aboutsummaryrefslogtreecommitdiffstats
path: root/aarch64/Asmblockdeps.v
blob: 0427d1c4274f2c1024e240f7aea1416970242ccd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
(* *************************************************************)
(*                                                             *)
(*             The Compcert verified compiler                  *)
(*                                                             *)
(*           Sylvain Boulmé     Grenoble-INP, VERIMAG          *)
(*           David Monniaux     CNRS, VERIMAG                  *)
(*           Cyril Six          Kalray                         *)
(*           Léo Gourdin        UGA, VERIMAG                   *)
(*                                                             *)
(*  Copyright Kalray. Copyright VERIMAG. All rights reserved.  *)
(*  This file is distributed under the terms of the INRIA      *)
(*  Non-Commercial License Agreement.                          *)
(*                                                             *)
(* *************************************************************)

(** * Translation from [Asmblock] to [AbstractBB] *)

(** We define a specific instance [L] of [AbstractBB] and translate [bblocks] from [Asmblock] into [L].
    [AbstractBB] will then define a sequential semantics for [L].
    We prove a bisimulation between the sequential semantics of [L] and [Asmblock].
    Then, the checker on [Asmblock] is deduced from those of [L].
 *)

Require Import AST.
Require Import Asm Asmblock.
Require Import Asmblockgenproof0 Asmblockprops.
Require Import Values.
Require Import Globalenvs.
Require Import Memory.
Require Import Errors.
Require Import Integers.
Require Import Floats.
Require Import ZArith.
Require Import Coqlib.
Require Import ImpSimuTest.
Require Import Axioms.
Require Import Permutation.
Require Import Events.

Require Import Lia.

Open Scope impure.

(** auxiliary treatments of builtins *)

Definition has_builtin(bb: bblock): bool :=
 match exit bb with
 | Some (Pbuiltin _ _ _) => true
 | _ => false
 end.

Remark builtin_arg_eq_dreg: forall (a b: builtin_arg dreg), {a=b} + {a<>b}.
Proof.
  intros.
  apply (builtin_arg_eq dreg_eq).
Qed.

Remark builtin_res_eq_dreg: forall (a b: builtin_res dreg), {a=b} + {a<>b}.
Proof. 
  intros. 
  apply (builtin_res_eq dreg_eq).
Qed.

Definition assert_same_builtin (bb1 bb2: bblock): ?? unit := 
  match exit bb1 with
  | Some (Pbuiltin ef1 lbar1 brr1) =>
     match exit bb2 with
     | Some (Pbuiltin ef2 lbar2 brr2) => 
        if (external_function_eq ef1 ef2) then
           if (list_eq_dec builtin_arg_eq_dreg lbar1 lbar2) then
              if (builtin_res_eq_dreg brr1 brr2) then RET tt
              else FAILWITH "Different brr in Pbuiltin"
           else FAILWITH "Different lbar in Pbuiltin"
        else FAILWITH "Different ef in Pbuiltin"
     | _ =>  FAILWITH "Expected a builtin: found something else" (* XXX: on peut raffiner le message d'erreur si nécessaire *)
     end
  | _ => RET tt (* ok *)
  end.

Lemma assert_same_builtin_correct (bb1 bb2: bblock):
  WHEN assert_same_builtin bb1 bb2 ~> _ THEN
    has_builtin bb1 = true -> exit bb1 = exit bb2.
Proof.
  unfold assert_same_builtin, has_builtin.
  destruct (exit bb1) as [[]|]; simpl; try (wlp_simplify; congruence).
  destruct (exit bb2) as [[]|]; wlp_simplify.
Qed.
Global Opaque assert_same_builtin.
Local Hint Resolve assert_same_builtin_correct: wlp.

(** Definition of [L] *)

Module P<: ImpParam.
Module R := Pos.

Section IMPPARAM.

Definition env := Genv.t fundef unit.

Record genv_wrap := { _genv: env; _fn: function; _lk: aarch64_linker }.
Definition genv := genv_wrap.

Variable Ge: genv.

Inductive value_wrap :=
  | Val (v: val)
  | Memstate (m: mem)
  | Bool (b: bool)
.

Definition value := value_wrap.

Record CRflags := { _CN: val; _CZ:val; _CC: val; _CV: val }.

Inductive control_op :=
  | Ob (l: label)
  | Obc (c: testcond) (l: label)
  | Obl (id: ident)
  | Obs (id: ident)
  | Ocbnz (sz: isize) (l: label)
  | Ocbz (sz: isize) (l: label)
  | Otbnz (sz: isize) (n: int) (l: label)
  | Otbz (sz: isize) (n: int) (l: label)
  | Obtbl (l: list label)
  | OError
  | OIncremPC (sz: Z)
.

Inductive arith_op :=
  | OArithP (n: arith_p)
  | OArithPP (n: arith_pp)
  | OArithPPP (n: arith_ppp)
  | OArithRR0R (n: arith_rr0r)
  | OArithRR0R_XZR (n: arith_rr0r) (vz: val)
  | OArithRR0 (n: arith_rr0)
  | OArithRR0_XZR (n: arith_rr0) (vz: val)
  | OArithARRRR0 (n: arith_arrrr0)
  | OArithARRRR0_XZR (n: arith_arrrr0) (vz: val)
  | OArithComparisonPP_CN (n: arith_comparison_pp)
  | OArithComparisonPP_CZ (n: arith_comparison_pp)
  | OArithComparisonPP_CC (n: arith_comparison_pp)
  | OArithComparisonPP_CV (n: arith_comparison_pp)
  | OArithComparisonR0R_CN (n: arith_comparison_r0r) (is: isize)
  | OArithComparisonR0R_CZ (n: arith_comparison_r0r) (is: isize)
  | OArithComparisonR0R_CC (n: arith_comparison_r0r) (is: isize)
  | OArithComparisonR0R_CV (n: arith_comparison_r0r) (is: isize)
  | OArithComparisonR0R_CN_XZR (n: arith_comparison_r0r) (is: isize) (vz: val)
  | OArithComparisonR0R_CZ_XZR (n: arith_comparison_r0r) (is: isize) (vz: val)
  | OArithComparisonR0R_CC_XZR (n: arith_comparison_r0r) (is: isize) (vz: val)
  | OArithComparisonR0R_CV_XZR (n: arith_comparison_r0r) (is: isize) (vz: val)
  | OArithComparisonP_CN (n: arith_comparison_p)
  | OArithComparisonP_CZ (n: arith_comparison_p)
  | OArithComparisonP_CC (n: arith_comparison_p)
  | OArithComparisonP_CV (n: arith_comparison_p)
  | Ocset (c: testcond)
  | Ofmovi (fsz: fsize)
  | Ofmovi_XZR (fsz: fsize)
  | Ocsel (c: testcond)
  | Ofnmul (fsz: fsize)
.

Inductive store_op :=
  | Ostore1 (st: store_rs_a) (a: addressing)
  | Ostore2 (st: store_rs_a) (a: addressing)
  | OstoreU (st: store_rs_a) (a: addressing)
.

Inductive load_op :=
  | Oload1 (ld: load_rd_a) (a: addressing)
  | Oload2 (ld: load_rd_a) (a: addressing)
  | OloadU (ld: load_rd_a) (a: addressing)
.

Inductive allocf_op :=
  | OAllocf_SP (sz: Z) (linkofs: ptrofs)
  | OAllocf_Mem (sz: Z) (linkofs: ptrofs)
.

Inductive freef_op :=
  | OFreef_SP (sz: Z) (linkofs: ptrofs)
  | OFreef_Mem (sz: Z) (linkofs: ptrofs)
.

Inductive op_wrap :=
  (* arithmetic operation *)
  | Arith (op: arith_op)
  | Load (ld: load_op)
  | Store (st: store_op)
  | Allocframe (al: allocf_op)
  | Freeframe (fr: freef_op)
  | Loadsymbol (id: ident)
  | Cvtsw2x
  | Cvtuw2x
  | Cvtx2w
  | Control (co: control_op)
  | Constant (v: val)
.

Definition op:=op_wrap.

Coercion Arith: arith_op >-> op_wrap.

Definition v_compare_int (v1 v2: val) : CRflags :=
  {| _CN := (Val.negative (Val.sub v1 v2));
     _CZ := (Val_cmpu Ceq v1 v2);
     _CC := (Val_cmpu Cge v1 v2);
     _CV := (Val.sub_overflow v1 v2) |}.

Definition v_compare_long (v1 v2: val) : CRflags :=
  {| _CN := (Val.negativel (Val.subl v1 v2));
     _CZ := (Val_cmplu Ceq v1 v2);
     _CC := (Val_cmplu Cge v1 v2);
     _CV := (Val.subl_overflow v1 v2) |}.

Definition v_compare_float (v1 v2: val) : CRflags :=
  match v1, v2 with
  | Vfloat f1, Vfloat f2 =>
      {| _CN := (Val.of_bool (Float.cmp Clt f1 f2));
         _CZ := (Val.of_bool (Float.cmp Ceq f1 f2));
         _CC := (Val.of_bool (negb (Float.cmp Clt f1 f2)));
         _CV := (Val.of_bool (negb (Float.ordered f1 f2))) |}
  | _, _ =>
      {| _CN := Vundef;
         _CZ := Vundef;
         _CC := Vundef;
         _CV := Vundef |}
  end.

Definition v_compare_single (v1 v2: val) : CRflags :=
  match v1, v2 with
  | Vsingle f1, Vsingle f2 =>
      {| _CN := (Val.of_bool (Float32.cmp Clt f1 f2));
         _CZ := (Val.of_bool (Float32.cmp Ceq f1 f2));
         _CC := (Val.of_bool (negb (Float32.cmp Clt f1 f2)));
         _CV := (Val.of_bool (negb (Float32.ordered f1 f2))) |}
  | _, _ =>
      {| _CN := Vundef;
         _CZ := Vundef;
         _CC := Vundef;
         _CV := Vundef |}
  end.

Definition arith_eval_comparison_pp (n: arith_comparison_pp) (v1 v2: val) :=
  let (v1',v2') := arith_prepare_comparison_pp n v1 v2 in
  match n with 
  | Pcmpext _ | Pcmnext _ => v_compare_long v1' v2'
  | Pfcmp S => v_compare_single v1' v2'
  | Pfcmp D => v_compare_float v1' v2'
  end.

Definition arith_eval_comparison_p (n: arith_comparison_p) (v: val) :=
  let (v1',v2') := arith_prepare_comparison_p n v in
  match n with
  | Pcmpimm W _ | Pcmnimm W _ | Ptstimm W _ => v_compare_int v1' v2'
  | Pcmpimm X _ | Pcmnimm X _ | Ptstimm X _ => v_compare_long v1' v2'
  | Pfcmp0 S => v_compare_single v1' v2'
  | Pfcmp0 D => v_compare_float v1' v2'
  end.

Definition arith_eval_comparison_r0r (n: arith_comparison_r0r) (v1 v2: val) (is: isize) :=
  let (v1',v2') := arith_prepare_comparison_r0r n v1 v2 in
  if is then v_compare_int v1' v2' else v_compare_long v1' v2'.

Definition flags_testcond_value (c: testcond) (vCN vCZ vCC vCV: val) :=
  match c with
  | TCeq =>                             (**r equal *)
      match vCZ with
      | Vint n => Some (Int.eq n Int.one)
      | _ => None
      end
  | TCne =>                             (**r not equal *)
      match vCZ with
      | Vint n => Some (Int.eq n Int.zero)
      | _ => None
      end
  | TClo =>                             (**r unsigned less than  *)
      match vCC with
      | Vint n => Some (Int.eq n Int.zero)
      | _ => None
      end
  | TCls =>                             (**r unsigned less or equal *)
      match vCC, vCZ with
      | Vint c, Vint z => Some (Int.eq c Int.zero || Int.eq z Int.one)
      | _, _ => None
      end
  | TChs =>                             (**r unsigned greater or equal *)
      match vCC with
      | Vint n => Some (Int.eq n Int.one)
      | _ => None
      end
  | TChi =>                             (**r unsigned greater *)
      match vCC, vCZ with
      | Vint c, Vint z => Some (Int.eq c Int.one && Int.eq z Int.zero)
      | _, _ => None
      end
  | TClt =>                             (**r signed less than *)
      match vCV, vCN with
      | Vint o, Vint s => Some (Int.eq (Int.xor o s) Int.one)
      | _, _ => None
      end
  | TCle =>                             (**r signed less or equal *)
      match vCV, vCN, vCZ with
      | Vint o, Vint s, Vint z => Some (Int.eq (Int.xor o s) Int.one || Int.eq z Int.one)
      | _, _, _ => None
      end
  | TCge =>                             (**r signed greater or equal *)
      match vCV, vCN with
      | Vint o, Vint s => Some (Int.eq (Int.xor o s) Int.zero)
      | _, _ => None
      end
  | TCgt =>                             (**r signed greater *)
      match vCV, vCN, vCZ with
      | Vint o, Vint s, Vint z => Some (Int.eq (Int.xor o s) Int.zero && Int.eq z Int.zero)
      | _, _, _ => None
      end
  | TCpl =>                             (**r positive *)
      match vCN with
      | Vint n => Some (Int.eq n Int.zero)
      | _ => None
      end
  | TCmi =>                             (**r negative *)
      match vCN with
      | Vint n => Some (Int.eq n Int.one)
      | _ => None
      end
  end.

(* The is argument is used to identify the source inst and avoid rewriting some code
  0 -> Ocset
  1 -> Ocsel
  2 -> Obc *)
Definition cond_eval_is (c: testcond) (v1 v2 vCN vCZ vCC vCV: val) (is: Z) :=
  let res := flags_testcond_value c vCN vCZ vCC vCV in
  match is, res with
  | 0, res => Some (Val (if_opt_bool_val res (Vint Int.one) (Vint Int.zero)))
  | 1, res => Some (Val (if_opt_bool_val res v1 v2))
  | 2, Some b => Some (Bool (b))
  | _, _ => None
  end.

Definition fmovi_eval (fsz: fsize) (v: val) :=
  match fsz with
  | S => float32_of_bits v
  | D => float64_of_bits v
  end.

Definition fmovi_eval_xzr (fsz: fsize) :=
  match fsz with
  | S => float32_of_bits (Vint Int.zero)
  | D => float64_of_bits (Vlong Int64.zero)
  end.

Definition fnmul_eval (fsz: fsize) (v1 v2: val) :=
  match fsz with
  | S => Val.negfs (Val.mulfs v1 v2)
  | D => Val.negf (Val.mulf v1 v2)
  end.

Definition cflags_eval (c: testcond) (l: list value) (v1 v2: val) (is: Z) :=
  match c, l with
  | TCeq, [Val vCZ] => cond_eval_is TCeq v1 v2 Vundef vCZ Vundef Vundef is
  | TCne, [Val vCZ] => cond_eval_is TCne v1 v2 Vundef vCZ Vundef Vundef is
  | TChs, [Val vCC] => cond_eval_is TChs v1 v2 Vundef Vundef vCC Vundef is
  | TClo, [Val vCC] => cond_eval_is TClo v1 v2 Vundef Vundef vCC Vundef is
  | TCmi, [Val vCN] => cond_eval_is TCmi v1 v2 vCN Vundef Vundef Vundef is
  | TCpl, [Val vCN] => cond_eval_is TCpl v1 v2 vCN Vundef Vundef Vundef is
  | TChi, [Val vCZ; Val vCC] => cond_eval_is TChi v1 v2 Vundef vCZ vCC Vundef is
  | TCls, [Val vCZ; Val vCC] => cond_eval_is TCls v1 v2 Vundef vCZ vCC Vundef is
  | TCge, [Val vCN; Val vCV] => cond_eval_is TCge v1 v2 vCN Vundef Vundef vCV is
  | TClt, [Val vCN; Val vCV] => cond_eval_is TClt v1 v2 vCN Vundef Vundef vCV is
  | TCgt, [Val vCN; Val vCZ; Val vCV] => cond_eval_is TCgt v1 v2 vCN vCZ Vundef vCV is
  | TCle, [Val vCN; Val vCZ; Val vCV] => cond_eval_is TCle v1 v2 vCN vCZ Vundef vCV is
  | _, _ => None
  end.

