aboutsummaryrefslogtreecommitdiffstats
path: root/aarch64/PostpassSchedulingOracle.ml
blob: eba1049663f81f2bba1c6195c656c40c4144ff56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
(* *************************************************************)
(*                                                             *)
(*             The Compcert verified compiler                  *)
(*                                                             *)
(*           Sylvain Boulmé     Grenoble-INP, VERIMAG          *)
(*           David Monniaux     CNRS, VERIMAG                  *)
(*           Cyril Six          Kalray                         *)
(*           Léo Gourdin        UGA, VERIMAG                   *)
(*                                                             *)
(*  Copyright Kalray. Copyright VERIMAG. All rights reserved.  *)
(*  This file is distributed under the terms of the INRIA      *)
(*  Non-Commercial License Agreement.                          *)
(*                                                             *)
(* *************************************************************)

(*open Asm*)
open Asmblock
open OpWeightsAsm
(*open Printf*)
(*open Camlcoq*)
open InstructionScheduler
(*open TargetPrinter.Target*)

let debug = false

(**
 * Extracting infos from Asm instructions
 *)

type real_instruction =
  | Add | Adr | Adrp | And | Asr | B | Bic | Bl | Blr | Br | Cbnz | Cbz | Cls
  | Clz | Cmn | Cmp | Csel | Cset | Eon | Eor | Fabs | Fadd | Fcmp | Fcsel
  | Fcvt | Fcvtzs | Fcvtzu | Fdiv | Fmadd | Fmov | Fmsub | Fmul | Fnmadd
  | Fnmul | Fnmsub | Fneg | Fsqrt | Fsub | Ldaxr | Ldp | Ldr | Ldrb | Ldrh
  | Ldrsb | Ldrsh | Ldrsw | Lr | Lsl | Lsr | Madd | Mov | Movk | Movn | Movz
  | Msub | Nop | Orn | Orr | Ret | Rev | Rev16 | Ror | Sbfiz | Sbfx | Scvtf
  | Sdiv | Smulh | Stlxr | Stp | Str | Strb | Strh | Sub | Sxtb | Sxth | Sxtw
  | Tbnz | Tbz | Tst | Ubfiz | Ubfx | Ucvtf | Udiv | Umulh | Uxtb | Uxth
  | Uxtw | Uxtx

type ab_inst_rec = {
  inst: instruction;
  is_control : bool;
  usage: int array; (* resources consumed by the instruction *)
  latency: int;
}

(** Asm constructor to real instructions *)

exception OpaqueInstruction
exception NYI (* XXX *)

let arith_p_real = function
  | Padrp(_,_) ->       Adrp
  | Pmovz(_,_,_) ->     Movz
  | Pmovn(_,_,_) ->     Movn
  | Pfmovimms(_) ->     Fmov (* TODO not sure about this and below too *)
  | Pfmovimmd(_) ->     Fmov

let arith_pp_real = function
  | Pmov ->             Mov
  | Pmovk(_,_,_) ->     Movk
  | Paddadr(_,_) ->     Add
  | Psbfiz(_,_,_) ->    Sbfiz
  | Psbfx(_,_,_) ->     Sbfx
  | Pubfiz(_,_,_) ->    Ubfiz
  | Pubfx(_,_,_) ->     Ubfx
  | Pfmov ->            Fmov
  | Pfcvtds ->          Fcvt
  | Pfcvtsd ->          Fcvt
  | Pfabs(_) ->         Fabs
  | Pfneg(_) ->         Fneg
  | Pscvtf(_,_) ->      Scvtf
  | Pucvtf(_,_) ->      Ucvtf
  | Pfcvtzs(_,_) ->     Fcvtzs
  | Pfcvtzu(_,_) ->     Fcvtzu
  | Paddimm(_,_) ->     Add
  | Psubimm(_,_) ->     Sub

let arith_ppp_real = function
  | Pasrv(_) ->         Asr
  | Plslv(_) ->         Lsl
  | Plsrv(_) ->         Lsr
  | Prorv(_) ->         Ror
  | Psmulh ->           Smulh
  | Pumulh ->           Umulh
  | Psdiv(_) ->         Sdiv
  | Pudiv(_) ->         Udiv
  | Paddext(_) ->       Add
  | Psubext(_) ->       Sub
  | Pfadd(_) ->         Fadd
  | Pfdiv(_) ->         Fdiv
  | Pfmul(_) ->         Fmul
  | Pfsub(_) ->         Fsub

