[t_best].i;
+ xassert(1 <= csa->p && csa->p <= m);
+ csa->p_flag = 1;
+ best_ratio = fabs(tcol[csa->p]) / big;
+ }
+#if 0
+ xprintf("num1 = %d; t_best = %d; dz = %g\n", num1, t_best,
+ bp[t_best].dz);
+#endif
+ ret = 1;
+ goto done;
+skip: ;
+ }
+#endif
+#if 0 /* 23/VI-2017 */
+ if (!csa->harris)
+#else
+ if (csa->r_test == GLP_RT_STD)
+#endif
+ { /* textbook ratio test */
+ p = spx_chuzr_std(lp, csa->phase, beta, q,
+ d[q] < 0.0 ? +1. : -1., tcol, &p_flag, tol_piv,
+ .30 * csa->tol_bnd, .30 * csa->tol_bnd1);
+ }
+ else
+ { /* Harris' two-pass ratio test */
+ p = spx_chuzr_harris(lp, csa->phase, beta, q,
+ d[q] < 0.0 ? +1. : -1., tcol, &p_flag , tol_piv,
+ .50 * csa->tol_bnd, .50 * csa->tol_bnd1);
+ }
+ if (p <= 0)
+ { /* primal unboundedness or special case */
+ csa->q = q;
+#if 0 /* 11/VI-2017 */
+ memcpy(&csa->tcol[1], &tcol[1], m * sizeof(double));
+#else
+ memcpy(&csa->tcol.vec[1], &tcol[1], m * sizeof(double));
+ fvs_gather_vec(&csa->tcol, DBL_EPSILON);
+#endif
+ csa->p = p;
+ csa->p_flag = p_flag;
+ best_ratio = 1.0;
+ goto done;
+ }
+ /* either keep previous choice or accept new choice depending on
+ * which one is better */
+ if (best_ratio < fabs(tcol[p]) / big)
+ { csa->q = q;
+#if 0 /* 11/VI-2017 */
+ memcpy(&csa->tcol[1], &tcol[1], m * sizeof(double));
+#else
+ memcpy(&csa->tcol.vec[1], &tcol[1], m * sizeof(double));
+ fvs_gather_vec(&csa->tcol, DBL_EPSILON);
+#endif
+ csa->p = p;
+ csa->p_flag = p_flag;
+ best_ratio = fabs(tcol[p]) / big;
+ }
+ /* check if the current choice is acceptable */
+ if (best_ratio >= MIN_RATIO || nnn == 1 || try == 5)
+ goto done;
+ /* try to choose other xN[q] and xB[p] */
+ /* find xN[q] in the list */
+ for (t = 1; t <= nnn; t++)
+ if (list[t] == q) break;
+ xassert(t <= nnn);
+ /* move xN[q] to the end of the list */
+ list[t] = list[nnn], list[nnn] = q;
+ /* and exclude it from consideration */
+ nnn--;
+ /* repeat the choice */
+ goto try;
+done: /* the choice has been made */
+#if 1 /* FIXME: currently just to avoid badly conditioned basis */
+ if (best_ratio < .001 * MIN_RATIO)
+ { /* looks like this helps */
+ if (bfd_get_count(lp->bfd) > 0)
+ return -1;
+ /* didn't help; last chance to improve the choice */
+ if (tol_piv == csa->tol_piv)
+ { tol_piv *= 1000.;
+ goto more;
+ }
+ }
+#endif
+#if 0 /* 23/VI-2017 */
+ return 0;
+#else /* FIXME */
+ if (ret)
+ { /* invalidate dual basic solution components */
+ csa->d_st = 0;
+ /* change penalty function coefficients at basic variables for
+ * all break points preceding the chosen one */
+ for (t = 1; t < t_best; t++)
+ { int i = (bp[t].i >= 0 ? bp[t].i : -bp[t].i);
+ xassert(0 <= i && i <= m);
+ if (i == 0)
+ { /* xN[q] crosses its opposite bound */
+ xassert(1 <= csa->q && csa->q <= n-m);
+ k = head[m+csa->q];
+ }
+ else
+ { /* xB[i] crosses its (lower or upper) bound */
+ k = head[i]; /* x[k] = xB[i] */
+ }
+ c[k] += bp[t].dc;
+ xassert(c[k] == 0.0 || c[k] == +1.0 || c[k] == -1.0);
+ }
+ }
+ return ret;
+#endif
+}
+#endif
+
+/***********************************************************************
+* play_bounds - play bounds of primal variables
+*
+* This routine is called after the primal values of basic variables
+* beta[i] were updated and the basis was changed to the adjacent one.
+*
+* It is assumed that before updating all the primal values beta[i]
+* were strongly feasible, so in the adjacent basis beta[i] remain
+* feasible within a tolerance, i.e. if some beta[i] violates its lower
+* or upper bound, the violation is insignificant.
+*
+* If some beta[i] violates its lower or upper bound, this routine
+* changes (perturbs) the bound to remove such violation, i.e. to make
+* all beta[i] strongly feasible. Otherwise, if beta[i] has a feasible
+* value, this routine attempts to reduce (or remove) perturbation of
+* corresponding lower/upper bound keeping strong feasibility. */
+
+/* FIXME: what to do if l[k] = u[k]? */
+
+/* FIXME: reduce/remove perturbation if x[k] becomes non-basic? */
+
+static void play_bounds(struct csa *csa, int all)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ double *orig_l = csa->orig_l;
+ double *orig_u = csa->orig_u;
+ double *beta = csa->beta;
+#if 0 /* 11/VI-2017 */
+ const double *tcol = csa->tcol; /* was used to update beta */
+#else
+ const double *tcol = csa->tcol.vec;
+#endif
+ int i, k;
+ xassert(csa->phase == 1 || csa->phase == 2);
+ /* primal values beta = (beta[i]) should be valid */
+ xassert(csa->beta_st);
+ /* walk thru the list of basic variables xB = (xB[i]) */
+ for (i = 1; i <= m; i++)
+ { if (all || tcol[i] != 0.0)
+ { /* beta[i] has changed in the adjacent basis */
+ k = head[i]; /* x[k] = xB[i] */
+ if (csa->phase == 1 && c[k] < 0.0)
+ { /* -inf < xB[i] <= lB[i] (artificial bounds) */
+ if (beta[i] < l[k] - 1e-9)
+ continue;
+ /* restore actual bounds */
+ c[k] = 0.0;
+ csa->d_st = 0; /* since c[k] = cB[i] has changed */
+ }
+ if (csa->phase == 1 && c[k] > 0.0)
+ { /* uB[i] <= xB[i] < +inf (artificial bounds) */
+ if (beta[i] > u[k] + 1e-9)
+ continue;
+ /* restore actual bounds */
+ c[k] = 0.0;
+ csa->d_st = 0; /* since c[k] = cB[i] has changed */
+ }
+ /* lB[i] <= xB[i] <= uB[i] */
+ if (csa->phase == 1)
+ xassert(c[k] == 0.0);
+ if (l[k] != -DBL_MAX)
+ { /* xB[i] has lower bound */
+ if (beta[i] < l[k])
+ { /* strong feasibility means xB[i] >= lB[i] */
+#if 0 /* 11/VI-2017 */
+ l[k] = beta[i];
+#else
+ l[k] = beta[i] - 1e-9;
+#endif
+ }
+ else if (l[k] < orig_l[k])
+ { /* remove/reduce perturbation of lB[i] */
+ if (beta[i] >= orig_l[k])
+ l[k] = orig_l[k];
+ else
+ l[k] = beta[i];
+ }
+ }
+ if (u[k] != +DBL_MAX)
+ { /* xB[i] has upper bound */
+ if (beta[i] > u[k])
+ { /* strong feasibility means xB[i] <= uB[i] */
+#if 0 /* 11/VI-2017 */
+ u[k] = beta[i];
+#else
+ u[k] = beta[i] + 1e-9;
+#endif
+ }
+ else if (u[k] > orig_u[k])
+ { /* remove/reduce perturbation of uB[i] */
+ if (beta[i] <= orig_u[k])
+ u[k] = orig_u[k];
+ else
+ u[k] = beta[i];
+ }
+ }
+ }
+ }
+ return;
+}
+
+static void remove_perturb(struct csa *csa)
+{ /* remove perturbation */
+ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ double *orig_l = csa->orig_l;
+ double *orig_u = csa->orig_u;
+ int j, k;
+ /* restore original bounds of variables */
+ memcpy(l, orig_l, (1+n) * sizeof(double));
+ memcpy(u, orig_u, (1+n) * sizeof(double));
+ /* adjust flags of fixed non-basic variables, because in the
+ * perturbed problem such variables might be changed to double-
+ * bounded type */
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ if (l[k] == u[k])
+ flag[j] = 0;
+ }
+ /* removing perturbation changes primal solution components */
+ csa->phase = csa->beta_st = 0;
+#if 1
+ if (csa->msg_lev >= GLP_MSG_ALL)
+ xprintf("Removing LP perturbation [%d]...\n",
+ csa->it_cnt);
+#endif
+ return;
+}
+
+/***********************************************************************
+* sum_infeas - compute sum of primal infeasibilities
+*
+* This routine compute the sum of primal infeasibilities, which is the
+* current penalty function value. */
+
+static double sum_infeas(SPXLP *lp, const double beta[/*1+m*/])
+{ int m = lp->m;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ int i, k;
+ double sum = 0.0;
+ for (i = 1; i <= m; i++)
+ { k = head[i]; /* x[k] = xB[i] */
+ if (l[k] != -DBL_MAX && beta[i] < l[k])
+ sum += l[k] - beta[i];
+ if (u[k] != +DBL_MAX && beta[i] > u[k])
+ sum += beta[i] - u[k];
+ }
+ return sum;
+}
+
+/***********************************************************************
+* display - display search progress
+*
+* This routine displays some information about the search progress
+* that includes:
+*
+* search phase;
+*
+* number of simplex iterations performed by the solver;
+*
+* original objective value;
+*
+* sum of (scaled) primal infeasibilities;
+*
+* number of infeasibilities (phase I) or non-optimalities (phase II);
+*
+* number of basic factorizations since last display output. */
+
+static void display(struct csa *csa, int spec)
+{ int nnn, k;
+ double obj, sum, *save, *save1;
+#if 1 /* 15/VII-2017 */
+ double tm_cur;
+#endif
+ /* check if the display output should be skipped */
+ if (csa->msg_lev < GLP_MSG_ON) goto skip;
+#if 1 /* 15/VII-2017 */
+ tm_cur = xtime();
+#endif
+ if (csa->out_dly > 0 &&
+#if 0 /* 15/VII-2017 */
+ 1000.0 * xdifftime(xtime(), csa->tm_beg) < csa->out_dly)
+#else
+ 1000.0 * xdifftime(tm_cur, csa->tm_beg) < csa->out_dly)
+#endif
+ goto skip;
+ if (csa->it_cnt == csa->it_dpy) goto skip;
+#if 0 /* 15/VII-2017 */
+ if (!spec && csa->it_cnt % csa->out_frq != 0) goto skip;
+#else
+ if (!spec &&
+ 1000.0 * xdifftime(tm_cur, csa->tm_dpy) < csa->out_frq)
+ goto skip;
+#endif
+ /* compute original objective value */
+ save = csa->lp->c;
+ csa->lp->c = csa->orig_c;
+ obj = csa->dir * spx_eval_obj(csa->lp, csa->beta);
+ csa->lp->c = save;
+#if SCALE_Z
+ obj *= csa->fz;
+#endif
+ /* compute sum of (scaled) primal infeasibilities */
+#if 1 /* 01/VII-2017 */
+ save = csa->lp->l;
+ save1 = csa->lp->u;
+ csa->lp->l = csa->orig_l;
+ csa->lp->u = csa->orig_u;
+#endif
+ sum = sum_infeas(csa->lp, csa->beta);
+#if 1 /* 01/VII-2017 */
+ csa->lp->l = save;
+ csa->lp->u = save1;
+#endif
+ /* compute number of infeasibilities/non-optimalities */
+ switch (csa->phase)
+ { case 1:
+ nnn = 0;
+ for (k = 1; k <= csa->lp->n; k++)
+ if (csa->lp->c[k] != 0.0) nnn++;
+ break;
+ case 2:
+ xassert(csa->d_st);
+ nnn = spx_chuzc_sel(csa->lp, csa->d, csa->tol_dj,
+ csa->tol_dj1, NULL);
+ break;
+ default:
+ xassert(csa != csa);
+ }
+ /* display search progress */
+ xprintf("%c%6d: obj = %17.9e inf = %11.3e (%d)",
+ csa->phase == 2 ? '*' : ' ', csa->it_cnt, obj, sum, nnn);
+ if (csa->inv_cnt)
+ { /* number of basis factorizations performed */
+ xprintf(" %d", csa->inv_cnt);
+ csa->inv_cnt = 0;
+ }
+#if 1 /* 23/VI-2017 */
+ if (csa->phase == 1 && csa->r_test == GLP_RT_FLIP)
+ { /*xprintf(" %d,%d", csa->ns_cnt, csa->ls_cnt);*/
+ if (csa->ns_cnt + csa->ls_cnt)
+ xprintf(" %d%%",
+ (100 * csa->ls_cnt) / (csa->ns_cnt + csa->ls_cnt));
+ csa->ns_cnt = csa->ls_cnt = 0;
+ }
+#endif
+ xprintf("\n");
+ csa->it_dpy = csa->it_cnt;
+#if 1 /* 15/VII-2017 */
+ csa->tm_dpy = tm_cur;
+#endif
+skip: return;
+}
+
+/***********************************************************************
+* spx_primal - driver to the primal simplex method
+*
+* This routine is a driver to the two-phase primal simplex method.
+*
+* On exit this routine returns one of the following codes:
+*
+* 0 LP instance has been successfully solved.
+*
+* GLP_EITLIM
+* Iteration limit has been exhausted.
+*
+* GLP_ETMLIM
+* Time limit has been exhausted.
+*
+* GLP_EFAIL
+* The solver failed to solve LP instance. */
+
+static int primal_simplex(struct csa *csa)
+{ /* primal simplex method main logic routine */
+ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ double *c = lp->c;
+ int *head = lp->head;
+ SPXAT *at = csa->at;
+ SPXNT *nt = csa->nt;
+ double *beta = csa->beta;
+ double *d = csa->d;
+ SPXSE *se = csa->se;
+ int *list = csa->list;
+#if 0 /* 11/VI-2017 */
+ double *tcol = csa->tcol;
+ double *trow = csa->trow;
+#endif
+#if 0 /* 09/VII-2017 */
+ double *pi = csa->work;
+ double *rho = csa->work;
+#else
+ double *pi = csa->work.vec;
+ double *rho = csa->work.vec;
+#endif
+ int msg_lev = csa->msg_lev;
+ double tol_bnd = csa->tol_bnd;
+ double tol_bnd1 = csa->tol_bnd1;
+ double tol_dj = csa->tol_dj;
+ double tol_dj1 = csa->tol_dj1;
+ int perturb = -1;
+ /* -1 = perturbation is not used, but enabled
+ * 0 = perturbation is not used and disabled
+ * +1 = perturbation is being used */
+ int j, refct, ret;
+loop: /* main loop starts here */
+ /* compute factorization of the basis matrix */
+ if (!lp->valid)
+ { double cond;
+ ret = spx_factorize(lp);
+ csa->inv_cnt++;
+ if (ret != 0)
+ { if (msg_lev >= GLP_MSG_ERR)
+ xprintf("Error: unable to factorize the basis matrix (%d"
+ ")\n", ret);
+ csa->p_stat = csa->d_stat = GLP_UNDEF;
+ ret = GLP_EFAIL;
+ goto fini;
+ }
+ /* check condition of the basis matrix */
+ cond = bfd_condest(lp->bfd);
+ if (cond > 1.0 / DBL_EPSILON)
+ { if (msg_lev >= GLP_MSG_ERR)
+ xprintf("Error: basis matrix is singular to working prec"
+ "ision (cond = %.3g)\n", cond);
+ csa->p_stat = csa->d_stat = GLP_UNDEF;
+ ret = GLP_EFAIL;
+ goto fini;
+ }
+ if (cond > 0.001 / DBL_EPSILON)
+ { if (msg_lev >= GLP_MSG_ERR)
+ xprintf("Warning: basis matrix is ill-conditioned (cond "
+ "= %.3g)\n", cond);
+ }
+ /* invalidate basic solution components */
+ csa->beta_st = csa->d_st = 0;
+ }
+ /* compute values of basic variables beta = (beta[i]) */
+ if (!csa->beta_st)
+ { spx_eval_beta(lp, beta);
+ csa->beta_st = 1; /* just computed */
+ /* determine the search phase, if not determined yet */
+ if (!csa->phase)
+ { if (set_penalty(csa, 0.97 * tol_bnd, 0.97 * tol_bnd1))
+ { /* current basic solution is primal infeasible */
+ /* start to minimize the sum of infeasibilities */
+ csa->phase = 1;
+ }
+ else
+ { /* current basic solution is primal feasible */
+ /* start to minimize the original objective function */
+ csa->phase = 2;
+ memcpy(c, csa->orig_c, (1+n) * sizeof(double));
+ }
+ /* working objective coefficients have been changed, so
+ * invalidate reduced costs */
+ csa->d_st = 0;
+ }
+ /* make sure that the current basic solution remains primal
+ * feasible (or pseudo-feasible on phase I) */
+ if (perturb <= 0)
+ { if (check_feas(csa, csa->phase, tol_bnd, tol_bnd1))
+ { /* excessive bound violations due to round-off errors */
+#if 1 /* 01/VII-2017 */
+ if (perturb < 0)
+ { if (msg_lev >= GLP_MSG_ALL)
+ xprintf("Perturbing LP to avoid instability [%d].."
