aboutsummaryrefslogtreecommitdiffstats
path: root/MenhirLib/Validator_safe.v
blob: 0f32ea5026ac05769902ffde999537d4df5e3812 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
(****************************************************************************)
(*                                                                          *)
(*                                   Menhir                                 *)
(*                                                                          *)
(*           Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud         *)
(*                                                                          *)
(*  Copyright Inria. All rights reserved. This file is distributed under    *)
(*  the terms of the GNU Lesser General Public License as published by the  *)
(*  Free Software Foundation, either version 3 of the License, or (at your  *)
(*  option) any later version, as described in the file LICENSE.            *)
(*                                                                          *)
(****************************************************************************)

From Coq Require Import List Syntax Derive.
Import ListNotations.
From Coq.ssr Require Import ssreflect.
Require Automaton.
Require Import Alphabet Validator_classes.

Module Make(Import A:Automaton.T).

(** The singleton predicate for states **)
Definition singleton_state_pred (state:state) :=
  (fun state' => match compare state state' with Eq => true |_ => false end).

(** [past_state_of_non_init_state], extended for all states. **)
Definition past_state_of_state (state:state) :=
  match state with
  | Init _ => []
  | Ninit nis => past_state_of_non_init_state nis
  end.

(** Concatenations of last and past **)
Definition head_symbs_of_state (state:state) :=
  match state with
  | Init _ => []
  | Ninit s =>
    last_symb_of_non_init_state s::past_symb_of_non_init_state s
  end.
Definition head_states_of_state (state:state) :=
  singleton_state_pred state::past_state_of_state state.

(** * Validation for correctness **)

(** Prefix predicate between two lists of symbols. **)
Inductive prefix: list symbol -> list symbol -> Prop :=
| prefix_nil: forall l, prefix [] l
| prefix_cons: forall l1 l2 x, prefix l1 l2 -> prefix (x::l1) (x::l2).

(** [prefix] is transitive **)
Lemma prefix_trans:
  forall (l1 l2 l3:list symbol), prefix l1 l2 -> prefix l2 l3 -> prefix l1 l3.
Proof.
  intros l1 l2 l3 H1 H2. revert l3 H2.
  induction H1; [now constructor|]. inversion 1. subst. constructor. eauto.
Qed.

Fixpoint is_prefix (l1 l2:list symbol) :=
  match l1, l2 with
  | [], _ => true
  | t1::q1, t2::q2 => (compare_eqb t1 t2 && is_prefix q1 q2)%bool
  | _::_, [] => false
  end.

Global Instance prefix_is_validator l1 l2 : IsValidator (prefix l1 l2) (is_prefix l1 l2).
Proof.
  revert l2. induction l1 as [|x1 l1 IH]=>l2 Hpref.
  - constructor.
  - destruct l2 as [|x2 l2]=>//.
    move: Hpref=> /andb_prop [/compare_eqb_iff -> /IH ?]. by constructor.
Qed.

(** If we shift, then the known top symbols of the destination state is
    a prefix of the known top symbols of the source state, with the new
    symbol added. **)
Definition shift_head_symbs :=
  forall s,
    match action_table s with
    | Lookahead_act awp => forall t,
        match awp t with
        | Shift_act s2 _ =>
          prefix (past_symb_of_non_init_state s2) (head_symbs_of_state s)
        | _ => True
        end
    | _ => True
    end.

(** When a goto happens, then the known top symbols of the destination state
    is a prefix of the known top symbols of the source state, with the new
    symbol added. **)
Definition goto_head_symbs :=
  forall s nt,
    match goto_table s nt with
    | Some (exist _ s2 _) =>
      prefix (past_symb_of_non_init_state s2) (head_symbs_of_state s)
    | None => True
    end.

(** We have to say the same kind of checks for the assumptions about the
    states stack. However, theses assumptions are predicates. So we define
    a notion of "prefix" over predicates lists, that means, basically, that
    an assumption entails another **)
Inductive prefix_pred: list (state->bool) -> list (state->bool) -> Prop :=
  | prefix_pred_nil: forall l, prefix_pred [] l
  | prefix_pred_cons: forall l1 l2 f1 f2,
     (forall x, implb (f2 x) (f1 x) = true) ->
     prefix_pred l1 l2 -> prefix_pred (f1::l1) (f2::l2).