Definition arith_op_eval (op: arith_op) (l: list value) :=
  match op, l with
  | OArithP n, [] => Some (Val (arith_eval_p Ge.(_lk) n))
  | OArithPP n, [Val v] => Some (Val (arith_eval_pp Ge.(_lk) n v))
  | OArithPPP n, [Val v1; Val v2] => Some (Val (arith_eval_ppp n v1 v2))
  | OArithRR0R n, [Val v1; Val v2] => Some (Val (arith_eval_rr0r n v1 v2))
  | OArithRR0R_XZR n vz, [Val v] => Some (Val (arith_eval_rr0r n vz v))
  | OArithRR0 n, [Val v] => Some (Val (arith_eval_rr0 n v))
  | OArithRR0_XZR n vz, [] => Some (Val (arith_eval_rr0 n vz))
  | OArithARRRR0 n, [Val v1; Val v2; Val v3] => Some (Val (arith_eval_arrrr0 n v1 v2 v3))
  | OArithARRRR0_XZR n vz, [Val v1; Val v2] => Some (Val (arith_eval_arrrr0 n v1 v2 vz))
  | OArithComparisonPP_CN n, [Val v1; Val v2] => Some (Val ((arith_eval_comparison_pp n v1 v2).(_CN)))
  | OArithComparisonPP_CZ n, [Val v1; Val v2] => Some (Val ((arith_eval_comparison_pp n v1 v2).(_CZ)))
  | OArithComparisonPP_CC n, [Val v1; Val v2] => Some (Val ((arith_eval_comparison_pp n v1 v2).(_CC)))
  | OArithComparisonPP_CV n, [Val v1; Val v2] => Some (Val ((arith_eval_comparison_pp n v1 v2).(_CV)))
  | OArithComparisonR0R_CN n is, [Val v1; Val v2] => Some (Val ((arith_eval_comparison_r0r n v1 v2 is).(_CN)))
  | OArithComparisonR0R_CZ n is, [Val v1; Val v2] => Some (Val ((arith_eval_comparison_r0r n v1 v2 is).(_CZ)))
  | OArithComparisonR0R_CC n is, [Val v1; Val v2] => Some (Val ((arith_eval_comparison_r0r n v1 v2 is).(_CC)))
  | OArithComparisonR0R_CV n is, [Val v1; Val v2] => Some (Val ((arith_eval_comparison_r0r n v1 v2 is).(_CV)))
  | OArithComparisonR0R_CN_XZR n is vz, [Val v2] => Some (Val ((arith_eval_comparison_r0r n vz v2 is).(_CN)))
  | OArithComparisonR0R_CZ_XZR n is vz, [Val v2] => Some (Val ((arith_eval_comparison_r0r n vz v2 is).(_CZ)))
  | OArithComparisonR0R_CC_XZR n is vz, [Val v2] => Some (Val ((arith_eval_comparison_r0r n vz v2 is).(_CC)))
  | OArithComparisonR0R_CV_XZR n is vz, [Val v2] => Some (Val ((arith_eval_comparison_r0r n vz v2 is).(_CV)))
  | OArithComparisonP_CN n, [Val v] => Some (Val ((arith_eval_comparison_p n v).(_CN)))
  | OArithComparisonP_CZ n, [Val v] => Some (Val ((arith_eval_comparison_p n v).(_CZ)))
  | OArithComparisonP_CC n, [Val v] => Some (Val ((arith_eval_comparison_p n v).(_CC)))
  | OArithComparisonP_CV n, [Val v] => Some (Val ((arith_eval_comparison_p n v).(_CV)))
  | Ocset c, l => cflags_eval c l Vundef Vundef 0
  | Ofmovi fsz, [Val v] => Some (Val (fmovi_eval fsz v))
  | Ofmovi_XZR fsz, [] => Some (Val (fmovi_eval_xzr fsz))
  | Ocsel c, Val v1 :: Val v2 :: l' => cflags_eval c l' v1 v2 1
  | Ofnmul fsz, [Val v1; Val v2] => Some (Val (fnmul_eval fsz v1 v2))
  | _, _ => None
  end.

Definition call_ll_storev (c: memory_chunk) (m: mem) (v: option val) (vs: val) :=
  match v with
  | Some va => match Mem.storev c m va vs with
               | Some m' => Some (Memstate m')
               | None => None
               end
  | None => None (* should never occurs *)
  end.

Definition exec_store1 (n: store_rs_a) (m: mem) (a: addressing) (vr vs: val) :=
  let v :=
    match a with
    | ADimm _ n => Some (Val.addl vs (Vlong n))
    | ADadr _ id ofs => Some (Val.addl vs (symbol_low Ge.(_lk) id ofs))
    | _ => None
    end in
  call_ll_storev (chunk_store_rs_a n) m v vr.

Definition exec_store2 (n: store_rs_a) (m: mem) (a: addressing) (vr vs1 vs2: val) :=
  let v :=
    match a with
    | ADreg _ _ => Some (Val.addl vs1 vs2)
    | ADlsl _ _ n => Some (Val.addl vs1 (Val.shll vs2 (Vint n)))
    | ADsxt _ _ n => Some (Val.addl vs1 (Val.shll (Val.longofint vs2) (Vint n)))
    | ADuxt _ _ n => Some (Val.addl vs1 (Val.shll (Val.longofintu vs2) (Vint n)))
    | _ => None
    end in
  call_ll_storev (chunk_store_rs_a n) m v vr.
  
Definition exec_storeU (n: store_rs_a) (m: mem) (a: addressing) (vr: val) :=
  call_ll_storev (chunk_store_rs_a n) m None vr.

Definition goto_label_deps (f: function) (lbl: label) (vpc: val) :=
  match label_pos lbl 0 (fn_blocks f) with
  | None => None
  | Some pos =>
      match vpc with
      | Vptr b ofs => Some (Val (Vptr b (Ptrofs.repr pos)))
      | _          => None
      end
  end.

Definition control_eval (o: control_op) (l: list value) :=
  let (ge, fn, lk) := Ge in
  match o, l with
  | Ob lbl, [Val vpc] => goto_label_deps fn lbl vpc
  | Obc c lbl, Val vpc :: l' => match cflags_eval c l' Vundef Vundef 2 with
                                | Some (Bool true) => goto_label_deps fn lbl vpc
                                | Some (Bool false) => Some (Val vpc)
                                | _ => None
                                end
  | Obl id, [] => Some (Val (Genv.symbol_address Ge.(_genv) id Ptrofs.zero))
  | Obs id, [] => Some (Val (Genv.symbol_address Ge.(_genv) id Ptrofs.zero))
  | Ocbnz sz lbl, [Val v; Val vpc] => match eval_testzero sz v with
                                      | Some (true) => Some (Val vpc)
                                      | Some (false) => goto_label_deps fn lbl vpc
                                      | None => None
                                      end
  | Ocbz sz lbl, [Val v; Val vpc] => match eval_testzero sz v with
                                      | Some (true) => goto_label_deps fn lbl vpc
                                      | Some (false) => Some (Val vpc)
                                      | None => None
                                     end
  | Otbnz sz n lbl, [Val v; Val vpc] => match eval_testbit sz v n with
                                        | Some (true) => goto_label_deps fn lbl vpc
                                        | Some (false) => Some (Val vpc)
                                        | None => None
                                       end
  | Otbz sz n lbl, [Val v; Val vpc] => match eval_testbit sz v n with
                                        | Some (true) => Some (Val vpc)
                                        | Some (false) => goto_label_deps fn lbl vpc
                                        | None => None
                                       end
  | Obtbl tbl, [Val index; Val vpc] => match index with
                                       | Vint n => 
                                         match list_nth_z tbl (Int.unsigned n) with
                                         | None => None
                                         | Some lbl => goto_label_deps fn lbl vpc
                                         end
                                       | _ => None
                                       end
  | OIncremPC sz, [Val vpc] => Some (Val (Val.offset_ptr vpc (Ptrofs.repr sz)))
  | OError, _ => None
  | _, _ => None
  end.

Definition store_eval (o: store_op) (l: list value) :=
  match o, l with
  | Ostore1 st a, [Val vr; Val vs; Memstate m] => exec_store1 st m a vr vs
  | Ostore2 st a, [Val vr; Val vs1; Val vs2; Memstate m] => exec_store2 st m a vr vs1 vs2
  | OstoreU st a, [Val vr; Memstate m] => exec_storeU st m a vr
  | _, _ => None
  end.

Definition call_ll_loadv (c: memory_chunk) (transf: val -> val) (m: mem) (v: option val) :=
  match v with
  | Some va => match Mem.loadv c m va with
               | Some v' => Some (Val (transf v'))
               | None => None
               end
  | None => None (* should never occurs *)
  end.

Definition exec_load1 (n: load_rd_a) (m: mem) (a: addressing) (vl: val) :=
  let v :=
    match a with
    | ADimm _ n => Some (Val.addl vl (Vlong n))
    | ADadr _ id ofs => Some (Val.addl vl (symbol_low Ge.(_lk) id ofs))
    | _ => None
    end in
  call_ll_loadv (chunk_load_rd_a n) (interp_load_rd_a n) m v.

Definition exec_load2 (n: load_rd_a) (m: mem) (a: addressing) (vl1 vl2: val) :=
  let v :=
    match a with
    | ADreg _ _ => Some (Val.addl vl1 vl2)
    | ADlsl _ _ n => Some (Val.addl vl1 (Val.shll vl2 (Vint n)))
    | ADsxt _ _ n => Some (Val.addl vl1 (Val.shll (Val.longofint vl2) (Vint n)))
    | ADuxt _ _ n => Some (Val.addl vl1 (Val.shll (Val.longofintu vl2) (Vint n)))
    | _ => None
    end in
  call_ll_loadv (chunk_load_rd_a n) (interp_load_rd_a n) m v.
  
Definition exec_loadU (n: load_rd_a) (m: mem) (a: addressing) :=
  call_ll_loadv (chunk_load_rd_a n) (interp_load_rd_a n) m None.

Definition load_eval (o: load_op) (l: list value) :=
  match o, l with
  | Oload1 st a, [Val vs; Memstate m] => exec_load1 st m a vs
  | Oload2 st a, [Val vs1; Val vs2; Memstate m] => exec_load2 st m a vs1 vs2
  | OloadU st a, [Memstate m] => exec_loadU st m a
  | _, _ => None
  end.

Definition eval_allocf (o: allocf_op) (l: list value) :=
  match o, l with
  | OAllocf_Mem sz linkofs, [Val spv; Memstate m] =>
      let (m1, stk) := Mem.alloc m 0 sz in
      let sp := (Vptr stk Ptrofs.zero) in
      call_ll_storev Mint64 m1 (Some (Val.offset_ptr sp linkofs)) spv
  | OAllocf_SP sz linkofs, [Val spv; Memstate m] =>
      let (m1, stk) := Mem.alloc m 0 sz in
      let sp := (Vptr stk Ptrofs.zero) in
      match call_ll_storev Mint64 m1 (Some (Val.offset_ptr sp linkofs)) spv with
      | None => None
      | Some ms => Some (Val sp)
      end
  | _, _ => None
  end.

Definition eval_freef (o: freef_op) (l: list value) :=
  match o, l with
  | OFreef_Mem sz linkofs, [Val spv; Memstate m] =>
      match call_ll_loadv Mint64 (fun v => v) m (Some (Val.offset_ptr spv linkofs)) with
      | None => None
      | Some v =>
          match spv with
          | Vptr stk ofs =>
              match Mem.free m stk 0 sz with
              | None => None
              | Some m' => Some (Memstate m')
              end
          | _ => None
          end
      end
  | OFreef_SP sz linkofs, [Val spv; Memstate m] =>
      match call_ll_loadv Mint64 (fun v => v) m (Some (Val.offset_ptr spv linkofs)) with
      | None => None
      | Some v =>
          match spv with
          | Vptr stk ofs =>
              match Mem.free m stk 0 sz with
              | None => None
              | Some m' => Some (v)
              end
          | _ => None
          end
      end
  | _, _ => None
  end.

Definition op_eval (op: op) (l:list value) :=
  match op, l with
  | Arith op, l => arith_op_eval op l
  | Load o, l => load_eval o l
  | Store o, l => store_eval o l
  | Allocframe o, l => eval_allocf o l
  | Freeframe o, l => eval_freef o l
  | Loadsymbol id, [] => Some (Val (Genv.symbol_address Ge.(_genv) id Ptrofs.zero))
  | Cvtsw2x, [Val v] => Some (Val (Val.longofint v))
  | Cvtuw2x, [Val v] => Some (Val (Val.longofintu v))
  | Cvtx2w, [Val v] => Some (Val (Val.loword v))
  | Control o, l => control_eval o l
  | Constant v, [] => Some (Val v)
  | _, _ => None
  end.

Definition vz_eq (vz1 vz2: val) : ?? bool :=
  RET (match vz1 with
       | Vint i1 => match vz2 with
                    | Vint i2 => Int.eq i1 i2
                    | _ => false
                    end
       | Vlong l1 => match vz2 with
                     | Vlong l2 => Int64.eq l1 l2
                     | _ => false
                     end
       | _ => false
       end).

Lemma vz_eq_correct vz1 vz2:
  WHEN vz_eq vz1 vz2 ~> b THEN b = true -> vz1 = vz2.
Proof.
  wlp_simplify.
  destruct vz1; destruct vz2; trivial; try discriminate.
  - eapply f_equal; apply Int.same_if_eq; auto.
  - eapply f_equal. apply Int64.same_if_eq; auto.
Qed.
Hint Resolve vz_eq_correct: wlp.

Definition is_eq (is1 is2: isize) : ?? bool :=
  RET (match is1 with
       | W => match is2 with
              | W => true
              | _ => false
              end
       | X => match is2 with
              | X => true
              | _ => false
              end
       end).

Lemma is_eq_correct is1 is2:
  WHEN is_eq is1 is2 ~> b THEN b = true -> is1 = is2.
Proof.
  wlp_simplify; destruct is1; destruct is2; trivial; try discriminate.
Qed.
Hint Resolve is_eq_correct: wlp.

Definition arith_op_eq (o1 o2: arith_op): ?? bool :=
  match o1 with
  | OArithP n1 =>
      match o2 with OArithP n2 => phys_eq n1 n2 | _ => RET false end
  | OArithPP n1 =>
      match o2 with OArithPP n2 => phys_eq n1 n2 | _ => RET false end
  | OArithPPP n1 =>
      match o2 with OArithPPP n2 => phys_eq n1 n2 | _ => RET false end
  | OArithRR0R n1 =>
      match o2 with OArithRR0R n2 => phys_eq n1 n2 | _ => RET false end
  | OArithRR0R_XZR n1 vz1 =>
      match o2 with OArithRR0R_XZR n2 vz2 => iandb (phys_eq n1 n2) (vz_eq vz1 vz2) | _ => RET false end
  | OArithRR0 n1 =>
      match o2 with OArithRR0 n2 => phys_eq n1 n2 | _ => RET false end
  | OArithRR0_XZR n1 vz1 =>
      match o2 with OArithRR0_XZR n2 vz2 => iandb (phys_eq n1 n2) (vz_eq vz1 vz2) | _ => RET false end
  | OArithARRRR0 n1 =>
      match o2 with OArithARRRR0 n2 => phys_eq n1 n2 | _ => RET false end
  | OArithARRRR0_XZR n1 vz1 =>
      match o2 with OArithARRRR0_XZR n2 vz2 => iandb (phys_eq n1 n2) (vz_eq vz1 vz2) | _ => RET false end
  | OArithComparisonPP_CN n1 =>
      match o2 with OArithComparisonPP_CN n2 => phys_eq n1 n2 | _ => RET false end
  | OArithComparisonPP_CZ n1 =>
      match o2 with OArithComparisonPP_CZ n2 => phys_eq n1 n2 | _ => RET false end
  | OArithComparisonPP_CC n1 =>
      match o2 with OArithComparisonPP_CC n2 => phys_eq n1 n2 | _ => RET false end
  | OArithComparisonPP_CV n1 =>
      match o2 with OArithComparisonPP_CV n2 => phys_eq n1 n2 | _ => RET false end
  | OArithComparisonR0R_CN n1 is1 =>
      match o2 with OArithComparisonR0R_CN n2 is2 => iandb (phys_eq n1 n2) (is_eq is1 is2) | _ => RET false end
  | OArithComparisonR0R_CZ n1 is1 =>
      match o2 with OArithComparisonR0R_CZ n2 is2 => iandb (phys_eq n1 n2) (is_eq is1 is2) | _ => RET false end
  | OArithComparisonR0R_CC n1 is1 =>
      match o2 with OArithComparisonR0R_CC n2 is2 => iandb (phys_eq n1 n2) (is_eq is1 is2) | _ => RET false end
  | OArithComparisonR0R_CV n1 is1 =>
      match o2 with OArithComparisonR0R_CV n2 is2 => iandb (phys_eq n1 n2) (is_eq is1 is2) | _ => RET false end
  | OArithComparisonR0R_CN_XZR n1 is1 vz1 =>
      match o2 with OArithComparisonR0R_CN_XZR n2 is2 vz2 => iandb (vz_eq vz1 vz2) (iandb (phys_eq n1 n2) (is_eq is1 is2)) | _ => RET false end
  | OArithComparisonR0R_CZ_XZR n1 is1 vz1 =>
      match o2 with OArithComparisonR0R_CZ_XZR n2 is2 vz2 => iandb (vz_eq vz1 vz2) (iandb (phys_eq n1 n2) (is_eq is1 is2)) | _ => RET false end
  | OArithComparisonR0R_CC_XZR n1 is1 vz1 =>
      match o2 with OArithComparisonR0R_CC_XZR n2 is2 vz2 => iandb (vz_eq vz1 vz2) (iandb (phys_eq n1 n2) (is_eq is1 is2)) | _ => RET false end
  | OArithComparisonR0R_CV_XZR n1 is1 vz1 =>
      match o2 with OArithComparisonR0R_CV_XZR n2 is2 vz2 => iandb (vz_eq vz1 vz2) (iandb (phys_eq n1 n2) (is_eq is1 is2)) | _ => RET false end
  | OArithComparisonP_CN n1 =>
      match o2 with OArithComparisonP_CN n2 => phys_eq n1 n2 | _ => RET false end
  | OArithComparisonP_CZ n1 =>
      match o2 with OArithComparisonP_CZ n2 => phys_eq n1 n2 | _ => RET false end
  | OArithComparisonP_CC n1 =>
      match o2 with OArithComparisonP_CC n2 => phys_eq n1 n2 | _ => RET false end
  | OArithComparisonP_CV n1 =>
      match o2 with OArithComparisonP_CV n2 => phys_eq n1 n2 | _ => RET false end
  | Ocset c1 =>
      match o2 with Ocset c2 => struct_eq c1 c2 | _ => RET false end
  | Ofmovi fsz1 =>
      match o2 with Ofmovi fsz2 => phys_eq fsz1 fsz2 | _ => RET false end
  | Ofmovi_XZR fsz1 =>
      match o2 with Ofmovi_XZR fsz2 => phys_eq fsz1 fsz2 | _ => RET false end
  | Ocsel c1 =>
      match o2 with Ocsel c2 => struct_eq c1 c2 | _ => RET false end
  | Ofnmul fsz1 =>
      match o2 with Ofnmul fsz2 => phys_eq fsz1 fsz2 | _ => RET false end
  end.