+ ".\n", csa->it_cnt);
+ perturb = 1;
+ goto loop;
+ }
+#endif
+ if (msg_lev >= GLP_MSG_ERR)
+ xprintf("Warning: numerical instability (primal simpl"
+ "ex, phase %s)\n", csa->phase == 1 ? "I" : "II");
+ /* restart the search */
+ lp->valid = 0;
+ csa->phase = 0;
+ goto loop;
+ }
+ if (csa->phase == 1)
+ { int i, cnt;
+ for (i = 1; i <= m; i++)
+ csa->tcol.ind[i] = i;
+ cnt = adjust_penalty(csa, m, csa->tcol.ind,
+ 0.99 * tol_bnd, 0.99 * tol_bnd1);
+ if (cnt)
+ { /*xprintf("*** cnt = %d\n", cnt);*/
+ csa->d_st = 0;
+ }
+ }
+ }
+ else
+ { /* FIXME */
+ play_bounds(csa, 1);
+ }
+ }
+ /* at this point the search phase is determined */
+ xassert(csa->phase == 1 || csa->phase == 2);
+ /* compute reduced costs of non-basic variables d = (d[j]) */
+ if (!csa->d_st)
+ { spx_eval_pi(lp, pi);
+ for (j = 1; j <= n-m; j++)
+ d[j] = spx_eval_dj(lp, pi, j);
+ csa->d_st = 1; /* just computed */
+ }
+ /* reset the reference space, if necessary */
+ if (se != NULL && !se->valid)
+ spx_reset_refsp(lp, se), refct = 1000;
+ /* at this point the basis factorization and all basic solution
+ * components are valid */
+ xassert(lp->valid && csa->beta_st && csa->d_st);
+#if CHECK_ACCURACY
+ /* check accuracy of current basic solution components (only for
+ * debugging) */
+ check_accuracy(csa);
+#endif
+ /* check if the iteration limit has been exhausted */
+ if (csa->it_cnt - csa->it_beg >= csa->it_lim)
+ { if (perturb > 0)
+ { /* remove perturbation */
+ remove_perturb(csa);
+ perturb = 0;
+ }
+ if (csa->beta_st != 1)
+ csa->beta_st = 0;
+ if (csa->d_st != 1)
+ csa->d_st = 0;
+ if (!(csa->beta_st && csa->d_st))
+ goto loop;
+ display(csa, 1);
+ if (msg_lev >= GLP_MSG_ALL)
+ xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n");
+ csa->p_stat = (csa->phase == 2 ? GLP_FEAS : GLP_INFEAS);
+ csa->d_stat = GLP_UNDEF; /* will be set below */
+ ret = GLP_EITLIM;
+ goto fini;
+ }
+ /* check if the time limit has been exhausted */
+ if (1000.0 * xdifftime(xtime(), csa->tm_beg) >= csa->tm_lim)
+ { if (perturb > 0)
+ { /* remove perturbation */
+ remove_perturb(csa);
+ perturb = 0;
+ }
+ if (csa->beta_st != 1)
+ csa->beta_st = 0;
+ if (csa->d_st != 1)
+ csa->d_st = 0;
+ if (!(csa->beta_st && csa->d_st))
+ goto loop;
+ display(csa, 1);
+ if (msg_lev >= GLP_MSG_ALL)
+ xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n");
+ csa->p_stat = (csa->phase == 2 ? GLP_FEAS : GLP_INFEAS);
+ csa->d_stat = GLP_UNDEF; /* will be set below */
+ ret = GLP_ETMLIM;
+ goto fini;
+ }
+ /* display the search progress */
+ display(csa, 0);
+ /* select eligible non-basic variables */
+ switch (csa->phase)
+ { case 1:
+ csa->num = spx_chuzc_sel(lp, d, 1e-8, 0.0, list);
+ break;
+ case 2:
+ csa->num = spx_chuzc_sel(lp, d, tol_dj, tol_dj1, list);
+ break;
+ default:
+ xassert(csa != csa);
+ }
+ /* check for optimality */
+ if (csa->num == 0)
+ { if (perturb > 0 && csa->phase == 2)
+ { /* remove perturbation */
+ remove_perturb(csa);
+ perturb = 0;
+ }
+ if (csa->beta_st != 1)
+ csa->beta_st = 0;
+ if (csa->d_st != 1)
+ csa->d_st = 0;
+ if (!(csa->beta_st && csa->d_st))
+ goto loop;
+ /* current basis is optimal */
+ display(csa, 1);
+ switch (csa->phase)
+ { case 1:
+ /* check for primal feasibility */
+ if (!check_feas(csa, 2, tol_bnd, tol_bnd1))
+ { /* feasible solution found; switch to phase II */
+ memcpy(c, csa->orig_c, (1+n) * sizeof(double));
+ csa->phase = 2;
+ csa->d_st = 0;
+ goto loop;
+ }
+ /* no feasible solution exists */
+#if 1 /* 09/VII-2017 */
+ /* FIXME: remove perturbation */
+#endif
+ if (msg_lev >= GLP_MSG_ALL)
+ xprintf("LP HAS NO PRIMAL FEASIBLE SOLUTION\n");
+ csa->p_stat = GLP_NOFEAS;
+ csa->d_stat = GLP_UNDEF; /* will be set below */
+ ret = 0;
+ goto fini;
+ case 2:
+ /* optimal solution found */
+ if (msg_lev >= GLP_MSG_ALL)
+ xprintf("OPTIMAL LP SOLUTION FOUND\n");
+ csa->p_stat = csa->d_stat = GLP_FEAS;
+ ret = 0;
+ goto fini;
+ default:
+ xassert(csa != csa);
+ }
+ }
+ /* choose xN[q] and xB[p] */
+#if 0 /* 23/VI-2017 */
+#if 0 /* 17/III-2016 */
+ choose_pivot(csa);
+#else
+ if (choose_pivot(csa) < 0)
+ { lp->valid = 0;
+ goto loop;
+ }
+#endif
+#else
+ ret = choose_pivot(csa);
+ if (ret < 0)
+ { lp->valid = 0;
+ goto loop;
+ }
+ if (ret == 0)
+ csa->ns_cnt++;
+ else
+ csa->ls_cnt++;
+#endif
+ /* check for unboundedness */
+ if (csa->p == 0)
+ { if (perturb > 0)
+ { /* remove perturbation */
+ remove_perturb(csa);
+ perturb = 0;
+ }
+ if (csa->beta_st != 1)
+ csa->beta_st = 0;
+ if (csa->d_st != 1)
+ csa->d_st = 0;
+ if (!(csa->beta_st && csa->d_st))
+ goto loop;
+ display(csa, 1);
+ switch (csa->phase)
+ { case 1:
+ /* this should never happen */
+ if (msg_lev >= GLP_MSG_ERR)
+ xprintf("Error: primal simplex failed\n");
+ csa->p_stat = csa->d_stat = GLP_UNDEF;
+ ret = GLP_EFAIL;
+ goto fini;
+ case 2:
+ /* primal unboundedness detected */
+ if (msg_lev >= GLP_MSG_ALL)
+ xprintf("LP HAS UNBOUNDED PRIMAL SOLUTION\n");
+ csa->p_stat = GLP_FEAS;
+ csa->d_stat = GLP_NOFEAS;
+ ret = 0;
+ goto fini;
+ default:
+ xassert(csa != csa);
+ }
+ }
+#if 1 /* 01/VII-2017 */
+ /* check for stalling */
+ if (csa->p > 0)
+ { int k;
+ xassert(1 <= csa->p && csa->p <= m);
+ k = head[csa->p]; /* x[k] = xB[p] */
+ if (lp->l[k] != lp->u[k])
+ { if (csa->p_flag)
+ { /* xB[p] goes to its upper bound */
+ xassert(lp->u[k] != +DBL_MAX);
+ if (fabs(beta[csa->p] - lp->u[k]) >= 1e-6)
+ { csa->degen = 0;
+ goto skip1;
+ }
+ }
+ else if (lp->l[k] == -DBL_MAX)
+ { /* unusual case */
+ goto skip1;
+ }
+ else
+ { /* xB[p] goes to its lower bound */
+ xassert(lp->l[k] != -DBL_MAX);
+ if (fabs(beta[csa->p] - lp->l[k]) >= 1e-6)
+ { csa->degen = 0;
+ goto skip1;
+ }
+ }
+ /* degenerate iteration has been detected */
+ csa->degen++;
+ if (perturb < 0 && csa->degen >= 200)
+ { if (msg_lev >= GLP_MSG_ALL)
+ xprintf("Perturbing LP to avoid stalling [%d]...\n",
+ csa->it_cnt);
+ perturb = 1;
+ }
+skip1: ;
+ }
+ }
+#endif
+ /* update values of basic variables for adjacent basis */
+#if 0 /* 11/VI-2017 */
+ spx_update_beta(lp, beta, csa->p, csa->p_flag, csa->q, tcol);
+#else
+ spx_update_beta_s(lp, beta, csa->p, csa->p_flag, csa->q,
+ &csa->tcol);
+#endif
+ csa->beta_st = 2;
+ /* p < 0 means that xN[q] jumps to its opposite bound */
+ if (csa->p < 0)
+ goto skip;
+ /* xN[q] enters and xB[p] leaves the basis */
+ /* compute p-th row of inv(B) */
+ spx_eval_rho(lp, csa->p, rho);
+ /* compute p-th (pivot) row of the simplex table */
+#if 0 /* 11/VI-2017 */
+ if (at != NULL)
+ spx_eval_trow1(lp, at, rho, trow);
+ else
+ spx_nt_prod(lp, nt, trow, 1, -1.0, rho);
+#else
+ if (at != NULL)
+ spx_eval_trow1(lp, at, rho, csa->trow.vec);
+ else
+ spx_nt_prod(lp, nt, csa->trow.vec, 1, -1.0, rho);
+ fvs_gather_vec(&csa->trow, DBL_EPSILON);
+#endif
+ /* FIXME: tcol[p] and trow[q] should be close to each other */
+#if 0 /* 26/V-2017 by cmatraki */
+ xassert(trow[csa->q] != 0.0);
+#else
+ if (csa->trow.vec[csa->q] == 0.0)
+ { if (msg_lev >= GLP_MSG_ERR)
+ xprintf("Error: trow[q] = 0.0\n");
+ csa->p_stat = csa->d_stat = GLP_UNDEF;
+ ret = GLP_EFAIL;
+ goto fini;
+ }
+#endif
+ /* update reduced costs of non-basic variables for adjacent
+ * basis */
+#if 1 /* 23/VI-2017 */
+ /* dual solution may be invalidated due to long step */
+ if (csa->d_st)
+#endif
+#if 0 /* 11/VI-2017 */
+ if (spx_update_d(lp, d, csa->p, csa->q, trow, tcol) <= 1e-9)
+#else
+ if (spx_update_d_s(lp, d, csa->p, csa->q, &csa->trow, &csa->tcol)
+ <= 1e-9)
+#endif
+ { /* successful updating */
+ csa->d_st = 2;
+ if (csa->phase == 1)
+ { /* adjust reduced cost of xN[q] in adjacent basis, since
+ * its penalty coefficient changes (see below) */
+ d[csa->q] -= c[head[csa->p]];
+ }
+ }
+ else
+ { /* new reduced costs are inaccurate */
+ csa->d_st = 0;
+ }
+ if (csa->phase == 1)
+ { /* xB[p] leaves the basis replacing xN[q], so set its penalty
+ * coefficient to zero */
+ c[head[csa->p]] = 0.0;
+ }
+ /* update steepest edge weights for adjacent basis, if used */
+ if (se != NULL)
+ { if (refct > 0)
+#if 0 /* 11/VI-2017 */
+ { if (spx_update_gamma(lp, se, csa->p, csa->q, trow, tcol)
+ <= 1e-3)
+#else /* FIXME: spx_update_gamma_s */
+ { if (spx_update_gamma(lp, se, csa->p, csa->q, csa->trow.vec,
+ csa->tcol.vec) <= 1e-3)
+#endif
+ { /* successful updating */
+ refct--;
+ }
+ else
+ { /* new weights are inaccurate; reset reference space */
+ se->valid = 0;
+ }
+ }
+ else
+ { /* too many updates; reset reference space */
+ se->valid = 0;
+ }
+ }
+ /* update matrix N for adjacent basis, if used */
+ if (nt != NULL)
+ spx_update_nt(lp, nt, csa->p, csa->q);
+skip: /* change current basis header to adjacent one */
+ spx_change_basis(lp, csa->p, csa->p_flag, csa->q);
+ /* and update factorization of the basis matrix */
+ if (csa->p > 0)
+ spx_update_invb(lp, csa->p, head[csa->p]);
+#if 1
+ if (perturb <= 0)
+ { if (csa->phase == 1)
+ { int cnt;
+ /* adjust penalty function coefficients */
+ cnt = adjust_penalty(csa, csa->tcol.nnz, csa->tcol.ind,
+ 0.99 * tol_bnd, 0.99 * tol_bnd1);
+ if (cnt)
+ { /* some coefficients were changed, so invalidate reduced
+ * costs of non-basic variables */
+ /*xprintf("... cnt = %d\n", cnt);*/
+ csa->d_st = 0;
+ }
+ }
+ }
+ else
+ { /* FIXME */
+ play_bounds(csa, 0);
+ }
+#endif
+ /* simplex iteration complete */
+ csa->it_cnt++;
+ goto loop;
+fini: /* restore original objective function */
+ memcpy(c, csa->orig_c, (1+n) * sizeof(double));
+ /* compute reduced costs of non-basic variables and determine
+ * solution dual status, if necessary */
+ if (csa->p_stat != GLP_UNDEF && csa->d_stat == GLP_UNDEF)
+ { xassert(ret != GLP_EFAIL);
+ spx_eval_pi(lp, pi);
+ for (j = 1; j <= n-m; j++)
+ d[j] = spx_eval_dj(lp, pi, j);
+ csa->num = spx_chuzc_sel(lp, d, tol_dj, tol_dj1, NULL);
+ csa->d_stat = (csa->num == 0 ? GLP_FEAS : GLP_INFEAS);
+ }
+ return ret;
+}
+
+int spx_primal(glp_prob *P, const glp_smcp *parm)
+{ /* driver to the primal simplex method */
+ struct csa csa_, *csa = &csa_;
+ SPXLP lp;
+ SPXAT at;
+ SPXNT nt;
+ SPXSE se;
+ int ret, *map, *daeh;
+#if SCALE_Z
+ int i, j, k;
+#endif
+ /* build working LP and its initial basis */
+ memset(csa, 0, sizeof(struct csa));
+ csa->lp = &lp;
+ spx_init_lp(csa->lp, P, parm->excl);
+ spx_alloc_lp(csa->lp);
+ map = talloc(1+P->m+P->n, int);
+ spx_build_lp(csa->lp, P, parm->excl, parm->shift, map);
+ spx_build_basis(csa->lp, P, map);
+ switch (P->dir)
+ { case GLP_MIN:
+ csa->dir = +1;
+ break;
+ case GLP_MAX:
+ csa->dir = -1;
+ break;
+ default:
+ xassert(P != P);
+ }
+#if SCALE_Z
+ csa->fz = 0.0;
+ for (k = 1; k <= csa->lp->n; k++)
+ { double t = fabs(csa->lp->c[k]);
+ if (csa->fz < t)
+ csa->fz = t;
+ }
+ if (csa->fz <= 1000.0)
+ csa->fz = 1.0;
+ else
+ csa->fz /= 1000.0;
+ /*xprintf("csa->fz = %g\n", csa->fz);*/
+ for (k = 0; k <= csa->lp->n; k++)
+ csa->lp->c[k] /= csa->fz;
+#endif
+ csa->orig_c = talloc(1+csa->lp->n, double);
+ memcpy(csa->orig_c, csa->lp->c, (1+csa->lp->n) * sizeof(double));
+#if 1 /*PERTURB*/
+ csa->orig_l = talloc(1+csa->lp->n, double);
+ memcpy(csa->orig_l, csa->lp->l, (1+csa->lp->n) * sizeof(double));
+ csa->orig_u = talloc(1+csa->lp->n, double);
+ memcpy(csa->orig_u, csa->lp->u, (1+csa->lp->n) * sizeof(double));
+#else
+ csa->orig_l = csa->orig_u = NULL;
+#endif
+ switch (parm->aorn)
+ { case GLP_USE_AT:
+ /* build matrix A in row-wise format */
+ csa->at = &at;
+ csa->nt = NULL;
+ spx_alloc_at(csa->lp, csa->at);
+ spx_build_at(csa->lp, csa->at);
+ break;
+ case GLP_USE_NT:
+ /* build matrix N in row-wise format for initial basis */
+ csa->at = NULL;
+ csa->nt = &nt;
+ spx_alloc_nt(csa->lp, csa->nt);
+ spx_init_nt(csa->lp, csa->nt);
+ spx_build_nt(csa->lp, csa->nt);
+ break;
+ default:
+ xassert(parm != parm);
+ }
+ /* allocate and initialize working components */
+ csa->phase = 0;
+ csa->beta = talloc(1+csa->lp->m, double);
+ csa->beta_st = 0;
+ csa->d = talloc(1+csa->lp->n-csa->lp->m, double);
+ csa->d_st = 0;
+ switch (parm->pricing)
+ { case GLP_PT_STD:
+ csa->se = NULL;
+ break;
+ case GLP_PT_PSE:
+ csa->se = &se;
+ spx_alloc_se(csa->lp, csa->se);
+ break;
+ default:
+ xassert(parm != parm);
+ }
+ csa->list = talloc(1+csa->lp->n-csa->lp->m, int);
+#if 0 /* 11/VI-2017 */
+ csa->tcol = talloc(1+csa->lp->m, double);
+ csa->trow = talloc(1+csa->lp->n-csa->lp->m, double);
+#else
+ fvs_alloc_vec(&csa->tcol, csa->lp->m);
+ fvs_alloc_vec(&csa->trow, csa->lp->n-csa->lp->m);
+#endif
+#if 1 /* 23/VI-2017 */
+ csa->bp = NULL;
+#endif
+#if 0 /* 09/VII-2017 */
+ csa->work = talloc(1+csa->lp->m, double);
+#else
+ fvs_alloc_vec(&csa->work, csa->lp->m);
+#endif
+ /* initialize control parameters */
+ csa->msg_lev = parm->msg_lev;
+#if 0 /* 23/VI-2017 */
+ switch (parm->r_test)
+ { case GLP_RT_STD:
+ csa->harris = 0;
+ break;
+ case GLP_RT_HAR:
+#if 1 /* 16/III-2016 */
+ case GLP_RT_FLIP:
+ /* FIXME */
+ /* currently for primal simplex GLP_RT_FLIP is equivalent
+ * to GLP_RT_HAR */
+#endif
+ csa->harris = 1;
+ break;
+ default:
+ xassert(parm != parm);
+ }
+#else
+ switch (parm->r_test)
+ { case GLP_RT_STD:
+ case GLP_RT_HAR:
+ break;
+ case GLP_RT_FLIP:
+ csa->bp = talloc(1+2*csa->lp->m+1, SPXBP);
+ break;
+ default:
+ xassert(parm != parm);
+ }
+ csa->r_test = parm->r_test;
+#endif
+ csa->tol_bnd = parm->tol_bnd;
+ csa->tol_bnd1 = .001 * parm->tol_bnd;
+ csa->tol_dj = parm->tol_dj;
+ csa->tol_dj1 = .001 * parm->tol_dj;
+ csa->tol_piv = parm->tol_piv;
+ csa->it_lim = parm->it_lim;
+ csa->tm_lim = parm->tm_lim;
+ csa->out_frq = parm->out_frq;
+ csa->out_dly = parm->out_dly;
+ /* initialize working parameters */
+ csa->tm_beg = xtime();
+ csa->it_beg = csa->it_cnt = P->it_cnt;
+ csa->it_dpy = -1;
+#if 1 /* 15/VII-2017 */
+ csa->tm_dpy = 0.0;
+#endif
+ csa->inv_cnt = 0;
+#if 1 /* 01/VII-2017 */
+ csa->degen = 0;
+#endif
+#if 1 /* 23/VI-2017 */
+ csa->ns_cnt = csa->ls_cnt = 0;
+#endif
+ /* try to solve working LP */
+ ret = primal_simplex(csa);
+ /* return basis factorization back to problem object */
+ P->valid = csa->lp->valid;
+ P->bfd = csa->lp->bfd;
+ /* set solution status */
+ P->pbs_stat = csa->p_stat;
+ P->dbs_stat = csa->d_stat;
+ /* if the solver failed, do not store basis header and basic
+ * solution components to problem object */
+ if (ret == GLP_EFAIL)
+ goto skip;
+ /* convert working LP basis to original LP basis and store it to
+ * problem object */
+ daeh = talloc(1+csa->lp->n, int);
+ spx_store_basis(csa->lp, P, map, daeh);
+ /* compute simplex multipliers for final basic solution found by
+ * the solver */
+#if 0 /* 09/VII-2017 */
+ spx_eval_pi(csa->lp, csa->work);
+#else
+ spx_eval_pi(csa->lp, csa->work.vec);
+#endif
+ /* convert working LP solution to original LP solution and store
+ * it into the problem object */
+#if SCALE_Z
+ for (i = 1; i <= csa->lp->m; i++)
+ csa->work.vec[i] *= csa->fz;
+ for (j = 1; j <= csa->lp->n-csa->lp->m; j++)
+ csa->d[j] *= csa->fz;
+#endif
+#if 0 /* 09/VII-2017 */
+ spx_store_sol(csa->lp, P, SHIFT, map, daeh, csa->beta, csa->work,
+ csa->d);
+#else
+ spx_store_sol(csa->lp, P, parm->shift, map, daeh, csa->beta,
+ csa->work.vec, csa->d);
+#endif
+ tfree(daeh);
+ /* save simplex iteration count */
+ P->it_cnt = csa->it_cnt;
+ /* report auxiliary/structural variable causing unboundedness */
+ P->some = 0;
+ if (csa->p_stat == GLP_FEAS && csa->d_stat == GLP_NOFEAS)
+ { int k, kk;
+ /* xN[q] = x[k] causes unboundedness */
+ xassert(1 <= csa->q && csa->q <= csa->lp->n - csa->lp->m);
+ k = csa->lp->head[csa->lp->m + csa->q];
+ xassert(1 <= k && k <= csa->lp->n);
+ /* convert to number of original variable */
+ for (kk = 1; kk <= P->m + P->n; kk++)
+ { if (abs(map[kk]) == k)
+ { P->some = kk;
+ break;
+ }
+ }
+ xassert(P->some != 0);
+ }
+skip: /* deallocate working objects and arrays */
+ spx_free_lp(csa->lp);
+ tfree(map);
+ tfree(csa->orig_c);
+#if 1 /*PERTURB*/
+ tfree(csa->orig_l);
+ tfree(csa->orig_u);
+#endif
+ if (csa->at != NULL)
+ spx_free_at(csa->lp, csa->at);
+ if (csa->nt != NULL)
+ spx_free_nt(csa->lp, csa->nt);
+ tfree(csa->beta);
+ tfree(csa->d);
+ if (csa->se != NULL)
+ spx_free_se(csa->lp, csa->se);
+ tfree(csa->list);
+#if 0 /* 11/VI-2017 */
+ tfree(csa->tcol);
+ tfree(csa->trow);
+#else
+ fvs_free_vec(&csa->tcol);
+ fvs_free_vec(&csa->trow);
+#endif
+#if 1 /* 23/VI-2017 */
+ if (csa->bp != NULL)
+ tfree(csa->bp);
+#endif
+#if 0 /* 09/VII-2017 */
+ tfree(csa->work);
+#else
+ fvs_free_vec(&csa->work);
+#endif
+ /* return to calling program */
+ return ret;
+}
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spxprob.c b/test/monniaux/glpk-4.65/src/simplex/spxprob.c
new file mode 100644
index 00000000..4bebe2e7
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spxprob.c
@@ -0,0 +1,679 @@
+/* spxprob.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "spxprob.h"
+
+/***********************************************************************
+* spx_init_lp - initialize working LP object
+*
+* This routine determines the number of equality constraints m, the
+* number of variables n, and the number of non-zero elements nnz in
+* the constraint matrix for the working LP, which corresponds to the
+* original LP, and stores these dimensions to the working LP object.
+* (The working LP object should be allocated by the calling routine.)
+*
+* If the flag excl is set, the routine assumes that non-basic fixed
+* variables will be excluded from the working LP. */
+
+void spx_init_lp(SPXLP *lp, glp_prob *P, int excl)
+{ int i, j, m, n, nnz;
+ m = P->m;
+ xassert(m > 0);
+ n = 0;
+ nnz = P->nnz;
+ xassert(P->valid);
+ /* scan rows of original LP */
+ for (i = 1; i <= m; i++)
+ { GLPROW *row = P->row[i];
+ if (excl && row->stat == GLP_NS)
+ { /* skip non-basic fixed auxiliary variable */
+ /* nop */
+ }
+ else
+ { /* include auxiliary variable in working LP */
+ n++;
+ nnz++; /* unity column */
+ }
+ }
+ /* scan columns of original LP */
+ for (j = 1; j <= P->n; j++)
+ { GLPCOL *col = P->col[j];
+ if (excl && col->stat == GLP_NS)
+ { /* skip non-basic fixed structural variable */
+ GLPAIJ *aij;
+ for (aij = col->ptr; aij != NULL; aij = aij->c_next)
+ nnz--;
+ }
+ else
+ { /* include structural variable in working LP */
+ n++;
+ }
+ }
+ /* initialize working LP data block */
+ memset(lp, 0, sizeof(SPXLP));
+ lp->m = m;
+ xassert(n > 0);
+ lp->n = n;
+ lp->nnz = nnz;
+ return;
+}
+
+/***********************************************************************
+* spx_alloc_lp - allocate working LP arrays
+*
+* This routine allocates the memory for all arrays in the working LP
+* object. */
+
+void spx_alloc_lp(SPXLP *lp)
+{ int m = lp->m;
+ int n = lp->n;
+ int nnz = lp->nnz;
+ lp->A_ptr = talloc(1+n+1, int);
+ lp->A_ind = talloc(1+nnz, int);
+ lp->A_val = talloc(1+nnz, double);
+ lp->b = talloc(1+m, double);
+ lp->c = talloc(1+n, double);
+ lp->l = talloc(1+n, double);
+ lp->u = talloc(1+n, double);
+ lp->head = talloc(1+n, int);
+ lp->flag = talloc(1+n-m, char);
+ return;
+}
+
+/***********************************************************************
+* spx_build_lp - convert original LP to working LP
+*
+* This routine converts components (except the current basis) of the
+* original LP to components of the working LP and perform scaling of
+* these components. Also, if the original LP is maximization, the
+* routine changes the signs of the objective coefficients and constant
+* term to opposite ones.
+*
+* If the flag excl is set, original non-basic fixed variables are
+* *not* included in the working LP. Otherwise, all (auxiliary and
+* structural) original variables are included in the working LP. Note
+* that this flag should have the same value as it has in a call to the
+* routine spx_init_lp.
+*
+* If the flag shift is set, the routine shift bounds of variables
+* included in the working LP to make at least one bound to be zero.
+* If a variable has both lower and upper bounds, the bound having
+* smaller magnitude is shifted to zero.