let arith_rr0r_real = function
  | Padd(_,_) ->        Add
  | Psub(_,_) ->        Sub
  | Pand(_,_) ->        And
  | Pbic(_,_) ->        Bic
  | Peon(_,_) ->        Eon
  | Peor(_,_) ->        Eor
  | Porr(_,_) ->        Orr
  | Porn(_,_) ->        Orn

let arith_rr0_real = function
  | Pandimm(_,_) ->     And
  | Peorimm(_,_) ->     Eor
  | Porrimm(_,_) ->     Orr

let arith_arrrr0_real = function
  | Pmadd(_) ->         Madd
  | Pmsub(_) ->         Msub

let arith_comparison_p_real = function
  | Pfcmp0(_) ->        Fcmp
  | Pcmpimm(_,_) ->     Cmp
  | Pcmnimm(_,_) ->     Cmn
  | Ptstimm(_,_) ->     Tst

let arith_comparison_pp_real = function
  | Pcmpext(_) ->       Cmp
  | Pcmnext(_) ->       Cmn
  | Pfcmp(_) ->         Fcmp

let arith_comparison_r0r_real = function
  | Pcmp(_,_) ->        Cmp
  | Pcmn(_,_) ->        Cmn
  | Ptst(_,_) ->        Tst

let arith_comparison_rr0r_real = function
  | Padd(_,_) ->        Add
  | Psub(_,_) ->        Sub
  | Pand(_,_) ->        And
  | Pbic(_,_) ->        Bic
  | Peon(_,_) ->        Eon
  | Peor(_,_) ->        Eor
  | Porr(_,_) ->        Orr
  | Porn(_,_) ->        Orn

let arith_comparison_rr0_real = function
  | Pandimm(_,_) ->     And
  | Peorimm(_,_) ->     Eor
  | Porrimm(_,_) ->     Orr

let arith_comparison_arrrr0_real = function
  | Pmadd(_) ->         Madd
  | Pmsub(_) ->         Msub

let store_rs_a_real = function
  | Pstrw ->            Str
  | Pstrw_a ->          Str
  | Pstrx ->            Str
  | Pstrx_a ->          Str
  | Pstrb ->            Strb
  | Pstrh ->            Strh
  | Pstrs ->            Str
  | Pstrd ->            Str
  | Pstrd_a ->          Str

let load_rd_a_real = function
  | Pldrw ->            Ldr
  | Pldrw_a ->          Ldr
  | Pldrx ->            Ldr
  | Pldrx_a ->          Ldr
  | Pldrb(_) ->         Ldrb
  | Pldrsb(_) ->        Ldrsb
  | Pldrh(_) ->         Ldrh
  | Pldrsh(_) ->        Ldrsh
  | Pldrzw ->           Ldr
  | Pldrsw ->           Ldrsw
  | Pldrs ->            Ldr
  | Pldrd ->            Ldr
  | Pldrd_a ->          Ldr



(*let set_real = Set*)
(*let get_real = Get*)
(*let nop_real = Nop*)
(*let loadsymbol_real = Make*)
(*let loadqrro_real = Lq*)
(*let loadorro_real = Lo*)
(*let storeqrro_real = Sq*)
(*let storeorro_real = So*)

(*let ret_real = Ret*)
(*let call_real = Call*)
(*let icall_real = Icall*)
(*let goto_real = Goto*)
(*let igoto_real = Igoto*)
(*let jl_real = Goto*)
(*let cb_real = Cb*)
(*let cbu_real = Cb*)

(*let arith_rri32_rec i rd rs imm32 = { inst = arith_rri32_real i; write_locs = [Reg rd]; read_locs = [Reg rs]; imm = imm32; is_control = false;*)
                                      (*read_at_id = []; read_at_e1 = [] }*)

(*let arith_rri64_rec i rd rs imm64 = { inst = arith_rri64_real i; write_locs = [Reg rd]; read_locs = [Reg rs]; imm = imm64; is_control = false;*)
                                      (*read_at_id = []; read_at_e1 = [] }*)

(*let arith_rrr_rec i rd rs1 rs2 = { inst = arith_rrr_real i; write_locs = [Reg rd]; read_locs = [Reg rs1; Reg rs2]; imm = None; is_control = false;*)
                                      (*read_at_id = []; read_at_e1 = [] }*)

