aboutsummaryrefslogtreecommitdiffstats
path: root/MenhirLib/Interpreter_correct.v
blob: 083be5b7872c6959b49f389eecf1581931382b22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
(****************************************************************************)
(*                                                                          *)
(*                                   Menhir                                 *)
(*                                                                          *)
(*           Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud         *)
(*                                                                          *)
(*  Copyright Inria. All rights reserved. This file is distributed under    *)
(*  the terms of the GNU Lesser General Public License as published by the  *)
(*  Free Software Foundation, either version 3 of the License, or (at your  *)
(*  option) any later version, as described in the file LICENSE.            *)
(*                                                                          *)
(****************************************************************************)

From Coq Require Import List.
Import ListNotations.
Require Import Alphabet.
Require Grammar Automaton Interpreter.
From Coq.ssr Require Import ssreflect.

Module Make(Import A:Automaton.T) (Import Inter:Interpreter.T A).

(** * Correctness of the interpreter **)

(** We prove that, in any case, if the interpreter accepts returning a
    semantic value, then this is a semantic value of the input **)

Section Init.

Variable init:initstate.

(** [word_has_stack_semantics] relates a word with a stack, stating that the
    word is a concatenation of words that have the semantic values stored in
    the stack. **)
Inductive word_has_stack_semantics:
  forall (word:list token) (stack:stack), Prop :=
  | Nil_stack_whss: word_has_stack_semantics [] []
  | Cons_stack_whss:
    forall (wordq:list token) (stackq:stack),
      word_has_stack_semantics wordq stackq ->

    forall (wordt:list token) (s:noninitstate)
           (pt:parse_tree (last_symb_of_non_init_state s) wordt),

    word_has_stack_semantics
       (wordq++wordt) (existT noninitstate_type s (pt_sem pt)::stackq).

(** [pop] preserves the invariant **)
Lemma pop_spec_ptl A symbols_to_pop action word_stk stk (res : A) stk' :
  pop_spec symbols_to_pop stk action stk' res ->
  word_has_stack_semantics word_stk stk ->
  exists word_stk' word_res (ptl:parse_tree_list symbols_to_pop word_res),
    (word_stk' ++ word_res = word_stk)%list /\
    word_has_stack_semantics word_stk' stk' /\
    ptl_sem ptl action = res.
Proof.
  intros Hspec. revert word_stk.
  induction Hspec as [stk sem|symbols_to_pop st stk action sem stk' res Hspec IH];
    intros word_stk Hword_stk.
  - exists word_stk, [], Nil_ptl. rewrite -app_nil_end. eauto.
  - inversion Hword_stk. subst_existT.
    edestruct IH as (word_stk' & word_res & ptl & ? & Hword_stk'' & ?); [eassumption|].
    subst. eexists word_stk', (word_res ++ _)%list, (Cons_ptl ptl _).
    split; [|split]=>//. rewrite app_assoc //.
Qed.

(** [reduce_step] preserves the invariant **)
Lemma reduce_step_invariant (stk:stack) (prod:production) Hv Hi word buffer :
  word_has_stack_semantics word stk ->
  match reduce_step init stk prod buffer Hv Hi with
  | Accept_sr sem buffer_new =>
    exists pt : parse_tree (NT (start_nt init)) word,
    buffer = buffer_new /\ pt_sem pt = sem
  | Progress_sr stk' buffer_new =>
    buffer = buffer_new /\ word_has_stack_semantics word stk'
  | Fail_sr => True
  end.
Proof.
  intros Hword_stk. unfold reduce_step.
  match goal with
  | |- context [pop_state_valid init ?stp stk ?x1 ?x2 ?x3 ?x4 ?x5] =>
    generalize (pop_state_valid init stp stk x1 x2 x3 x4 x5)
  end.
  destruct pop as [stk' sem] eqn:Hpop=>/= Hv'.
  apply pop_spec_ok in Hpop. apply pop_spec_ptl with (word_stk := word) in Hpop=>//.
  destruct Hpop as (word1 & word2 & ptl & <- & Hword1 & <-).
  generalize (reduce_step_subproof1 init stk prod Hv stk' (fun _ : True => Hv')).
  destruct goto_table as [[st' EQ]|].
  - intros _. split=>//.
    change (ptl_sem ptl (prod_action prod)) with (pt_sem (Non_terminal_pt prod ptl)).
    generalize (Non_terminal_pt prod ptl). rewrite ->EQ. intros pt. by constructor.
  - intros Hstk'. destruct Hword1; [|by destruct Hstk'].
    generalize (reduce_step_subproof0 init prod [] (fun _ : True => Hstk')).
    simpl in Hstk'. rewrite -Hstk' // => EQ. rewrite cast_eq.
    exists (Non_terminal_pt prod ptl). by split.
Qed.