+*
+* On exit the routine stores information about correspondence between
+* numbers of variables in the original and working LPs to the array
+* map, which should have 1+P->m+P->n locations (location [0] is not
+* used), where P->m is the numbers of rows and P->n is the number of
+* columns in the original LP:
+*
+* map[i] = +k, 1 <= i <= P->m, means that i-th auxiliary variable of
+* the original LP corresponds to variable x[k] of the working LP;
+*
+* map[i] = -k, 1 <= i <= P->m, means that i-th auxiliary variable of
+* the original LP corresponds to variable x[k] of the working LP, and
+* the upper bound of that variable was shifted to zero;
+*
+* map[i] = 0, 1 <= i <= P->m, means that i-th auxiliary variable of
+* the original LP was excluded from the working LP;
+*
+* map[P->m+j], 1 <= j <= P->n, has the same sense as above, however,
+* for j-th structural variable of the original LP. */
+
+void spx_build_lp(SPXLP *lp, glp_prob *P, int excl, int shift,
+ int map[/*1+P->m+P->n*/])
+{ int m = lp->m;
+ int n = lp->n;
+ int nnz = lp->nnz;
+ int *A_ptr = lp->A_ptr;
+ int *A_ind = lp->A_ind;
+ double *A_val = lp->A_val;
+ double *b = lp->b;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int i, j, k, kk, ptr, end;
+ double dir, delta;
+ /* working LP is always minimization */
+ switch (P->dir)
+ { case GLP_MIN:
+ dir = +1.0;
+ break;
+ case GLP_MAX:
+ dir = -1.0;
+ break;
+ default:
+ xassert(P != P);
+ }
+ /* initialize constant term of the objective */
+ c[0] = dir * P->c0;
+ k = 0; /* number of variable in working LP */
+ ptr = 1; /* current available position in A_ind/A_val */
+ /* process rows of original LP */
+ xassert(P->m == m);
+ for (i = 1; i <= m; i++)
+ { GLPROW *row = P->row[i];
+ if (excl && row->stat == GLP_NS)
+ { /* i-th auxiliary variable is non-basic and fixed */
+ /* substitute its scaled value in working LP */
+ xassert(row->type == GLP_FX);
+ map[i] = 0;
+ b[i] = - row->lb * row->rii;
+ }
+ else
+ { /* include i-th auxiliary variable in working LP */
+ map[i] = ++k;
+ /* setup k-th column of working constraint matrix which is
+ * i-th column of unity matrix */
+ A_ptr[k] = ptr;
+ A_ind[ptr] = i;
+ A_val[ptr] = 1.0;
+ ptr++;
+ /* initialize right-hand side of i-th equality constraint
+ * and setup zero objective coefficient at variable x[k] */
+ b[i] = c[k] = 0.0;
+ /* setup scaled bounds of variable x[k] */
+ switch (row->type)
+ { case GLP_FR:
+ l[k] = -DBL_MAX, u[k] = +DBL_MAX;
+ break;
+ case GLP_LO:
+ l[k] = row->lb * row->rii, u[k] = +DBL_MAX;
+ break;
+ case GLP_UP:
+ l[k] = -DBL_MAX, u[k] = row->ub * row->rii;
+ break;
+ case GLP_DB:
+ l[k] = row->lb * row->rii, u[k] = row->ub * row->rii;
+ xassert(l[k] != u[k]);
+ break;
+ case GLP_FX:
+ l[k] = u[k] = row->lb * row->rii;
+ break;
+ default:
+ xassert(row != row);
+ }
+ }
+ }
+ /* process columns of original LP */
+ for (j = 1; j <= P->n; j++)
+ { GLPCOL *col = P->col[j];
+ GLPAIJ *aij;
+ if (excl && col->stat == GLP_NS)
+ { /* j-th structural variable is non-basic and fixed */
+ /* substitute its scaled value in working LP */
+ xassert(col->type == GLP_FX);
+ map[m+j] = 0;
+ if (col->lb != 0.0)
+ { /* (note that sjj scale factor is cancelled) */
+ for (aij = col->ptr; aij != NULL; aij = aij->c_next)
+ b[aij->row->i] +=
+ (aij->row->rii * aij->val) * col->lb;
+ c[0] += (dir * col->coef) * col->lb;
+ }
+ }
+ else
+ { /* include j-th structural variable in working LP */
+ map[m+j] = ++k;
+ /* setup k-th column of working constraint matrix which is
+ * scaled j-th column of original constraint matrix (-A) */
+ A_ptr[k] = ptr;
+ for (aij = col->ptr; aij != NULL; aij = aij->c_next)
+ { A_ind[ptr] = aij->row->i;
+ A_val[ptr] = - aij->row->rii * aij->val * col->sjj;
+ ptr++;
+ }
+ /* setup scaled objective coefficient at variable x[k] */
+ c[k] = dir * col->coef * col->sjj;
+ /* setup scaled bounds of variable x[k] */
+ switch (col->type)
+ { case GLP_FR:
+ l[k] = -DBL_MAX, u[k] = +DBL_MAX;
+ break;
+ case GLP_LO:
+ l[k] = col->lb / col->sjj, u[k] = +DBL_MAX;
+ break;
+ case GLP_UP:
+ l[k] = -DBL_MAX, u[k] = col->ub / col->sjj;
+ break;
+ case GLP_DB:
+ l[k] = col->lb / col->sjj, u[k] = col->ub / col->sjj;
+ xassert(l[k] != u[k]);
+ break;
+ case GLP_FX:
+ l[k] = u[k] = col->lb / col->sjj;
+ break;
+ default:
+ xassert(col != col);
+ }
+ }
+ }
+ xassert(k == n);
+ xassert(ptr == nnz+1);
+ A_ptr[n+1] = ptr;
+ /* shift bounds of all variables of working LP (optionally) */
+ if (shift)
+ { for (kk = 1; kk <= m+P->n; kk++)
+ { k = map[kk];
+ if (k == 0)
+ { /* corresponding original variable was excluded */
+ continue;
+ }
+ /* shift bounds of variable x[k] */
+ if (l[k] == -DBL_MAX && u[k] == +DBL_MAX)
+ { /* x[k] is unbounded variable */
+ delta = 0.0;
+ }
+ else if (l[k] != -DBL_MAX && u[k] == +DBL_MAX)
+ { /* shift lower bound to zero */
+ delta = l[k];
+ l[k] = 0.0;
+ }
+ else if (l[k] == -DBL_MAX && u[k] != +DBL_MAX)
+ { /* shift upper bound to zero */
+ map[kk] = -k;
+ delta = u[k];
+ u[k] = 0.0;
+ }
+ else if (l[k] != u[k])
+ { /* x[k] is double bounded variable */
+ if (fabs(l[k]) <= fabs(u[k]))
+ { /* shift lower bound to zero */
+ delta = l[k];
+ l[k] = 0.0, u[k] -= delta;
+ }
+ else
+ { /* shift upper bound to zero */
+ map[kk] = -k;
+ delta = u[k];
+ l[k] -= delta, u[k] = 0.0;
+ }
+ xassert(l[k] != u[k]);
+ }
+ else
+ { /* shift fixed value to zero */
+ delta = l[k];
+ l[k] = u[k] = 0.0;
+ }
+ /* substitute x[k] = x'[k] + delta into all constraints
+ * and the objective function of working LP */
+ if (delta != 0.0)
+ { ptr = A_ptr[k];
+ end = A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ b[A_ind[ptr]] -= A_val[ptr] * delta;
+ c[0] += c[k] * delta;
+ }
+ }
+ }
+ return;
+}
+
+/***********************************************************************
+* spx_build_basis - convert original LP basis to working LP basis
+*
+* This routine converts the current basis of the original LP to
+* corresponding initial basis of the working LP, and moves the basis
+* factorization driver from the original LP object to the working LP
+* object.
+*
+* The array map should contain information provided by the routine
+* spx_build_lp. */
+
+void spx_build_basis(SPXLP *lp, glp_prob *P, const int map[])
+{ int m = lp->m;
+ int n = lp->n;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ int i, j, k, ii, jj;
+ /* original basis factorization should be valid that guarantees
+ * the basis is correct */
+ xassert(P->m == m);
+ xassert(P->valid);
+ /* initialize basis header for working LP */
+ memset(&head[1], 0, m * sizeof(int));
+ jj = 0;
+ /* scan rows of original LP */
+ xassert(P->m == m);
+ for (i = 1; i <= m; i++)
+ { GLPROW *row = P->row[i];
+ /* determine ordinal number of x[k] in working LP */
+ if ((k = map[i]) < 0)
+ k = -k;
+ if (k == 0)
+ { /* corresponding original variable was excluded */
+ continue;
+ }
+ xassert(1 <= k && k <= n);
+ if (row->stat == GLP_BS)
+ { /* x[k] is basic variable xB[ii] */
+ ii = row->bind;
+ xassert(1 <= ii && ii <= m);
+ xassert(head[ii] == 0);
+ head[ii] = k;
+ }
+ else
+ { /* x[k] is non-basic variable xN[jj] */
+ jj++;
+ head[m+jj] = k;
+ flag[jj] = (row->stat == GLP_NU);
+ }
+ }
+ /* scan columns of original LP */
+ for (j = 1; j <= P->n; j++)
+ { GLPCOL *col = P->col[j];
+ /* determine ordinal number of x[k] in working LP */
+ if ((k = map[m+j]) < 0)
+ k = -k;
+ if (k == 0)
+ { /* corresponding original variable was excluded */
+ continue;
+ }
+ xassert(1 <= k && k <= n);
+ if (col->stat == GLP_BS)
+ { /* x[k] is basic variable xB[ii] */
+ ii = col->bind;
+ xassert(1 <= ii && ii <= m);
+ xassert(head[ii] == 0);
+ head[ii] = k;
+ }
+ else
+ { /* x[k] is non-basic variable xN[jj] */
+ jj++;
+ head[m+jj] = k;
+ flag[jj] = (col->stat == GLP_NU);
+ }
+ }
+ xassert(m+jj == n);
+ /* acquire basis factorization */
+ lp->valid = 1;
+ lp->bfd = P->bfd;
+ P->valid = 0;
+ P->bfd = NULL;
+ return;
+}
+
+/***********************************************************************
+* spx_store_basis - convert working LP basis to original LP basis
+*
+* This routine converts the current working LP basis to corresponding
+* original LP basis. This operations includes determining and setting
+* statuses of all rows (auxiliary variables) and columns (structural
+* variables), and building the basis header.
+*
+* The array map should contain information provided by the routine
+* spx_build_lp.
+*
+* On exit the routine fills the array daeh. This array should have
+* 1+lp->n locations (location [0] is not used) and contain the inverse
+* of the working basis header lp->head, i.e. head[k'] = k means that
+* daeh[k] = k'. */
+
+void spx_store_basis(SPXLP *lp, glp_prob *P, const int map[],
+ int daeh[/*1+n*/])
+{ int m = lp->m;
+ int n = lp->n;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ int i, j, k, kk;
+ /* determine inverse of working basis header */
+ for (kk = 1; kk <= n; kk++)
+ daeh[head[kk]] = kk;
+ /* set row statuses */
+ xassert(P->m == m);
+ for (i = 1; i <= m; i++)
+ { GLPROW *row = P->row[i];
+ if ((k = map[i]) < 0)
+ k = -k;
+ if (k == 0)
+ { /* non-basic fixed auxiliary variable was excluded */
+ xassert(row->type == GLP_FX);
+ row->stat = GLP_NS;
+ row->bind = 0;
+ }
+ else
+ { /* auxiliary variable corresponds to variable x[k] */
+ kk = daeh[k];
+ if (kk <= m)
+ { /* x[k] = xB[kk] */
+ P->head[kk] = i;
+ row->stat = GLP_BS;
+ row->bind = kk;
+ }
+ else
+ { /* x[k] = xN[kk-m] */
+ switch (row->type)
+ { case GLP_FR:
+ row->stat = GLP_NF;
+ break;
+ case GLP_LO:
+ row->stat = GLP_NL;
+ break;
+ case GLP_UP:
+ row->stat = GLP_NU;
+ break;
+ case GLP_DB:
+ row->stat = (flag[kk-m] ? GLP_NU : GLP_NL);
+ break;
+ case GLP_FX:
+ row->stat = GLP_NS;
+ break;
+ default:
+ xassert(row != row);
+ }
+ row->bind = 0;
+ }
+ }
+ }
+ /* set column statuses */
+ for (j = 1; j <= P->n; j++)
+ { GLPCOL *col = P->col[j];
+ if ((k = map[m+j]) < 0)
+ k = -k;
+ if (k == 0)
+ { /* non-basic fixed structural variable was excluded */
+ xassert(col->type == GLP_FX);
+ col->stat = GLP_NS;
+ col->bind = 0;
+ }
+ else
+ { /* structural variable corresponds to variable x[k] */
+ kk = daeh[k];
+ if (kk <= m)
+ { /* x[k] = xB[kk] */
+ P->head[kk] = m+j;
+ col->stat = GLP_BS;
+ col->bind = kk;
+ }
+ else
+ { /* x[k] = xN[kk-m] */
+ switch (col->type)
+ { case GLP_FR:
+ col->stat = GLP_NF;
+ break;
+ case GLP_LO:
+ col->stat = GLP_NL;
+ break;
+ case GLP_UP:
+ col->stat = GLP_NU;
+ break;
+ case GLP_DB:
+ col->stat = (flag[kk-m] ? GLP_NU : GLP_NL);
+ break;
+ case GLP_FX:
+ col->stat = GLP_NS;
+ break;
+ default:
+ xassert(col != col);
+ }
+ col->bind = 0;
+ }
+ }
+ }
+ return;
+}
+
+/***********************************************************************
+* spx_store_sol - convert working LP solution to original LP solution
+*
+* This routine converts the current basic solution of the working LP
+* (values of basic variables, simplex multipliers, reduced costs of
+* non-basic variables) to corresponding basic solution of the original
+* LP (values and reduced costs of auxiliary and structural variables).
+* This conversion includes unscaling all basic solution components,
+* computing reduced costs of excluded non-basic variables, recovering
+* unshifted values of basic variables, changing the signs of reduced
+* costs (if the original LP is maximization), and computing the value
+* of the objective function.
+*
+* The flag shift should have the same value as it has in a call to the
+* routine spx_build_lp.
+*
+* The array map should contain information provided by the routine
+* spx_build_lp.
+*
+* The array daeh should contain information provided by the routine
+* spx_store_basis.
+*
+* The arrays beta, pi, and d should contain basic solution components
+* for the working LP:
+*
+* array locations beta[1], ..., beta[m] should contain values of basic
+* variables beta = (beta[i]);
+*
+* array locations pi[1], ..., pi[m] should contain simplex multipliers
+* pi = (pi[i]);
+*
+* array locations d[1], ..., d[n-m] should contain reduced costs of
+* non-basic variables d = (d[j]). */
+
+void spx_store_sol(SPXLP *lp, glp_prob *P, int shift,
+ const int map[], const int daeh[], const double beta[],
+ const double pi[], const double d[])
+{ int m = lp->m;
+ char *flag = lp->flag;
+ int i, j, k, kk;
+ double dir;
+ /* working LP is always minimization */
+ switch (P->dir)
+ { case GLP_MIN:
+ dir = +1.0;
+ break;
+ case GLP_MAX:
+ dir = -1.0;
+ break;
+ default:
+ xassert(P != P);
+ }
+ /* compute row solution components */
+ xassert(P->m == m);
+ for (i = 1; i <= m; i++)
+ { GLPROW *row = P->row[i];
+ if ((k = map[i]) < 0)
+ k = -k;
+ if (k == 0)
+ { /* non-basic fixed auxiliary variable was excluded */
+ xassert(row->type == GLP_FX);
+ row->prim = row->lb;
+ /* compute reduced cost d[k] = c[k] - A'[k] * pi as if x[k]
+ * would be non-basic in working LP */
+ row->dual = - dir * pi[i] * row->rii;
+ }
+ else
+ { /* auxiliary variable corresponds to variable x[k] */
+ kk = daeh[k];
+ if (kk <= m)
+ { /* x[k] = xB[kk] */
+ row->prim = beta[kk] / row->rii;
+ if (shift)
+ row->prim += (map[i] < 0 ? row->ub : row->lb);
+ row->dual = 0.0;
+ }
+ else
+ { /* x[k] = xN[kk-m] */
+ row->prim = (flag[kk-m] ? row->ub : row->lb);
+ row->dual = (dir * d[kk-m]) * row->rii;
+ }
+ }
+ }
+ /* compute column solution components and objective value */
+ P->obj_val = P->c0;
+ for (j = 1; j <= P->n; j++)
+ { GLPCOL *col = P->col[j];
+ if ((k = map[m+j]) < 0)
+ k = -k;
+ if (k == 0)
+ { /* non-basic fixed structural variable was excluded */
+ GLPAIJ *aij;
+ double dk;
+ xassert(col->type == GLP_FX);
+ col->prim = col->lb;
+ /* compute reduced cost d[k] = c[k] - A'[k] * pi as if x[k]
+ * would be non-basic in working LP */
+ /* (note that sjj scale factor is cancelled) */
+ dk = dir * col->coef;
+ for (aij = col->ptr; aij != NULL; aij = aij->c_next)
+ dk += (aij->row->rii * aij->val) * pi[aij->row->i];
+ col->dual = dir * dk;
+ }
+ else
+ { /* structural variable corresponds to variable x[k] */
+ kk = daeh[k];
+ if (kk <= m)
+ { /* x[k] = xB[kk] */
+ col->prim = beta[kk] * col->sjj;
+ if (shift)
+ col->prim += (map[m+j] < 0 ? col->ub : col->lb);
+ col->dual = 0.0;
+ }
+ else
+ { /* x[k] = xN[kk-m] */
+ col->prim = (flag[kk-m] ? col->ub : col->lb);
+ col->dual = (dir * d[kk-m]) / col->sjj;
+ }
+ }
+ P->obj_val += col->coef * col->prim;
+ }
+ return;
+}
+
+/***********************************************************************
+* spx_free_lp - deallocate working LP arrays
+*
+* This routine deallocates the memory used for arrays of the working
+* LP object. */
+
+void spx_free_lp(SPXLP *lp)
+{ tfree(lp->A_ptr);
+ tfree(lp->A_ind);
+ tfree(lp->A_val);
+ tfree(lp->b);
+ tfree(lp->c);
+ tfree(lp->l);
+ tfree(lp->u);
+ tfree(lp->head);
+ tfree(lp->flag);
+ return;
+}
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spxprob.h b/test/monniaux/glpk-4.65/src/simplex/spxprob.h
new file mode 100644
index 00000000..b7d87fa7
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spxprob.h
@@ -0,0 +1,64 @@
+/* spxprob.h */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#ifndef SPXPROB_H
+#define SPXPROB_H
+
+#include "prob.h"
+#include "spxlp.h"
+
+#define spx_init_lp _glp_spx_init_lp
+void spx_init_lp(SPXLP *lp, glp_prob *P, int excl);
+/* initialize working LP object */
+
+#define spx_alloc_lp _glp_spx_alloc_lp
+void spx_alloc_lp(SPXLP *lp);
+/* allocate working LP arrays */
+
+#define spx_build_lp _glp_spx_build_lp
+void spx_build_lp(SPXLP *lp, glp_prob *P, int excl, int shift,
+ int map[/*1+P->m+P->n*/]);
+/* convert original LP to working LP */
+
+#define spx_build_basis _glp_spx_build_basis
+void spx_build_basis(SPXLP *lp, glp_prob *P, const int map[]);
+/* convert original LP basis to working LP basis */
+
+#define spx_store_basis _glp_spx_store_basis
+void spx_store_basis(SPXLP *lp, glp_prob *P, const int map[],
+ int daeh[/*1+n*/]);
+/* convert working LP basis to original LP basis */
+
+#define spx_store_sol _glp_spx_store_sol
+void spx_store_sol(SPXLP *lp, glp_prob *P, int shift,
+ const int map[], const int daeh[], const double beta[],
+ const double pi[], const double d[]);
+/* convert working LP solution to original LP solution */
+
+#define spx_free_lp _glp_spx_free_lp
+void spx_free_lp(SPXLP *lp);
+/* deallocate working LP arrays */
+
+#endif
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spychuzc.c b/test/monniaux/glpk-4.65/src/simplex/spychuzc.c
new file mode 100644
index 00000000..b9221298
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spychuzc.c
@@ -0,0 +1,567 @@
+/* spychuzc.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015-2018 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "spychuzc.h"
+
+/***********************************************************************
+* spy_chuzc_std - choose non-basic variable (dual textbook ratio test)
+*
+* This routine implements an improved dual textbook ratio test to
+* choose non-basic variable xN[q].
+*
+* Current reduced costs of non-basic variables should be placed in the
+* array locations d[1], ..., d[n-m]. Note that d[j] is a value of dual
+* basic variable lambdaN[j] in the current basis.
+*
+#if 0 (* 14/III-2016 *)
+* The parameter s specifies the sign of bound violation for basic
+* variable xB[p] chosen: s = +1.0 means that xB[p] violates its lower
+* bound, so dual non-basic variable lambdaB[p] = lambda^+B[p]
+* increases, and s = -1.0 means that xB[p] violates its upper bound,
+* so dual non-basic variable lambdaB[p] = lambda^-B[p] decreases.
+* (Thus, the dual ray parameter theta = s * lambdaB[p] >= 0.)
+#else
+* The parameter r specifies the bound violation for basic variable
+* xB[p] chosen:
+*
+* r = lB[p] - beta[p] > 0 means that xB[p] violates its lower bound,
+* so dual non-basic variable lambdaB[p] = lambda^+B[p] increases; and
+*
+* r = uB[p] - beta[p] < 0 means that xB[p] violates its upper bound,
+* so dual non-basic variable lambdaB[p] = lambda^-B[p] decreases.
+*
+* (Note that r is the dual reduced cost of lambdaB[p].)
+#endif
+*
+* Elements of p-th simplex table row t[p] = (t[p,j]) corresponding
+* to basic variable xB[p] should be placed in the array locations
+* trow[1], ..., trow[n-m].
+*
+* The parameter tol_piv specifies a tolerance for elements of the
+* simplex table row t[p]. If |t[p,j]| < tol_piv, dual basic variable
+* lambdaN[j] is skipped, i.e. it is assumed that it does not depend on
+* the dual ray parameter theta.
+*
+* The parameters tol and tol1 specify tolerances used to increase the
+* choice freedom by simulating an artificial degeneracy as follows.
+* If lambdaN[j] = lambda^+N[j] >= 0 and d[j] <= +delta[j], or if
+* lambdaN[j] = lambda^-N[j] <= 0 and d[j] >= -delta[j], where
+* delta[j] = tol + tol1 * |cN[j]|, cN[j] is objective coefficient at
+* xN[j], then it is assumed that reduced cost d[j] is equal to zero.