(*let arith_arri32_rec i rd rs imm32 = *)
  (*let rae1 = match i with Pmaddiw -> [Reg rd] | _ -> []*)
  (*in {  inst = arith_arri32_real i; write_locs = [Reg rd]; read_locs = [Reg rd; Reg rs]; imm = imm32; is_control = false;*)
        (*read_at_id = [] ; read_at_e1 = rae1 }*)

(*let arith_arri64_rec i rd rs imm64 = *)
  (*let rae1 = match i with Pmaddil -> [Reg rd] | _ -> []*)
  (*in {  inst = arith_arri64_real i; write_locs = [Reg rd]; read_locs = [Reg rd; Reg rs]; imm = imm64; is_control = false;*)
        (*read_at_id = []; read_at_e1 = rae1 }*)

(*let arith_arr_rec i rd rs = { inst = arith_arr_real i; write_locs = [Reg rd]; read_locs = [Reg rd; Reg rs]; imm = None; is_control = false;*)
                              (*read_at_id = []; read_at_e1 = [] }*)

(*let arith_arrr_rec i rd rs1 rs2 = *)
  (*let rae1 = match i with Pmaddl | Pmaddw | Pmsubl | Pmsubw -> [Reg rd] | _ -> []*)
  (*in {  inst = arith_arrr_real i; write_locs = [Reg rd]; read_locs = [Reg rd; Reg rs1; Reg rs2]; imm = None; is_control = false;*)
        (*read_at_id = []; read_at_e1 = rae1 }*)

(*let arith_rr_rec i rd rs = {  inst = arith_rr_real i; write_locs = [Reg rd]; read_locs = [Reg rs]; imm = None; is_control = false;*)
                              (*read_at_id = []; read_at_e1 = [] }*)

(*let arith_p_rec i rd = { inst = arith_p_real i; is_control = false }*)
(*let arith_pp_rec i rd rs = { inst = arith_pp_real i; is_control = false }*)
(*let arith_ppp_rec i rd r1 r2 = { inst = arith_ppp_real i; is_control = false }*)
(*let arith_rr0r_rec i rd r1 r2 = { inst = arith_rr0r_real i; is_control = false }*)
(*let arith_rr0_rec i rd r1 = { inst = arith_rr0_real i; is_control = false }*)
(*let arith_arrrr0_rec i rd r1 r2 r3 = { inst = arith_arrrr0_real i; is_control = false }*)
(*let arith_comparison_pp_rec i r1 r2 = { inst = arith_comparison_pp_real i; is_control = false }*)
(*let arith_comparison_r0r_rec i r1 r2 = { inst = arith_comparison_r0r_real i; is_control = false }*)
(*let arith_comparison_p_rec i r1 = { inst = arith_comparison_p_real i; is_control = false }*)
(*let load_rec ld rd a = { inst = load_rd_a_real ld; is_control = false }*)
(*let store_rec st r a = { inst = store_rs_a_real st; is_control = false }*)

(*let arith_rec i =*)
  (*match i with*)
  (*| PArithP (i', rd) -> arith_p_rec i' rd*)
  (*| PArithPP (i', rd, rs) -> arith_pp_rec i' rd rs*)
  (*| PArithPPP (i', rd, r1, r2) -> arith_ppp_rec i' rd r1 r2*)
  (*| PArithRR0R (i', rd, r1, r2) -> arith_rr0r_rec i' rd r1 r2*)
  (*| PArithRR0 (i', rd, r1) -> arith_rr0_rec i' rd r1*)
  (*| PArithARRRR0 (i', rd, r1, r2, r3) -> arith_arrrr0_rec i' rd r1 r2 r3*)
  (*| PArithComparisonPP (i', r1, r2) -> arith_comparison_pp_rec i' r1 r2*)
  (*| PArithComparisonR0R (i', r1, r2) -> arith_comparison_r0r_rec i' r1 r2*)
  (*| PArithComparisonP (i', r1) -> arith_comparison_p_rec i' r1*)
  (*| _ -> raise NYI*)