(** [step] preserves the invariant **)
Lemma step_invariant stk word buffer safe Hi :
  word_has_stack_semantics word stk ->
  match step safe init stk buffer Hi with
  | Accept_sr sem buffer_new =>
    exists word_new (pt:parse_tree (NT (start_nt init)) word_new),
      (word ++ buffer = word_new ++ buffer_new)%buf /\
      pt_sem pt = sem
  | Progress_sr stk_new buffer_new =>
    exists word_new,
      (word ++ buffer = word_new ++ buffer_new)%buf /\
      word_has_stack_semantics word_new stk_new
  | Fail_sr => True
  end.
Proof.
  intros Hword_stk. unfold step.
  generalize (reduce_ok safe (state_of_stack init stk)).
  destruct action_table as [prod|awt].
  - intros Hv.
    apply (reduce_step_invariant stk prod (fun _ => Hv) Hi word buffer) in Hword_stk.
    destruct reduce_step=>//.
    + destruct Hword_stk as (pt & <- & <-); eauto.
    + destruct Hword_stk as [<- ?]; eauto.
  - destruct buffer as [tok buffer]=>/=.
    move=> /(_ (token_term tok)) Hv. destruct (awt (token_term tok)) as [st EQ|prod|]=>//.
    + eexists _. split; [by apply app_buf_assoc with (l2 := [_])|].
      change (token_sem tok) with (pt_sem (Terminal_pt tok)).
      generalize (Terminal_pt tok). generalize [tok].
      rewrite -> EQ=>word' pt /=. by constructor.
    + apply (reduce_step_invariant stk prod (fun _ => Hv) Hi word (tok::buffer))
        in Hword_stk.
      destruct reduce_step=>//.
      * destruct Hword_stk as (pt & <- & <-); eauto.
      * destruct Hword_stk as [<- ?]; eauto.
Qed.

(** [step] preserves the invariant **)
Lemma parse_fix_invariant stk word buffer safe log_n_steps Hi :
  word_has_stack_semantics word stk ->
  match proj1_sig (parse_fix safe init stk buffer log_n_steps Hi) with
  | Accept_sr sem buffer_new =>
    exists word_new (pt:parse_tree (NT (start_nt init)) word_new),
      (word ++ buffer = word_new ++ buffer_new)%buf /\
      pt_sem pt = sem
  | Progress_sr stk_new buffer_new =>
    exists word_new,
      (word ++ buffer = word_new ++ buffer_new)%buf /\
      word_has_stack_semantics word_new stk_new
  | Fail_sr => True
  end.
Proof.
  revert stk word buffer Hi.
  induction log_n_steps as [|log_n_steps IH]=>/= stk word buffer Hi Hstk;
    [by apply step_invariant|].
  assert (IH1 := IH stk word buffer Hi Hstk).
  destruct parse_fix as [[] Hi']=>/=; try by apply IH1.
  destruct IH1 as (word' & -> & Hstk')=>//. by apply IH.
Qed.

(** The interpreter is correct : if it returns a semantic value, then the input
    word has this semantic value.
**)
Theorem parse_correct safe buffer log_n_steps:
  match parse safe init buffer log_n_steps with
  | Parsed_pr sem buffer_new =>
    exists word_new (pt:parse_tree (NT (start_nt init)) word_new),
      buffer = (word_new ++ buffer_new)%buf /\
      pt_sem pt = sem
  | _ => True
  end.
Proof.
  unfold parse.
  assert (Hparse := parse_fix_invariant [] [] buffer safe log_n_steps
                                        (parse_subproof init)).
  destruct proj1_sig=>//. apply Hparse. constructor.
Qed.

End Init.

End Make.