+*
+* The routine determines the index 1 <= q <= n-m of non-basic variable
+* xN[q], for which corresponding dual basic variable lambda^+N[j] or
+* lambda^-N[j] reaches its zero bound first on increasing the dual ray
+* parameter theta, and returns p on exit. And if theta may increase
+* unlimitedly, the routine returns zero. */
+
+int spy_chuzc_std(SPXLP *lp, const double d[/*1+n-m*/],
+#if 0 /* 14/III-2016 */
+ double s, const double trow[/*1+n-m*/], double tol_piv,
+#else
+ double r, const double trow[/*1+n-m*/], double tol_piv,
+#endif
+ double tol, double tol1)
+{ int m = lp->m;
+ int n = lp->n;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ int j, k, q;
+ double alfa, biga, delta, teta, teta_min;
+#if 0 /* 14/III-2016 */
+ xassert(s == +1.0 || s == -1.0);
+#else
+ double s;
+ xassert(r != 0.0);
+ s = (r > 0.0 ? +1.0 : -1.0);
+#endif
+ /* nothing is chosen so far */
+ q = 0, teta_min = DBL_MAX, biga = 0.0;
+ /* walk thru the list of non-basic variables */
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ /* if xN[j] is fixed variable, skip it */
+ if (l[k] == u[k])
+ continue;
+ alfa = s * trow[j];
+ if (alfa >= +tol_piv && !flag[j])
+ { /* xN[j] is either free or has its lower bound active, so
+ * lambdaN[j] = d[j] >= 0 decreases down to zero */
+ delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]);
+ /* determine theta on which lambdaN[j] reaches zero */
+ teta = (d[j] < +delta ? 0.0 : d[j] / alfa);
+ }
+ else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j]))
+ { /* xN[j] is either free or has its upper bound active, so
+ * lambdaN[j] = d[j] <= 0 increases up to zero */
+ delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]);
+ /* determine theta on which lambdaN[j] reaches zero */
+ teta = (d[j] > -delta ? 0.0 : d[j] / alfa);
+ }
+ else
+ { /* lambdaN[j] cannot reach zero on increasing theta */
+ continue;
+ }
+ /* choose non-basic variable xN[q] by corresponding dual basic
+ * variable lambdaN[q] for which theta is minimal */
+ xassert(teta >= 0.0);
+ alfa = (alfa >= 0.0 ? +alfa : -alfa);
+ if (teta_min > teta || (teta_min == teta && biga < alfa))
+ q = j, teta_min = teta, biga = alfa;
+ }
+ return q;
+}
+
+/***********************************************************************
+* spy_chuzc_harris - choose non-basic var. (dual Harris' ratio test)
+*
+* This routine implements dual Harris' ratio test to choose non-basic
+* variable xN[q].
+*
+* All the parameters, except tol and tol1, as well as the returned
+* value have the same meaning as for the routine spx_chuzr_std (see
+* above).
+*
+* The parameters tol and tol1 specify tolerances on zero bound
+* violations for reduced costs of non-basic variables. For reduced
+* cost d[j] the tolerance is delta[j] = tol + tol1 |cN[j]|, where
+* cN[j] is objective coefficient at non-basic variable xN[j]. */
+
+int spy_chuzc_harris(SPXLP *lp, const double d[/*1+n-m*/],
+#if 0 /* 14/III-2016 */
+ double s, const double trow[/*1+n-m*/], double tol_piv,
+#else
+ double r, const double trow[/*1+n-m*/], double tol_piv,
+#endif
+ double tol, double tol1)
+{ int m = lp->m;
+ int n = lp->n;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ int j, k, q;
+ double alfa, biga, delta, teta, teta_min;
+#if 0 /* 14/III-2016 */
+ xassert(s == +1.0 || s == -1.0);
+#else
+ double s;
+ xassert(r != 0.0);
+ s = (r > 0.0 ? +1.0 : -1.0);
+#endif
+ /*--------------------------------------------------------------*/
+ /* first pass: determine teta_min for relaxed bounds */
+ /*--------------------------------------------------------------*/
+ teta_min = DBL_MAX;
+ /* walk thru the list of non-basic variables */
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ /* if xN[j] is fixed variable, skip it */
+ if (l[k] == u[k])
+ continue;
+ alfa = s * trow[j];
+ if (alfa >= +tol_piv && !flag[j])
+ { /* xN[j] is either free or has its lower bound active, so
+ * lambdaN[j] = d[j] >= 0 decreases down to zero */
+ delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]);
+ /* determine theta on which lambdaN[j] reaches -delta */
+ teta = ((d[j] < 0.0 ? 0.0 : d[j]) + delta) / alfa;
+ }
+ else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j]))
+ { /* xN[j] is either free or has its upper bound active, so
+ * lambdaN[j] = d[j] <= 0 increases up to zero */
+ delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]);
+ /* determine theta on which lambdaN[j] reaches +delta */
+ teta = ((d[j] > 0.0 ? 0.0 : d[j]) - delta) / alfa;
+ }
+ else
+ { /* lambdaN[j] cannot reach zero on increasing theta */
+ continue;
+ }
+ xassert(teta >= 0.0);
+ if (teta_min > teta)
+ teta_min = teta;
+ }
+ /*--------------------------------------------------------------*/
+ /* second pass: choose non-basic variable xN[q] */
+ /*--------------------------------------------------------------*/
+ if (teta_min == DBL_MAX)
+ { /* theta may increase unlimitedly */
+ q = 0;
+ goto done;
+ }
+ /* nothing is chosen so far */
+ q = 0, biga = 0.0;
+ /* walk thru the list of non-basic variables */
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ /* if xN[j] is fixed variable, skip it */
+ if (l[k] == u[k])
+ continue;
+ alfa = s * trow[j];
+ if (alfa >= +tol_piv && !flag[j])
+ { /* xN[j] is either free or has its lower bound active, so
+ * lambdaN[j] = d[j] >= 0 decreases down to zero */
+ /* determine theta on which lambdaN[j] reaches zero */
+ teta = d[j] / alfa;
+ }
+ else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j]))
+ { /* xN[j] is either free or has its upper bound active, so
+ * lambdaN[j] = d[j] <= 0 increases up to zero */
+ /* determine theta on which lambdaN[j] reaches zero */
+ teta = d[j] / alfa;
+ }
+ else
+ { /* lambdaN[j] cannot reach zero on increasing theta */
+ continue;
+ }
+ /* choose non-basic variable for which theta is not greater
+ * than theta_min determined for relaxed bounds and which has
+ * best (largest in magnitude) pivot */
+ alfa = (alfa >= 0.0 ? +alfa : -alfa);
+ if (teta <= teta_min && biga < alfa)
+ q = j, biga = alfa;
+ }
+ /* something must be chosen */
+ xassert(1 <= q && q <= n-m);
+done: return q;
+}
+
+#if 0 /* 23/III-2016 */
+/***********************************************************************
+* spy_eval_bp - determine dual objective function break-points
+*
+* This routine determines the dual objective function break-points.
+*
+* The parameters lp, d, r, trow, and tol_piv have the same meaning as
+* for the routine spx_chuzc_std (see above).
+*
+* On exit the routine stores the break-points determined to the array
+* elements bp[1], ..., bp[num], where 0 <= num <= n-m is the number of
+* break-points returned by the routine.
+*
+* The break-points stored in the array bp are ordered by ascending
+* the ray parameter teta >= 0. The break-points numbered 1, ..., num-1
+* always correspond to non-basic non-fixed variables xN[j] of primal
+* LP having both lower and upper bounds while the last break-point
+* numbered num may correspond to a non-basic variable having only one
+* lower or upper bound, if such variable prevents further increasing
+* of the ray parameter teta. Besides, the routine includes in the
+* array bp only the break-points that correspond to positive increment
+* of the dual objective. */
+
+static int CDECL fcmp(const void *v1, const void *v2)
+{ const SPYBP *p1 = v1, *p2 = v2;
+ if (p1->teta < p2->teta)
+ return -1;
+ else if (p1->teta > p2->teta)
+ return +1;
+ else
+ return 0;
+}
+
+int spy_eval_bp(SPXLP *lp, const double d[/*1+n-m*/],
+ double r, const double trow[/*1+n-m*/], double tol_piv,
+ SPYBP bp[/*1+n-m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ int j, j_max, k, t, nnn, num;
+ double s, alfa, teta, teta_max, dz, v;
+ xassert(r != 0.0);
+ s = (r > 0.0 ? +1.0 : -1.0);
+ /* build the list of all dual basic variables lambdaN[j] that
+ * can reach zero on increasing the ray parameter teta >= 0 */
+ num = 0;
+ /* walk thru the list of non-basic variables */
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ /* if xN[j] is fixed variable, skip it */
+ if (l[k] == u[k])
+ continue;
+ alfa = s * trow[j];
+ if (alfa >= +tol_piv && !flag[j])
+ { /* xN[j] is either free or has its lower bound active, so
+ * lambdaN[j] = d[j] >= 0 decreases down to zero */
+ /* determine teta[j] on which lambdaN[j] reaches zero */
+ teta = (d[j] < 0.0 ? 0.0 : d[j] / alfa);
+ }
+ else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j]))
+ { /* xN[j] is either free or has its upper bound active, so
+ * lambdaN[j] = d[j] <= 0 increases up to zero */
+ /* determine teta[j] on which lambdaN[j] reaches zero */
+ teta = (d[j] > 0.0 ? 0.0 : d[j] / alfa);
+ }
+ else
+ { /* lambdaN[j] cannot reach zero on increasing teta */
+ continue;
+ }
+ /* add lambdaN[j] to the list */
+ num++;
+ bp[num].j = j;
+ bp[num].teta = teta;
+ }
+ if (num == 0)
+ { /* dual unboundedness */
+ goto done;
+ }
+ /* determine "blocking" dual basic variable lambdaN[j_max] that
+ * prevents increasing teta more than teta_max */
+ j_max = 0, teta_max = DBL_MAX;
+ for (t = 1; t <= num; t++)
+ { j = bp[t].j;
+ k = head[m+j]; /* x[k] = xN[j] */
+ if (l[k] == -DBL_MAX || u[k] == +DBL_MAX)
+ { /* lambdaN[j] cannot intersect zero */
+ if (j_max == 0
+ || teta_max > bp[t].teta
+ || (teta_max == bp[t].teta
+ && fabs(trow[j_max]) < fabs(trow[j])))
+ j_max = j, teta_max = bp[t].teta;
+ }
+ }
+ /* keep in the list only dual basic variables lambdaN[j] that
+ * correspond to primal double-bounded variables xN[j] and whose
+ * teta[j] is not greater than teta_max */
+ nnn = 0;
+ for (t = 1; t <= num; t++)
+ { j = bp[t].j;
+ k = head[m+j]; /* x[k] = xN[j] */
+ if (l[k] != -DBL_MAX && u[k] != +DBL_MAX
+ && bp[t].teta <= teta_max)
+ { nnn++;
+ bp[nnn].j = j;
+ bp[nnn].teta = bp[t].teta;
+ }
+ }
+ num = nnn;
+ /* sort break-points by ascending teta[j] */
+ qsort(&bp[1], num, sizeof(SPYBP), fcmp);
+ /* add lambdaN[j_max] to the end of the list */
+ if (j_max != 0)
+ { xassert(num < n-m);
+ num++;
+ bp[num].j = j_max;
+ bp[num].teta = teta_max;
+ }
+ /* compute increments of the dual objective at all break-points
+ * (relative to its value at teta = 0) */
+ dz = 0.0; /* dual objective increment */
+ v = fabs(r); /* dual objective slope d zeta / d teta */
+ for (t = 1; t <= num; t++)
+ { /* compute increment at current break-point */
+ dz += v * (bp[t].teta - (t == 1 ? 0.0 : bp[t-1].teta));
+ if (dz < 0.001)
+ { /* break-point with non-positive increment reached */
+ num = t - 1;
+ break;
+ }
+ bp[t].dz = dz;
+ /* compute next slope on the right to current break-point */
+ if (t < num)
+ { j = bp[t].j;
+ k = head[m+j]; /* x[k] = xN[j] */
+ xassert(-DBL_MAX < l[k] && l[k] < u[k] && u[k] < +DBL_MAX);
+ v -= fabs(trow[j]) * (u[k] - l[k]);
+ }
+ }
+done: return num;
+}
+#endif
+
+/***********************************************************************
+* spy_ls_eval_bp - determine dual objective function break-points
+*
+* This routine determines the dual objective function break-points.
+*
+* The parameters lp, d, r, trow, and tol_piv have the same meaning as
+* for the routine spx_chuzc_std (see above).
+*
+* The routine stores the break-points determined to the array elements
+* bp[1], ..., bp[nbp] in *arbitrary* order, where 0 <= nbp <= n-m is
+* the number of break-points returned by the routine on exit. */
+
+int spy_ls_eval_bp(SPXLP *lp, const double d[/*1+n-m*/],
+ double r, const double trow[/*1+n-m*/], double tol_piv,
+ SPYBP bp[/*1+n-m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ int j, k, t, nnn, nbp;
+ double s, alfa, teta, teta_max;
+ xassert(r != 0.0);
+ s = (r > 0.0 ? +1.0 : -1.0);
+ /* build the list of all dual basic variables lambdaN[j] that
+ * can reach zero on increasing the ray parameter teta >= 0 */
+ nnn = 0, teta_max = DBL_MAX;
+ /* walk thru the list of non-basic variables */
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ /* if xN[j] is fixed variable, skip it */
+ if (l[k] == u[k])
+ continue;
+ alfa = s * trow[j];
+ if (alfa >= +tol_piv && !flag[j])
+ { /* xN[j] is either free or has its lower bound active, so
+ * lambdaN[j] = d[j] >= 0 decreases down to zero */
+ /* determine teta[j] on which lambdaN[j] reaches zero */
+ teta = (d[j] < 0.0 ? 0.0 : d[j] / alfa);
+ /* if xN[j] has no upper bound, lambdaN[j] cannot become
+ * negative and thereby blocks further increasing teta */
+ if (u[k] == +DBL_MAX && teta_max > teta)
+ teta_max = teta;
+ }
+ else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j]))
+ { /* xN[j] is either free or has its upper bound active, so
+ * lambdaN[j] = d[j] <= 0 increases up to zero */
+ /* determine teta[j] on which lambdaN[j] reaches zero */
+ teta = (d[j] > 0.0 ? 0.0 : d[j] / alfa);
+ /* if xN[j] has no lower bound, lambdaN[j] cannot become
+ * positive and thereby blocks further increasing teta */
+ if (l[k] == -DBL_MAX && teta_max > teta)
+ teta_max = teta;
+ }
+ else
+ { /* lambdaN[j] cannot reach zero on increasing teta */
+ continue;
+ }
+ /* add lambdaN[j] to the list */
+ nnn++;
+ bp[nnn].j = j;
+ bp[nnn].teta = teta;
+ }
+ /* remove from the list all dual basic variables lambdaN[j], for
+ * which teta[j] > teta_max */
+ nbp = 0;
+ for (t = 1; t <= nnn; t++)
+ { if (bp[t].teta <= teta_max + 1e-6)
+ { nbp++;
+ bp[nbp].j = bp[t].j;
+ bp[nbp].teta = bp[t].teta;
+ }
+ }
+ return nbp;
+}
+
+/***********************************************************************
+* spy_ls_select_bp - select and process dual objective break-points
+*
+* This routine selects a next portion of the dual objective function
+* break-points and processes them.
+*
+* On entry to the routine it is assumed that break-points bp[1], ...,
+* bp[num] are already processed, and slope is the dual objective slope
+* to the right of the last processed break-point bp[num]. (Initially,
+* when num = 0, slope should be specified as fabs(r), where r has the
+* same meaning as above.)
+*
+* The routine selects break-points among bp[num+1], ..., bp[nbp], for
+* which teta <= teta_lim, and moves these break-points to the array
+* elements bp[num+1], ..., bp[num1], where num <= num1 <= n-m is the
+* new number of processed break-points returned by the routine on
+* exit. Then the routine sorts these break-points by ascending teta
+* and computes the change of the dual objective function relative to
+* its value at teta = 0.
+*
+* On exit the routine also replaces the parameter slope with a new
+* value that corresponds to the new last break-point bp[num1]. */
+
+static int CDECL fcmp(const void *v1, const void *v2)
+{ const SPYBP *p1 = v1, *p2 = v2;
+ if (p1->teta < p2->teta)
+ return -1;
+ else if (p1->teta > p2->teta)
+ return +1;
+ else
+ return 0;
+}
+
+int spy_ls_select_bp(SPXLP *lp, const double trow[/*1+n-m*/],
+ int nbp, SPYBP bp[/*1+n-m*/], int num, double *slope, double
+ teta_lim)
+{ int m = lp->m;
+ int n = lp->n;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ int j, k, t, num1;
+ double teta, dz;
+ xassert(0 <= num && num <= nbp && nbp <= n-m);
+ /* select a new portion of break-points */
+ num1 = num;
+ for (t = num+1; t <= nbp; t++)
+ { if (bp[t].teta <= teta_lim)
+ { /* move break-point to the beginning of the new portion */
+ num1++;
+ j = bp[num1].j, teta = bp[num1].teta;
+ bp[num1].j = bp[t].j, bp[num1].teta = bp[t].teta;
+ bp[t].j = j, bp[t].teta = teta;
+ }
+ }
+ /* sort new break-points bp[num+1], ..., bp[num1] by ascending
+ * the ray parameter teta */
+ if (num1 - num > 1)
+ qsort(&bp[num+1], num1 - num, sizeof(SPYBP), fcmp);
+ /* calculate the dual objective change at the new break-points */
+ for (t = num+1; t <= num1; t++)
+ { /* calculate the dual objective change relative to its value
+ * at break-point bp[t-1] */
+ if (*slope == -DBL_MAX)
+ dz = -DBL_MAX;
+ else
+ dz = (*slope) *
+ (bp[t].teta - (t == 1 ? 0.0 : bp[t-1].teta));
+ /* calculate the dual objective change relative to its value
+ * at teta = 0 */
+ if (dz == -DBL_MAX)
+ bp[t].dz = -DBL_MAX;
+ else
+ bp[t].dz = (t == 1 ? 0.0 : bp[t-1].dz) + dz;
+ /* calculate a new slope of the dual objective to the right of
+ * the current break-point bp[t] */
+ if (*slope != -DBL_MAX)
+ { j = bp[t].j;
+ k = head[m+j]; /* x[k] = xN[j] */
+ if (l[k] == -DBL_MAX || u[k] == +DBL_MAX)
+ *slope = -DBL_MAX; /* blocking break-point reached */
+ else
+ { xassert(l[k] < u[k]);
+ *slope -= fabs(trow[j]) * (u[k] - l[k]);
+ }
+ }
+ }
+ return num1;
+}
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spychuzc.h b/test/monniaux/glpk-4.65/src/simplex/spychuzc.h
new file mode 100644
index 00000000..8aa45a07
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spychuzc.h
@@ -0,0 +1,85 @@
+/* spychuzc.h */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015-2016 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#ifndef SPYCHUZC_H
+#define SPYCHUZC_H
+
+#include "spxlp.h"
+
+#define spy_chuzc_std _glp_spy_chuzc_std
+int spy_chuzc_std(SPXLP *lp, const double d[/*1+n-m*/],
+#if 0 /* 14/III-2016 */
+ double s, const double trow[/*1+n-m*/], double tol_piv,
+#else
+ double r, const double trow[/*1+n-m*/], double tol_piv,
+#endif
+ double tol, double tol1);
+/* choose non-basic variable (dual textbook ratio test) */
+
+#define spy_chuzc_harris _glp_spy_chuzc_harris
+int spy_chuzc_harris(SPXLP *lp, const double d[/*1+n-m*/],
+#if 0 /* 14/III-2016 */
+ double s, const double trow[/*1+n-m*/], double tol_piv,
+#else
+ double r, const double trow[/*1+n-m*/], double tol_piv,
+#endif
+ double tol, double tol1);
+/* choose non-basic variable (dual Harris' ratio test) */
+
+typedef struct SPYBP SPYBP;
+
+struct SPYBP
+{ /* dual objective function break point */
+ int j;
+ /* dual basic variable lambdaN[j], 1 <= j <= n-m, that intersects
+ * zero at this break point */
+ double teta;
+ /* ray parameter value, teta[j] >= 0, at this break point */
+ double dz;
+ /* increment, zeta[j] - zeta[0], of the dual objective function
+ * at this break point */
+};
+
+#if 0 /* 23/III-2016 */
+#define spy_eval_bp _glp_spy_eval_bp
+int spy_eval_bp(SPXLP *lp, const double d[/*1+n-m*/],
+ double r, const double trow[/*1+n-m*/], double tol_piv,
+ SPYBP bp[/*1+n-m*/]);
+/* determine dual objective function break-points */
+#endif
+
+#define spy_ls_eval_bp _glp_spy_ls_eval_bp
+int spy_ls_eval_bp(SPXLP *lp, const double d[/*1+n-m*/],
+ double r, const double trow[/*1+n-m*/], double tol_piv,
+ SPYBP bp[/*1+n-m*/]);
+/* determine dual objective function break-points */
+
+#define spy_ls_select_bp _glp_spy_ls_select_bp
+int spy_ls_select_bp(SPXLP *lp, const double trow[/*1+n-m*/],
+ int nbp, SPYBP bp[/*1+n-m*/], int num, double *slope, double
+ teta_lim);
+/* select and process dual objective break-points */
+
+#endif
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spychuzr.c b/test/monniaux/glpk-4.65/src/simplex/spychuzr.c
new file mode 100644
index 00000000..63079c17
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spychuzr.c
@@ -0,0 +1,483 @@
+/* spychuzr.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "spychuzr.h"
+
+/***********************************************************************
+* spy_chuzr_sel - select eligible basic variables
+*
+* This routine selects eligible basic variables xB[i], whose value
+* beta[i] violates corresponding lower lB[i] or upper uB[i] bound.
+* Positive bound violation rp[i] = lb[i] - beta[i] > 0 is the reduced
+* cost of non-basic dual variable lambda^+B[i] >= 0, so increasing it
+* increases the dual objective. Similarly, negative bound violation
+* rn[i] = ub[i] - beta[i] < 0 is the reduced cost of non-basic dual
+* variable lambda^-B[i] <= 0, so decreasing it also increases the dual
+* objective.
+*
+* Current values of basic variables should be placed in the array
+* locations beta[1], ..., beta[m].
+*
+* Basic variable xB[i] is considered eligible, if:
+*
+* beta[i] <= lB[i] - eps1[i], or
+*
+* beta[i] >= uB[i] + eps2[i],
+*
+* for
+*
+* eps1[i] = tol + tol1 * |lB[i]|,
+*
+* eps2[i] = tol + tol2 * |uB[i]|,
+*
+* where lB[i] and uB[i] are, resp., lower and upper bounds of xB[i],
+* tol and tol1 are specified tolerances.
+*
+* On exit the routine stores indices i of eligible basic variables
+* xB[i] to the array locations list[1], ..., list[num] and returns the
+* number of such variables 0 <= num <= m. (If the parameter list is
+* specified as NULL, no indices are stored.) */
+
+int spy_chuzr_sel(SPXLP *lp, const double beta[/*1+m*/], double tol,
+ double tol1, int list[/*1+m*/])
+{ int m = lp->m;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ int i, k, num;
+ double lk, uk, eps;
+ num = 0;
+ /* walk thru list of basic variables */
+ for (i = 1; i <= m; i++)
+ { k = head[i]; /* x[k] = xB[i] */
+ lk = l[k], uk = u[k];
+ /* check if xB[i] is eligible */
+ if (beta[i] < lk)
+ { /* determine absolute tolerance eps1[i] */
+ eps = tol + tol1 * (lk >= 0.0 ? +lk : -lk);
+ if (beta[i] < lk - eps)
+ { /* lower bound is violated */
+ num++;
+ if (list != NULL)
+ list[num] = i;
+ }
+ }
+ else if (beta[i] > uk)
+ { /* determine absolute tolerance eps2[i] */
+ eps = tol + tol1 * (uk >= 0.0 ? +uk : -uk);
+ if (beta[i] > uk + eps)
+ { /* upper bound is violated */
+ num++;
+ if (list != NULL)
+ list[num] = i;
+ }
+ }
+ }
+ return num;
+}
+
+/***********************************************************************
+* spy_chuzr_std - choose basic variable (dual Dantzig's rule)
+*
+* This routine chooses most eligible basic variable xB[p] according
+* to dual Dantzig's ("standard") rule:
+*
+* r[p] = max |r[i]|,
+* i in I
+*
+* ( lB[i] - beta[i], if beta[i] < lB[i]
+* (
+* r[i] = { 0, if lB[i] <= beta[i] <= uB[i]
+* (
+* ( uB[i] - beta[i], if beta[i] > uB[i]
+*
+* where I <= {1, ..., m} is the set of indices of eligible basic
+* variables, beta[i] is current value of xB[i], lB[i] and uB[i] are,
+* resp., lower and upper bounds of xB[i], r[i] is bound violation.
