aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/sha-2/sha-256.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/sha-2/sha-256.c')
-rw-r--r--test/monniaux/sha-2/sha-256.c374
1 files changed, 374 insertions, 0 deletions
diff --git a/test/monniaux/sha-2/sha-256.c b/test/monniaux/sha-2/sha-256.c
new file mode 100644
index 00000000..63ac09b7
--- /dev/null
+++ b/test/monniaux/sha-2/sha-256.c
@@ -0,0 +1,374 @@
+#include <stdint.h>
+#include <string.h>
+#if 0 /* __COMPCERT__ */
+#define my_memcpy(dst, src, size) __builtin_memcpy_aligned(dst, src, size, 1)
+#else
+#define my_memcpy(dst, src, size) memcpy(dst, src, size)
+#endif
+
+#include "sha-256.h"
+
+#define USE_ORIGINAL 1
+#define AUTOINCREMENT 1
+
+#define CHUNK_SIZE 64
+#define TOTAL_LEN_LEN 8
+
+/*
+ * ABOUT bool: this file does not use bool in order to be as pre-C99 compatible as possible.
+ */
+
+/*
+ * Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here.
+ * When useful for clarification, portions of the pseudo-code are reproduced here too.
+ */
+
+/*
+ * Initialize array of round constants:
+ * (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
+ */
+static const uint32_t k[] = {
+ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
+ 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
+ 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
+ 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
+ 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
+ 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
+ 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
+ 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
+};
+
+struct buffer_state {
+ const uint8_t * p;
+ size_t len;
+ size_t total_len;
+ int single_one_delivered; /* bool */
+ int total_len_delivered; /* bool */
+};
+
+static inline uint32_t right_rot(uint32_t value, unsigned int count)
+{
+ /*
+ * Defined behaviour in standard C for all count where 0 < count < 32,
+ * which is what we need here.
+ */
+ return value >> count | value << (32 - count);
+}
+
+/* BEGIN DM */
+#define DEF_ROT(n) \
+static inline uint32_t right_rot##n(uint32_t value) \
+{ \
+ return value >> n | value << (32 - n); \
+}
+DEF_ROT(2)
+DEF_ROT(6)
+DEF_ROT(7)
+DEF_ROT(11)
+DEF_ROT(13)
+DEF_ROT(17)
+DEF_ROT(18)
+DEF_ROT(19)
+DEF_ROT(22)
+DEF_ROT(25)
+/* END DM */
+
+static void init_buf_state(struct buffer_state * state, const void * input, size_t len)
+{
+ state->p = input;
+ state->len = len;
+ state->total_len = len;
+ state->single_one_delivered = 0;
+ state->total_len_delivered = 0;
+}
+
+/* Return value: bool */
+static int calc_chunk(uint8_t chunk[CHUNK_SIZE], struct buffer_state * state)
+{
+ size_t space_in_chunk;
+
+ if (state->total_len_delivered) {
+ return 0;
+ }
+
+ if (state->len >= CHUNK_SIZE) {
+ my_memcpy(chunk, state->p, CHUNK_SIZE);
+ state->p += CHUNK_SIZE;
+ state->len -= CHUNK_SIZE;
+ return 1;
+ }
+
+ memcpy(chunk, state->p, state->len);
+ chunk += state->len;
+ space_in_chunk = CHUNK_SIZE - state->len;
+ state->p += state->len;
+ state->len = 0;
+
+ /* If we are here, space_in_chunk is one at minimum. */
+ if (!state->single_one_delivered) {
+ *chunk++ = 0x80;
+ space_in_chunk -= 1;
+ state->single_one_delivered = 1;
+ }
+
+ /*
+ * Now:
+ * - either there is enough space left for the total length, and we can conclude,
+ * - or there is too little space left, and we have to pad the rest of this chunk with zeroes.
+ * In the latter case, we will conclude at the next invokation of this function.
+ */
+ if (space_in_chunk >= TOTAL_LEN_LEN) {
+ const size_t left = space_in_chunk - TOTAL_LEN_LEN;
+ size_t len = state->total_len;
+ int i;
+ memset(chunk, 0x00, left);
+ chunk += left;
+
+ /* Storing of len * 8 as a big endian 64-bit without overflow. */
+ chunk[7] = (uint8_t) (len << 3);
+ len >>= 5;
+ for (i = 6; i >= 0; i--) {
+ chunk[i] = (uint8_t) len;
+ len >>= 8;
+ }
+ state->total_len_delivered = 1;
+ } else {
+ memset(chunk, 0x00, space_in_chunk);
+ }
+
+ return 1;
+}
+
+/*
+ * Limitations:
+ * - Since input is a pointer in RAM, the data to hash should be in RAM, which could be a problem
+ * for large data sizes.