Ltac my_wlp_simplify := wlp_xsimplify ltac:(intros; subst; simpl in * |- *; congruence || intuition eauto with wlp).

Lemma arith_op_eq_correct o1 o2:
  WHEN arith_op_eq o1 o2 ~> b THEN b = true -> o1 = o2.
Proof.
  destruct o1, o2; my_wlp_simplify; try congruence;
  try (destruct vz; destruct vz0); try (destruct is; destruct is0);
  repeat apply f_equal; try congruence;
  try apply Int.same_if_eq; try apply Int64.same_if_eq; try auto.
Qed.
Hint Resolve arith_op_eq_correct: wlp.
Opaque arith_op_eq_correct.

Definition control_op_eq (c1 c2: control_op): ?? bool :=
  match c1 with
  | Ob lbl1 =>
     match c2 with Ob lbl2 => phys_eq lbl1 lbl2 | _ => RET false end
  | Obc c1 lbl1 =>
     match c2 with Obc c2 lbl2 => iandb (struct_eq c1 c2) (phys_eq lbl1 lbl2) | _ => RET false end
  | Obl id1 =>
     match c2 with Obl id2 => phys_eq id1 id2 | _ => RET false end
  | Obs id1 =>
     match c2 with Obs id2 => phys_eq id1 id2 | _ => RET false end
  | Ocbnz sz1 lbl1 =>
     match c2 with Ocbnz sz2 lbl2 => iandb (phys_eq sz1 sz2) (phys_eq lbl1 lbl2) | _ => RET false end
  | Ocbz sz1 lbl1 =>
     match c2 with Ocbz sz2 lbl2 => iandb (phys_eq sz1 sz2) (phys_eq lbl1 lbl2) | _ => RET false end
  | Otbnz sz1 n1 lbl1 =>
     match c2 with Otbnz sz2 n2 lbl2 => iandb (RET (Int.eq n1 n2)) (iandb (phys_eq sz1 sz2) (phys_eq lbl1 lbl2)) | _ => RET false end
  | Otbz sz1 n1 lbl1 =>
     match c2 with Otbz sz2 n2 lbl2 => iandb (RET (Int.eq n1 n2)) (iandb (phys_eq sz1 sz2) (phys_eq lbl1 lbl2)) | _ => RET false end
  | Obtbl tbl1 =>
     match c2 with Obtbl tbl2 => (phys_eq tbl1 tbl2) | _ => RET false end
  | OIncremPC sz1 =>
      match c2 with OIncremPC sz2 => RET (Z.eqb sz1 sz2) | _ => RET false end
  | OError =>
     match c2 with OError => RET true | _ => RET false end
  end.

Lemma control_op_eq_correct c1 c2:
  WHEN control_op_eq c1 c2 ~> b THEN b = true -> c1 = c2.
Proof.
  destruct c1, c2; wlp_simplify; try rewrite Z.eqb_eq in * |-; try congruence;
  try apply Int.same_if_eq in H; try congruence.
Qed.
Hint Resolve control_op_eq_correct: wlp.
Opaque control_op_eq_correct.

Definition store_op_eq (s1 s2: store_op): ?? bool :=
  match s1 with
  | Ostore1 st1 a1 =>
      match s2 with Ostore1 st2 a2 => iandb (phys_eq st1 st2) (struct_eq a1 a2) | _ => RET false end
  | Ostore2 st1 a1 =>
      match s2 with Ostore2 st2 a2 => iandb (phys_eq st1 st2) (struct_eq a1 a2) | _ => RET false end
  | OstoreU st1 a1 =>
      match s2 with OstoreU st2 a2 => iandb (phys_eq st1 st2) (struct_eq a1 a2) | _ => RET false end
  end.

Lemma store_op_eq_correct s1 s2:
  WHEN store_op_eq s1 s2 ~> b THEN b = true -> s1 = s2.
Proof.
  destruct s1, s2; wlp_simplify; try congruence.
  all: rewrite H0 in H; rewrite H; reflexivity.
Qed.
Hint Resolve store_op_eq_correct: wlp.
Opaque store_op_eq_correct.

Definition load_op_eq (l1 l2: load_op): ?? bool :=
  match l1 with
  | Oload1 ld1 a1 =>
      match l2 with Oload1 ld2 a2 => iandb (phys_eq ld1 ld2) (struct_eq a1 a2) | _ => RET false end
  | Oload2 ld1 a1 =>
      match l2 with Oload2 ld2 a2 => iandb (phys_eq ld1 ld2) (struct_eq a1 a2) | _ => RET false end
  | OloadU ld1 a1 =>
      match l2 with OloadU ld2 a2 => iandb (phys_eq ld1 ld2) (struct_eq a1 a2) | _ => RET false end
  end.

Lemma load_op_eq_correct l1 l2:
  WHEN load_op_eq l1 l2 ~> b THEN b = true -> l1 = l2.
Proof.
  destruct l1, l2; wlp_simplify; try congruence.
  all: rewrite H0 in H; rewrite H; reflexivity.
Qed.
Hint Resolve load_op_eq_correct: wlp.
Opaque load_op_eq_correct.

Definition allocf_op_eq (al1 al2: allocf_op): ?? bool :=
  match al1 with
  | OAllocf_SP sz1 linkofs1 =>
      match al2 with OAllocf_SP sz2 linkofs2 => iandb (RET (Z.eqb sz1 sz2)) (phys_eq linkofs1 linkofs2) | _ => RET false end
  | OAllocf_Mem sz1 linkofs1 =>
      match al2 with OAllocf_Mem sz2 linkofs2 => iandb (RET (Z.eqb sz1 sz2)) (phys_eq linkofs1 linkofs2) | _ => RET false end
  end.

Lemma allocf_op_eq_correct al1 al2:
  WHEN allocf_op_eq al1 al2 ~> b THEN b = true -> al1 = al2.
Proof.
  destruct al1, al2; wlp_simplify; try congruence.
  all: rewrite H2; rewrite Z.eqb_eq in H; rewrite H; reflexivity.
Qed.
Hint Resolve allocf_op_eq_correct: wlp.
Opaque allocf_op_eq_correct.

Definition freef_op_eq (fr1 fr2: freef_op): ?? bool :=
  match fr1 with
  | OFreef_SP sz1 linkofs1 =>
      match fr2 with OFreef_SP sz2 linkofs2 => iandb (RET (Z.eqb sz1 sz2)) (phys_eq linkofs1 linkofs2) | _ => RET false end
  | OFreef_Mem sz1 linkofs1 =>
      match fr2 with OFreef_Mem sz2 linkofs2 => iandb (RET (Z.eqb sz1 sz2)) (phys_eq linkofs1 linkofs2) | _ => RET false end
  end.

Lemma freef_op_eq_correct fr1 fr2:
  WHEN freef_op_eq fr1 fr2 ~> b THEN b = true -> fr1 = fr2.
Proof.
  destruct fr1, fr2; wlp_simplify; try congruence.
  all: rewrite H2; rewrite Z.eqb_eq in H; rewrite H; reflexivity.
Qed.
Hint Resolve freef_op_eq_correct: wlp.
Opaque freef_op_eq_correct.

Definition op_eq (o1 o2: op): ?? bool :=
  match o1 with
  | Arith i1 =>
    match o2 with Arith i2 => arith_op_eq i1 i2 | _ => RET false end
  | Control i1 =>
    match o2 with Control i2 => control_op_eq i1 i2 | _ => RET false end
  | Load i1 =>
      match o2 with Load i2 => load_op_eq i1 i2 | _ => RET false end
  | Store i1 =>
      match o2 with Store i2 => store_op_eq i1 i2 | _ => RET false end
  | Allocframe i1 =>
      match o2 with Allocframe i2 => allocf_op_eq i1 i2 | _ => RET false end
  | Freeframe i1 =>
      match o2 with Freeframe i2 => freef_op_eq i1 i2 | _ => RET false end
  | Loadsymbol id1 =>
      match o2 with Loadsymbol id2 => phys_eq id1 id2 | _ => RET false end
  | Cvtsw2x =>
    match o2 with Cvtsw2x => RET true | _ => RET false end
  | Cvtuw2x =>
    match o2 with Cvtuw2x => RET true | _ => RET false end
  | Cvtx2w =>
    match o2 with Cvtx2w => RET true | _ => RET false end
  | Constant c1 =>
    match o2 with Constant c2 => phys_eq c1 c2 | _ => RET false end
  end.

Lemma op_eq_correct o1 o2: 
 WHEN op_eq o1 o2 ~> b THEN b=true -> o1 = o2.
Proof.
  destruct o1, o2; wlp_simplify; congruence.
Qed.

End IMPPARAM.

End P.

Module L <: ISeqLanguage with Module LP:=P.

Module LP:=P.

Include MkSeqLanguage P.

End L.

Module IST := ImpSimu L ImpPosDict.

Import L.
Import P.

(** Compilation from [Asmblock] to [L] *)

Local Open Scope positive_scope.

Definition pmem : R.t := 1.

Definition ireg_to_pos (ir: ireg) : R.t :=
  match ir with
  | X0 => 8 | X1 => 9 | X2 => 10 | X3 => 11 | X4 => 12 | X5 => 13 | X6 => 14 | X7 => 15
  | X8 => 16 | X9 => 17 | X10 => 18 | X11 => 19 | X12 => 20 | X13 => 21 | X14 => 22 | X15 => 23
  | X16 => 24 | X17 => 25 | X18 => 26 | X19 => 27 | X20 => 28 | X21 => 29 | X22 => 30 | X23 => 31
  | X24 => 32 | X25 => 33 | X26 => 34 | X27 => 35 | X28 => 36 | X29 => 37 | X30 => 38
  end
.

Definition freg_to_pos (fr: freg) : R.t :=
  match fr with
  | D0 => 39 | D1 => 40 | D2 => 41 | D3 => 42 | D4 => 43 | D5 => 44 | D6 => 45 | D7 => 46
  | D8 => 47 | D9 => 48 | D10 => 49 | D11 => 50 | D12 => 51 | D13 => 52 | D14 => 53 | D15 => 54
  | D16 => 55 | D17 => 56 | D18 => 57 | D19 => 58 | D20 => 59 | D21 => 60 | D22 => 61 | D23 => 62
  | D24 => 63 | D25 => 64 | D26 => 65 | D27 => 66 | D28 => 67 | D29 => 68 | D30 => 69 | D31 => 70
  end
.

Lemma ireg_to_pos_discr: forall r r', r <> r' -> ireg_to_pos r <> ireg_to_pos r'.
Proof.
  destruct r; destruct r'; try contradiction; discriminate.
Qed.

Lemma freg_to_pos_discr: forall r r', r <> r' -> freg_to_pos r <> freg_to_pos r'.
Proof.
  destruct r; destruct r'; try contradiction; discriminate.
Qed.

Definition ppos (r: preg) : R.t :=
  match r with
  | CR c => match c with
            | CN => 2
            | CZ => 3
            | CC => 4
            | CV => 5
            end
  | PC => 6
  | DR d => match d with
            | IR i => match i with
                      | XSP => 7
                      | RR1 ir => ireg_to_pos ir
                      end
            | FR fr => freg_to_pos fr
            end
  end
.

Notation "# r" := (ppos r) (at level 100, right associativity). 

Lemma not_eq_add:
  forall k n n', n <> n' -> k + n <> k + n'.
Proof.
  intros k n n' H1 H2. apply H1; clear H1. eapply Pos.add_reg_l; eauto.
Qed.

Lemma ppos_equal: forall r r', r = r' <-> ppos r = ppos r'.
Proof.
  destruct r as [dr|cr|]; destruct r' as [dr'|cr'|];
  try destruct dr as [ir|fr]; try destruct dr' as [ir'|fr'];
  try destruct ir as [irr|]; try destruct ir' as [irr'|].
  all: split; intros; try rewrite H; try discriminate; try contradiction; simpl; eauto;
  try destruct irr; try destruct irr';
  try destruct fr; try destruct fr';
  try destruct cr; try destruct cr';
  simpl; try discriminate; try reflexivity.
Qed.

Lemma ppos_discr: forall r r', r <> r' -> ppos r <> ppos r'.
Proof.
  destruct r as [dr|cr|]; destruct r' as [dr'|cr'|];
  try destruct dr as [ir|fr]; try destruct dr' as [ir'|fr'];
  try destruct ir as [irr|]; try destruct ir' as [irr'|].
  all: try discriminate; try contradiction.
  1: intros; unfold ppos; apply ireg_to_pos_discr; congruence.
  1,2,11,18: intros; unfold ppos; try destruct irr; try destruct irr'; discriminate.
  1,3: intros; unfold ppos; try destruct irr; try destruct fr; try destruct irr'; try destruct fr'; discriminate.
  1,2,7,13: intros; unfold ppos; try destruct fr; try destruct fr'; discriminate.
  1: intros; unfold ppos; apply freg_to_pos_discr; congruence.
  1,4: intros; unfold ppos; try destruct irr; try destruct irr'; try destruct cr; try destruct cr'; discriminate.
  2,4: intros; unfold ppos; try destruct fr; try destruct fr'; try destruct cr; try destruct cr'; discriminate.
  1,2,4,5: intros; unfold ppos; try destruct cr; try destruct cr'; discriminate.
  1: intros; unfold ppos; try destruct cr; try destruct cr'; congruence.
Qed.

Lemma ppos_pmem_discr: forall r, pmem <> ppos r.
Proof.
  intros. destruct r as [dr|cr|].
  - destruct dr as [ir|fr]; try destruct ir as [irr|]; try destruct irr; try destruct fr;
    unfold ppos; unfold pmem; discriminate.
  - unfold ppos; unfold pmem; destruct cr; discriminate.
  - unfold ppos; unfold pmem; discriminate.
Qed.

(** Inversion functions, used for debug traces *)

Definition pos_to_ireg (p: R.t) : option ireg :=
  match p with
  | 8 => Some (X0) | 9 => Some (X1) | 10 => Some (X2) | 11 => Some (X3) | 12 => Some (X4) | 13 => Some (X5) | 14 => Some (X6) | 15 => Some (X7)
  | 16 => Some (X8) | 17 => Some (X9) | 18 => Some (X10) | 19 => Some (X11) | 20 => Some (X12) | 21 => Some (X13) | 22 => Some (X14) | 23 => Some (X15)
  | 24 => Some (X16) | 25 => Some (X17) | 26 => Some (X18) | 27 => Some (X19) | 28 => Some (X20) | 29 => Some (X21) | 30 => Some (X22) | 31 => Some (X23)
  | 32 => Some (X24) | 33 => Some (X25) | 34 => Some (X26) | 35 => Some (X27) | 36 => Some (X28) | 37 => Some (X29) | 38 => Some (X30) | _ => None
  end.

Definition pos_to_freg (p: R.t) : option freg :=
  match p with
  | 39 => Some(D0) | 40 => Some(D1) | 41 => Some(D2) | 42 => Some(D3) | 43 => Some(D4) | 44 => Some(D5) | 45 => Some(D6) | 46 => Some(D7)
  | 47 => Some(D8) | 48 => Some(D9) | 49 => Some(D10) | 50 => Some(D11) | 51 => Some(D12) | 52 => Some(D13) | 53 => Some(D14) | 54 => Some(D15)
  | 55 => Some(D16) | 56 => Some(D17) | 57 => Some(D18) | 58 => Some(D19) | 59 => Some(D20) | 60 => Some(D21) | 61 => Some(D22) | 62 => Some(D23)
  | 63 => Some(D24) | 64 => Some(D25) | 65 => Some(D26) | 66 => Some(D27) | 67 => Some(D28) | 68 => Some(D29) | 69 => Some(D30) | 70 => Some(D31) | _ => None
  end.