+*
+* Current values of basic variables should be placed in the array
+* locations beta[1], ..., beta[m].
+*
+* Indices of eligible basic variables i in I should be placed in the
+* array locations list[1], ..., list[num], where num = |J| > 0 is the
+* total number of such variables.
+*
+* On exit the routine returns p, the index of the basic variable xB[p]
+* chosen. */
+
+int spy_chuzr_std(SPXLP *lp, const double beta[/*1+m*/], int num,
+ const int list[])
+{ int m = lp->m;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ int i, k, p, t;
+ double abs_ri, abs_rp;
+ xassert(0 < num && num <= m);
+ p = 0, abs_rp = -1.0;
+ for (t = 1; t <= num; t++)
+ { i = list[t];
+ k = head[i]; /* x[k] = xB[i] */
+ if (beta[i] < l[k])
+ abs_ri = l[k] - beta[i];
+ else if (beta[i] > u[k])
+ abs_ri = beta[i] - u[k];
+ else
+ xassert(t != t);
+ if (abs_rp < abs_ri)
+ p = i, abs_rp = abs_ri;
+ }
+ xassert(p != 0);
+ return p;
+}
+
+/***********************************************************************
+* spy_alloc_se - allocate dual pricing data block
+*
+* This routine allocates the memory for arrays used in the dual
+* pricing data block. */
+
+void spy_alloc_se(SPXLP *lp, SPYSE *se)
+{ int m = lp->m;
+ int n = lp->n;
+#if 1 /* 30/III-2016 */
+ int i;
+#endif
+ se->valid = 0;
+ se->refsp = talloc(1+n, char);
+ se->gamma = talloc(1+m, double);
+ se->work = talloc(1+m, double);
+#if 1 /* 30/III-2016 */
+ se->u.n = m;
+ se->u.nnz = 0;
+ se->u.ind = talloc(1+m, int);
+ se->u.vec = talloc(1+m, double);
+ for (i = 1; i <= m; i++)
+ se->u.vec[i] = 0.0;
+#endif
+ return;
+}
+
+/***********************************************************************
+* spy_reset_refsp - reset dual reference space
+*
+* This routine resets (re-initializes) the dual reference space
+* composing it from dual variables which are non-basic (corresponding
+* to basic primal variables) in the current basis, and sets all
+* weights gamma[i] to 1. */
+
+void spy_reset_refsp(SPXLP *lp, SPYSE *se)
+{ int m = lp->m;
+ int n = lp->n;
+ int *head = lp->head;
+ char *refsp = se->refsp;
+ double *gamma = se->gamma;
+ int i, k;
+ se->valid = 1;
+ memset(&refsp[1], 0, n * sizeof(char));
+ for (i = 1; i <= m; i++)
+ { k = head[i]; /* x[k] = xB[i] */
+ refsp[k] = 1;
+ gamma[i] = 1.0;
+ }
+ return;
+}
+
+/***********************************************************************
+* spy_eval_gamma_i - compute dual proj. steepest edge weight directly
+*
+* This routine computes dual projected steepest edge weight gamma[i],
+* 1 <= i <= m, for the current basis directly with the formula:
+*
+* n-m
+* gamma[i] = delta[i] + sum eta[j] * T[i,j]**2,
+* j=1
+*
+* where T[i,j] is element of the current simplex table, and
+*
+* ( 1, if lambdaN[j] is in the reference space
+* eta[j] = {
+* ( 0, otherwise
+*
+* ( 1, if lambdaB[i] is in the reference space
+* delta[i] = {
+* ( 0, otherwise
+*
+* Dual basic variable lambdaN[j] corresponds to primal non-basic
+* variable xN[j], and dual non-basic variable lambdaB[j] corresponds
+* to primal basic variable xB[i].
+*
+* NOTE: For testing/debugging only. */
+
+double spy_eval_gamma_i(SPXLP *lp, SPYSE *se, int i)
+{ int m = lp->m;
+ int n = lp->n;
+ int *head = lp->head;
+ char *refsp = se->refsp;
+ double *rho = se->work;
+ int j, k;
+ double gamma_i, t_ij;
+ xassert(se->valid);
+ xassert(1 <= i && i <= m);
+ k = head[i]; /* x[k] = xB[i] */
+ gamma_i = (refsp[k] ? 1.0 : 0.0);
+ spx_eval_rho(lp, i, rho);
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ if (refsp[k])
+ { t_ij = spx_eval_tij(lp, rho, j);
+ gamma_i += t_ij * t_ij;
+ }
+ }
+ return gamma_i;
+}
+
+/***********************************************************************
+* spy_chuzr_pse - choose basic variable (dual projected steepest edge)
+*
+* This routine chooses most eligible basic variable xB[p] according
+* to the dual projected steepest edge method:
+*
+* r[p]**2 r[i]**2
+* -------- = max -------- ,
+* gamma[p] i in I gamma[i]
+*
+* ( lB[i] - beta[i], if beta[i] < lB[i]
+* (
+* r[i] = { 0, if lB[i] <= beta[i] <= uB[i]
+* (
+* ( uB[i] - beta[i], if beta[i] > uB[i]
+*
+* where I <= {1, ..., m} is the set of indices of eligible basic
+* variables, beta[i] is current value of xB[i], lB[i] and uB[i] are,
+* resp., lower and upper bounds of xB[i], r[i] is bound violation.
+*
+* Current values of basic variables should be placed in the array
+* locations beta[1], ..., beta[m].
+*
+* Indices of eligible basic variables i in I should be placed in the
+* array locations list[1], ..., list[num], where num = |J| > 0 is the
+* total number of such variables.
+*
+* On exit the routine returns p, the index of the basic variable xB[p]
+* chosen. */
+
+int spy_chuzr_pse(SPXLP *lp, SPYSE *se, const double beta[/*1+m*/],
+ int num, const int list[])
+{ int m = lp->m;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ double *gamma = se->gamma;
+ int i, k, p, t;
+ double best, ri, temp;
+ xassert(0 < num && num <= m);
+ p = 0, best = -1.0;
+ for (t = 1; t <= num; t++)
+ { i = list[t];
+ k = head[i]; /* x[k] = xB[i] */
+ if (beta[i] < l[k])
+ ri = l[k] - beta[i];
+ else if (beta[i] > u[k])
+ ri = u[k] - beta[i];
+ else
+ xassert(t != t);
+ /* FIXME */
+ if (gamma[i] < DBL_EPSILON)
+ temp = 0.0;
+ else
+ temp = (ri * ri) / gamma[i];
+ if (best < temp)
+ p = i, best = temp;
+ }
+ xassert(p != 0);
+ return p;
+}
+
+/***********************************************************************
+* spy_update_gamma - update dual proj. steepest edge weights exactly
+*
+* This routine updates the vector gamma = (gamma[i]) of dual projected
+* steepest edge weights exactly, for the adjacent basis.
+*
+* On entry to the routine the content of the se object should be valid
+* and should correspond to the current basis.
+*
+* The parameter 1 <= p <= m specifies basic variable xB[p] which
+* becomes non-basic variable xN[q] in the adjacent basis.
+*
+* The parameter 1 <= q <= n-m specified non-basic variable xN[q] which
+* becomes basic variable xB[p] in the adjacent basis.
+*
+* It is assumed that the array trow contains elements of p-th (pivot)
+* row T'[p] of the simplex table in locations trow[1], ..., trow[n-m].
+* It is also assumed that the array tcol contains elements of q-th
+* (pivot) column T[q] of the simple table in locations tcol[1], ...,
+* tcol[m]. (These row and column should be computed for the current
+* basis.)
+*
+* For details about the formulae used see the program documentation.
+*
+* The routine also computes the relative error:
+*
+* e = |gamma[p] - gamma'[p]| / (1 + |gamma[p]|),
+*
+* where gamma'[p] is the weight for lambdaB[p] (which is dual
+* non-basic variable corresponding to xB[p]) on entry to the routine,
+* and returns e on exit. (If e happens to be large enough, the calling
+* program may reset the reference space, since other weights also may
+* be inaccurate.) */
+
+double spy_update_gamma(SPXLP *lp, SPYSE *se, int p, int q,
+ const double trow[/*1+n-m*/], const double tcol[/*1+m*/])
+{ int m = lp->m;
+ int n = lp->n;
+ int *head = lp->head;
+ char *refsp = se->refsp;
+ double *gamma = se->gamma;
+ double *u = se->work;
+ int i, j, k, ptr, end;
+ double gamma_p, delta_p, e, r, t1, t2;
+ xassert(se->valid);
+ xassert(1 <= p && p <= m);
+ xassert(1 <= q && q <= n-m);
+ /* compute gamma[p] in current basis more accurately; also
+ * compute auxiliary vector u */
+ k = head[p]; /* x[k] = xB[p] */
+ gamma_p = delta_p = (refsp[k] ? 1.0 : 0.0);
+ for (i = 1; i <= m; i++)
+ u[i] = 0.0;
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ if (refsp[k] && trow[j] != 0.0)
+ { gamma_p += trow[j] * trow[j];
+ /* u := u + T[p,j] * N[j], where N[j] = A[k] is constraint
+ * matrix column corresponding to xN[j] */
+ ptr = lp->A_ptr[k];
+ end = lp->A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ u[lp->A_ind[ptr]] += trow[j] * lp->A_val[ptr];
+ }
+ }
+ bfd_ftran(lp->bfd, u);
+ /* compute relative error in gamma[p] */
+ e = fabs(gamma_p - gamma[p]) / (1.0 + gamma_p);
+ /* compute new gamma[p] */
+ gamma[p] = gamma_p / (tcol[p] * tcol[p]);
+ /* compute new gamma[i] for all i != p */
+ for (i = 1; i <= m; i++)
+ { if (i == p)
+ continue;
+ /* compute r[i] = T[i,q] / T[p,q] */
+ r = tcol[i] / tcol[p];
+ /* compute new gamma[i] */
+ t1 = gamma[i] + r * (r * gamma_p + u[i] + u[i]);
+ k = head[i]; /* x[k] = xB[i] */
+ t2 = (refsp[k] ? 1.0 : 0.0) + delta_p * r * r;
+ gamma[i] = (t1 >= t2 ? t1 : t2);
+ }
+ return e;
+}
+
+#if 1 /* 30/III-2016 */
+double spy_update_gamma_s(SPXLP *lp, SPYSE *se, int p, int q,
+ const FVS *trow, const FVS *tcol)
+{ /* sparse version of spy_update_gamma */
+ int m = lp->m;
+ int n = lp->n;
+ int *head = lp->head;
+ char *refsp = se->refsp;
+ double *gamma = se->gamma;
+ double *u = se->work;
+ int trow_nnz = trow->nnz;
+ int *trow_ind = trow->ind;
+ double *trow_vec = trow->vec;
+ int tcol_nnz = tcol->nnz;
+ int *tcol_ind = tcol->ind;
+ double *tcol_vec = tcol->vec;
+ int i, j, k, t, ptr, end;
+ double gamma_p, delta_p, e, r, t1, t2;
+ xassert(se->valid);
+ xassert(1 <= p && p <= m);
+ xassert(1 <= q && q <= n-m);
+ /* compute gamma[p] in current basis more accurately; also
+ * compute auxiliary vector u */
+ k = head[p]; /* x[k] = xB[p] */
+ gamma_p = delta_p = (refsp[k] ? 1.0 : 0.0);
+ for (i = 1; i <= m; i++)
+ u[i] = 0.0;
+ for (t = 1; t <= trow_nnz; t++)
+ { j = trow_ind[t];
+ k = head[m+j]; /* x[k] = xN[j] */
+ if (refsp[k])
+ { gamma_p += trow_vec[j] * trow_vec[j];
+ /* u := u + T[p,j] * N[j], where N[j] = A[k] is constraint
+ * matrix column corresponding to xN[j] */
+ ptr = lp->A_ptr[k];
+ end = lp->A_ptr[k+1];
+ for (; ptr < end; ptr++)
+ u[lp->A_ind[ptr]] += trow_vec[j] * lp->A_val[ptr];
+ }
+ }
+ bfd_ftran(lp->bfd, u);
+ /* compute relative error in gamma[p] */
+ e = fabs(gamma_p - gamma[p]) / (1.0 + gamma_p);
+ /* compute new gamma[p] */
+ gamma[p] = gamma_p / (tcol_vec[p] * tcol_vec[p]);
+ /* compute new gamma[i] for all i != p */
+ for (t = 1; t <= tcol_nnz; t++)
+ { i = tcol_ind[t];
+ if (i == p)
+ continue;
+ /* compute r[i] = T[i,q] / T[p,q] */
+ r = tcol_vec[i] / tcol_vec[p];
+ /* compute new gamma[i] */
+ t1 = gamma[i] + r * (r * gamma_p + u[i] + u[i]);
+ k = head[i]; /* x[k] = xB[i] */
+ t2 = (refsp[k] ? 1.0 : 0.0) + delta_p * r * r;
+ gamma[i] = (t1 >= t2 ? t1 : t2);
+ }
+ return e;
+}
+#endif
+
+/***********************************************************************
+* spy_free_se - deallocate dual pricing data block
+*
+* This routine deallocates the memory used for arrays in the dual
+* pricing data block. */
+
+void spy_free_se(SPXLP *lp, SPYSE *se)
+{ xassert(lp == lp);
+ tfree(se->refsp);
+ tfree(se->gamma);
+ tfree(se->work);
+#if 1 /* 30/III-2016 */
+ tfree(se->u.ind);
+ tfree(se->u.vec);
+#endif
+ return;
+}
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spychuzr.h b/test/monniaux/glpk-4.65/src/simplex/spychuzr.h
new file mode 100644
index 00000000..31f01b78
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spychuzr.h
@@ -0,0 +1,97 @@
+/* spychuzr.h */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#ifndef SPYCHUZR_H
+#define SPYCHUZR_H
+
+#include "spxlp.h"
+
+#define spy_chuzr_sel _glp_spy_chuzr_sel
+int spy_chuzr_sel(SPXLP *lp, const double beta[/*1+m*/], double tol,
+ double tol1, int list[/*1+m*/]);
+/* select eligible basic variables */
+
+#define spy_chuzr_std _glp_spy_chuzr_std
+int spy_chuzr_std(SPXLP *lp, const double beta[/*1+m*/], int num,
+ const int list[]);
+/* choose basic variable (dual Dantzig's rule) */
+
+typedef struct SPYSE SPYSE;
+
+struct SPYSE
+{ /* dual projected steepest edge and Devex pricing data block */
+ int valid;
+ /* content validity flag */
+ char *refsp; /* char refsp[1+n]; */
+ /* refsp[0] is not used;
+ * refsp[k], 1 <= k <= n, is the flag meaning that dual variable
+ * lambda[k] is in the dual reference space */
+ double *gamma; /* double gamma[1+m]; */
+ /* gamma[0] is not used;
+ * gamma[i], 1 <= i <= m, is the weight for reduced cost r[i]
+ * of dual non-basic variable lambdaB[j] in the current basis
+ * (r[i] is bound violation for basic variable xB[i]) */
+ double *work; /* double work[1+m]; */
+ /* working array */
+#if 1 /* 30/III-2016 */
+ FVS u; /* FVS u[1:m]; */
+ /* working vector */
+#endif
+};
+
+#define spy_alloc_se _glp_spy_alloc_se
+void spy_alloc_se(SPXLP *lp, SPYSE *se);
+/* allocate dual pricing data block */
+
+#define spy_reset_refsp _glp_spy_reset_refsp
+void spy_reset_refsp(SPXLP *lp, SPYSE *se);
+/* reset dual reference space */
+
+#define spy_eval_gamma_i _glp_spy_eval_gamma_i
+double spy_eval_gamma_i(SPXLP *lp, SPYSE *se, int i);
+/* compute dual projected steepest edge weight directly */
+
+#define spy_chuzr_pse _glp_spy_chuzr_pse
+int spy_chuzr_pse(SPXLP *lp, SPYSE *se, const double beta[/*1+m*/],
+ int num, const int list[]);
+/* choose basic variable (dual projected steepest edge) */
+
+#define spy_update_gamma _glp_spy_update_gamma
+double spy_update_gamma(SPXLP *lp, SPYSE *se, int p, int q,
+ const double trow[/*1+n-m*/], const double tcol[/*1+m*/]);
+/* update dual projected steepest edge weights exactly */
+
+#if 1 /* 30/III-2016 */
+#define spy_update_gamma_s _glp_spy_update_gamma_s
+double spy_update_gamma_s(SPXLP *lp, SPYSE *se, int p, int q,
+ const FVS *trow, const FVS *tcol);
+/* sparse version of spy_update_gamma */
+#endif
+
+#define spy_free_se _glp_spy_free_se
+void spy_free_se(SPXLP *lp, SPYSE *se);
+/* deallocate dual pricing data block */
+
+#endif
+
+/* eof */
diff --git a/test/monniaux/glpk-4.65/src/simplex/spydual.c b/test/monniaux/glpk-4.65/src/simplex/spydual.c
new file mode 100644
index 00000000..89d98db9
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/simplex/spydual.c
@@ -0,0 +1,2101 @@
+/* spydual.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2015-2017 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#if 1 /* 18/VII-2017 */
+#define SCALE_Z 1
+#endif
+
+#include "env.h"
+#include "simplex.h"
+#include "spxat.h"
+#include "spxnt.h"
+#include "spxprob.h"
+#include "spychuzc.h"
+#include "spychuzr.h"
+#if 0 /* 11/VI-2017 */
+#if 1 /* 29/III-2016 */
+#include "fvs.h"
+#endif
+#endif
+
+#define CHECK_ACCURACY 0
+/* (for debugging) */
+
+struct csa
+{ /* common storage area */
+ SPXLP *lp;
+ /* LP problem data and its (current) basis; this LP has m rows
+ * and n columns */
+ int dir;
+ /* original optimization direction:
+ * +1 - minimization
+ * -1 - maximization */
+#if SCALE_Z
+ double fz;
+ /* factor used to scale original objective */
+#endif
+ double *orig_b; /* double orig_b[1+m]; */
+ /* copy of original right-hand sides */
+ double *orig_c; /* double orig_c[1+n]; */
+ /* copy of original objective coefficients */
+ double *orig_l; /* double orig_l[1+n]; */
+ /* copy of original lower bounds */
+ double *orig_u; /* double orig_u[1+n]; */
+ /* copy of original upper bounds */
+ SPXAT *at;
+ /* mxn-matrix A of constraint coefficients, in sparse row-wise
+ * format (NULL if not used) */
+ SPXNT *nt;
+ /* mx(n-m)-matrix N composed of non-basic columns of constraint
+ * matrix A, in sparse row-wise format (NULL if not used) */
+ int phase;
+ /* search phase:
+ * 0 - not determined yet
+ * 1 - searching for dual feasible solution
+ * 2 - searching for optimal solution */
+ double *beta; /* double beta[1+m]; */
+ /* beta[i] is primal value of basic variable xB[i] */
+ int beta_st;
+ /* status of the vector beta:
+ * 0 - undefined
+ * 1 - just computed
+ * 2 - updated */
+ double *d; /* double d[1+n-m]; */
+ /* d[j] is reduced cost of non-basic variable xN[j] */
+ int d_st;
+ /* status of the vector d:
+ * 0 - undefined
+ * 1 - just computed
+ * 2 - updated */
+ SPYSE *se;
+ /* dual projected steepest edge and Devex pricing data block
+ * (NULL if not used) */
+#if 0 /* 30/III-2016 */
+ int num;
+ /* number of eligible basic variables */
+ int *list; /* int list[1+m]; */
+ /* list[1], ..., list[num] are indices i of eligible basic
+ * variables xB[i] */
+#else
+ FVS r; /* FVS r[1:m]; */
+ /* vector of primal infeasibilities */
+ /* r->nnz = num; r->ind = list */
+ /* vector r has the same status as vector beta (see above) */
+#endif
+ int p;
+ /* xB[p] is a basic variable chosen to leave the basis */
+#if 0 /* 29/III-2016 */
+ double *trow; /* double trow[1+n-m]; */
+#else
+ FVS trow; /* FVS trow[1:n-m]; */
+#endif
+ /* p-th (pivot) row of the simplex table */
+#if 1 /* 16/III-2016 */
+ SPYBP *bp; /* SPYBP bp[1+n-m]; */
+ /* dual objective break-points */
+#endif
+ int q;
+ /* xN[q] is a non-basic variable chosen to enter the basis */
+#if 0 /* 29/III-2016 */
+ double *tcol; /* double tcol[1+m]; */
+#else
+ FVS tcol; /* FVS tcol[1:m]; */
+#endif
+ /* q-th (pivot) column of the simplex table */
+ double *work; /* double work[1+m]; */
+ /* working array */
+ double *work1; /* double work1[1+n-m]; */
+ /* another working array */
+#if 0 /* 11/VI-2017 */
+#if 1 /* 31/III-2016 */
+ FVS wrow; /* FVS wrow[1:n-m]; */
+ FVS wcol; /* FVS wcol[1:m]; */
+ /* working sparse vectors */
+#endif
+#endif
+ int p_stat, d_stat;
+ /* primal and dual solution statuses */
+ /*--------------------------------------------------------------*/
+ /* control parameters (see struct glp_smcp) */
+ int msg_lev;
+ /* message level */
+ int dualp;
+ /* if this flag is set, report failure in case of instability */
+#if 0 /* 16/III-2016 */
+ int harris;
+ /* dual ratio test technique:
+ * 0 - textbook ratio test
+ * 1 - Harris' two pass ratio test */
+#else
+ int r_test;
+ /* dual ratio test technique:
+ * GLP_RT_STD - textbook ratio test
+ * GLP_RT_HAR - Harris' two pass ratio test
+ * GLP_RT_FLIP - long-step (flip-flop) ratio test */
+#endif
+ double tol_bnd, tol_bnd1;
+ /* primal feasibility tolerances */
+ double tol_dj, tol_dj1;
+ /* dual feasibility tolerances */
+ double tol_piv;
+ /* pivot tolerance */
+ double obj_lim;
+ /* objective limit */
+ int it_lim;
+ /* iteration limit */
+ int tm_lim;
+ /* time limit, milliseconds */
+ int out_frq;
+#if 0 /* 15/VII-2017 */
+ /* display output frequency, iterations */
+#else
+ /* display output frequency, milliseconds */
+#endif
+ int out_dly;
+ /* display output delay, milliseconds */
+ /*--------------------------------------------------------------*/
+ /* working parameters */
+ double tm_beg;
+ /* time value at the beginning of the search */
+ int it_beg;
+ /* simplex iteration count at the beginning of the search */
+ int it_cnt;
+ /* simplex iteration count; it increases by one every time the
+ * basis changes */
+ int it_dpy;
+ /* simplex iteration count at most recent display output */
+#if 1 /* 15/VII-2017 */
+ double tm_dpy;
+ /* time value at most recent display output */
+#endif
+ int inv_cnt;
+ /* basis factorization count since most recent display output */
+#if 1 /* 11/VII-2017 */
+ int degen;
+ /* count of successive degenerate iterations; this count is used
+ * to detect stalling */
+#endif
+#if 1 /* 23/III-2016 */
+ int ns_cnt, ls_cnt;
+ /* normal and long-step iteration count */
+#endif
+};
+
+/***********************************************************************
+* check_flags - check correctness of active bound flags
+*
+* This routine checks that flags specifying active bounds of all
+* non-basic variables are correct.