+ * - SHA algorithms theoretically operate on bit strings. However, this implementation has no support
+ * for bit string lengths that are not multiples of eight, and it really operates on arrays of bytes.
+ * In particular, the len parameter is a number of bytes.
+ */
+
+#if USE_ORIGINAL
+void calc_sha_256(uint8_t hash[32], const void * input, size_t len)
+{
+ /*
+ * Note 1: All integers (expect indexes) are 32-bit unsigned integers and addition is calculated modulo 2^32.
+ * Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 = i = 63
+ * Note 3: The compression function uses 8 working variables, a through h
+ * Note 4: Big-endian convention is used when expressing the constants in this pseudocode,
+ * and when parsing message block data from bytes to words, for example,
+ * the first word of the input message "abc" after padding is 0x61626380
+ */
+
+ /*
+ * Initialize hash values:
+ * (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
+ */
+ uint32_t h[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
+ int i, j;
+
+ /* 512-bit chunks is what we will operate on. */
+ uint8_t chunk[64];
+
+ struct buffer_state state;
+
+ init_buf_state(&state, input, len);
+
+ while (calc_chunk(chunk, &state)) {
+ uint32_t ah[8];
+
+ /*
+ * create a 64-entry message schedule array w[0..63] of 32-bit words
+ * (The initial values in w[0..63] don't matter, so many implementations zero them here)
+ * copy chunk into first 16 words w[0..15] of the message schedule array
+ */
+ uint32_t w[64];
+ const uint8_t *p = chunk;
+
+ memset(w, 0x00, sizeof w);
+ for (i = 0; i < 16; i++) {
+ w[i] = (uint32_t) p[0] << 24 | (uint32_t) p[1] << 16 |
+ (uint32_t) p[2] << 8 | (uint32_t) p[3];
+ p += 4;
+ }
+
+ /* Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array: */
+ for (i = 16; i < 64; i++) {
+ const uint32_t s0 = right_rot7(w[i - 15]) ^ right_rot18(w[i - 15]) ^ (w[i - 15] >> 3);
+ const uint32_t s1 = right_rot17(w[i - 2]) ^ right_rot19(w[i - 2]) ^ (w[i - 2] >> 10);
+ w[i] = w[i - 16] + s0 + w[i - 7] + s1;
+ }
+
+ /* Initialize working variables to current hash value: */
+ for (i = 0; i < 8; i++)
+ ah[i] = h[i];
+
+ /* Compression function main loop: */
+ for (i = 0; i < 64; i++) {
+ const uint32_t s1 = right_rot6(ah[4]) ^ right_rot11(ah[4]) ^ right_rot25(ah[4]);
+ const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]);
+ const uint32_t temp1 = ah[7] + s1 + ch + k[i] + w[i];
+ const uint32_t s0 = right_rot2(ah[0]) ^ right_rot13(ah[0]) ^ right_rot22(ah[0]);
+ const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]);
+ const uint32_t temp2 = s0 + maj;
+
+ ah[7] = ah[6];
+ ah[6] = ah[5];
+ ah[5] = ah[4];
+ ah[4] = ah[3] + temp1;
+ ah[3] = ah[2];
+ ah[2] = ah[1];
+ ah[1] = ah[0];
+ ah[0] = temp1 + temp2;
+ }
+
+ /* Add the compressed chunk to the current hash value: */
+ for (i = 0; i < 8; i++)
+ h[i] += ah[i];
+ }
+
+ /* Produce the final hash value (big-endian): */
+ for (i = 0, j = 0; i < 8; i++)
+ {
+ hash[j++] = (uint8_t) (h[i] >> 24);
+ hash[j++] = (uint8_t) (h[i] >> 16);
+ hash[j++] = (uint8_t) (h[i] >> 8);
+ hash[j++] = (uint8_t) h[i];
+ }
+}
+#else
+/* Modified by D. Monniaux */
+void calc_sha_256(uint8_t hash[32], const void * input, size_t len)
+{
+ /*
+ * Note 1: All integers (expect indexes) are 32-bit unsigned integers and addition is calculated modulo 2^32.
+ * Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 = i = 63
+ * Note 3: The compression function uses 8 working variables, a through h
+ * Note 4: Big-endian convention is used when expressing the constants in this pseudocode,
+ * and when parsing message block data from bytes to words, for example,
+ * the first word of the input message "abc" after padding is 0x61626380
+ */
+
+ /*
+ * Initialize hash values:
+ * (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
+ */
+ uint32_t h[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
+ uint32_t h0 = h[0];
+ uint32_t h1 = h[1];
+ uint32_t h2 = h[2];
+ uint32_t h3 = h[3];
+ uint32_t h4 = h[4];
+ uint32_t h5 = h[5];
+ uint32_t h6 = h[6];
+ uint32_t h7 = h[7];
+ int i, j;
+
+ /* 512-bit chunks is what we will operate on. */
+ uint8_t chunk[64];
+
+ struct buffer_state state;
+
+ init_buf_state(&state, input, len);
+
+ while (calc_chunk(chunk, &state)) {
+ uint32_t ah0, ah1, ah2, ah3, ah4, ah5, ah6, ah7;
+
+ /*
+ * create a 64-entry message schedule array w[0..63] of 32-bit words
+ * (The initial values in w[0..63] don't matter, so many implementations zero them here)
+ * copy chunk into first 16 words w[0..15] of the message schedule array
+ */
+ uint32_t w[64];
+ const uint8_t *p = chunk;
+
+ memset(w, 0x00, sizeof w);
+#ifndef SKIP_SLOW_PARTS
+ for (i = 0; i < 16; i++) {
+ w[i] = (uint32_t) p[0] << 24 | (uint32_t) p[1] << 16 |
+ (uint32_t) p[2] << 8 | (uint32_t) p[3];
+ p += 4;
+ }
+
+ /* Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array: */
+ /* DM this is a SLOW part with ccomp; awkward address computations. */
+ for (i = 16; i < 64; i++) {
+ const uint32_t s0 = right_rot7(w[i - 15]) ^ right_rot18(w[i - 15]) ^ (w[i - 15] >> 3);
+ const uint32_t s1 = right_rot17(w[i - 2]) ^ right_rot19(w[i - 2]) ^ (w[i - 2] >> 10);
+ w[i] = w[i - 16] + s0 + w[i - 7] + s1;
+ }
+#endif
+ /* Initialize working variables to current hash value: */
+ ah0 = h0;
+ ah1 = h1;
+ ah2 = h2;
+ ah3 = h3;
+ ah4 = h4;
+ ah5 = h5;
+ ah6 = h6;
+ ah7 = h7;
+
+ /* Compression function main loop: */
+#if AUTOINCREMENT
+ const uint32_t *ki=k, *wi=w;
+#define KI *ki
+#define WI *wi
+#define STEP i++; ki++; wi++;
+#else
+#define KI k[i]
+#define WI w[i]
+#define STEP i++;
+#endif
+ for (i = 0; i < 64; ) {
+#define CHUNK \
+ { \
+ const uint32_t s1 = right_rot6(ah4) ^ right_rot11(ah4) ^ right_rot25(ah4); \
+ const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6); \
+ const uint32_t temp1 = ah7 + s1 + ch + KI + WI; \
+ const uint32_t s0 = right_rot2(ah0) ^ right_rot13(ah0) ^ right_rot22(ah0); \
+ const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2); \
+ const uint32_t temp2 = s0 + maj; \
+ \
+ ah7 = ah6; \
+ ah6 = ah5; \
+ ah5 = ah4; \
+ ah4 = ah3 + temp1; \
+ ah3 = ah2; \
+ ah2 = ah1; \
+ ah1 = ah0; \
+ ah0 = temp1 + temp2; \
+ STEP \
+ }
+ CHUNK
+ CHUNK
+ }
+
+ /* Add the compressed chunk to the current hash value: */
+ h0 += ah0;
+ h1 += ah1;
+ h2 += ah2;
+ h3 += ah3;
+ h4 += ah4;
+ h5 += ah5;
+ h6 += ah6;
+ h7 += ah7;
+ }
+ h[0]=h0;
+ h[1]=h1;
+ h[2]=h2;
+ h[3]=h3;
+ h[4]=h4;
+ h[5]=h5;
+ h[6]=h6;
+ h[7]=h7;
+
+ /* Produce the final hash value (big-endian): */
+ for (i = 0, j = 0; i < 8; i++)
+ {
+ hash[j++] = (uint8_t) (h[i] >> 24);
+ hash[j++] = (uint8_t) (h[i] >> 16);
+ hash[j++] = (uint8_t) (h[i] >> 8);
+ hash[j++] = (uint8_t) h[i];
+ }
+}
+#endif