Definition inv_ppos (p: R.t) : option preg :=
  match p with
  | 1 => None
  | 2 => Some (CR CN)
  | 3 => Some (CR CZ)
  | 4 => Some (CR CC)
  | 5 => Some (CR CV)
  | 6 => Some (PC)
  | 7 => Some (DR (IR XSP))
  | n => match pos_to_ireg n with
         | None => match pos_to_freg n with
                   | None => None
                   | Some fr => Some (DR (FR fr))
                   end
         | Some ir => Some (DR (IR ir))
         end
  end.

Notation "a @ b" := (Econs a b) (at level 102, right associativity).

(** Translations of instructions *)

Definition get_testcond_rlocs (c: testcond) :=
  match c with
  | TCeq => (PReg(#CZ) @ Enil)
  | TCne => (PReg(#CZ) @ Enil)
  | TChs => (PReg(#CC) @ Enil)
  | TClo => (PReg(#CC) @ Enil)
  | TCmi => (PReg(#CN) @ Enil)
  | TCpl => (PReg(#CN) @ Enil)
  | TChi => (PReg(#CZ) @ PReg(#CC) @ Enil)
  | TCls => (PReg(#CZ) @ PReg(#CC) @ Enil)
  | TCge => (PReg(#CN) @ PReg(#CV) @ Enil)
  | TClt => (PReg(#CN) @ PReg(#CV) @ Enil)
  | TCgt => (PReg(#CN) @ PReg(#CZ) @ PReg(#CV) @ Enil)
  | TCle => (PReg(#CN) @ PReg(#CZ) @ PReg(#CV) @ Enil)
  end.

Definition trans_control (ctl: control) : inst :=
  match ctl with
  | Pb lbl => [(#PC, Op (Control (Ob lbl)) (PReg(#PC) @ Enil))]
  | Pbc c lbl =>
      let lr := get_testcond_rlocs c in
      [(#PC, Op (Control (Obc c lbl)) (PReg(#PC) @ lr))]
  | Pbl id sg => [(#RA, PReg(#PC));
                  (#PC, Op (Control (Obl id)) Enil)]
  | Pbs id sg => [(#PC, Op (Control (Obs id)) Enil)]
  | Pblr r sg => [(#RA, PReg(#PC));
                  (#PC, Old (PReg(#r)))]
  | Pbr r sg => [(#PC, PReg(#r))]
  | Pret r => [(#PC, PReg(#r))]
  | Pcbnz sz r lbl => [(#PC, Op (Control (Ocbnz sz lbl)) (PReg(#r) @ PReg(#PC) @ Enil))]
  | Pcbz sz r lbl => [(#PC, Op (Control (Ocbz sz lbl)) (PReg(#r) @ PReg(#PC) @ Enil))]
  | Ptbnz sz r n lbl => [(#PC, Op (Control (Otbnz sz n lbl)) (PReg(#r) @ PReg(#PC) @ Enil))]
  | Ptbz sz r n lbl => [(#PC, Op (Control (Otbz sz n lbl)) (PReg(#r) @ PReg(#PC) @ Enil))]
  | Pbtbl r tbl => [(#X16, Op (Constant Vundef) Enil);
                    (#PC, Op (Control (Obtbl tbl)) (PReg(#r) @ PReg(#PC) @ Enil));
                    (#X16, Op (Constant Vundef) Enil);
                    (#X17, Op (Constant Vundef) Enil)]
  | Pbuiltin ef args res => []
  end.

Definition trans_exit (ex: option control) : L.inst :=
  match ex with
  | None => []
  | Some ctl => trans_control ctl
  end
.

Definition trans_arith (ai: ar_instruction) : inst :=
  match ai with
  | PArithP n rd => 
      if destroy_X16 n then [(#rd, Op(Arith (OArithP n)) Enil); (#X16, Op (Constant Vundef) Enil)]
      else [(#rd, Op(Arith (OArithP n)) Enil)]
  | PArithPP n rd r1 => [(#rd, Op(Arith (OArithPP n)) (PReg(#r1) @ Enil))]
  | PArithPPP n rd r1 r2 => [(#rd, Op(Arith (OArithPPP n)) (PReg(#r1) @ PReg(#r2) @ Enil))]
  | PArithRR0R n rd r1 r2 =>
      let lr := match r1 with
                | RR0 r1' => Op(Arith (OArithRR0R n)) (PReg(#r1') @ PReg(#r2) @ Enil)
                | XZR => let vz := if arith_rr0r_isize n then Vint Int.zero else Vlong Int64.zero in
                         Op(Arith (OArithRR0R_XZR n vz)) (PReg(#r2) @ Enil)
                end in
      [(#rd,  lr)]
  | PArithRR0 n rd r1 =>
      let lr := match r1 with
                | RR0 r1' => Op(Arith (OArithRR0 n)) (PReg(#r1') @ Enil)
                | XZR => let vz := if arith_rr0_isize n then Vint Int.zero else Vlong Int64.zero in
                         Op(Arith (OArithRR0_XZR n vz)) (Enil)
                end in
      [(#rd, lr)]
  | PArithARRRR0 n rd r1 r2 r3 =>
      let lr := match r3 with
                | RR0 r3' => Op(Arith (OArithARRRR0 n)) (PReg(#r1) @ PReg (#r2) @ PReg(#r3') @ Enil)
                | XZR => let vz := if arith_arrrr0_isize n then Vint Int.zero else Vlong Int64.zero in
                         Op(Arith (OArithARRRR0_XZR n vz)) (PReg(#r1) @ PReg(#r2) @ Enil)
                end in
      [(#rd, lr)]
  | PArithComparisonPP n r1 r2 =>
      [(#CN, Op(Arith (OArithComparisonPP_CN n)) (PReg(#r1) @ PReg(#r2) @ Enil));
       (#CZ, Op(Arith (OArithComparisonPP_CZ n)) (PReg(#r1) @ PReg(#r2) @ Enil));
       (#CC, Op(Arith (OArithComparisonPP_CC n)) (PReg(#r1) @ PReg(#r2) @ Enil));
       (#CV, Op(Arith (OArithComparisonPP_CV n)) (PReg(#r1) @ PReg(#r2) @ Enil))]
  | PArithComparisonR0R n r1 r2 =>
      let is := arith_comparison_r0r_isize n in
      match r1 with
      | RR0 r1' => [(#CN, Op(Arith (OArithComparisonR0R_CN n is)) (PReg(#r1') @ PReg(#r2) @ Enil));
                    (#CZ, Op(Arith (OArithComparisonR0R_CZ n is)) (PReg(#r1') @ PReg(#r2) @ Enil));
                    (#CC, Op(Arith (OArithComparisonR0R_CC n is)) (PReg(#r1') @ PReg(#r2) @ Enil));
                    (#CV, Op(Arith (OArithComparisonR0R_CV n is)) (PReg(#r1') @ PReg(#r2) @ Enil))]
      | XZR => let vz := if is then Vint Int.zero else Vlong Int64.zero in
          [(#CN, Op(Arith (OArithComparisonR0R_CN_XZR n is vz)) (PReg(#r2) @ Enil));
                (#CZ, Op(Arith (OArithComparisonR0R_CZ_XZR n is vz)) (PReg(#r2) @ Enil));
                (#CC, Op(Arith (OArithComparisonR0R_CC_XZR n is vz)) (PReg(#r2) @ Enil));
                (#CV, Op(Arith (OArithComparisonR0R_CV_XZR n is vz)) (PReg(#r2) @ Enil))]
      end
  | PArithComparisonP n r1 =>
      [(#CN, Op(Arith (OArithComparisonP_CN n)) (PReg(#r1) @ Enil));
       (#CZ, Op(Arith (OArithComparisonP_CZ n)) (PReg(#r1) @ Enil));
       (#CC, Op(Arith (OArithComparisonP_CC n)) (PReg(#r1) @ Enil));
       (#CV, Op(Arith (OArithComparisonP_CV n)) (PReg(#r1) @ Enil))]
  | Pcset rd c =>
      let lr := get_testcond_rlocs c in
      [(#rd, Op(Arith (Ocset c)) lr)]
  | Pfmovi fsz rd r1 =>
      let lr := match r1 with
                | RR0 r1' => Op(Arith (Ofmovi fsz)) (PReg(#r1') @ Enil)
                | XZR => Op(Arith (Ofmovi_XZR fsz)) Enil
                end in
      [(#rd, lr)]
  | Pcsel rd r1 r2 c =>
      let lr := get_testcond_rlocs c in
      [(#rd, Op(Arith (Ocsel c)) (PReg(#r1) @ PReg (#r2) @ lr))]
  | Pfnmul fsz rd r1 r2 => [(#rd, Op(Arith (Ofnmul fsz)) (PReg(#r1) @ PReg(#r2) @ Enil))]
  end.

Definition eval_addressing_rlocs_st (st: store_rs_a) (rs: dreg) (a: addressing) :=
  match a with
  | ADimm base n => Op (Store (Ostore1 st a)) (PReg (#rs) @ PReg (#base) @ PReg (pmem) @ Enil)
  | ADreg base r => Op (Store (Ostore2 st a)) (PReg (#rs) @ PReg (#base) @ PReg(#r) @ PReg (pmem) @ Enil)
  | ADlsl base r n => Op (Store (Ostore2 st a)) (PReg (#rs) @ PReg (#base) @ PReg(#r) @ PReg (pmem) @ Enil)
  | ADsxt base r n => Op (Store (Ostore2 st a)) (PReg (#rs) @ PReg (#base) @ PReg(#r) @ PReg (pmem) @ Enil)
  | ADuxt base r n => Op (Store (Ostore2 st a)) (PReg (#rs) @ PReg (#base) @ PReg(#r) @ PReg (pmem) @ Enil)
  | ADadr base id ofs => Op (Store (Ostore1 st a)) (PReg (#rs) @ PReg (#base) @ PReg (pmem) @ Enil)
  | ADpostincr base n => Op (Store (OstoreU st a)) (PReg (#rs) @ PReg (pmem) @ Enil) (* not modeled yet *)
  end.

Definition eval_addressing_rlocs_ld (ld: load_rd_a) (a: addressing) :=
  match a with
  | ADimm base n => Op (Load (Oload1 ld a)) (PReg (#base) @ PReg (pmem) @ Enil)
  | ADreg base r => Op (Load (Oload2 ld a)) (PReg (#base) @ PReg(#r) @ PReg (pmem) @ Enil)
  | ADlsl base r n => Op (Load (Oload2 ld a)) (PReg (#base) @ PReg(#r) @ PReg (pmem) @ Enil)
  | ADsxt base r n => Op (Load (Oload2 ld a)) (PReg (#base) @ PReg(#r) @ PReg (pmem) @ Enil)
  | ADuxt base r n => Op (Load (Oload2 ld a)) (PReg (#base) @ PReg(#r) @ PReg (pmem) @ Enil)
  | ADadr base id ofs => Op (Load (Oload1 ld a)) (PReg (#base) @ PReg (pmem) @ Enil)
  | ADpostincr base n => Op (Load (OloadU ld a)) (PReg (pmem) @ Enil) (* not modeled yet *)
  end.

Definition trans_basic (b: basic) : inst :=
  match b with
  | PArith ai => trans_arith ai
  | PLoad ld r a => 
      let lr := eval_addressing_rlocs_ld ld a in [(#r, lr)]
  | PStore st r a => 
      let lr := eval_addressing_rlocs_st st r a in [(pmem, lr)]
  | Pallocframe sz linkofs =>
      [(#X29, PReg(#SP));
       (#SP, Op (Allocframe (OAllocf_SP sz linkofs)) (PReg (#SP) @ PReg pmem @ Enil));
       (#X16, Op (Constant Vundef) Enil);
       (pmem, Op (Allocframe (OAllocf_Mem sz linkofs)) (Old(PReg(#SP)) @ PReg pmem @ Enil))]
  | Pfreeframe sz linkofs =>
      [(pmem, Op (Freeframe (OFreef_Mem sz linkofs)) (PReg (#SP) @ PReg pmem @ Enil));
       (#SP, Op (Freeframe (OFreef_SP sz linkofs)) (PReg (#SP) @ Old (PReg pmem) @ Enil));
       (#X16, Op (Constant Vundef) Enil)]
  | Ploadsymbol rd id => [(#rd, Op (Loadsymbol id) Enil)]
  | Pcvtsw2x rd r1 => [(#rd, Op (Cvtsw2x) (PReg (#r1) @ Enil))]
  | Pcvtuw2x rd r1 => [(#rd, Op (Cvtuw2x) (PReg (#r1) @ Enil))]
  | Pcvtx2w rd => [(#rd, Op (Cvtx2w) (PReg (#rd) @ Enil))]
  end.

Fixpoint trans_body (b: list basic) : list L.inst :=
  match b with
  | nil => nil
  | b :: lb => (trans_basic b) :: (trans_body lb)
  end.

Definition trans_pcincr (sz: Z) (k: L.inst) := (#PC, Op (Control (OIncremPC sz)) (PReg(#PC) @ Enil)) :: k.

Definition trans_block (b: Asmblock.bblock) : L.bblock :=
  trans_body (body b) ++ (trans_pcincr (size b) (trans_exit (exit b)) :: nil).

(*Theorem trans_block_noheader_inv: forall bb, trans_block (no_header bb) = trans_block bb.*)
(*Proof.*)
  (*intros. destruct bb as [hd bdy ex COR]; unfold no_header; simpl. unfold trans_block. simpl. reflexivity.*)
(*Qed.*)

(*Theorem trans_block_header_inv: forall bb hd, trans_block (stick_header hd bb) = trans_block bb.*)
(*Proof.*)
  (*intros. destruct bb as [hdr bdy ex COR]; unfold no_header; simpl. unfold trans_block. simpl. reflexivity.*)
(*Qed.*)

(** Lemmas on the translation *)

Definition state := L.mem.
Definition exec := L.run.

Definition match_states (s: Asm.state) (s': state) :=
  let (rs, m) := s in
     s' pmem = Memstate m
  /\ forall r, s' (#r) = Val (rs r).

Definition match_outcome (o:outcome) (s: option state) :=
  match o with
  | Some n => exists s', s=Some s' /\ match_states n s'
  | None => s=None
  end.
 
Notation "a <[ b <- c ]>" := (assign a b c) (at level 102, right associativity).

Definition trans_state (s: Asm.state) : state :=
  let (rs, m) := s in
  fun x => if (Pos.eq_dec x pmem) then Memstate m
           else match (inv_ppos x) with
           | Some r => Val (rs r)
           | None => Val Vundef
           end.

Lemma not_eq_IR:
  forall r r', r <> r' -> IR r <> IR r'.
Proof.
  intros. congruence.
Qed.

Lemma ireg_pos_ppos: forall (sr: state) r,
  sr (ireg_to_pos r) = sr (# r).
Proof.
  intros. simpl. reflexivity.
Qed.

Lemma freg_pos_ppos: forall (sr: state) r,
  sr (freg_to_pos r) = sr (# r).
Proof.
  intros. simpl. reflexivity.
Qed.

Lemma ireg_not_pc: forall r,
  (#PC) <> ireg_to_pos r.
Proof.
  intros; destruct r; discriminate.
Qed.

Lemma ireg_not_pmem: forall r,
  ireg_to_pos r <> pmem.
Proof.
  intros; destruct r; discriminate.
Qed.

Lemma ireg_not_CN: forall r,
  2 <> ireg_to_pos r.
Proof.
  intros; destruct r; discriminate.
Qed.

Lemma ireg_not_CZ: forall r,
  3 <> ireg_to_pos r.
Proof.
  intros; destruct r; discriminate.
Qed.

Lemma ireg_not_CC: forall r,
  4 <> ireg_to_pos r.
Proof.
  intros; destruct r; discriminate.
Qed.

Lemma ireg_not_CV: forall r,
  5 <> ireg_to_pos r.
Proof.
  intros; destruct r; discriminate.
Qed.

Lemma freg_not_pmem: forall r,
  freg_to_pos r <> pmem.
Proof.
  intros; destruct r; discriminate.
Qed.

Lemma freg_not_CN: forall r,
  2 <> freg_to_pos r.
Proof.
  intros; destruct r; discriminate.
Qed.

Lemma freg_not_CZ: forall r,
  3 <> freg_to_pos r.
Proof.
  intros; destruct r; discriminate.
Qed.

Lemma freg_not_CC: forall r,
  4 <> freg_to_pos r.
Proof.
  intros; destruct r; discriminate.
Qed.

Lemma freg_not_CV: forall r,
  5 <> freg_to_pos r.
Proof.
  intros; destruct r; discriminate.
Qed.

Lemma sr_ireg_update_both: forall sr rsr r1 rr v
  (HEQV: forall r : preg, sr (# r) = Val (rsr r)),
  (sr <[ ireg_to_pos r1 <- Val (v) ]>) (#rr) =
  Val (rsr # r1 <- v rr).
Proof.
  intros. unfold assign.
  destruct (PregEq.eq r1 rr); subst.
  - rewrite Pregmap.gss. simpl. destruct r1; simpl; reflexivity.
  - rewrite Pregmap.gso; eauto.
    destruct rr; try congruence.
    + destruct d as [i|f]; try destruct i as [ir|]; try destruct f; try destruct ir; try rewrite HEQV; destruct r1; simpl; try congruence.
    + destruct c; destruct r1; simpl; try rewrite <- HEQV; unfold ppos; try congruence.
    + destruct r1; simpl; try rewrite <- HEQV; unfold ppos; try congruence.
Qed.