+*
+* NOTE: It is important to note that if bounds of variables have been
+* changed, active bound flags should be corrected accordingly. */
+
+static void check_flags(struct csa *csa)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ int j, k;
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ if (l[k] == -DBL_MAX && u[k] == +DBL_MAX)
+ xassert(!flag[j]);
+ else if (l[k] != -DBL_MAX && u[k] == +DBL_MAX)
+ xassert(!flag[j]);
+ else if (l[k] == -DBL_MAX && u[k] != +DBL_MAX)
+ xassert(flag[j]);
+ else if (l[k] == u[k])
+ xassert(!flag[j]);
+ }
+ return;
+}
+
+/***********************************************************************
+* set_art_bounds - set artificial right-hand sides and bounds
+*
+* This routine sets artificial right-hand sides and artificial bounds
+* for all variables to minimize the sum of dual infeasibilities on
+* phase I. Given current reduced costs d = (d[j]) this routine also
+* sets active artificial bounds of non-basic variables to provide dual
+* feasibility (this is always possible because all variables have both
+* lower and upper artificial bounds). */
+
+static void set_art_bounds(struct csa *csa)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ double *b = lp->b;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ double *d = csa->d;
+ int i, j, k;
+#if 1 /* 31/III-2016: FIXME */
+ /* set artificial right-hand sides */
+ for (i = 1; i <= m; i++)
+ b[i] = 0.0;
+ /* set artificial bounds depending on types of variables */
+ for (k = 1; k <= n; k++)
+ { if (csa->orig_l[k] == -DBL_MAX && csa->orig_u[k] == +DBL_MAX)
+ { /* force free variables to enter the basis */
+ l[k] = -1e3, u[k] = +1e3;
+ }
+ else if (csa->orig_l[k] != -DBL_MAX && csa->orig_u[k] == +DBL_MAX)
+ l[k] = 0.0, u[k] = +1.0;
+ else if (csa->orig_l[k] == -DBL_MAX && csa->orig_u[k] != +DBL_MAX)
+ l[k] = -1.0, u[k] = 0.0;
+ else
+ l[k] = u[k] = 0.0;
+ }
+#endif
+ /* set active artificial bounds for non-basic variables */
+ xassert(csa->d_st == 1);
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ flag[j] = (l[k] != u[k] && d[j] < 0.0);
+ }
+ /* invalidate values of basic variables, since active bounds of
+ * non-basic variables have been changed */
+ csa->beta_st = 0;
+ return;
+}
+
+/***********************************************************************
+* set_orig_bounds - restore original right-hand sides and bounds
+*
+* This routine restores original right-hand sides and original bounds
+* for all variables. This routine also sets active original bounds for
+* non-basic variables; for double-bounded non-basic variables current
+* reduced costs d = (d[j]) are used to decide which bound (lower or
+* upper) should be made active. */
+
+static void set_orig_bounds(struct csa *csa)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ double *b = lp->b;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ double *d = csa->d;
+ int j, k;
+ /* restore original right-hand sides */
+ memcpy(b, csa->orig_b, (1+m) * sizeof(double));
+ /* restore original bounds of all variables */
+ memcpy(l, csa->orig_l, (1+n) * sizeof(double));
+ memcpy(u, csa->orig_u, (1+n) * sizeof(double));
+ /* set active original bounds for non-basic variables */
+ xassert(csa->d_st == 1);
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ if (l[k] == -DBL_MAX && u[k] == +DBL_MAX)
+ flag[j] = 0;
+ else if (l[k] != -DBL_MAX && u[k] == +DBL_MAX)
+ flag[j] = 0;
+ else if (l[k] == -DBL_MAX && u[k] != +DBL_MAX)
+ flag[j] = 1;
+ else if (l[k] != u[k])
+ flag[j] = (d[j] < 0.0);
+ else
+ flag[j] = 0;
+ }
+ /* invalidate values of basic variables, since active bounds of
+ * non-basic variables have been changed */
+ csa->beta_st = 0;
+ return;
+}
+
+/***********************************************************************
+* check_feas - check dual feasibility of basic solution
+*
+* This routine checks that reduced costs of all non-basic variables
+* d = (d[j]) have correct signs.
+*
+* Reduced cost d[j] is considered as having correct sign within the
+* specified tolerance depending on status of non-basic variable xN[j]
+* if one of the following conditions is met:
+*
+* xN[j] is free -eps <= d[j] <= +eps
+*
+* xN[j] has its lower bound active d[j] >= -eps
+*
+* xN[j] has its upper bound active d[j] <= +eps
+*
+* xN[j] is fixed d[j] has any value
+*
+* where eps = tol + tol1 * |cN[j]|, cN[j] is the objective coefficient
+* at xN[j]. (See also the routine spx_chuzc_sel.)
+*
+* The flag recov allows the routine to recover dual feasibility by
+* changing active bounds of non-basic variables. (For example, if
+* xN[j] has its lower bound active and d[j] < -eps, the feasibility
+* can be recovered by making xN[j] active on its upper bound.)
+*
+* If the basic solution is dual feasible, the routine returns zero.
+* If the basic solution is dual infeasible, but its dual feasibility
+* can be recovered (or has been recovered, if the flag recov is set),
+* the routine returns a negative value. Otherwise, the routine returns
+* the number j of some non-basic variable xN[j], whose reduced cost
+* d[j] is dual infeasible and cannot be recovered. */
+
+static int check_feas(struct csa *csa, double tol, double tol1,
+ int recov)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ double *d = csa->d;
+ int j, k, ret = 0;
+ double eps;
+ /* reduced costs should be just computed */
+ xassert(csa->d_st == 1);
+ /* walk thru list of non-basic variables */
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ if (l[k] == u[k])
+ { /* xN[j] is fixed variable; skip it */
+ continue;
+ }
+ /* determine absolute tolerance eps[j] */
+ eps = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]);
+ /* check dual feasibility of xN[j] */
+ if (d[j] > +eps)
+ { /* xN[j] should have its lower bound active */
+ if (l[k] == -DBL_MAX || flag[j])
+ { /* but it either has no lower bound or its lower bound
+ * is inactive */
+ if (l[k] == -DBL_MAX)
+ { /* cannot recover, since xN[j] has no lower bound */
+ ret = j;
+ break;
+ }
+ /* recovering is possible */
+ if (recov)
+ flag[j] = 0;
+ ret = -1;
+ }
+ }
+ else if (d[j] < -eps)
+ { /* xN[j] should have its upper bound active */
+ if (!flag[j])
+ { /* but it either has no upper bound or its upper bound
+ * is inactive */
+ if (u[k] == +DBL_MAX)
+ { /* cannot recover, since xN[j] has no upper bound */
+ ret = j;
+ break;
+ }
+ /* recovering is possible */
+ if (recov)
+ flag[j] = 1;
+ ret = -1;
+ }
+ }
+ }
+ if (recov && ret)
+ { /* invalidate values of basic variables, since active bounds
+ * of non-basic variables have been changed */
+ csa->beta_st = 0;
+ }
+ return ret;
+}
+
+#if CHECK_ACCURACY
+/***********************************************************************
+* err_in_vec - compute maximal relative error between two vectors
+*
+* This routine computes and returns maximal relative error between
+* n-vectors x and y:
+*
+* err_max = max |x[i] - y[i]| / (1 + |x[i]|).
+*
+* NOTE: This routine is intended only for debugging purposes. */
+
+static double err_in_vec(int n, const double x[], const double y[])
+{ int i;
+ double err, err_max;
+ err_max = 0.0;
+ for (i = 1; i <= n; i++)
+ { err = fabs(x[i] - y[i]) / (1.0 + fabs(x[i]));
+ if (err_max < err)
+ err_max = err;
+ }
+ return err_max;
+}
+#endif
+
+#if CHECK_ACCURACY
+/***********************************************************************
+* err_in_beta - compute maximal relative error in vector beta
+*
+* This routine computes and returns maximal relative error in vector
+* of values of basic variables beta = (beta[i]).
+*
+* NOTE: This routine is intended only for debugging purposes. */
+
+static double err_in_beta(struct csa *csa)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ double err, *beta;
+ beta = talloc(1+m, double);
+ spx_eval_beta(lp, beta);
+ err = err_in_vec(m, beta, csa->beta);
+ tfree(beta);
+ return err;
+}
+#endif
+
+#if CHECK_ACCURACY
+static double err_in_r(struct csa *csa)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int i, k;
+ double err, *r;
+ r = talloc(1+m, double);
+ for (i = 1; i <= m; i++)
+ { k = lp->head[i];
+ if (csa->beta[i] < lp->l[k])
+ r[i] = lp->l[k] - csa->beta[i];
+ else if (csa->beta[i] > lp->u[k])
+ r[i] = lp->u[k] - csa->beta[i];
+ else
+ r[i] = 0.0;
+
+if (fabs(r[i] - csa->r.vec[i]) > 1e-6)
+printf("i = %d; r = %g; csa->r = %g\n", i, r[i], csa->r.vec[i]);
+
+
+ }
+ err = err_in_vec(m, r, csa->r.vec);
+ tfree(r);
+ return err;
+}
+#endif
+
+#if CHECK_ACCURACY
+/***********************************************************************
+* err_in_d - compute maximal relative error in vector d
+*
+* This routine computes and returns maximal relative error in vector
+* of reduced costs of non-basic variables d = (d[j]).
+*
+* NOTE: This routine is intended only for debugging purposes. */
+
+static double err_in_d(struct csa *csa)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ int j;
+ double err, *pi, *d;
+ pi = talloc(1+m, double);
+ d = talloc(1+n-m, double);
+ spx_eval_pi(lp, pi);
+ for (j = 1; j <= n-m; j++)
+ d[j] = spx_eval_dj(lp, pi, j);
+ err = err_in_vec(n-m, d, csa->d);
+ tfree(pi);
+ tfree(d);
+ return err;
+}
+#endif
+
+#if CHECK_ACCURACY
+/***********************************************************************
+* err_in_gamma - compute maximal relative error in vector gamma
+*
+* This routine computes and returns maximal relative error in vector
+* of projected steepest edge weights gamma = (gamma[j]).
+*
+* NOTE: This routine is intended only for debugging purposes. */
+
+static double err_in_gamma(struct csa *csa)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ SPYSE *se = csa->se;
+ int i;
+ double err, *gamma;
+ xassert(se != NULL);
+gamma = talloc(1+m, double);
+ for (i = 1; i <= m; i++)
+ gamma[i] = spy_eval_gamma_i(lp, se, i);
+ err = err_in_vec(m, gamma, se->gamma);
+ tfree(gamma);
+ return err;
+}
+#endif
+
+#if CHECK_ACCURACY
+/***********************************************************************
+* check_accuracy - check accuracy of basic solution components
+*
+* This routine checks accuracy of current basic solution components.
+*
+* NOTE: This routine is intended only for debugging purposes. */
+
+static void check_accuracy(struct csa *csa)
+{ double e_beta, e_r, e_d, e_gamma;
+ e_beta = err_in_beta(csa);
+ e_r = err_in_r(csa);
+ e_d = err_in_d(csa);
+ if (csa->se == NULL)
+ e_gamma = 0.;
+ else
+ e_gamma = err_in_gamma(csa);
+ xprintf("e_beta = %10.3e; e_r = %10.3e; e_d = %10.3e; e_gamma = %"
+ "10.3e\n", e_beta, e_r, e_d, e_gamma);
+ xassert(e_beta <= 1e-5 && e_d <= 1e-5 && e_gamma <= 1e-3);
+ return;
+}
+#endif
+
+#if 1 /* 30/III-2016 */
+static
+void spy_eval_r(SPXLP *lp, const double beta[/*1+m*/], double tol,
+ double tol1, FVS *r)
+{ /* this routine computes the vector of primal infeasibilities:
+ *
+ * ( lB[i] - beta[i] > 0, if beta[i] < lb[i]
+ * r[i] = { 0, if lb[i] <= beta[i] <= ub[i]
+ * ( ub[i] - beta[i] < 0, if beta[i] > ub[i]
+ *
+ * (this routine replaces spy_chuzr_sel) */
+ int m = lp->m;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ int *ind = r->ind;
+ double *vec = r->vec;
+ int i, k, nnz = 0;
+ double lk, uk, eps;
+ xassert(r->n == m);
+ /* walk thru the list of basic variables */
+ for (i = 1; i <= m; i++)
+ { vec[i] = 0.0;
+ k = head[i]; /* x[k] = xB[i] */
+ lk = l[k], uk = u[k];
+ /* check primal feasibility */
+ if (beta[i] < lk)
+ { /* determine absolute tolerance eps1[i] */
+ eps = tol + tol1 * (lk >= 0.0 ? +lk : -lk);
+ if (beta[i] < lk - eps)
+ { /* lower bound is violated */
+ ind[++nnz] = i;
+ vec[i] = lk - beta[i];
+ }
+ }
+ else if (beta[i] > uk)
+ { /* determine absolute tolerance eps2[i] */
+ eps = tol + tol1 * (uk >= 0.0 ? +uk : -uk);
+ if (beta[i] > uk + eps)
+ { /* upper bound is violated */
+ ind[++nnz] = i;
+ vec[i] = uk - beta[i];
+ }
+ }
+ }
+ r->nnz = nnz;
+ return;
+}
+#endif
+
+/***********************************************************************
+* choose_pivot - choose xB[p] and xN[q]
+*
+* Given the list of eligible basic variables this routine first
+* chooses basic variable xB[p]. This choice is always possible,
+* because the list is assumed to be non-empty. Then the routine
+* computes p-th row T[p,*] of the simplex table T[i,j] and chooses
+* non-basic variable xN[q]. If the pivot T[p,q] is small in magnitude,
+* the routine attempts to choose another xB[p] and xN[q] in order to
+* avoid badly conditioned adjacent bases.
+*
+* If the normal choice was made, the routine returns zero. Otherwise,
+* if the long-step choice was made, the routine returns non-zero. */
+
+#ifdef TIMING /* 31/III-2016 */
+
+#include "choose_pivot.c"
+
+#else
+
+#define MIN_RATIO 0.0001
+
+static int choose_pivot(struct csa *csa)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ SPXAT *at = csa->at;
+ SPXNT *nt = csa->nt;
+ double *beta = csa->beta;
+ double *d = csa->d;
+ SPYSE *se = csa->se;
+#if 0 /* 30/III-2016 */
+ int *list = csa->list;
+#else
+ int *list = csa->r.ind;
+#endif
+ double *rho = csa->work;
+ double *trow = csa->work1;
+ SPYBP *bp = csa->bp;
+ double tol_piv = csa->tol_piv;
+ int try, nnn, j, k, p, q, t, t_best, nbp, ret;
+ double big, temp, r, best_ratio, dz_best;
+ xassert(csa->beta_st);
+ xassert(csa->d_st);
+more: /* initial number of eligible basic variables */
+#if 0 /* 30/III-2016 */
+ nnn = csa->num;
+#else
+ nnn = csa->r.nnz;
+#endif
+ /* nothing has been chosen so far */
+ csa->p = 0;
+ best_ratio = 0.0;
+ try = ret = 0;
+try: /* choose basic variable xB[p] */
+ xassert(nnn > 0);
+ try++;
+ if (se == NULL)
+ { /* dual Dantzig's rule */
+ p = spy_chuzr_std(lp, beta, nnn, list);
+ }
+ else
+ { /* dual projected steepest edge */
+ p = spy_chuzr_pse(lp, se, beta, nnn, list);
+ }
+ xassert(1 <= p && p <= m);
+ /* compute p-th row of inv(B) */
+ spx_eval_rho(lp, p, rho);
+ /* compute p-th row of the simplex table */
+ if (at != NULL)
+ spx_eval_trow1(lp, at, rho, trow);
+ else
+ spx_nt_prod(lp, nt, trow, 1, -1.0, rho);
+#if 1 /* 23/III-2016 */
+ /* big := max(1, |trow[1]|, ..., |trow[n-m]|) */
+ big = 1.0;
+ for (j = 1; j <= n-m; j++)
+ { temp = trow[j];
+ if (temp < 0.0)
+ temp = - temp;
+ if (big < temp)
+ big = temp;
+ }
+#else
+ /* this still puzzles me */
+ big = 1.0;
+#endif
+ /* choose non-basic variable xN[q] */
+ k = head[p]; /* x[k] = xB[p] */
+ xassert(beta[p] < l[k] || beta[p] > u[k]);
+ r = beta[p] < l[k] ? l[k] - beta[p] : u[k] - beta[p];
+ if (csa->r_test == GLP_RT_FLIP && try <= 2)
+ { /* long-step ratio test */
+#if 0 /* 23/III-2016 */
+ /* determine dual objective break-points */
+ nbp = spy_eval_bp(lp, d, r, trow, tol_piv, bp);
+ if (nbp <= 1)
+ goto skip;
+ /* choose appropriate break-point */
+ t_best = 0, dz_best = -DBL_MAX;
+ for (t = 1; t <= nbp; t++)
+ { if (fabs(trow[bp[t].j]) / big >= MIN_RATIO)
+ { if (dz_best < bp[t].dz)
+ t_best = t, dz_best = bp[t].dz;
+ }
+ }
+ if (t_best == 0)
+ goto skip;
+#else
+ int t, num, num1;
+ double slope, teta_lim;
+ /* determine dual objective break-points */
+ nbp = spy_ls_eval_bp(lp, d, r, trow, tol_piv, bp);
+ if (nbp < 2)
+ goto skip;
+ /* set initial slope */
+ slope = fabs(r);
+ /* estimate initial teta_lim */
+ teta_lim = DBL_MAX;
+ for (t = 1; t <= nbp; t++)
+ { if (teta_lim > bp[t].teta)
+ teta_lim = bp[t].teta;
+ }
+ xassert(teta_lim >= 0.0);
+ if (teta_lim < 1e-6)
+ teta_lim = 1e-6;
+ /* nothing has been chosen so far */
+ t_best = 0, dz_best = 0.0, num = 0;
+ /* choose appropriate break-point */
+ while (num < nbp)
+ { /* select and process a new portion of break-points */
+ num1 = spy_ls_select_bp(lp, trow, nbp, bp, num, &slope,
+ teta_lim);
+ for (t = num+1; t <= num1; t++)
+ { if (fabs(trow[bp[t].j]) / big >= MIN_RATIO)
+ { if (dz_best < bp[t].dz)
+ t_best = t, dz_best = bp[t].dz;
+ }
+ }
+ if (slope < 0.0)
+ { /* the dual objective starts decreasing */
+ break;
+ }
+ /* the dual objective continues increasing */
+ num = num1;
+ teta_lim += teta_lim;
+ }
+ if (dz_best == 0.0)
+ goto skip;
+ xassert(1 <= t_best && t_best <= num1);
+#endif
+ /* the choice has been made */
+ csa->p = p;
+#if 0 /* 29/III-2016 */
+ memcpy(&csa->trow[1], &trow[1], (n-m) * sizeof(double));
+#else
+ memcpy(&csa->trow.vec[1], &trow[1], (n-m) * sizeof(double));
+ fvs_gather_vec(&csa->trow, DBL_EPSILON);
+#endif
+ csa->q = bp[t_best].j;
+ best_ratio = fabs(trow[bp[t_best].j]) / big;
+#if 0
+ xprintf("num = %d; t_best = %d; dz = %g\n", num, t_best,
+ bp[t_best].dz);
+#endif
+ ret = 1;
+ goto done;
+skip: ;
+ }
+ if (csa->r_test == GLP_RT_STD)
+ { /* textbook dual ratio test */
+ q = spy_chuzc_std(lp, d, r, trow, tol_piv,
+ .30 * csa->tol_dj, .30 * csa->tol_dj1);
+ }
+ else
+ { /* Harris' two-pass dual ratio test */
+ q = spy_chuzc_harris(lp, d, r, trow, tol_piv,
+ .35 * csa->tol_dj, .35 * csa->tol_dj1);
+ }
+ if (q == 0)
+ { /* dual unboundedness */
+ csa->p = p;
+#if 0 /* 29/III-2016 */
+ memcpy(&csa->trow[1], &trow[1], (n-m) * sizeof(double));
+#else
+ memcpy(&csa->trow.vec[1], &trow[1], (n-m) * sizeof(double));
+ fvs_gather_vec(&csa->trow, DBL_EPSILON);
+#endif
+ csa->q = q;
+ best_ratio = 1.0;
+ goto done;
+ }
+ /* either keep previous choice or accept new choice depending on
+ * which one is better */
+ if (best_ratio < fabs(trow[q]) / big)
+ { csa->p = p;
+#if 0 /* 29/III-2016 */
+ memcpy(&csa->trow[1], &trow[1], (n-m) * sizeof(double));
+#else
+ memcpy(&csa->trow.vec[1], &trow[1], (n-m) * sizeof(double));
+ fvs_gather_vec(&csa->trow, DBL_EPSILON);
+#endif
+ csa->q = q;
+ best_ratio = fabs(trow[q]) / big;
+ }
+ /* check if the current choice is acceptable */
+ if (best_ratio >= MIN_RATIO || nnn == 1 || try == 5)
+ goto done;
+ /* try to choose other xB[p] and xN[q] */
+ /* find xB[p] in the list */
+ for (t = 1; t <= nnn; t++)
+ if (list[t] == p) break;
+ xassert(t <= nnn);
+ /* move xB[p] to the end of the list */
+ list[t] = list[nnn], list[nnn] = p;
+ /* and exclude it from consideration */
+ nnn--;
+ /* repeat the choice */
+ goto try;
+done: /* the choice has been made */
+#if 1 /* FIXME: currently just to avoid badly conditioned basis */
+ if (best_ratio < .001 * MIN_RATIO)
+ { /* looks like this helps */
+ if (bfd_get_count(lp->bfd) > 0)
+ return -1;
+ /* didn't help; last chance to improve the choice */
+ if (tol_piv == csa->tol_piv)
+ { tol_piv *= 1000.;
+ goto more;
+ }
+ }
+#endif
+#if 1 /* FIXME */
+ if (ret)
+ { /* invalidate basic solution components */
+#if 0 /* 28/III-2016 */
+ csa->beta_st = csa->d_st = 0;
+#else
+ /* dual solution remains valid */
+ csa->beta_st = 0;
+#endif
+ /* set double-bounded non-basic variables to opposite bounds
+ * for all break-points preceding the chosen one */
+ for (t = 1; t < t_best; t++)
+ { k = head[m + bp[t].j];
+ xassert(-DBL_MAX < l[k] && l[k] < u[k] && u[k] < +DBL_MAX);
+ lp->flag[bp[t].j] = !(lp->flag[bp[t].j]);
+ }
+ }
+#endif
+ return ret;
+}
+
+#endif
+
+/***********************************************************************
+* play_coef - play objective coefficients
+*
+* This routine is called after the reduced costs d[j] was updated and
+* the basis was changed to the adjacent one.