(** [prefix_pred] is transitive **)
Lemma prefix_pred_trans:
  forall (l1 l2 l3:list (state->bool)),
  prefix_pred l1 l2 -> prefix_pred l2 l3 -> prefix_pred l1 l3.
Proof.
  intros l1 l2 l3 H1 H2. revert l3 H2.
  induction H1 as [|l1 l2 f1 f2 Hf2f1]; [now constructor|].
  intros l3. inversion 1 as [|??? f3 Hf3f2]. subst. constructor; [|now eauto].
  intros x. specialize (Hf3f2 x). specialize (Hf2f1 x).
  repeat destruct (_ x); auto.
Qed.

Fixpoint is_prefix_pred (l1 l2:list (state->bool)) :=
  match l1, l2 with
  | [], _ => true
  | f1::q1, f2::q2 =>
    (forallb (fun x => implb (f2 x) (f1 x)) all_list
      && is_prefix_pred q1 q2)%bool
  | _::_, [] => false
  end.

Global Instance prefix_pred_is_validator l1 l2 :
  IsValidator (prefix_pred l1 l2) (is_prefix_pred l1 l2).
Proof.
  revert l2. induction l1 as [|x1 l1 IH]=>l2 Hpref.
  - constructor.
  - destruct l2 as [|x2 l2]=>//.
    move: Hpref=> /andb_prop [/forallb_forall ? /IH ?].
    constructor; auto using all_list_forall.
Qed.

(** The assumptions about state stack is conserved when we shift **)
Definition shift_past_state :=
  forall s,
    match action_table s with
    | Lookahead_act awp => forall t,
        match awp t with
        | Shift_act s2 _ =>
          prefix_pred (past_state_of_non_init_state s2)
                      (head_states_of_state s)
        | _ => True
        end
    | _ => True
    end.

(** The assumptions about state stack is conserved when we do a goto **)
Definition goto_past_state :=
  forall s nt,
    match goto_table s nt with
    | Some (exist _ s2 _) =>
      prefix_pred (past_state_of_non_init_state s2)
                  (head_states_of_state s)
    | None => True
    end.

(** What states are possible after having popped these symbols from the
    stack, given the annotation of the current state ? **)
Inductive state_valid_after_pop (s:state):
  list symbol -> list (state -> bool) -> Prop :=
  | state_valid_after_pop_nil1:
    forall p pl, p s = true -> state_valid_after_pop s [] (p::pl)
  | state_valid_after_pop_nil2:
    forall sl, state_valid_after_pop s sl []
  | state_valid_after_pop_cons:
    forall st sq p pl, state_valid_after_pop s sq pl ->
      state_valid_after_pop s (st::sq) (p::pl).

Fixpoint is_state_valid_after_pop (state:state) (to_pop:list symbol) annot :=
  match annot, to_pop with
  | [], _ => true
  | p::_, [] => p state
  | p::pl, s::sl => is_state_valid_after_pop state sl pl
  end.

Global Instance impl_is_state_valid_after_pop_is_validator state sl pl P b :
  IsValidator P b ->
  IsValidator (state_valid_after_pop state sl pl -> P)
              (if is_state_valid_after_pop state sl pl then b else true).
Proof.
  destruct (is_state_valid_after_pop _ sl pl) eqn:EQ.
  - intros ???. by eapply is_validator.
  - intros _ _ Hsvap. exfalso. induction Hsvap=>//; [simpl in EQ; congruence|].
    by destruct sl.
Qed.

(** A state is valid for reducing a production when :
      - The assumptions on the state are such that we will find the right hand
        side of the production on the stack.
      - We will be able to do a goto after having popped the right hand side.
**)
Definition valid_for_reduce (state:state) prod :=
    prefix (prod_rhs_rev prod) (head_symbs_of_state state) /\
    forall state_new,
    state_valid_after_pop state_new
      (prod_rhs_rev prod) (head_states_of_state state) ->
    match goto_table state_new (prod_lhs prod) with
    | None =>
      match state_new with
      | Init i => prod_lhs prod = start_nt i
      | Ninit _ => False
      end
    | _ => True
    end.

(** All the states that does a reduce are valid for reduction **)
Definition reduce_ok :=
  forall s,
    match action_table s with
    | Lookahead_act awp =>
      forall t, match awp t with
                | Reduce_act p => valid_for_reduce s p
                | _ => True
                end
    | Default_reduce_act p => valid_for_reduce s p
    end.

(** The automaton is safe **)
Definition safe :=
  shift_head_symbs /\ goto_head_symbs /\ shift_past_state /\
  goto_past_state /\ reduce_ok.

Derive is_safe
SuchThat (IsValidator safe (is_safe ()))
As safe_is_validator.
Proof. subst is_safe. instantiate (1:=fun _ => _). apply _. Qed.

End Make.