Lemma sr_freg_update_both: forall sr rsr r1 rr v
  (HEQV: forall r : preg, sr (# r) = Val (rsr r)),
  (sr <[ freg_to_pos r1 <- Val (v) ]>) (#rr) =
  Val (rsr # r1 <- v rr).
Proof.
  intros. unfold assign.
  destruct (PregEq.eq r1 rr); subst.
  - rewrite Pregmap.gss. simpl. destruct r1; simpl; reflexivity.
  - rewrite Pregmap.gso; eauto.
    destruct rr; try congruence.
    + destruct d as [i|f]; try destruct i as [ir|]; try destruct f; try destruct ir; try rewrite HEQV; destruct r1; simpl; try congruence.
    + destruct c; destruct r1; simpl; try rewrite <- HEQV; unfold ppos; try congruence.
    + destruct r1; simpl; try rewrite <- HEQV; unfold ppos; try congruence.
Qed.

Lemma sr_xsp_update_both: forall sr rsr rr v
  (HEQV: forall r : preg, sr (# r) = Val (rsr r)),
  (sr <[ #XSP <- Val (v) ]>) (#rr) =
  Val (rsr # XSP <- v rr).
Proof.
  intros. unfold assign.
  destruct (PregEq.eq XSP rr); subst.
  - rewrite Pregmap.gss. simpl. reflexivity.
  - rewrite Pregmap.gso; eauto.
    destruct rr; try congruence.
    + destruct d as [i|f]; try destruct i as [ir|]; try destruct f; try destruct ir; try rewrite HEQV; simpl; try congruence.
    + destruct c; simpl; try rewrite <- HEQV; unfold ppos; try congruence.
    + simpl; try rewrite <- HEQV; unfold ppos; try congruence.
Qed.

Lemma sr_pc_update_both: forall sr rsr rr v
  (HEQV: forall r : preg, sr (# r) = Val (rsr r)),
  (sr <[ #PC <- Val (v) ]>) (#rr) =
  Val (rsr # PC <- v rr).
Proof.
  intros. unfold assign.
  destruct (PregEq.eq PC rr); subst.
  - rewrite Pregmap.gss. simpl. reflexivity.
  - rewrite Pregmap.gso; eauto.
    destruct rr; try congruence.
    + destruct d as [i|f]; try destruct i as [ir|]; try destruct f; try destruct ir; try rewrite HEQV; simpl; try congruence.
    + destruct c; simpl; try rewrite <- HEQV; unfold ppos; try congruence.
Qed.

Lemma sr_gss: forall sr pos v,
  (sr <[ pos <- v ]>) pos = v.
Proof.
  intros. unfold assign.
  destruct (R.eq_dec pos pos) eqn:REQ; try reflexivity; try congruence.
Qed.

Lemma sr_update_overwrite: forall sr pos v1 v2,
  (sr <[ pos <- v1 ]>) <[ pos <- v2 ]> = (sr <[ pos <- v2 ]>).
Proof.
  intros.
  unfold assign. apply functional_extensionality; intros x.
  destruct (R.eq_dec pos x); reflexivity.
Qed.

Ltac sr_val_rwrt :=
  repeat match goal with
  | [H: forall r: preg, ?sr (# r) = Val (?rsr r) |- _ ]
      => rewrite H
  end.

Ltac sr_memstate_rwrt :=
  repeat match goal with
  | [H: ?sr pmem = Memstate ?mr |- _ ]
      => rewrite <- H
  end.

Ltac replace_ppos :=
  try erewrite !ireg_pos_ppos;
  try erewrite !freg_pos_ppos.

Ltac DI0N0 ir0 := destruct ir0; subst; simpl.

Ltac DIRN1 ir := destruct ir as [irrDIRN1|]; subst; try destruct irrDIRN1; simpl.

Ltac DDRM dr :=
  destruct dr as [irsDDRF|frDDRF]; 
      [destruct irsDDRF
      | idtac ].

Ltac DDRF dr :=
  destruct dr as [irsDDRF|frDDRF]; 
      [destruct irsDDRF as [irsDDRF|]; [destruct irsDDRF|]
      | destruct frDDRF].

Ltac DPRF pr :=
  destruct pr as [drDPRF|crDPRF|]; 
      [destruct drDPRF as [irDPRF|frDPRF]; [destruct irDPRF as [irrDPRF|]; [destruct irrDPRF|]
      | destruct frDPRF]
      | destruct crDPRF|].

Ltac DPRM pr :=
  destruct pr as [drDPRF|crDPRF|]; 
      [destruct drDPRF as [irDPRF|frDPRF]; [destruct irDPRF |]
      | destruct crDPRF|].

Ltac DPRI pr :=
  destruct pr as [drDPRI|crDPRI|]; 
      [destruct drDPRI as [irDPRI|frDPRI]; [destruct irDPRI as [irrDPRI|]; [destruct irrDPRI|]|]
      | idtac
      | idtac ].

Ltac discriminate_ppos :=
  try apply ireg_not_pmem;
  try apply ireg_not_pc;
  try apply freg_not_pmem;
  try apply ireg_not_CN;
  try apply ireg_not_CZ;
  try apply ireg_not_CC;
  try apply ireg_not_CV;
  try apply freg_not_CN;
  try apply freg_not_CZ;
  try apply freg_not_CC;
  try apply freg_not_CV;
  try(simpl; discriminate).

Ltac replace_pc := try replace (6) with (#PC) by eauto.

Ltac replace_regs_pos sr :=
  try replace (sr 7) with (sr (ppos XSP)) by eauto;
  try replace (sr 6) with (sr (ppos PC)) by eauto;
  try replace (sr 2) with (sr (ppos CN)) by eauto;
  try replace (sr 3) with (sr (ppos CZ)) by eauto;
  try replace (sr 4) with (sr (ppos CC)) by eauto;
  try replace (sr 5) with (sr (ppos CV)) by eauto.

Ltac Simpl_exists sr :=
  replace_ppos;
  replace_regs_pos sr;
  try sr_val_rwrt;
  try (eexists; split; [| split]); eauto;
  try (sr_memstate_rwrt; rewrite assign_diff;
      try reflexivity;
      discriminate_ppos
  ).

Ltac Simpl_rep sr :=
  replace_ppos;
  replace_regs_pos sr;
  try sr_val_rwrt;
  try (sr_memstate_rwrt; rewrite assign_diff;
      try reflexivity;
      discriminate_ppos
  ).

Ltac Simpl_update :=
  try eapply sr_ireg_update_both; eauto;
  try eapply sr_freg_update_both; eauto;
  try eapply sr_xsp_update_both; eauto;
  try eapply sr_pc_update_both; eauto.

Ltac Simpl sr := Simpl_exists sr; try (intros rr; try rewrite sr_update_overwrite; replace_regs_pos sr; DPRM rr); Simpl_update.

Ltac destruct_res_flag rsr := try (rewrite Pregmap.gso; discriminate_ppos); destruct (rsr _); simpl; try reflexivity.

Ltac discriminate_preg_flags := rewrite !assign_diff; try rewrite !Pregmap.gso; discriminate_ppos; sr_val_rwrt; reflexivity.

Ltac validate_crbit_flags c :=
  destruct c;
  [
    do 3 (rewrite assign_diff; discriminate_ppos);
    do 3 (rewrite Pregmap.gso; try discriminate);
    rewrite sr_gss; rewrite Pregmap.gss; reflexivity |
    do 2 (rewrite assign_diff; discriminate_ppos);
    do 2 (rewrite Pregmap.gso; try discriminate);
    rewrite sr_gss; rewrite Pregmap.gss; reflexivity |
    do 1 (rewrite assign_diff; discriminate_ppos);
    do 1 (rewrite Pregmap.gso; try discriminate);
    rewrite sr_gss; rewrite Pregmap.gss; reflexivity |
    rewrite sr_gss; rewrite Pregmap.gss; reflexivity
  ].

Ltac destruct_reg_neq r1 r2 :=
  destruct (PregEq.eq r1 r2); subst;
   [ rewrite sr_gss; rewrite Pregmap.gss; reflexivity |
     rewrite assign_diff; try rewrite Pregmap.gso; fold (ppos r1); try apply ppos_discr; auto].

Lemma reg_update_overwrite: forall rsr sr r rd v1 v2
  (HEQV: forall r : preg, sr (# r) = Val (rsr r)),
  ((sr <[ # rd <- Val (v1) ]>) <[ # rd <- Val (v2) ]>) (# r) =
  Val ((rsr # rd <- v1) # rd <- v2 r).
Proof.
  intros.
  unfold Pregmap.set; destruct (PregEq.eq r rd).
  - rewrite e; apply sr_gss; reflexivity.
  - rewrite sr_update_overwrite. rewrite assign_diff; eauto.
    unfold not; intros. apply ppos_equal in H. congruence.
Qed.

Lemma compare_single_res_aux: forall sr mr rsr rr
  (HMEM: sr pmem = Memstate mr)
  (HEQV: forall r : preg, sr (# r) = Val (rsr r)),
  ((((sr <[ 2 <- Val (_CN (v_compare_single Vundef Vundef)) ]>) <[ 3 <-
   Val (_CZ (v_compare_single Vundef Vundef)) ]>) <[ 4 <-
  Val (_CC (v_compare_single Vundef Vundef)) ]>) <[ 5 <-
 Val (_CV (v_compare_single Vundef Vundef)) ]>) (# rr) =
Val
  ((compare_single rsr Vundef Vundef) rr).
Proof.
  intros. unfold v_compare_single, compare_single.
  (destruct rr;
    [ DDRF d; discriminate_preg_flags |
      validate_crbit_flags c |
      discriminate_preg_flags ]).
Qed.

Lemma compare_single_res: forall sr mr rsr rr v1 v2
  (HMEM: sr pmem = Memstate mr)
  (HEQV: forall r : preg, sr (# r) = Val (rsr r)),
  ((((sr <[ 2 <- Val (_CN (v_compare_single v1 v2)) ]>) <[ 3 <-
   Val (_CZ (v_compare_single v1 v2)) ]>) <[ 4 <-
  Val (_CC (v_compare_single v1 v2)) ]>) <[ 5 <-
 Val (_CV (v_compare_single v1 v2)) ]>) (# rr) =
Val
  ((compare_single rsr v1 v2) rr).
Proof.
  intros.
  destruct v1; destruct v2;
  try eapply compare_single_res_aux; eauto.
  unfold v_compare_single, compare_single.
  (destruct rr;
    [ DDRF d; discriminate_preg_flags |
      validate_crbit_flags c |
      discriminate_preg_flags ]).
Qed.

Lemma compare_float_res_aux: forall sr mr rsr rr
  (HMEM: sr pmem = Memstate mr)
  (HEQV: forall r : preg, sr (# r) = Val (rsr r)),
  ((((sr <[ 2 <- Val (_CN (v_compare_float Vundef Vundef)) ]>) <[ 3 <-
   Val (_CZ (v_compare_float Vundef Vundef)) ]>) <[ 4 <-
  Val (_CC (v_compare_float Vundef Vundef)) ]>) <[ 5 <-
 Val (_CV (v_compare_float Vundef Vundef)) ]>) (# rr) =
Val
  ((compare_float rsr Vundef Vundef) rr).
Proof.
  intros. unfold v_compare_float, compare_float.
  (destruct rr;
    [ DDRF d; discriminate_preg_flags |
      validate_crbit_flags c |
      discriminate_preg_flags ]).
Qed.

Lemma compare_float_res: forall sr mr rsr rr v1 v2
  (HMEM: sr pmem = Memstate mr)
  (HEQV: forall r : preg, sr (# r) = Val (rsr r)),
  ((((sr <[ 2 <- Val (_CN (v_compare_float v1 v2)) ]>) <[ 3 <-
   Val (_CZ (v_compare_float v1 v2)) ]>) <[ 4 <-
  Val (_CC (v_compare_float v1 v2)) ]>) <[ 5 <-
 Val (_CV (v_compare_float v1 v2)) ]>) (# rr) =
Val
  ((compare_float rsr v1 v2) rr).
Proof.
  intros.
  destruct v1; destruct v2;
  try eapply compare_float_res_aux; eauto.
  unfold v_compare_float, compare_float.
  (destruct rr;
    [ DDRF d; discriminate_preg_flags |
      validate_crbit_flags c |
      discriminate_preg_flags ]).
Qed.

Lemma compare_long_res_aux: forall sr mr rsr rr
  (HMEM: sr pmem = Memstate mr)
  (HEQV: forall r : preg, sr (# r) = Val (rsr r)),
  ((((sr <[ 2 <- Val (_CN (v_compare_long Vundef Vundef)) ]>) <[ 3 <-
   Val (_CZ (v_compare_long Vundef Vundef)) ]>) <[ 4 <-
  Val (_CC (v_compare_long Vundef Vundef)) ]>) <[ 5 <-
 Val (_CV (v_compare_long Vundef Vundef)) ]>) (# rr) =
Val
  ((compare_long rsr Vundef Vundef) rr).
Proof.
  intros. unfold v_compare_long, compare_long.
  (destruct rr;
    [ DDRF d; discriminate_preg_flags |
      validate_crbit_flags c |
      discriminate_preg_flags ]).
Qed.

Lemma compare_long_res: forall sr mr rsr rr v1 v2
  (HMEM: sr pmem = Memstate mr)
  (HEQV: forall r : preg, sr (# r) = Val (rsr r)),
  ((((sr <[ 2 <- Val (_CN (v_compare_long v1 v2)) ]>) <[ 3 <-
   Val (_CZ (v_compare_long v1 v2)) ]>) <[ 4 <-
  Val (_CC (v_compare_long v1 v2)) ]>) <[ 5 <-
 Val (_CV (v_compare_long v1 v2)) ]>) (# rr) =
Val
  ((compare_long rsr v1 v2) rr).
Proof.
  intros.
  destruct v1; destruct v2;
  try eapply compare_long_res_aux; eauto;
  unfold v_compare_long, compare_long;
  (destruct rr;
    [ DDRF d; discriminate_preg_flags |
      validate_crbit_flags c |
      discriminate_preg_flags ]).
Qed.

Lemma compare_int_res_aux: forall sr mr rsr rr
  (HMEM: sr pmem = Memstate mr)
  (HEQV: forall r : preg, sr (# r) = Val (rsr r)),
  ((((sr <[ 2 <- Val (_CN (v_compare_int Vundef Vundef)) ]>) <[ 3 <-
   Val (_CZ (v_compare_int Vundef Vundef)) ]>) <[ 4 <-
  Val (_CC (v_compare_int Vundef Vundef)) ]>) <[ 5 <-
 Val (_CV (v_compare_int Vundef Vundef)) ]>) (# rr) =
Val
  ((compare_int rsr Vundef Vundef) rr).
Proof.
  intros. unfold v_compare_int, compare_int.
  (destruct rr;
    [ DDRF d; discriminate_preg_flags |
      validate_crbit_flags c |
      discriminate_preg_flags ]).
Qed.

Lemma compare_int_res: forall sr mr rsr rr v1 v2
  (HMEM: sr pmem = Memstate mr)
  (HEQV: forall r : preg, sr (# r) = Val (rsr r)),
  ((((sr <[ 2 <- Val (_CN (v_compare_int v1 v2)) ]>) <[ 3 <-
   Val (_CZ (v_compare_int v1 v2)) ]>) <[ 4 <-
  Val (_CC (v_compare_int v1 v2)) ]>) <[ 5 <-
 Val (_CV (v_compare_int v1 v2)) ]>) (# rr) =
Val
  ((compare_int rsr v1 v2) rr).
Proof.
  intros.
  destruct v1; destruct v2;
  try eapply compare_int_res_aux; eauto;
  unfold v_compare_int, compare_int;
  (destruct rr;
    [ DDRF d; discriminate_preg_flags |
      validate_crbit_flags c |
      discriminate_preg_flags ]).
Qed.

Section SECT_SEQ.

Variable Ge: genv.