+*
+* It is assumed that before updating all the reduced costs d[j] were
+* strongly feasible, so in the adjacent basis d[j] remain feasible
+* within a tolerance, i.e. if some d[j] violates its zero bound, the
+* violation is insignificant.
+*
+* If some d[j] violates its zero bound, the routine changes (perturbs)
+* objective coefficient cN[j] to provide d[j] = 0, i.e. to make all
+* d[j] strongly feasible. Otherwise, if d[j] has a feasible value, the
+* routine attempts to reduce (or remove) perturbation in cN[j] by
+* shifting d[j] to its zero bound keeping strong feasibility. */
+
+static void play_coef(struct csa *csa, int all)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ double *c = lp->c;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ double *orig_c = csa->orig_c;
+ double *d = csa->d;
+ const double *trow = csa->trow.vec;
+ /* this vector was used to update d = (d[j]) */
+ int j, k;
+ static const double eps = 1e-9;
+ /* reduced costs d = (d[j]) should be valid */
+ xassert(csa->d_st);
+ /* walk thru the list of non-basic variables xN = (xN[j]) */
+ for (j = 1; j <= n-m; j++)
+ { if (all || trow[j] != 0.0)
+ { /* d[j] has changed in the adjacent basis */
+ k = head[m+j]; /* x[k] = xN[j] */
+ if (l[k] == u[k])
+ { /* xN[j] is fixed variable */
+ /* d[j] may have any sign */
+ }
+ else if (l[k] == -DBL_MAX && u[k] == +DBL_MAX)
+ { /* xN[j] is free (unbounded) variable */
+ /* strong feasibility means d[j] = 0 */
+ c[k] -= d[j], d[j] = 0.0;
+ /* in this case dual degeneracy is not critical, since
+ * if xN[j] enters the basis, it never leaves it */
+ }
+ else if (!flag[j])
+ { /* xN[j] has its lower bound active */
+ xassert(l[k] != -DBL_MAX);
+ /* first, we remove current perturbation to provide
+ * c[k] = orig_c[k] */
+ d[j] -= c[k] - orig_c[k], c[k] = orig_c[k];
+ /* strong feasibility means d[j] >= 0, but we provide
+ * d[j] >= +eps to prevent dual degeneracy */
+ if (d[j] < +eps)
+ c[k] -= d[j] - eps, d[j] = +eps;
+ }
+ else
+ { /* xN[j] has its upper bound active */
+ xassert(u[k] != +DBL_MAX);
+ /* similarly, we remove current perturbation to provide
+ * c[k] = orig_c[k] */
+ d[j] -= c[k] - orig_c[k], c[k] = orig_c[k];
+ /* strong feasibility means d[j] <= 0, but we provide
+ * d[j] <= -eps to prevent dual degeneracy */
+ if (d[j] > -eps)
+ c[k] -= d[j] + eps, d[j] = -eps;
+ }
+ }
+ }
+ return;
+}
+
+#if 1 /* 11/VII-2017 */
+static void remove_perturb(struct csa *csa)
+{ /* remove perturbation */
+ SPXLP *lp = csa->lp;
+ int n = lp->n;
+ double *c = lp->c;
+ double *orig_c = csa->orig_c;
+ memcpy(c, orig_c, (1+n) * sizeof(double));
+ /* removing perturbation changes dual solution components */
+ csa->phase = csa->d_st = 0;
+#if 1
+ if (csa->msg_lev >= GLP_MSG_ALL)
+ xprintf("Removing LP perturbation [%d]...\n",
+ csa->it_cnt);
+#endif
+ return;
+}
+#endif
+
+/***********************************************************************
+* display - display search progress
+*
+* This routine displays some information about the search progress
+* that includes:
+*
+* search phase;
+*
+* number of simplex iterations performed by the solver;
+*
+* original objective value (only on phase II);
+*
+* sum of (scaled) dual infeasibilities for original bounds;
+*
+* number of dual infeasibilities (phase I) or primal infeasibilities
+* (phase II);
+*
+* number of basic factorizations since last display output. */
+
+static void display(struct csa *csa, int spec)
+{ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ int *head = lp->head;
+ char *flag = lp->flag;
+ double *l = csa->orig_l; /* original lower bounds */
+ double *u = csa->orig_u; /* original upper bounds */
+ double *beta = csa->beta;
+ double *d = csa->d;
+ int j, k, nnn;
+ double sum;
+#if 1 /* 15/VII-2017 */
+ double tm_cur;
+#endif
+ /* check if the display output should be skipped */
+ if (csa->msg_lev < GLP_MSG_ON) goto skip;
+#if 1 /* 15/VII-2017 */
+ tm_cur = xtime();
+#endif
+ if (csa->out_dly > 0 &&
+#if 0 /* 15/VII-2017 */
+ 1000.0 * xdifftime(xtime(), csa->tm_beg) < csa->out_dly)
+#else
+ 1000.0 * xdifftime(tm_cur, csa->tm_beg) < csa->out_dly)
+#endif
+ goto skip;
+ if (csa->it_cnt == csa->it_dpy) goto skip;
+#if 0 /* 15/VII-2017 */
+ if (!spec && csa->it_cnt % csa->out_frq != 0) goto skip;
+#else
+ if (!spec &&
+ 1000.0 * xdifftime(tm_cur, csa->tm_dpy) < csa->out_frq)
+ goto skip;
+#endif
+ /* display search progress depending on search phase */
+ switch (csa->phase)
+ { case 1:
+ /* compute sum and number of (scaled) dual infeasibilities
+ * for original bounds */
+ sum = 0.0, nnn = 0;
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ if (d[j] > 0.0)
+ { /* xN[j] should have lower bound */
+ if (l[k] == -DBL_MAX)
+ { sum += d[j];
+ if (d[j] > +1e-7)
+ nnn++;
+ }
+ }
+ else if (d[j] < 0.0)
+ { /* xN[j] should have upper bound */
+ if (u[k] == +DBL_MAX)
+ { sum -= d[j];
+ if (d[j] < -1e-7)
+ nnn++;
+ }
+ }
+ }
+ /* on phase I variables have artificial bounds which are
+ * meaningless for original LP, so corresponding objective
+ * function value is also meaningless */
+#if 0 /* 27/III-2016 */
+ xprintf(" %6d: %23s inf = %11.3e (%d)",
+ csa->it_cnt, "", sum, nnn);
+#else
+ xprintf(" %6d: sum = %17.9e inf = %11.3e (%d)",
+ csa->it_cnt, lp->c[0] - spx_eval_obj(lp, beta),
+ sum, nnn);
+#endif
+ break;
+ case 2:
+ /* compute sum of (scaled) dual infeasibilities */
+ sum = 0.0, nnn = 0;
+ for (j = 1; j <= n-m; j++)
+ { k = head[m+j]; /* x[k] = xN[j] */
+ if (d[j] > 0.0)
+ { /* xN[j] should have its lower bound active */
+ if (l[k] == -DBL_MAX || flag[j])
+ sum += d[j];
+ }
+ else if (d[j] < 0.0)
+ { /* xN[j] should have its upper bound active */
+ if (l[k] != u[k] && !flag[j])
+ sum -= d[j];
+ }
+ }
+ /* compute number of primal infeasibilities */
+ nnn = spy_chuzr_sel(lp, beta, csa->tol_bnd, csa->tol_bnd1,
+ NULL);
+ xprintf("#%6d: obj = %17.9e inf = %11.3e (%d)",
+#if SCALE_Z
+ csa->it_cnt,
+ (double)csa->dir * csa->fz * spx_eval_obj(lp, beta),
+#else
+ csa->it_cnt, (double)csa->dir * spx_eval_obj(lp, beta),
+#endif
+ sum, nnn);
+ break;
+ default:
+ xassert(csa != csa);
+ }
+ if (csa->inv_cnt)
+ { /* number of basis factorizations performed */
+ xprintf(" %d", csa->inv_cnt);
+ csa->inv_cnt = 0;
+ }
+#if 1 /* 23/III-2016 */
+ if (csa->r_test == GLP_RT_FLIP)
+ { /*xprintf(" %d,%d", csa->ns_cnt, csa->ls_cnt);*/
+ if (csa->ns_cnt + csa->ls_cnt)
+ xprintf(" %d%%",
+ (100 * csa->ls_cnt) / (csa->ns_cnt + csa->ls_cnt));
+ csa->ns_cnt = csa->ls_cnt = 0;
+ }
+#endif
+ xprintf("\n");
+ csa->it_dpy = csa->it_cnt;
+#if 1 /* 15/VII-2017 */
+ csa->tm_dpy = tm_cur;
+#endif
+skip: return;
+}
+
+#if 1 /* 31/III-2016 */
+static
+void spy_update_r(SPXLP *lp, int p, int q, const double beta[/*1+m*/],
+ const FVS *tcol, double tol, double tol1, FVS *r)
+{ /* update vector r of primal infeasibilities */
+ /* it is assumed that xB[p] leaves the basis, xN[q] enters the
+ * basis, and beta corresponds to the adjacent basis (i.e. this
+ * routine should be called after spx_update_beta) */
+ int m = lp->m;
+ int n = lp->n;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ int *tcol_ind = tcol->ind;
+ int *ind = r->ind;
+ double *vec = r->vec;
+ int i, k, t, nnz;
+ double lk, uk, ri, eps;
+ xassert(1 <= p && p <= m);
+ xassert(1 <= q && q <= n-m);
+ nnz = r->nnz;
+ for (t = tcol->nnz; t >= 1; t--)
+ { i = tcol_ind[t];
+ /* xB[i] changes in the adjacent basis to beta[i], so only
+ * r[i] should be updated */
+ if (i == p)
+ k = head[m+q]; /* x[k] = new xB[p] = old xN[q] */
+ else
+ k = head[i]; /* x[k] = new xB[i] = old xB[i] */
+ lk = l[k], uk = u[k];
+ /* determine new value of r[i]; see spy_eval_r */
+ ri = 0.0;
+ if (beta[i] < lk)
+ { /* determine absolute tolerance eps1[i] */
+ eps = tol + tol1 * (lk >= 0.0 ? +lk : -lk);
+ if (beta[i] < lk - eps)
+ { /* lower bound is violated */
+ ri = lk - beta[i];
+ }
+ }
+ else if (beta[i] > uk)
+ { /* determine absolute tolerance eps2[i] */
+ eps = tol + tol1 * (uk >= 0.0 ? +uk : -uk);
+ if (beta[i] > uk + eps)
+ { /* upper bound is violated */
+ ri = uk - beta[i];
+ }
+ }
+ if (ri == 0.0)
+ { if (vec[i] != 0.0)
+ vec[i] = DBL_MIN; /* will be removed */
+ }
+ else
+ { if (vec[i] == 0.0)
+ ind[++nnz] = i;
+ vec[i] = ri;
+ }
+
+ }
+ r->nnz = nnz;
+ /* remove zero elements */
+ fvs_adjust_vec(r, DBL_MIN + DBL_MIN);
+ return;
+}
+#endif
+
+/***********************************************************************
+* spy_dual - driver to the dual simplex method
+*
+* This routine is a driver to the two-phase dual simplex method.
+*
+* On exit this routine returns one of the following codes:
+*
+* 0 LP instance has been successfully solved.
+*
+* GLP_EOBJLL
+* Objective lower limit has been reached (maximization).
+*
+* GLP_EOBJUL
+* Objective upper limit has been reached (minimization).
+*
+* GLP_EITLIM
+* Iteration limit has been exhausted.
+*
+* GLP_ETMLIM
+* Time limit has been exhausted.
+*
+* GLP_EFAIL
+* The solver failed to solve LP instance. */
+
+static int dual_simplex(struct csa *csa)
+{ /* dual simplex method main logic routine */
+ SPXLP *lp = csa->lp;
+ int m = lp->m;
+ int n = lp->n;
+ double *l = lp->l;
+ double *u = lp->u;
+ int *head = lp->head;
+ SPXNT *nt = csa->nt;
+ double *beta = csa->beta;
+ double *d = csa->d;
+ SPYSE *se = csa->se;
+#if 0 /* 30/III-2016 */
+ int *list = csa->list;
+#endif
+#if 0 /* 31/III-2016 */
+ double *trow = csa->trow;
+ double *tcol = csa->tcol;
+#endif
+ double *pi = csa->work;
+ int msg_lev = csa->msg_lev;
+ double tol_bnd = csa->tol_bnd;
+ double tol_bnd1 = csa->tol_bnd1;
+ double tol_dj = csa->tol_dj;
+ double tol_dj1 = csa->tol_dj1;
+ int j, k, p_flag, refct, ret;
+ int perturb = -1;
+ /* -1 = perturbation is not used, but enabled
+ * 0 = perturbation is not used and disabled
+ * +1 = perturbation is being used */
+#if 1 /* 27/III-2016 */
+ int instab = 0; /* instability count */
+#endif
+#ifdef TIMING
+ double t_total = timer(); /* total time */
+ double t_fact = 0.0; /* computing factorization */
+ double t_rtest = 0.0; /* performing ratio test */
+ double t_pivcol = 0.0; /* computing pivot column */
+ double t_upd1 = 0.0; /* updating primal values */
+ double t_upd2 = 0.0; /* updating dual values */
+ double t_upd3 = 0.0; /* updating se weights */
+ double t_upd4 = 0.0; /* updating matrix N */
+ double t_upd5 = 0.0; /* updating factorization */
+ double t_start;
+#endif
+ check_flags(csa);
+loop: /* main loop starts here */
+ /* compute factorization of the basis matrix */
+ if (!lp->valid)
+ { double cond;
+#ifdef TIMING
+ t_start = timer();
+#endif
+ ret = spx_factorize(lp);
+#ifdef TIMING
+ t_fact += timer() - t_start;
+#endif
+ csa->inv_cnt++;
+ if (ret != 0)
+ { if (msg_lev >= GLP_MSG_ERR)
+ xprintf("Error: unable to factorize the basis matrix (%d"
+ ")\n", ret);
+ csa->p_stat = csa->d_stat = GLP_UNDEF;
+ ret = GLP_EFAIL;
+ goto fini;
+ }
+ /* check condition of the basis matrix */
+ cond = bfd_condest(lp->bfd);
+ if (cond > 1.0 / DBL_EPSILON)
+ { if (msg_lev >= GLP_MSG_ERR)
+ xprintf("Error: basis matrix is singular to working prec"
+ "ision (cond = %.3g)\n", cond);
+ csa->p_stat = csa->d_stat = GLP_UNDEF;
+ ret = GLP_EFAIL;
+ goto fini;
+ }
+ if (cond > 0.001 / DBL_EPSILON)
+ { if (msg_lev >= GLP_MSG_ERR)
+ xprintf("Warning: basis matrix is ill-conditioned (cond "
+ "= %.3g)\n", cond);
+ }
+ /* invalidate basic solution components */
+ csa->beta_st = csa->d_st = 0;
+ }
+ /* compute reduced costs of non-basic variables d = (d[j]) */
+ if (!csa->d_st)
+ { spx_eval_pi(lp, pi);
+ for (j = 1; j <= n-m; j++)
+ d[j] = spx_eval_dj(lp, pi, j);
+ csa->d_st = 1; /* just computed */
+ /* determine the search phase, if not determined yet (this is
+ * performed only once at the beginning of the search for the
+ * original bounds) */
+ if (!csa->phase)
+ { j = check_feas(csa, 0.97 * tol_dj, 0.97 * tol_dj1, 1);
+ if (j > 0)
+ { /* initial basic solution is dual infeasible and cannot
+ * be recovered */
+ /* start to search for dual feasible solution */
+ set_art_bounds(csa);
+ csa->phase = 1;
+ }
+ else
+ { /* initial basic solution is either dual feasible or its
+ * dual feasibility has been recovered */
+ /* start to search for optimal solution */
+ csa->phase = 2;
+ }
+ }
+ /* make sure that current basic solution is dual feasible */
+#if 1 /* 11/VII-2017 */
+ if (perturb <= 0)
+ { if (check_feas(csa, tol_dj, tol_dj1, 0))
+ { /* dual feasibility is broken due to excessive round-off
+ * errors */
+ if (perturb < 0)
+ { if (msg_lev >= GLP_MSG_ALL)
+ xprintf("Perturbing LP to avoid instability [%d].."