Lemma trans_arith_correct rsr mr sr rsw' old i:
  match_states (State rsr mr) sr ->
  exec_arith_instr Ge.(_lk) i rsr = rsw' ->
  exists sw,
     inst_run Ge (trans_arith i) sr old = Some sw
  /\ match_states (State rsw' mr) sw.
Proof.
  induction i.
  all: intros MS EARITH; subst; inv MS; unfold exec_arith_instr.
  - (* PArithP *)
    destruct i.
    1,2,3: DIRN1 rd; Simpl sr.
    (* Special case for Pmovimms/Pmovimmd *)
    all: DIRN1 rd; Simpl sr;
         try (rewrite assign_diff; discriminate_ppos; reflexivity);
         try replace 24 with (#X16) by auto;
         try replace 7 with (#XSP) by auto;
         try (Simpl_update; intros rr; destruct_reg_neq r rr);
         try (Simpl_update; intros rr; destruct_reg_neq XSP rr);
         try (Simpl_update; intros rr; destruct_reg_neq f0 rr).
  - (* PArithPP *)
    DIRN1 rs; DIRN1 rd; Simpl sr.
  - (* PArithPPP *)
    DIRN1 r1; DIRN1 r2; DIRN1 rd; Simpl sr.
  - (* PArithRR0R *) 
    simpl. destruct r1.
    + (* OArithRR0R *) simpl; Simpl sr.
    + (* OArithRR0R_XZR *) simpl; destruct (arith_rr0r_isize _); Simpl sr.
  - (* PArithRR0 *)
    simpl. destruct r1.
    + (* OArithRR0 *) simpl; Simpl sr.
    + (* OArithRR0_XZR *) simpl; destruct (arith_rr0_isize _); Simpl sr.
  - (* PArithARRRR0 *)
    simpl. destruct r3.
    + (* OArithARRRR0 *) simpl; Simpl sr.
    + (* OArithARRRR0_XZR *) simpl; destruct (arith_arrrr0_isize _); Simpl sr.
  - (* PArithComparisonPP *)
    DIRN1 r2; DIRN1 r1; destruct i;
    repeat Simpl_rep sr; Simpl_exists sr;
    unfold arith_eval_comparison_pp; destruct arith_prepare_comparison_pp;
    simpl; intros rr; try destruct sz;
    try (eapply compare_single_res; eauto);
    try (eapply compare_long_res; eauto);
    try (eapply compare_float_res; eauto).
  - (* PArithComparisonR0R *)
    simpl. destruct r1; (
      simpl; destruct i;
      repeat Simpl_rep sr; Simpl_exists sr;
      unfold arith_eval_comparison_r0r, arith_comparison_r0r_isize; destruct arith_prepare_comparison_r0r; destruct is;
      simpl; intros rr; try destruct sz;
      try (eapply compare_long_res; eauto);
      try (eapply compare_int_res; eauto)).
  - (* PArithComparisonP *)
    DIRN1 r1; destruct i;
    repeat Simpl_rep sr; Simpl_exists sr;
    unfold arith_eval_comparison_p; destruct arith_prepare_comparison_p;
    simpl; try intros rr; try destruct sz;
    try (eapply compare_single_res; eauto);
    try (eapply compare_long_res; eauto);
    try (eapply compare_int_res; eauto);
    try (eapply compare_float_res; eauto).
  - (* Pcset *)
    simpl; (*DI0N0 rd.*) unfold eval_testcond, get_testcond_rlocs, cflags_eval;
    unfold cond_eval_is; unfold flags_testcond_value, list_exp_eval; destruct c; simpl;
    repeat Simpl_rep sr; Simpl_exists sr;
    destruct_res_flag rsr;
    Simpl sr.
  - (* Pfmovi *)
    simpl; destruct r1; simpl; destruct fsz; Simpl sr.
  - (* Pcsel *)
    simpl.
    unfold eval_testcond, cflags_eval. DIRN1 r1; DIRN1 r2; destruct c; simpl;
    repeat Simpl_rep sr;
    (eexists; split; [| split]; [reflexivity | DDRM rd; Simpl_exists sr | idtac]).
    all: intros rr; destruct (PregEq.eq rr rd);
    [ subst; erewrite Pregmap.gss; erewrite sr_gss; reflexivity |
    try erewrite Pregmap.gso; try erewrite assign_diff; try rewrite H0; try fold (ppos rd); try eapply ppos_discr; eauto ].
  - (* Pfnmul *)
    simpl; destruct fsz; Simpl sr.
Qed.

Lemma sp_xsp:
  SP = XSP.
Proof.
  econstructor.
Qed.

Theorem bisimu_basic rsr mr sr bi:
  match_states (State rsr mr) sr ->
  match_outcome (exec_basic Ge.(_lk) Ge.(_genv) bi rsr mr) (inst_run Ge (trans_basic bi) sr sr).
Proof.
(* a little tactic to automate reasoning on preg_eq *)
Local Hint Resolve not_eq_sym ppos_pmem_discr ppos_discr: core.
Local Ltac preg_eq_discr r rd :=
  destruct (preg_eq r rd); try (subst r; rewrite assign_eq, Pregmap.gss; auto);
  rewrite (assign_diff _ (#rd) (#r) _); auto;
  rewrite Pregmap.gso; auto.

  intros MS; inversion MS as (H & H0).
  destruct bi; simpl.
  (* Loadsymbol / Cvtsw2x / Cvtuw2x / Cvtx2w *) 
  6,7,8,9: Simpl sr.
  - (* Arith *)
    exploit trans_arith_correct; eauto.
  - (* Load *)
    unfold exec_load, eval_addressing_rlocs_ld, exp_eval;
    destruct a; simpl; try destruct base; Simpl_exists sr; erewrite H;
    unfold exec_load1, exec_load2, exec_loadU; unfold call_ll_loadv;
    try destruct (Mem.loadv _ _ _); simpl; auto.
    all: eexists; split; [| split]; [ eauto | DDRF rd; eauto | idtac ];
    intros rr; destruct (PregEq.eq rr rd); subst; [ rewrite Pregmap.gss; rewrite sr_gss; reflexivity |
    rewrite assign_diff; try rewrite Pregmap.gso;
    try rewrite H0; try (fold (ppos rd); eapply ppos_discr); auto].
  - (* Store *)
    unfold exec_store, eval_addressing_rlocs_st, exp_eval;
    destruct a; simpl; DIRN1 r; try destruct base; Simpl_exists sr; erewrite H;
    unfold exec_store1, exec_store2, exec_storeU; unfold call_ll_storev;
    try destruct (Mem.storev _ _ _ _); simpl; auto.
    all: eexists; split; [| split]; [ eauto | eauto |
    intros rr; rewrite assign_diff; [ rewrite H0; auto | apply ppos_pmem_discr ]].
  - (* Alloc *)
    destruct (Mem.alloc _ _ _) eqn:MEMAL. destruct (Mem.store _ _ _ _) eqn:MEMS.
    + eexists; repeat split. 
      * rewrite !assign_diff; try discriminate_ppos; Simpl_exists sr;
        rewrite H; destruct (Mem.alloc _ _ _) eqn:MEMAL2;
        injection MEMAL; intros Hm Hb; try rewrite Hm, Hb;
        rewrite sp_xsp in MEMS; rewrite MEMS.
        rewrite !assign_diff; try discriminate_ppos; Simpl_exists sr; rewrite H;
        destruct (Mem.alloc _ _ _) eqn:MEMAL3;
        injection MEMAL2; intros Hm2 Hb2; try rewrite Hm2, Hb2;
        rewrite Hm, Hb; rewrite MEMS; reflexivity.
      * eauto.
      * intros rr; DPRF rr; repeat Simpl_exists sr.
    + simpl; repeat Simpl_exists sr. erewrite H. destruct (Mem.alloc _ _ _) eqn:HMEMAL2.
        injection MEMAL; intros Hm Hb. 
        try rewrite Hm, Hb; clear Hm Hb.
        try rewrite sp_xsp in MEMS; rewrite MEMS. reflexivity.
  - (* Free *)
    destruct (Mem.loadv _ _ _) eqn:MLOAD; simpl; auto;
    repeat Simpl_exists sr; rewrite H; simpl.
    + destruct (rsr SP) eqn:EQSP; simpl; rewrite <- sp_xsp; rewrite EQSP; rewrite MLOAD; try reflexivity.
      destruct (Mem.free _ _ _) eqn:EQFREE; try reflexivity. rewrite assign_diff; discriminate_ppos.
      replace_regs_pos sr; sr_val_rwrt. rewrite <- sp_xsp; rewrite EQSP; rewrite MLOAD. rewrite EQFREE.
      Simpl_exists sr. intros rr; DPRF rr; repeat Simpl_exists sr.
    + rewrite <- sp_xsp; rewrite MLOAD; reflexivity.
Qed.

Theorem bisimu_body:
  forall bdy rsr mr sr,
  match_states (State rsr mr) sr ->
  match_outcome (exec_body Ge.(_lk) Ge.(_genv) bdy rsr mr) (exec Ge (trans_body bdy) sr).
Proof.
  induction bdy as [|i bdy]; simpl; eauto. 
  intros.
  exploit (bisimu_basic rsr mr sr i); eauto.
  destruct (exec_basic _ _ _ _ _); simpl.
  - intros (s' & X1 & X2).
    rewrite X1; simpl; eauto. eapply IHbdy; eauto; simpl.
    unfold match_states in *. destruct s. unfold Asm._m. eauto.
  - intros X; rewrite X; simpl; auto.
Qed.

Theorem bisimu_control ex sz rsr mr sr:
  match_states (State rsr mr) sr ->
  match_outcome (exec_cfi Ge.(_genv) Ge.(_fn) ex (incrPC (Ptrofs.repr sz) rsr) mr) (inst_run Ge (trans_pcincr sz (trans_exit (Some (PCtlFlow ex)))) sr sr).
Proof.
  intros MS.
  simpl in *. inv MS.
  destruct ex.
  (* Obr / Oret *)
  6,7: unfold control_eval, incrPC; simpl; destruct Ge;
       replace_pc; rewrite (H0 PC);
       repeat Simpl_rep sr; Simpl_exists sr;
       intros rr; destruct (preg_eq rr PC); [
       rewrite e; rewrite sr_gss; rewrite Pregmap.gss;
       try rewrite Pregmap.gso; discriminate_ppos; fold (ppos r); auto |
       repeat Simpl_rep sr; try rewrite !Pregmap.gso; auto; apply ppos_discr in n; auto ].
  (* Ocbnz / Ocbz *)
  6,7,8,9: unfold control_eval; destruct Ge; simpl;
           replace_pc; rewrite (H0 PC);
           unfold eval_branch, eval_neg_branch, eval_testzero, eval_testbit,
                  incrPC, goto_label_deps, goto_label;
           destruct (PregEq.eq r PC);
           [ rewrite e; destruct sz0; simpl; Simpl sr |
             destruct sz0; simpl; replace_pc; rewrite Pregmap.gso; auto; repeat Simpl_rep sr; try rewrite H0;
             try (destruct (Val_cmpu_bool _ _ _) eqn:EQCMP; try reflexivity; destruct b);
             try (destruct (Val_cmplu_bool _ _ _) eqn:EQCMP; try reflexivity; destruct b);
             try (destruct (Val.cmp_bool _ _ _) eqn:EQCMP; try reflexivity; destruct b);
             try (destruct (Val.cmpl_bool _ _ _) eqn:EQCMP; try reflexivity; destruct b);
             try (Simpl_exists sr; intros rr; destruct (PregEq.eq rr PC); subst;
                  [ rewrite sr_gss, Pregmap.gss; reflexivity | rewrite !assign_diff, Pregmap.gso; auto ]);
             try (destruct (label_pos _ _ _); try reflexivity; rewrite Pregmap.gss;
                  destruct Val.offset_ptr; try reflexivity; Simpl_exists sr;
                  intros rr; destruct (PregEq.eq rr PC); subst;
                  [ rewrite sr_gss, Pregmap.gss; reflexivity | rewrite !assign_diff, Pregmap.gso; auto ];
                  rewrite Pregmap.gso; auto)].
  - (* Ob *)
    replace_pc. rewrite (H0 PC). simpl.
    unfold goto_label, control_eval. destruct Ge.
    unfold goto_label_deps. destruct (label_pos _ _ _); auto.
    + unfold incrPC. rewrite Pregmap.gss; eauto. destruct (Val.offset_ptr _ _); auto;
      try (rewrite sr_gss; unfold Stuck; reflexivity).
      simpl. eexists; split; split.
      * rewrite sr_update_overwrite. unfold pmem, assign in *. simpl. rewrite H; reflexivity.
      * intros. rewrite sr_update_overwrite. unfold Pregmap.set, assign.
        destruct r as [dr|cr|]; try destruct dr as [ir|fr]; try destruct ir as [irr|];
        try destruct irr; try destruct fr; try destruct cr; simpl; try rewrite <- H0; eauto.
    + rewrite sr_gss; reflexivity.
  - (* Obc *)
    replace_pc. rewrite (H0 PC). simpl.
    unfold eval_branch, goto_label, control_eval. destruct Ge.
    unfold goto_label_deps, cflags_eval, eval_testcond, list_exp_eval.
    destruct c; simpl; unfold incrPC;
    repeat (replace_ppos; replace_pc; replace_regs_pos sr; sr_val_rwrt; try rewrite !assign_diff; discriminate_ppos).
    1,2,3,4,5,6: destruct_res_flag rsr.
    7,8,9,10: do 2 (destruct_res_flag rsr).
    11,12 : do 3 (destruct_res_flag rsr).
    1,2,3,4,5,6,9,10: destruct (Int.eq _ _); [| Simpl sr ];
                      destruct (label_pos _ _ _); [| reflexivity]; replace_pc; 
                      rewrite !Pregmap.gss; destruct Val.offset_ptr;
                      try (unfold Stuck; reflexivity); Simpl_exists sr; intros rr;
                      apply reg_update_overwrite; eauto.
    1,3: destruct (andb); [| Simpl sr ];
         destruct (label_pos _ _ _); [| reflexivity]; replace_pc; rewrite !Pregmap.gss;
         destruct Val.offset_ptr; try (unfold Stuck; reflexivity); Simpl_exists sr;
         intros rr; apply reg_update_overwrite; eauto.
    1,2: destruct (orb); [| Simpl sr ];
         destruct (label_pos _ _ _); [| reflexivity]; replace_pc; rewrite !Pregmap.gss;
         destruct Val.offset_ptr; try (unfold Stuck; reflexivity); Simpl_exists sr;
         intros rr; apply reg_update_overwrite; eauto.
  - (* Obl *)
    replace_pc. rewrite (H0 PC). simpl.
    unfold control_eval. destruct Ge.
    rewrite sr_gss.
    repeat Simpl_rep sr. Simpl_exists sr.
    Simpl sr.
    all: repeat (intros; replace_regs_pos sr; try replace (38) with (#X30) by eauto; unfold incrPC; Simpl_update).
  - (* Obs *)
    unfold control_eval. destruct Ge. replace_pc. rewrite (H0 PC). simpl; unfold incrPC.
    replace_pc; Simpl_exists sr; intros rr; apply reg_update_overwrite; eauto.
  - (* Oblr *)
    replace_pc. rewrite (H0 PC).
    unfold control_eval. destruct Ge. simpl. unfold incrPC.
    try (eexists; split; [  | split ]); eauto.
    intros rr; DPRF rr; Simpl_update.
    68: rewrite sr_gss, Pregmap.gss;
        try rewrite Pregmap.gso; discriminate_ppos; fold (ppos r); rewrite H0; auto.
    all: repeat Simpl_rep sr; rewrite !Pregmap.gso; discriminate_ppos; auto.
  - (* Obtbl *)
    replace_pc. rewrite (H0 PC).
    unfold control_eval. destruct Ge. simpl. unfold incrPC.
    destruct r1.
    17: rewrite Pregmap.gss, sr_gss; try reflexivity.
    all: rewrite !Pregmap.gso, !assign_diff; discriminate_ppos;
    rewrite ireg_pos_ppos; try erewrite H0; destruct (rsr _);
    try destruct (list_nth_z _ _); try reflexivity;
    unfold goto_label, goto_label_deps; destruct (label_pos _ _ _);
    try rewrite 2Pregmap.gso, Pregmap.gss; destruct (Val.offset_ptr (rsr PC) (Ptrofs.repr sz));
    try reflexivity; discriminate_ppos; simpl; Simpl_exists sr;
    intros rr;
    destruct (PregEq.eq X16 rr); [ subst; Simpl_update |];
    destruct (PregEq.eq X17 rr); [ subst; Simpl_update |];
    destruct (PregEq.eq PC rr); [ subst; Simpl_update |];
    rewrite !Pregmap.gso; auto; apply ppos_discr in n; apply ppos_discr in n0; apply ppos_discr in n1;
    simpl in *;repeat Simpl_rep sr; auto.
Qed.

Theorem bisimu_exit ex sz rsr mr sr:
  match_states (State rsr mr) sr ->
  match_outcome (estep Ge.(_genv) Ge.(_fn) ex (Ptrofs.repr sz) rsr mr) (inst_run Ge (trans_pcincr sz (trans_exit (Some (PCtlFlow ex)))) sr sr).
Proof.
  intros; unfold estep.
  exploit (bisimu_control ex sz rsr mr sr); eauto.
Qed.

Definition trans_block_aux bdy sz ex := (trans_body bdy) ++ (trans_pcincr sz (trans_exit ex) :: nil).

Theorem bisimu rsr mr sr bdy ex sz:
  match_states (State rsr mr) sr ->
  match_outcome (bbstep Ge.(_lk) Ge.(_genv) Ge.(_fn) ex (Ptrofs.repr sz) bdy rsr mr) (run Ge (trans_block_aux bdy sz (Some (PCtlFlow ex))) sr).
Proof.
  intros MS. unfold bbstep, trans_block_aux.
  exploit (bisimu_body bdy rsr mr sr); eauto.
  destruct (exec_body _ _ _ _ _); simpl.
  - unfold match_states in *. intros (s' & X1 & X2). destruct s.
    erewrite run_app_Some; eauto.
    exploit (bisimu_exit ex sz _rs _m s'); eauto.
    destruct Ge; simpl. destruct MS as (Y1 & Y2). destruct X2 as (X2 & X3).
    replace_pc. erewrite !X3; simpl.
    destruct (inst_run _ _ _ _); simpl; auto.
  - intros X; erewrite run_app_None; eauto.
Qed.

(* TODO We should use this version, but our current definitions
does not match
Theorem bisimu rsr mr b sr ex sz:
    match_states (State rsr mr) sr -> 
    match_outcome (bbstep Ge.(_lk) Ge.(_genv) Ge.(_fn) ex (Ptrofs.repr sz) (body b) rsr mr) (exec Ge (trans_block b) sr).
Proof.

  intros MS. unfold bbstep.
  exploit (bisimu_body (body b) rsr mr sr); eauto.
  unfold exec, trans_block; simpl.
  destruct (exec_body _ _ _ _); simpl.
  - unfold match_states in *. intros (s' & X1 & X2). destruct s.
    erewrite run_app_Some; eauto.
    exploit (bisimu_exit ex sz _rs _m s' s'); eauto.
    destruct Ge; simpl. destruct X2 as (X2 & X3). destruct MS as (Y1 & Y2).
    replace (6) with (#PC) by auto. erewrite X3; simpl.
    unfold trans_exit.
    destruct (inst_run _ _ _); simpl; auto.
  - intros X; erewrite run_app_None; eauto.

  intros MS. unfold bbstep, trans_block.
  exploit (bisimu_body (body b) rsr mr sr); eauto.
  destruct (exec_body _ _ _ _ _); simpl.
  - unfold match_states in *. intros (s' & X1 & X2). destruct s.
    erewrite run_app_Some; eauto.
    exploit (bisimu_exit ex sz _rs _m s' s'); eauto.
    destruct Ge; simpl. destruct MS as (Y1 & Y2). destruct X2 as (X2 & X3).
    replace (6) with (#PC) by auto. erewrite !X3; simpl.
    destruct (inst_run _ _ _ _); simpl; auto.
  - intros X; erewrite run_app_None; eauto.
Qed.*)

(*Theorem bisimu_bblock rsr mr sr bdy1 bdy2 ex sz:*)
  (*match_states (State rsr mr) sr ->*)
  (*match_outcome *)
   (*match bbstep Ge.(_lk) Ge.(_genv) Ge.(_fn) ex (Ptrofs.repr sz) bdy1 rsr mr with*)
   (*| Some (State rs' m') => exec_body Ge.(_lk) Ge.(_genv) bdy2 rs' m'*)
   (*| Stuck => Stuck*)
   (*end*)
   (*(run Ge ((trans_block_aux bdy1 sz (Some (PCtlFlow (ex))))++(trans_body bdy2)) sr).*)
(*Proof.*)
  (*intros.*)
  (*exploit (bisimu rsr mr sr bdy1 ex sz); eauto.*)
  (*destruct (bbstep _ _ _ _ _ _); simpl.*)
  (*- intros (s' & X1 & X2).*)
    (*erewrite run_app_Some; eauto. destruct s.*)
    (*eapply bisimu_body; eauto.*)
  (*- intros; erewrite run_app_None; eauto.*)
(*Qed.*)

(*Lemma trans_body_perserves_permutation bdy1 bdy2:*)
  (*Permutation bdy1 bdy2 ->*)
  (*Permutation (trans_body bdy1) (trans_body bdy2).*)
(*Proof.*)
  (*induction 1; simpl; econstructor; eauto.*)
(*Qed.*)
(*
Lemma trans_body_app bdy1: forall bdy2,
   trans_body (bdy1++bdy2) = (trans_body bdy1) ++ (trans_body bdy2).
Proof.
  induction bdy1; simpl; congruence.
Qed.
*)
(*Theorem trans_block_perserves_permutation bdy1 bdy2 b:*)
  (*Permutation (bdy1 ++ bdy2) (body b) ->*)
  (*Permutation (trans_block b) ((trans_block_aux bdy1 (size b) (exit b))++(trans_body bdy2)).*)
(*Proof.*)
  (*intro H; unfold trans_block, trans_block_aux.*)
  (*eapply perm_trans.*)
  (*- eapply Permutation_app_tail. *)
    (*apply trans_body_perserves_permutation.*)
    (*apply Permutation_sym; eapply H.*)
  (*- rewrite trans_body_app. rewrite <-! app_assoc.*)
    (*apply Permutation_app_head.*)
    (*apply Permutation_app_comm.*)
(*Qed.*)

(*Theorem bisimu_par rs1 m1 s1' b ge fn o2:*)
    (*Ge = Genv ge fn ->*)
    (*match_states (State rs1 m1) s1' -> *)
    (*parexec_bblock ge fn b rs1 m1 o2 ->*)
  (*exists o2',*)
     (*prun Ge (trans_block b) s1' o2'*)
  (*/\ match_outcome o2 o2'.*)
(*Proof.*)
  (*intros GENV MS PAREXEC.*)
  (*inversion PAREXEC as (bdy1 & bdy2 & PERM & WIO).*)
  (*exploit trans_block_perserves_permutation; eauto.*)
  (*intros Perm.*)
  (*exploit (bisimu_par_wio_bblock ge fn rs1 m1 s1' bdy1 bdy2 (exit b) (size b)); eauto.*)
  (*rewrite <- WIO. clear WIO.*)
  (*intros H; eexists; split. 2: eapply H.*)
  (*unfold prun; eexists; split; eauto. *)
  (*destruct (prun_iw _ _ _ _); simpl; eauto.*)
(*Qed.*)

(** sequential execution *)
(*Theorem bisimu_basic ge fn bi rs m s:*)
  (*Ge = Genv ge fn ->*)
  (*match_states (State rs m) s ->*)
  (*match_outcome (exec_basic_instr ge bi rs m) (inst_run Ge (trans_basic bi) s s).*)
(*Proof.*)
  (*intros; unfold exec_basic_instr. rewrite inst_run_prun.*)
  (*eapply bisimu_par_wio_basic; eauto.*)
(*Qed.*)

(*Lemma bisimu_body:*)
  (*forall bdy ge fn rs m s,*)
  (*Ge = Genv ge fn ->*)
  (*match_states (State rs m) s ->*)
  (*match_outcome (exec_body ge bdy rs m) (exec Ge (trans_body bdy) s).*)
(*Proof.*)
  (*induction bdy as [|i bdy]; simpl; eauto. *)
  (*intros.*)
  (*exploit (bisimu_basic ge fn i rs m s); eauto.*)
  (*destruct (exec_basic_instr _ _ _ _); simpl.*)
  (*- intros (s' & X1 & X2). rewrite X1; simpl; eauto.*)
  (*- intros X; rewrite X; simpl; auto.*)
(*Qed.*)

(*Theorem bisimu_exit ge fn b rs m s:*)
  (*Ge = Genv ge fn ->*)
  (*match_states (State rs m) s ->*)
  (*match_outcome (exec_control ge fn (exit b) (nextblock b rs) m) (inst_run Ge (trans_pcincr (size b) (trans_exit (exit b))) s s).*)
(*Proof.*)
  (*intros; unfold exec_control, nextblock. rewrite inst_run_prun. *)
  (*apply (bisimu_par_control (exit b) (size b) (Val.offset_ptr (rs PC) (Ptrofs.repr (size b))) ge fn rs rs m m s s); auto.*)
(*Qed.*)

(*Lemma bbstep_is_exec_bblock: forall bb (cfi: cf_instruction) size_bb bdy rs m rs' m' t,*)
  (*(body bb) = bdy ->*)
  (*(exit bb) = Some (PCtlFlow cfi) ->*)
  (*Ptrofs.repr (size bb) = size_bb ->*)
  (*exec_bblock Ge.(_lk) Ge.(_genv) Ge.(_fn) bb rs m t rs' m'*)
  (*<-> (bbstep Ge.(_lk) Ge.(_genv) Ge.(_fn) (cfi) size_bb bdy rs m = Next rs' m' /\ t = E0).*)
(*Proof.*)
  (*intros.*)
(*Admitted.*)

(* TODO This is the lemma we should use if we want to modelize
builtins in our scheduling process.
If we do not modelize builtins, we could use a simpler definition (trace E0) *)
(*
Theorem bisimu' rs m rs' m' bb s:
    match_states (State rs m) s -> 
    (exists t, exec_bblock Ge.(_lk) Ge.(_genv) Ge.(_fn) bb rs m t rs' m')
    <-> (exists s', (exec Ge (trans_block bb) s) = Some s' /\ match_states (State rs' m') s').
Proof.
  intros MS.
  destruct (exit bb) eqn:EQEXIT.
  destruct c eqn:EQC.
  - split.
    + intros (t & H).
  rewrite bbstep_is_exec_bblock in H; eauto.
  eexists; split. destruct H as [H0 H1].
  generalize (bisimu )
  unfold exec_bblock.
  exploit (bisimu_body (body b) ge fn rs m s); eauto.
  unfold exec, trans_block; simpl.
  destruct (exec_body _ _ _ _); simpl.
  - intros (s' & X1 & X2).
    erewrite run_app_Some; eauto.
    exploit (bisimu_exit ge fn b rs0 m0 s'); eauto.
    subst Ge; simpl. destruct X2 as (Y1 & Y2). erewrite Y2; simpl.
    destruct (inst_run _ _ _); simpl; auto.
  - intros X; erewrite run_app_None; eauto.
Qed.*)

Theorem trans_state_match: forall S, match_states S (trans_state S).
Proof.
  intros. destruct S as (rs & m). simpl.
  split. reflexivity.
  intro. destruct r as [dr|cr|]; try destruct dr as [ir|fr]; try destruct cr;
  try destruct ir as [irr|]; try destruct irr; try destruct fr; try reflexivity.
Qed.

Lemma state_eq_decomp:
  forall rs1 m1 rs2 m2, rs1 = rs2 -> m1 = m2 -> State rs1 m1 = State rs2 m2.
Proof.
  intros. congruence.
Qed.

Theorem state_equiv S1 S2 S': match_states S1 S' -> match_states S2 S' -> S1 = S2.
Proof.
  unfold match_states; intros H0 H1. destruct S1 as (rs1 & m1). destruct S2 as (rs2 & m2). inv H0. inv H1.
  apply state_eq_decomp.
  - apply functional_extensionality. intros. assert (Val (rs1 x) = Val (rs2 x)) by congruence. congruence.
  - congruence.
Qed.

End SECT_SEQ.

Section SECT_BBLOCK_EQUIV.

Variable Ge: genv.

Local Hint Resolve trans_state_match: core.

Lemma bblock_simu_reduce:
  forall p1 p2,
  L.bblock_simu Ge (trans_block p1) (trans_block p2) ->
  (has_builtin p1 = true -> exit p1 = exit p2) ->
  Asmblockprops.bblock_simu Ge.(_lk) Ge.(_genv) Ge.(_fn) p1 p2.
Proof.
  unfold bblock_simu. intros p1 p2 H BLT rs m rs' m' t EBB.
  generalize (H (trans_state (State rs m))); clear H.
  intro H. (* TODO How to define this correctly ?
  exploit (bisimu rs m (body p1) (trans_state (State rs m))); eauto.
  exploit (bisimu Ge rs m p2 ge fn (trans_state (State rs m))); eauto.
  destruct (exec_bblock ge fn p1 rs m); try congruence.
  intros H3 (s2' & exp2 & MS'). unfold exec in exp2, H3. rewrite exp2 in H2.
  destruct H2 as (m2' & H2 & H4). discriminate. rewrite H2 in H3.
  destruct (exec_bblock ge fn p2 rs m); simpl in H3.
  * destruct H3 as (s' & H3 & H5 & H6). inv H3. inv MS'.
    cutrewrite (rs0=rs1).
    - cutrewrite (m0=m1); auto. congruence.
    - apply functional_extensionality. intros r.
      generalize (H0 r). intros Hr. congruence.
  * discriminate.
Qed.*)
Admitted.

(** Used for debug traces *)

Definition ireg_name (ir: ireg) : pstring :=
  match ir with
  | X0 => Str ("X0") | X1 => Str ("X1") | X2 => Str ("X2") | X3 => Str ("X3") | X4 => Str ("X4") | X5 => Str ("X5") | X6 => Str ("X6") | X7 => Str ("X7")
  | X8 => Str ("X8") | X9 => Str ("X9") | X10 => Str ("X10") | X11 => Str ("X11") | X12 => Str ("X12") | X13 => Str ("X13") | X14 => Str ("X14") | X15 => Str ("X15")
  | X16 => Str ("X16") | X17 => Str ("X17") | X18 => Str ("X18") | X19 => Str ("X19") | X20 => Str ("X20") | X21 => Str ("X21") | X22 => Str ("X22") | X23 => Str ("X23")
  | X24 => Str ("X24") | X25 => Str ("X25") | X26 => Str ("X26") | X27 => Str ("X27") | X28 => Str ("X28") | X29 => Str ("X29") | X30 => Str ("X30")
  end
.

Definition freg_name (fr: freg) : pstring :=
  match fr with
  | D0 => Str ("D0") | D1 => Str ("D1") | D2 => Str ("D2") | D3 => Str ("D3") | D4 => Str ("D4") | D5 => Str ("D5") | D6 => Str ("D6") | D7 => Str ("D7")
  | D8 => Str ("D8") | D9 => Str ("D9") | D10 => Str ("D10") | D11 => Str ("D11") | D12 => Str ("D12") | D13 => Str ("D13") | D14 => Str ("D14") | D15 => Str ("D15")
  | D16 => Str ("D16") | D17 => Str ("D17") | D18 => Str ("D18") | D19 => Str ("D19") | D20 => Str ("D20") | D21 => Str ("D21") | D22 => Str ("D22") | D23 => Str ("D23")
  | D24 => Str ("D24") | D25 => Str ("D25") | D26 => Str ("D26") | D27 => Str ("D27") | D28 => Str ("D28") | D29 => Str ("D29") | D30 => Str ("D30") | D31 => Str ("D31")
  end
.

Definition string_of_name (x: P.R.t): ?? pstring := 
  if (Pos.eqb x pmem) then 
    RET (Str "MEM")
  else
    match inv_ppos x with
    | Some (CR cr) => match cr with
                      | CN => RET (Str ("CN"))
                      | CZ => RET (Str ("CZ"))
                      | CC => RET (Str ("CC"))
                      | CV => RET (Str ("CV"))
                      end
    | Some (PC) => RET (Str ("PC"))
    | Some (DR dr) => match dr with
                      | IR ir => match ir with
                                 | XSP => RET (Str ("XSP"))
                                 | RR1 irr => RET (ireg_name irr)
                                 end
                      | FR fr => RET (freg_name fr)
                      end
    | _ => RET (Str ("UNDEFINED"))
    end.

Definition string_of_name_ArithP (n: arith_p) : pstring :=
  match n with
  | Padrp _ _ => "Padrp"
  | Pmovz _ _ _ => "Pmov"
  | Pmovn _ _ _ => "Pmov"
  | Pfmovimms _ => "Pfmovimm"
  | Pfmovimmd _ => "Pfmovimm"
  end.

Definition string_of_name_ArithPP (n: arith_pp) : pstring :=
  match n with
  | Pmov => "Pmov"
  | Pmovk _ _ _ => "Pmovk"
  | Paddadr _ _ => "Paddadr"
  | Psbfiz _ _ _ => "Psbfiz"
  | Psbfx _ _ _ => "Psbfx"
  | Pubfiz _ _ _ => "Pubfiz"
  | Pubfx _ _ _ => "Pubfx"
  | Pfmov => "Pfmov"
  | Pfcvtds => "Pfcvtds"
  | Pfcvtsd => "Pfcvtsd"
  | Pfabs _ => "Pfabs"
  | Pfneg _ => "Pfneg"
  | Pscvtf _ _ => "Pscvtf"
  | Pucvtf _ _ => "Pucvtf"
  | Pfcvtzs _ _ => "Pfcvtzs"
  | Pfcvtzu _ _ => "Pfcvtzu"
  | Paddimm _ _ => "Paddimm"
  | Psubimm _ _ => "Psubimm"
  end.

Definition string_of_name_ArithPPP (n: arith_ppp) : pstring :=
  match n with
  | Pasrv _ => "Pasrv"
  | Plslv _ => "Plslv"
  | Plsrv _ => "Plsrv"
  | Prorv _ => "Prorv"
  | Psmulh => "Psmulh"
  | Pumulh => "Pumulh"
  | Psdiv _ => "Psdiv"
  | Pudiv _ => "Pudiv"
  | Paddext _ => "Paddext"
  | Psubext _ => "Psubext"
  | Pfadd _ => "Pfadd"
  | Pfdiv _ => "Pfdiv"
  | Pfmul _ => "Pfmul"
  | Pfsub _ => "Pfsub"
  end.

Definition string_of_name_ArithRR0R (n: arith_rr0r) : pstring :=
  match n with
  | Padd _ _ => "ArithRR0R=>Padd"
  | Psub _ _ => "ArithRR0R=>Psub"
  | Pand _ _ => "ArithRR0R=>Pand"
  | Pbic _ _ => "ArithRR0R=>Pbic"
  | Peon _ _ => "ArithRR0R=>Peon"
  | Peor _ _ => "ArithRR0R=>Peor"
  | Porr _ _ => "ArithRR0R=>Porr"
  | Porn _ _ => "ArithRR0R=>Porn"
  end.