+ ".\n", csa->it_cnt);
+ perturb = 1;
+ goto loop;
+ }
+ if (msg_lev >= GLP_MSG_ERR)
+ xprintf("Warning: numerical instability (dual simplex"
+ ", phase %s)\n", csa->phase == 1 ? "I" : "II");
+ instab++;
+ if (csa->dualp && instab >= 10)
+ { /* do not continue the search; report failure */
+ if (msg_lev >= GLP_MSG_ERR)
+ xprintf("Warning: dual simplex failed due to exces"
+ "sive numerical instability\n");
+ csa->p_stat = csa->d_stat = GLP_UNDEF;
+ ret = -1; /* special case of GLP_EFAIL */
+ goto fini;
+ }
+ /* try to recover dual feasibility */
+ j = check_feas(csa, 0.97 * tol_dj, 0.97 * tol_dj1, 1);
+ if (j > 0)
+ { /* dual feasibility cannot be recovered (this may
+ * happen only on phase II) */
+ xassert(csa->phase == 2);
+ /* restart to search for dual feasible solution */
+ set_art_bounds(csa);
+ csa->phase = 1;
+ }
+ }
+ }
+ else
+ { /* FIXME */
+ play_coef(csa, 1);
+ }
+ }
+#endif
+ /* at this point the search phase is determined */
+ xassert(csa->phase == 1 || csa->phase == 2);
+ /* compute values of basic variables beta = (beta[i]) */
+ if (!csa->beta_st)
+ { spx_eval_beta(lp, beta);
+#if 1 /* 31/III-2016 */
+ /* also compute vector r of primal infeasibilities */
+ switch (csa->phase)
+ { case 1:
+ spy_eval_r(lp, beta, 1e-8, 0.0, &csa->r);
+ break;
+ case 2:
+ spy_eval_r(lp, beta, tol_bnd, tol_bnd1, &csa->r);
+ break;
+ default:
+ xassert(csa != csa);
+ }
+#endif
+ csa->beta_st = 1; /* just computed */
+ }
+ /* reset the dual reference space, if necessary */
+ if (se != NULL && !se->valid)
+ spy_reset_refsp(lp, se), refct = 1000;
+ /* at this point the basis factorization and all basic solution
+ * components are valid */
+ xassert(lp->valid && csa->beta_st && csa->d_st);
+#ifdef GLP_DEBUG
+ check_flags(csa);
+#endif
+#if CHECK_ACCURACY
+ /* check accuracy of current basic solution components (only for
+ * debugging) */
+ check_accuracy(csa);
+#endif
+ /* check if the objective limit has been reached */
+ if (csa->phase == 2 && csa->obj_lim != DBL_MAX
+ && spx_eval_obj(lp, beta) >= csa->obj_lim)
+ {
+#if 1 /* 26/V-2017 by mao */
+ if (perturb > 0)
+ { /* remove perturbation */
+ /* [Should note that perturbing of objective coefficients
+ * implemented in play_coef is equivalent to *relaxing* of
+ * (zero) bounds of dual variables, so the perturbed
+ * objective is always better (*greater*) that the original
+ * one at the same basic point.] */
+ remove_perturb(csa);
+ perturb = 0;
+ }
+#endif
+ if (csa->beta_st != 1)
+ csa->beta_st = 0;
+ if (csa->d_st != 1)
+ csa->d_st = 0;
+ if (!(csa->beta_st && csa->d_st))
+ goto loop;
+ display(csa, 1);
+ if (msg_lev >= GLP_MSG_ALL)
+ xprintf("OBJECTIVE %s LIMIT REACHED; SEARCH TERMINATED\n",
+ csa->dir > 0 ? "UPPER" : "LOWER");
+#if 0 /* 30/III-2016 */
+ csa->num = spy_chuzr_sel(lp, beta, tol_bnd, tol_bnd1, list);
+ csa->p_stat = (csa->num == 0 ? GLP_FEAS : GLP_INFEAS);
+#else
+ spy_eval_r(lp, beta, tol_bnd, tol_bnd1, &csa->r);
+ csa->p_stat = (csa->r.nnz == 0 ? GLP_FEAS : GLP_INFEAS);
+#endif
+ csa->d_stat = GLP_FEAS;
+ ret = (csa->dir > 0 ? GLP_EOBJUL : GLP_EOBJLL);
+ goto fini;
+ }
+ /* check if the iteration limit has been exhausted */
+ if (csa->it_cnt - csa->it_beg >= csa->it_lim)
+ { if (perturb > 0)
+ { /* remove perturbation */
+ remove_perturb(csa);
+ perturb = 0;
+ }
+ if (csa->beta_st != 1)
+ csa->beta_st = 0;
+ if (csa->d_st != 1)
+ csa->d_st = 0;
+ if (!(csa->beta_st && csa->d_st))
+ goto loop;
+ display(csa, 1);
+ if (msg_lev >= GLP_MSG_ALL)
+ xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n");
+ if (csa->phase == 1)
+ { set_orig_bounds(csa);
+ check_flags(csa);
+ spx_eval_beta(lp, beta);
+ }
+#if 0 /* 30/III-2016 */
+ csa->num = spy_chuzr_sel(lp, beta, tol_bnd, tol_bnd1, list);
+ csa->p_stat = (csa->num == 0 ? GLP_FEAS : GLP_INFEAS);
+#else
+ spy_eval_r(lp, beta, tol_bnd, tol_bnd1, &csa->r);
+ csa->p_stat = (csa->r.nnz == 0 ? GLP_FEAS : GLP_INFEAS);
+#endif
+ csa->d_stat = (csa->phase == 1 ? GLP_INFEAS : GLP_FEAS);
+ ret = GLP_EITLIM;
+ goto fini;
+ }
+ /* check if the time limit has been exhausted */
+ if (1000.0 * xdifftime(xtime(), csa->tm_beg) >= csa->tm_lim)
+ { if (perturb > 0)
+ { /* remove perturbation */
+ remove_perturb(csa);
+ perturb = 0;
+ }
+ if (csa->beta_st != 1)
+ csa->beta_st = 0;
+ if (csa->d_st != 1)
+ csa->d_st = 0;
+ if (!(csa->beta_st && csa->d_st))
+ goto loop;
+ display(csa, 1);
+ if (msg_lev >= GLP_MSG_ALL)
+ xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n");
+ if (csa->phase == 1)
+ { set_orig_bounds(csa);
+ check_flags(csa);
+ spx_eval_beta(lp, beta);
+ }
+#if 0 /* 30/III-2016 */
+ csa->num = spy_chuzr_sel(lp, beta, tol_bnd, tol_bnd1, list);
+ csa->p_stat = (csa->num == 0 ? GLP_FEAS : GLP_INFEAS);
+#else
+ spy_eval_r(lp, beta, tol_bnd, tol_bnd1, &csa->r);
+ csa->p_stat = (csa->r.nnz == 0 ? GLP_FEAS : GLP_INFEAS);
+#endif
+ csa->d_stat = (csa->phase == 1 ? GLP_INFEAS : GLP_FEAS);
+ ret = GLP_ETMLIM;
+ goto fini;
+ }
+ /* display the search progress */
+ display(csa, 0);
+ /* select eligible basic variables */
+#if 0 /* 31/III-2016; not needed because r is valid */
+ switch (csa->phase)
+ { case 1:
+#if 0 /* 30/III-2016 */
+ csa->num = spy_chuzr_sel(lp, beta, 1e-8, 0.0, list);
+#else
+ spy_eval_r(lp, beta, 1e-8, 0.0, &csa->r);
+#endif
+ break;
+ case 2:
+#if 0 /* 30/III-2016 */
+ csa->num = spy_chuzr_sel(lp, beta, tol_bnd, tol_bnd1, list);
+#else
+ spy_eval_r(lp, beta, tol_bnd, tol_bnd1, &csa->r);
+#endif
+ break;
+ default:
+ xassert(csa != csa);
+ }
+#endif
+ /* check for optimality */
+#if 0 /* 30/III-2016 */
+ if (csa->num == 0)
+#else
+ if (csa->r.nnz == 0)
+#endif
+ { if (perturb > 0 && csa->phase == 2)
+ { /* remove perturbation */
+ remove_perturb(csa);
+ perturb = 0;
+ }
+ if (csa->beta_st != 1)
+ csa->beta_st = 0;
+ if (csa->d_st != 1)
+ csa->d_st = 0;
+ if (!(csa->beta_st && csa->d_st))
+ goto loop;
+ /* current basis is optimal */
+ display(csa, 1);
+ switch (csa->phase)
+ { case 1:
+ /* check for dual feasibility */
+ set_orig_bounds(csa);
+ check_flags(csa);
+ if (check_feas(csa, tol_dj, tol_dj1, 0) == 0)
+ { /* dual feasible solution found; switch to phase II */
+ csa->phase = 2;
+ xassert(!csa->beta_st);
+ goto loop;
+ }
+#if 1 /* 26/V-2017 by cmatraki */
+ if (perturb > 0)
+ { /* remove perturbation */
+ remove_perturb(csa);
+ perturb = 0;
+ goto loop;
+ }
+#endif
+ /* no dual feasible solution exists */
+ if (msg_lev >= GLP_MSG_ALL)
+ xprintf("LP HAS NO DUAL FEASIBLE SOLUTION\n");
+ spx_eval_beta(lp, beta);
+#if 0 /* 30/III-2016 */
+ csa->num = spy_chuzr_sel(lp, beta, tol_bnd, tol_bnd1,
+ list);
+ csa->p_stat = (csa->num == 0 ? GLP_FEAS : GLP_INFEAS);
+#else
+ spy_eval_r(lp, beta, tol_bnd, tol_bnd1, &csa->r);
+ csa->p_stat = (csa->r.nnz == 0 ? GLP_FEAS : GLP_INFEAS);
+#endif
+ csa->d_stat = GLP_NOFEAS;
+ ret = 0;
+ goto fini;
+ case 2:
+ /* optimal solution found */
+ if (msg_lev >= GLP_MSG_ALL)
+ xprintf("OPTIMAL LP SOLUTION FOUND\n");
+ csa->p_stat = csa->d_stat = GLP_FEAS;
+ ret = 0;
+ goto fini;
+ default:
+ xassert(csa != csa);
+ }
+ }
+ /* choose xB[p] and xN[q] */
+#if 0 /* 23/III-2016 */
+ choose_pivot(csa);
+#else
+#ifdef TIMING
+ t_start = timer();
+#endif
+#if 1 /* 31/III-2016 */
+ ret = choose_pivot(csa);
+#endif
+#ifdef TIMING
+ t_rtest += timer() - t_start;
+#endif
+ if (ret < 0)
+ { lp->valid = 0;
+ goto loop;
+ }
+ if (ret == 0)
+ csa->ns_cnt++;
+ else
+ csa->ls_cnt++;
+#endif
+ /* check for dual unboundedness */
+ if (csa->q == 0)
+ { if (perturb > 0)
+ { /* remove perturbation */
+ remove_perturb(csa);
+ perturb = 0;
+ }
+ if (csa->beta_st != 1)
+ csa->beta_st = 0;
+ if (csa->d_st != 1)
+ csa->d_st = 0;
+ if (!(csa->beta_st && csa->d_st))
+ goto loop;
+ display(csa, 1);
+ switch (csa->phase)
+ { case 1:
+ /* this should never happen */
+ if (msg_lev >= GLP_MSG_ERR)
+ xprintf("Error: dual simplex failed\n");
+ csa->p_stat = csa->d_stat = GLP_UNDEF;
+ ret = GLP_EFAIL;
+ goto fini;
+ case 2:
+ /* dual unboundedness detected */
+ if (msg_lev >= GLP_MSG_ALL)
+ xprintf("LP HAS NO PRIMAL FEASIBLE SOLUTION\n");
+ csa->p_stat = GLP_NOFEAS;
+ csa->d_stat = GLP_FEAS;
+ ret = 0;
+ goto fini;
+ default:
+ xassert(csa != csa);
+ }
+ }
+ /* compute q-th column of the simplex table */
+#ifdef TIMING
+ t_start = timer();
+#endif
+#if 0 /* 31/III-2016 */
+ spx_eval_tcol(lp, csa->q, tcol);
+#else
+ spx_eval_tcol(lp, csa->q, csa->tcol.vec);
+ fvs_gather_vec(&csa->tcol, DBL_EPSILON);
+#endif
+#ifdef TIMING
+ t_pivcol += timer() - t_start;
+#endif
+ /* FIXME: tcol[p] and trow[q] should be close to each other */
+#if 0 /* 26/V-2017 by cmatraki */
+ xassert(csa->tcol.vec[csa->p] != 0.0);
+#else
+ if (csa->tcol.vec[csa->p] == 0.0)
+ { if (msg_lev >= GLP_MSG_ERR)
+ xprintf("Error: tcol[p] = 0.0\n");
+ csa->p_stat = csa->d_stat = GLP_UNDEF;
+ ret = GLP_EFAIL;
+ goto fini;
+ }
+#endif
+ /* update values of basic variables for adjacent basis */
+ k = head[csa->p]; /* x[k] = xB[p] */
+ p_flag = (l[k] != u[k] && beta[csa->p] > u[k]);
+#if 0 /* 16/III-2016 */
+ spx_update_beta(lp, beta, csa->p, p_flag, csa->q, tcol);
+ csa->beta_st = 2;
+#else
+ /* primal solution may be invalidated due to long step */
+#ifdef TIMING
+ t_start = timer();
+#endif
+ if (csa->beta_st)
+#if 0 /* 30/III-2016 */
+ { spx_update_beta(lp, beta, csa->p, p_flag, csa->q, tcol);
+#else
+ { spx_update_beta_s(lp, beta, csa->p, p_flag, csa->q,
+ &csa->tcol);
+ /* also update vector r of primal infeasibilities */
+ /*fvs_check_vec(&csa->r);*/
+ switch (csa->phase)
+ { case 1:
+ spy_update_r(lp, csa->p, csa->q, beta, &csa->tcol,
+ 1e-8, 0.0, &csa->r);
+ break;
+ case 2:
+ spy_update_r(lp, csa->p, csa->q, beta, &csa->tcol,
+ tol_bnd, tol_bnd1, &csa->r);
+ break;
+ default:
+ xassert(csa != csa);
+ }
+ /*fvs_check_vec(&csa->r);*/
+#endif
+ csa->beta_st = 2;
+ }
+#ifdef TIMING
+ t_upd1 += timer() - t_start;
+#endif
+#endif
+#if 1 /* 11/VII-2017 */
+ /* check for stalling */
+ { int k;
+ xassert(1 <= csa->p && csa->p <= m);
+ xassert(1 <= csa->q && csa->q <= n-m);
+ /* FIXME: recompute d[q]; see spx_update_d */
+ k = head[m+csa->q]; /* x[k] = xN[q] */
+ if (!(lp->l[k] == -DBL_MAX && lp->u[k] == +DBL_MAX))
+ { if (fabs(d[csa->q]) >= 1e-6)
+ { csa->degen = 0;
+ goto skip1;
+ }
+ /* degenerate iteration has been detected */
+ csa->degen++;
+ if (perturb < 0 && csa->degen >= 200)
+ { if (msg_lev >= GLP_MSG_ALL)
+ xprintf("Perturbing LP to avoid stalling [%d]...\n",
+ csa->it_cnt);
+ perturb = 1;
+ }
+skip1: ;
+ }
+ }
+#endif
+ /* update reduced costs of non-basic variables for adjacent
+ * basis */
+#if 1 /* 28/III-2016 */
+ xassert(csa->d_st);
+#endif
+#ifdef TIMING
+ t_start = timer();
+#endif
+#if 0 /* 30/III-2016 */
+ if (spx_update_d(lp, d, csa->p, csa->q, trow, tcol) <= 1e-9)
+#else
+ if (spx_update_d_s(lp, d, csa->p, csa->q, &csa->trow, &csa->tcol)
+ <= 1e-9)
+#endif
+ { /* successful updating */
+ csa->d_st = 2;
+ }
+ else
+ { /* new reduced costs are inaccurate */
+ csa->d_st = 0;
+ }
+#ifdef TIMING
+ t_upd2 += timer() - t_start;
+#endif
+ /* update steepest edge weights for adjacent basis, if used */
+#ifdef TIMING
+ t_start = timer();
+#endif
+ if (se != NULL)
+ { if (refct > 0)
+#if 0 /* 30/III-2016 */
+ { if (spy_update_gamma(lp, se, csa->p, csa->q, trow, tcol)
+ <= 1e-3)
+#else
+ { if (spy_update_gamma_s(lp, se, csa->p, csa->q, &csa->trow,
+ &csa->tcol) <= 1e-3)
+#endif
+ { /* successful updating */
+ refct--;
+ }
+ else
+ { /* new weights are inaccurate; reset reference space */
+ se->valid = 0;
+ }
+ }
+ else
+ { /* too many updates; reset reference space */
+ se->valid = 0;
+ }
+ }
+#ifdef TIMING
+ t_upd3 += timer() - t_start;
+#endif
+#ifdef TIMING
+ t_start = timer();
+#endif
+ /* update matrix N for adjacent basis, if used */
+ if (nt != NULL)
+ spx_update_nt(lp, nt, csa->p, csa->q);
+#ifdef TIMING
+ t_upd4 += timer() - t_start;
+#endif
+ /* change current basis header to adjacent one */
+ spx_change_basis(lp, csa->p, p_flag, csa->q);
+ /* and update factorization of the basis matrix */
+#ifdef TIMING
+ t_start = timer();
+#endif
+#if 0 /* 16/III-2016 */
+ if (csa->p > 0)
+#endif
+ spx_update_invb(lp, csa->p, head[csa->p]);
+#ifdef TIMING
+ t_upd5 += timer() - t_start;
+#endif
+ if (perturb > 0 && csa->d_st)
+ play_coef(csa, 0);
+ /* dual simplex iteration complete */
+ csa->it_cnt++;
+ goto loop;
+fini:
+#ifdef TIMING
+ t_total = timer() - t_total;
+ xprintf("Total time = %10.3f\n", t_total);
+ xprintf("Factorization = %10.3f\n", t_fact);
+ xprintf("Ratio test = %10.3f\n", t_rtest);
+ xprintf("Pivot column = %10.3f\n", t_pivcol);
+ xprintf("Updating beta = %10.3f\n", t_upd1);
+ xprintf("Updating d = %10.3f\n", t_upd2);
+ xprintf("Updating gamma = %10.3f\n", t_upd3);
+ xprintf("Updating N = %10.3f\n", t_upd4);
+ xprintf("Updating inv(B) = %10.3f\n", t_upd5);
+#endif
+ return ret;
+}
+
+int spy_dual(glp_prob *P, const glp_smcp *parm)
+{ /* driver to the dual simplex method */
+ struct csa csa_, *csa = &csa_;
+ SPXLP lp;
+ SPXAT at;
+ SPXNT nt;
+ SPYSE se;
+ int ret, *map, *daeh;
+#if SCALE_Z
+ int i, j, k;
+#endif
+ /* build working LP and its initial basis */
+ memset(csa, 0, sizeof(struct csa));
+ csa->lp = &lp;
+ spx_init_lp(csa->lp, P, parm->excl);
+ spx_alloc_lp(csa->lp);
+ map = talloc(1+P->m+P->n, int);
+ spx_build_lp(csa->lp, P, parm->excl, parm->shift, map);
+ spx_build_basis(csa->lp, P, map);
+ switch (P->dir)
+ { case GLP_MIN:
+ csa->dir = +1;
+ break;
+ case GLP_MAX:
+ csa->dir = -1;
+ break;
+ default:
+ xassert(P != P);
+ }
+#if SCALE_Z
+ csa->fz = 0.0;
+ for (k = 1; k <= csa->lp->n; k++)
+ { double t = fabs(csa->lp->c[k]);
+ if (csa->fz < t)
+ csa->fz = t;
+ }
+ if (csa->fz <= 1000.0)
+ csa->fz = 1.0;
+ else
+ csa->fz /= 1000.0;
+ /*xprintf("csa->fz = %g\n", csa->fz);*/
+ for (k = 0; k <= csa->lp->n; k++)
+ csa->lp->c[k] /= csa->fz;
+#endif
+ csa->orig_b = talloc(1+csa->lp->m, double);
+ memcpy(csa->orig_b, csa->lp->b, (1+csa->lp->m) * sizeof(double));
+ csa->orig_c = talloc(1+csa->lp->n, double);
+ memcpy(csa->orig_c, csa->lp->c, (1+csa->lp->n) * sizeof(double));
+ csa->orig_l = talloc(1+csa->lp->n, double);
+ memcpy(csa->orig_l, csa->lp->l, (1+csa->lp->n) * sizeof(double));
+ csa->orig_u = talloc(1+csa->lp->n, double);
+ memcpy(csa->orig_u, csa->lp->u, (1+csa->lp->n) * sizeof(double));
+ switch (parm->aorn)
+ { case GLP_USE_AT:
+ /* build matrix A in row-wise format */
+ csa->at = &at;
+ csa->nt = NULL;
+ spx_alloc_at(csa->lp, csa->at);
+ spx_build_at(csa->lp, csa->at);
+ break;
+ case GLP_USE_NT:
+ /* build matrix N in row-wise format for initial basis */
+ csa->at = NULL;
+ csa->nt = &nt;
+ spx_alloc_nt(csa->lp, csa->nt);
+ spx_init_nt(csa->lp, csa->nt);
+ spx_build_nt(csa->lp, csa->nt);
+ break;
+ default:
+ xassert(parm != parm);
+ }
+ /* allocate and initialize working components */
+ csa->phase = 0;
+ csa->beta = talloc(1+csa->lp->m, double);
+ csa->beta_st = 0;
+ csa->d = talloc(1+csa->lp->n-csa->lp->m, double);
+ csa->d_st = 0;
+ switch (parm->pricing)
+ { case GLP_PT_STD:
+ csa->se = NULL;
+ break;
+ case GLP_PT_PSE:
+ csa->se = &se;
+ spy_alloc_se(csa->lp, csa->se);
+ break;
+ default:
+ xassert(parm != parm);
+ }
+#if 0 /* 30/III-2016 */
+ csa->list = talloc(1+csa->lp->m, int);
+ csa->trow = talloc(1+csa->lp->n-csa->lp->m, double);
+ csa->tcol = talloc(1+csa->lp->m, double);
+#else
+ fvs_alloc_vec(&csa->r, csa->lp->m);
+ fvs_alloc_vec(&csa->trow, csa->lp->n-csa->lp->m);
+ fvs_alloc_vec(&csa->tcol, csa->lp->m);
+#endif
+#if 1 /* 16/III-2016 */
+ csa->bp = NULL;
+#endif
+ csa->work = talloc(1+csa->lp->m, double);
+ csa->work1 = talloc(1+csa->lp->n-csa->lp->m, double);
+#if 0 /* 11/VI-2017 */
+#if 1 /* 31/III-2016 */
+ fvs_alloc_vec(&csa->wrow, csa->lp->n-csa->lp->m);
+ fvs_alloc_vec(&csa->wcol, csa->lp->m);
+#endif
+#endif
+ /* initialize control parameters */
+ csa->msg_lev = parm->msg_lev;
+ csa->dualp = (parm->meth == GLP_DUALP);
+#if 0 /* 16/III-2016 */
+ switch (parm->r_test)
+ { case GLP_RT_STD:
+ csa->harris = 0;
+ break;
+ case GLP_RT_HAR:
+ csa->harris = 1;
+ break;
+ default:
+ xassert(parm != parm);
+ }
+#else
+ switch (parm->r_test)
+ { case GLP_RT_STD:
+ case GLP_RT_HAR:
+ break;
+ case GLP_RT_FLIP:
+ csa->bp = talloc(1+csa->lp->n-csa->lp->m, SPYBP);
+ break;
+ default:
+ xassert(parm != parm);
+ }
+ csa->r_test = parm->r_test;
+#endif
+ csa->tol_bnd = parm->tol_bnd;
+ csa->tol_bnd1 = .001 * parm->tol_bnd;
+ csa->tol_dj = parm->tol_dj;
+ csa->tol_dj1 = .001 * parm->tol_dj;
+#if 0
+ csa->tol_dj1 = 1e-9 * parm->tol_dj;
+#endif
+ csa->tol_piv = parm->tol_piv;
+ switch (P->dir)
+ { case GLP_MIN:
+ csa->obj_lim = + parm->obj_ul;
+ break;
+ case GLP_MAX:
+ csa->obj_lim = - parm->obj_ll;
+ break;
+ default:
+ xassert(parm != parm);
+ }
+#if SCALE_Z
+ if (csa->obj_lim != DBL_MAX)
+ csa->obj_lim /= csa->fz;
+#endif
+ csa->it_lim = parm->it_lim;
+ csa->tm_lim = parm->tm_lim;
+ csa->out_frq = parm->out_frq;
+ csa->out_dly = parm->out_dly;
+ /* initialize working parameters */
+ csa->tm_beg = xtime();
+ csa->it_beg = csa->it_cnt = P->it_cnt;
+ csa->it_dpy = -1;
+#if 1 /* 15/VII-2017 */
+ csa->tm_dpy = 0.0;
+#endif
+ csa->inv_cnt = 0;
+#if 1 /* 11/VII-2017 */
+ csa->degen = 0;
+#endif
+#if 1 /* 23/III-2016 */
+ csa->ns_cnt = csa->ls_cnt = 0;
+#endif
+ /* try to solve working LP */
+ ret = dual_simplex(csa);
+ /* return basis factorization back to problem object */
+ P->valid = csa->lp->valid;
+ P->bfd = csa->lp->bfd;
+ /* set solution status */
+ P->pbs_stat = csa->p_stat;
+ P->dbs_stat = csa->d_stat;
+ /* if the solver failed, do not store basis header and basic
+ * solution components to problem object */
+ if (ret == GLP_EFAIL)
+ goto skip;
+ /* convert working LP basis to original LP basis and store it to
+ * problem object */
+ daeh = talloc(1+csa->lp->n, int);
+ spx_store_basis(csa->lp, P, map, daeh);
+ /* compute simplex multipliers for final basic solution found by
+ * the solver */
+ spx_eval_pi(csa->lp, csa->work);
+ /* convert working LP solution to original LP solution and store
+ * it to problem object */
+#if SCALE_Z
+ for (i = 1; i <= csa->lp->m; i++)
+ csa->work[i] *= csa->fz;
+ for (j = 1; j <= csa->lp->n-csa->lp->m; j++)
+ csa->d[j] *= csa->fz;
+#endif
+ spx_store_sol(csa->lp, P, parm->shift, map, daeh, csa->beta,
+ csa->work, csa->d);
+ tfree(daeh);
+ /* save simplex iteration count */
+ P->it_cnt = csa->it_cnt;
+ /* report auxiliary/structural variable causing unboundedness */
+ P->some = 0;
+ if (csa->p_stat == GLP_NOFEAS && csa->d_stat == GLP_FEAS)
+ { int k, kk;
+ /* xB[p] = x[k] causes dual unboundedness */
+ xassert(1 <= csa->p && csa->p <= csa->lp->m);
+ k = csa->lp->head[csa->p];
+ xassert(1 <= k && k <= csa->lp->n);
+ /* convert to number of original variable */
+ for (kk = 1; kk <= P->m + P->n; kk++)
+ { if (abs(map[kk]) == k)
+ { P->some = kk;
+ break;
+ }
+ }
+ xassert(P->some != 0);
+ }
+skip: /* deallocate working objects and arrays */
+ spx_free_lp(csa->lp);
+ tfree(map);
+ tfree(csa->orig_b);
+ tfree(csa->orig_c);
+ tfree(csa->orig_l);
+ tfree(csa->orig_u);
+ if (csa->at != NULL)
+ spx_free_at(csa->lp, csa->at);
+ if (csa->nt != NULL)
+ spx_free_nt(csa->lp, csa->nt);
+ tfree(csa->beta);
+ tfree(csa->d);
+ if (csa->se != NULL)
+ spy_free_se(csa->lp, csa->se);
+#if 0 /* 30/III-2016 */
+ tfree(csa->list);
+ tfree(csa->trow);
+#else
+ fvs_free_vec(&csa->r);
+ fvs_free_vec(&csa->trow);
+#endif
+#if 1 /* 16/III-2016 */
+ if (csa->bp != NULL)
+ tfree(csa->bp);
+#endif
+#if 0 /* 29/III-2016 */
+ tfree(csa->tcol);
+#else
+ fvs_free_vec(&csa->tcol);
+#endif
+ tfree(csa->work);
+ tfree(csa->work1);
+#if 0 /* 11/VI-2017 */
+#if 1 /* 31/III-2016 */
+ fvs_free_vec(&csa->wrow);
+ fvs_free_vec(&csa->wcol);
+#endif
+#endif
+ /* return to calling program */
+ return ret >= 0 ? ret : GLP_EFAIL;
+}
+
+/* eof */