Definition string_of_name_ArithRR0R_XZR (n: arith_rr0r) : pstring :=
  match n with
  | Padd _ _ => "ArithRR0R_XZR=>Padd"
  | Psub _ _ => "ArithRR0R_XZR=>Psub"
  | Pand _ _ => "ArithRR0R_XZR=>Pand"
  | Pbic _ _ => "ArithRR0R_XZR=>Pbic"
  | Peon _ _ => "ArithRR0R_XZR=>Peon"
  | Peor _ _ => "ArithRR0R_XZR=>Peor"
  | Porr _ _ => "ArithRR0R_XZR=>Porr"
  | Porn _ _ => "ArithRR0R_XZR=>Porn"
  end.

Definition string_of_name_ArithRR0 (n: arith_rr0) : pstring :=
  match n with
  | Pandimm _ _ => "ArithRR0=>Pandimm"
  | Peorimm _ _ => "ArithRR0=>Peorimm"
  | Porrimm _ _ => "ArithRR0=>Porrimm"
  end.

Definition string_of_name_ArithRR0_XZR (n: arith_rr0) : pstring :=
match n with
  | Pandimm _ _ => "ArithRR0_XZR=>Pandimm"
  | Peorimm _ _ => "ArithRR0_XZR=>Peorimm"
  | Porrimm _ _ => "ArithRR0_XZR=>Porrimm"
  end.

Definition string_of_name_ArithARRRR0 (n: arith_arrrr0) : pstring :=
  match n with
  | Pmadd _ => "ArithARRRR0=>Pmadd"
  | Pmsub _ => "ArithARRRR0=>Pmsub"
  end.

Definition string_of_name_ArithARRRR0_XZR (n: arith_arrrr0) : pstring :=
  match n with
  | Pmadd _ => "ArithARRRR0_XZR=>Pmadd"
  | Pmsub _ => "ArithARRRR0_XZR=>Pmsub"
  end.

Definition string_of_name_ArithComparisonPP_CN (n: arith_comparison_pp) : pstring :=
  match n with
  | Pcmpext _ => "ArithComparisonPP_CN=>Pcmpext"
  | Pcmnext _ => "ArithComparisonPP_CN=>Pcmnext"
  | Pfcmp _ => "ArithComparisonPP_CN=>Pfcmp"
  end.

Definition string_of_name_ArithComparisonPP_CZ (n: arith_comparison_pp) : pstring :=
  match n with
  | Pcmpext _ => "ArithComparisonPP_CZ=>Pcmpext"
  | Pcmnext _ => "ArithComparisonPP_CZ=>Pcmnext"
  | Pfcmp _ => "ArithComparisonPP_CZ=>Pfcmp"
  end.

Definition string_of_name_ArithComparisonPP_CC (n: arith_comparison_pp) : pstring :=
match n with
  | Pcmpext _ => "ArithComparisonPP_CC=>Pcmpext"
  | Pcmnext _ => "ArithComparisonPP_CC=>Pcmnext"
  | Pfcmp _ => "ArithComparisonPP_CC=>Pfcmp"
  end.

Definition string_of_name_ArithComparisonPP_CV (n: arith_comparison_pp) : pstring :=
match n with
  | Pcmpext _ => "ArithComparisonPP_CV=>Pcmpext"
  | Pcmnext _ => "ArithComparisonPP_CV=>Pcmnext"
  | Pfcmp _ => "ArithComparisonPP_CV=>Pfcmp"
  end.

Definition string_of_name_ArithComparisonR0R_CN (n: arith_comparison_r0r) : pstring :=
  match n with
  | Pcmp _ _ => "ArithComparisonR0R_CN=>Pcmp"
  | Pcmn _ _ => "ArithComparisonR0R_CN=>Pcmn"
  | Ptst _ _ => "ArithComparisonR0R_CN=>Ptst"
  end.

Definition string_of_name_ArithComparisonR0R_CZ (n: arith_comparison_r0r) : pstring :=
  match n with
  | Pcmp _ _ => "ArithComparisonR0R_CZ=>Pcmp"
  | Pcmn _ _ => "ArithComparisonR0R_CZ=>Pcmn"
  | Ptst _ _ => "ArithComparisonR0R_CZ=>Ptst"
  end.

Definition string_of_name_ArithComparisonR0R_CC (n: arith_comparison_r0r) : pstring :=
  match n with
  | Pcmp _ _ => "ArithComparisonR0R_CC=>Pcmp"
  | Pcmn _ _ => "ArithComparisonR0R_CC=>Pcmn"
  | Ptst _ _ => "ArithComparisonR0R_CC=>Ptst"
  end.

Definition string_of_name_ArithComparisonR0R_CV (n: arith_comparison_r0r) : pstring :=
  match n with
  | Pcmp _ _ => "ArithComparisonR0R_CV=>Pcmp"
  | Pcmn _ _ => "ArithComparisonR0R_CV=>Pcmn"
  | Ptst _ _ => "ArithComparisonR0R_CV=>Ptst"
  end.

Definition string_of_name_ArithComparisonR0R_CN_XZR (n: arith_comparison_r0r) : pstring :=
  match n with
  | Pcmp _ _ => "ArithComparisonR0R_CN_XZR=>Pcmp"
  | Pcmn _ _ => "ArithComparisonR0R_CN_XZR=>Pcmn"
  | Ptst _ _ => "ArithComparisonR0R_CN_XZR=>Ptst"
  end.

Definition string_of_name_ArithComparisonR0R_CZ_XZR (n: arith_comparison_r0r) : pstring :=
  match n with
  | Pcmp _ _ => "ArithComparisonR0R_CZ_XZR=>Pcmp"
  | Pcmn _ _ => "ArithComparisonR0R_CZ_XZR=>Pcmn"
  | Ptst _ _ => "ArithComparisonR0R_CZ_XZR=>Ptst"
  end.

Definition string_of_name_ArithComparisonR0R_CC_XZR (n: arith_comparison_r0r) : pstring :=
match n with
  | Pcmp _ _ => "ArithComparisonR0R_CC_XZR=>Pcmp"
  | Pcmn _ _ => "ArithComparisonR0R_CC_XZR=>Pcmn"
  | Ptst _ _ => "ArithComparisonR0R_CC_XZR=>Ptst"
  end.

Definition string_of_name_ArithComparisonR0R_CV_XZR (n: arith_comparison_r0r) : pstring :=
match n with
  | Pcmp _ _ => "ArithComparisonR0R_CV_XZR=>Pcmp"
  | Pcmn _ _ => "ArithComparisonR0R_CV_XZR=>Pcmn"
  | Ptst _ _ => "ArithComparisonR0R_CV_XZR=>Ptst"
  end.

Definition string_of_name_ArithComparisonP_CN (n: arith_comparison_p) : pstring :=
  match n with
  | Pfcmp0 _ => "ArithComparisonP_CN=>Pfcmp0"
  | Pcmpimm _ _ => "ArithComparisonP_CN=>Pcmpimm"
  | Pcmnimm _ _ => "ArithComparisonP_CN=>Pcmnimm"
  | Ptstimm _ _ => "ArithComparisonP_CN=>Ptstimm"
  end.

Definition string_of_name_ArithComparisonP_CZ (n: arith_comparison_p) : pstring :=
  match n with
  | Pfcmp0 _ => "ArithComparisonP_CZ=>Pfcmp0"
  | Pcmpimm _ _ => "ArithComparisonP_CZ=>Pcmpimm"
  | Pcmnimm _ _ => "ArithComparisonP_CZ=>Pcmnimm"
  | Ptstimm _ _ => "ArithComparisonP_CZ=>Ptstimm"
  end.

Definition string_of_name_ArithComparisonP_CC (n: arith_comparison_p) : pstring :=
  match n with
  | Pfcmp0 _ => "ArithComparisonP_CC=>Pfcmp0"
  | Pcmpimm _ _ => "ArithComparisonP_CC=>Pcmpimm"
  | Pcmnimm _ _ => "ArithComparisonP_CC=>Pcmnimm"
  | Ptstimm _ _ => "ArithComparisonP_CC=>Ptstimm"
  end.

Definition string_of_name_ArithComparisonP_CV (n: arith_comparison_p) : pstring :=
  match n with
  | Pfcmp0 _ => "ArithComparisonP_CV=>Pfcmp0"
  | Pcmpimm _ _ => "ArithComparisonP_CV=>Pcmpimm"
  | Pcmnimm _ _ => "ArithComparisonP_CV=>Pcmnimm"
  | Ptstimm _ _ => "ArithComparisonP_CV=>Ptstimm"
  end.

Definition string_of_name_cset (c: testcond) : pstring :=
  match c with
  | TCeq => "Cset=>TCeq"
  | TCne => "Cset=>TCne"
  | TChs => "Cset=>TChs"
  | TClo => "Cset=>TClo"
  | TCmi => "Cset=>TCmi"
  | TCpl => "Cset=>TCpl"
  | TChi => "Cset=>TChi"
  | TCls => "Cset=>TCls"
  | TCge => "Cset=>TCge"
  | TClt => "Cset=>TClt"
  | TCgt => "Cset=>TCgt"
  | TCle => "Cset=>TCle"
  end.

Definition string_of_arith (op: arith_op): pstring :=
  match op with
  | OArithP n => string_of_name_ArithP n
  | OArithPP n => string_of_name_ArithPP n
  | OArithPPP n => string_of_name_ArithPPP n
  | OArithRR0R n => string_of_name_ArithRR0R n
  | OArithRR0R_XZR n _ => string_of_name_ArithRR0R_XZR n
  | OArithRR0 n => string_of_name_ArithRR0 n
  | OArithRR0_XZR n _ => string_of_name_ArithRR0_XZR n
  | OArithARRRR0 n => string_of_name_ArithARRRR0 n
  | OArithARRRR0_XZR n _ => string_of_name_ArithARRRR0_XZR n
  | OArithComparisonPP_CN n => string_of_name_ArithComparisonPP_CN n
  | OArithComparisonPP_CZ n => string_of_name_ArithComparisonPP_CZ n
  | OArithComparisonPP_CC n => string_of_name_ArithComparisonPP_CC n
  | OArithComparisonPP_CV n => string_of_name_ArithComparisonPP_CV n
  | OArithComparisonR0R_CN n _ => string_of_name_ArithComparisonR0R_CN n
  | OArithComparisonR0R_CZ n _ => string_of_name_ArithComparisonR0R_CZ n
  | OArithComparisonR0R_CC n _ => string_of_name_ArithComparisonR0R_CC n
  | OArithComparisonR0R_CV n _ => string_of_name_ArithComparisonR0R_CV n
  | OArithComparisonR0R_CN_XZR n _ _ => string_of_name_ArithComparisonR0R_CN_XZR n
  | OArithComparisonR0R_CZ_XZR n _ _ => string_of_name_ArithComparisonR0R_CZ_XZR n
  | OArithComparisonR0R_CC_XZR n _ _ => string_of_name_ArithComparisonR0R_CC_XZR n
  | OArithComparisonR0R_CV_XZR n _ _ => string_of_name_ArithComparisonR0R_CV_XZR n
  | OArithComparisonP_CN n => string_of_name_ArithComparisonP_CN n
  | OArithComparisonP_CZ n => string_of_name_ArithComparisonP_CZ n
  | OArithComparisonP_CC n => string_of_name_ArithComparisonP_CC n
  | OArithComparisonP_CV n => string_of_name_ArithComparisonP_CV n
  | Ocset c => string_of_name_cset c
  | Ofmovi _ => "Ofmovi"
  | Ofmovi_XZR _ => "Ofmovi_XZR"
  | Ocsel _ => "Ocsel"
  | Ofnmul _ => "Ofnmul"
  end.

Definition string_of_store (op: store_op) : pstring :=
  match op with
  | Ostore1 _ _ => "Ostore1"
  | Ostore2 _ _ => "Ostore2"
  | OstoreU _ _ => "OstoreU"
  end.

Definition string_of_load (op: load_op) : pstring :=
  match op with
  | Oload1 _ _ => "Oload1"
  | Oload2 _ _ => "Oload2"
  | OloadU _ _ => "OloadU"
  end.

Definition string_of_control (op: control_op) : pstring :=
  match op with
  | Ob _ => "Ob"
  | Obc _ _ => "Obc"
  | Obl _ => "Obl"
  | Obs _ => "Obs"
  | Ocbnz _ _ => "Ocbnz"
  | Ocbz _ _ => "Ocbz"
  | Otbnz _ _ _ => "Otbnz"
  | Otbz _ _ _ => "Otbz"
  | Obtbl _ => "Obtbl"
  | OIncremPC _ => "OIncremPC"
  | OError => "OError"
  end.

Definition string_of_allocf (op: allocf_op) : pstring :=
  match op with
  | OAllocf_SP _ _ => "OAllocf_SP"
  | OAllocf_Mem _ _ => "OAllocf_Mem"
  end.

Definition string_of_freef (op: freef_op) : pstring :=
  match op with
  | OFreef_SP _ _ => "OFreef_SP"
  | OFreef_Mem _ _ => "OFreef_Mem"
  end.

Definition string_of_op (op: P.op): ?? pstring := 
  match op with
  | Arith op => RET (string_of_arith op)
  | Load op => RET (string_of_load op)
  | Store op => RET (string_of_store op)
  | Control op => RET (string_of_control op)
  | Allocframe op => RET (string_of_allocf op)
  | Freeframe op => RET (string_of_freef op)
  | Loadsymbol _ => RET (Str "Loadsymbol")
  | Constant _ => RET (Str "Constant")
  | Cvtsw2x => RET (Str "Cvtsw2x")
  | Cvtuw2x => RET (Str "Cvtuw2x")
  | Cvtx2w => RET (Str "Cvtx2w")
  (*| Fail => RET (Str "Fail")*)
  end.
End SECT_BBLOCK_EQUIV.

(** REWRITE RULES *)

Definition is_constant (o: op): bool :=
  match o with (* TODO *)
  | OArithP _ | OArithRR0_XZR _ _ | Ofmovi_XZR _ => true
  | _ => false
  end.

Lemma is_constant_correct ge o: is_constant o = true -> op_eval ge o [] <> None.
Proof.
  destruct o; simpl in * |- *; try congruence.
  destruct op0; simpl in * |- *; try congruence;
  destruct n; simpl in * |- *; try congruence;
  unfold arith_eval; destruct ge; simpl in * |- *; try congruence.
Qed.

Definition main_reduce (t: Terms.term):= RET (Terms.nofail is_constant t).

Local Hint Resolve is_constant_correct: wlp.

Lemma main_reduce_correct t:
 WHEN main_reduce t ~> pt THEN Terms.match_pt t pt.
Proof.
  wlp_simplify.
Qed.

Definition reduce := {| Terms.result := main_reduce; Terms.result_correct := main_reduce_correct |}.

Definition bblock_simu_test (verb: bool) (p1 p2: Asmblock.bblock) : ?? bool :=
  assert_same_builtin p1 p2;;
  if verb then
    IST.verb_bblock_simu_test reduce string_of_name string_of_op (trans_block p1) (trans_block p2)
  else
    IST.bblock_simu_test reduce (trans_block p1) (trans_block p2).

Local Hint Resolve IST.bblock_simu_test_correct IST.verb_bblock_simu_test_correct: wlp.

(** Main simulation (Impure) theorem *) 
Theorem bblock_simu_test_correct verb p1 p2 :
  WHEN bblock_simu_test verb p1 p2 ~> b THEN b=true -> forall ge fn lk, Asmblockprops.bblock_simu lk ge fn p1 p2.
Proof.
  wlp_simplify; eapply bblock_simu_reduce with (Ge:={| _genv := ge; _fn := fn; _lk := lk |}); eauto.
Qed.
(*Qed.*)
Hint Resolve bblock_simu_test_correct: wlp.

(** ** Coerce bblock_simu_test into a pure function (this is a little unsafe like all oracles in CompCert). *)

Import UnsafeImpure.

Definition pure_bblock_simu_test (verb: bool) (p1 p2: Asmblock.bblock): bool := 
  match unsafe_coerce (bblock_simu_test verb p1 p2) with
  | Some b => b
  | None => false
  end.

Theorem pure_bblock_simu_test_correct verb p1 p2 lk ge fn: pure_bblock_simu_test verb p1 p2 = true -> Asmblockprops.bblock_simu lk ge fn p1 p2.
Proof.
   unfold pure_bblock_simu_test. 
   destruct (unsafe_coerce (bblock_simu_test verb p1 p2)) eqn: UNSAFE; try discriminate.
   intros; subst. eapply bblock_simu_test_correct; eauto.
   apply unsafe_coerce_not_really_correct; eauto.
Qed.

Definition bblock_simub: Asmblock.bblock -> Asmblock.bblock -> bool := pure_bblock_simu_test true.

Lemma bblock_simub_correct p1 p2 lk ge fn: bblock_simub p1 p2 = true -> Asmblockprops.bblock_simu lk ge fn p1 p2.
Proof.
 eapply (pure_bblock_simu_test_correct true).
Qed.