(*let load_rec i = match i with*)
  (*| PLoadRRO (trap, i, rs1, rs2, imm) ->*)
      (*{ inst = load_real i; write_locs = [Reg (IR rs1)]; read_locs = [Mem; Reg (IR rs2)]; imm = (Some (Off imm)) ; is_control = false;*)
        (*read_at_id = []; read_at_e1 = [] }*)
  (*| PLoadQRRO(rs, ra, imm) ->*)
     (*let (rs0, rs1) = gpreg_q_expand rs in*)
     (*{ inst = loadqrro_real; write_locs = [Reg (IR rs0); Reg (IR rs1)]; read_locs = [Mem; Reg (IR ra)]; imm = (Some (Off imm)) ; is_control = false;*)
       (*read_at_id = []; read_at_e1 = [] }*)
  (*| PLoadORRO(rs, ra, imm) ->*)
     (*let (((rs0, rs1), rs2), rs3) = gpreg_o_expand rs in*)
     (*{  inst = loadorro_real; write_locs = [Reg (IR rs0); Reg (IR rs1); Reg (IR rs2); Reg (IR rs3)]; read_locs = [Mem; Reg (IR ra)];*)
        (*imm = (Some (Off imm)) ; is_control = false; read_at_id = []; read_at_e1 = []}*)
  (*| PLoadRRR (trap, i, rs1, rs2, rs3) | PLoadRRRXS (trap, i, rs1, rs2, rs3) ->*)
      (*{ inst = load_real i; write_locs = [Reg (IR rs1)]; read_locs = [Mem; Reg (IR rs2); Reg (IR rs3)]; imm = None ; is_control = false;*)
        (*read_at_id = []; read_at_e1 = [] }*)

(*let store_rec i = match i with*)
  (*| PStoreRRO (i, rs, ra, imm) ->*)
      (*{  inst = store_real i; write_locs = [Mem]; read_locs = [Reg (IR rs); Reg (IR ra)]; imm = (Some (Off imm));*)
        (*read_at_id = []; read_at_e1 = [Reg (IR rs)] ; is_control = false}*)
  (*| PStoreQRRO (rs, ra, imm) ->*)
     (*let (rs0, rs1) = gpreg_q_expand rs in*)
     (*{  inst = storeqrro_real; write_locs = [Mem]; read_locs = [Reg (IR rs0); Reg (IR rs1); Reg (IR ra)]; imm = (Some (Off imm));*)
        (*read_at_id = []; read_at_e1 = [Reg (IR rs0); Reg (IR rs1)] ; is_control = false}*)
  (*| PStoreORRO (rs, ra, imm) ->*)
     (*let (((rs0, rs1), rs2), rs3) = gpreg_o_expand rs in*)
     (*{  inst = storeorro_real; write_locs = [Mem]; read_locs = [Reg (IR rs0); Reg (IR rs1); Reg (IR rs2); Reg (IR rs3); Reg (IR ra)];*)
        (*imm = (Some (Off imm)); read_at_id = []; read_at_e1 = [Reg (IR rs0); Reg (IR rs1); Reg (IR rs2); Reg (IR rs3)]; is_control = false}*)
  (*| PStoreRRR (i, rs, ra1, ra2)  | PStoreRRRXS (i, rs, ra1, ra2) ->*)
     (*{  inst = store_real i; write_locs = [Mem]; read_locs = [Reg (IR rs); Reg (IR ra1); Reg (IR ra2)]; imm = None;*)
        (*read_at_id = []; read_at_e1 = [Reg (IR rs)]; is_control = false}*)

(*let get_rec (rd:gpreg) rs = { inst = get_real; write_locs = [Reg (IR rd)]; read_locs = [Reg rs]; imm = None; is_control = false;*)
                              (*read_at_id = []; read_at_e1 = [] }*)

(*let set_rec rd (rs:gpreg) = { inst = set_real; write_locs = [Reg rd]; read_locs = [Reg (IR rs)]; imm = None; is_control = false;*)
                              (*read_at_id = [Reg (IR rs)]; read_at_e1 = [] }*)

let basic_rec i =
  let opweights = get_opweights ()
  and i' = PBasic i in
  { inst = i'; usage = opweights.resources_of_op i' 0; latency = opweights.latency_of_op i' 0; is_control = false }
  (*match i with*)
  (*| PArith (i') -> arith_rec i'*)
  (*| PLoad (ld, rd, a) -> load_rec ld rd a*)
  (*| PStore (st, r, a) -> store_rec st r a*)
  (*| Pallocframe (_,_) -> raise OpaqueInstruction*)
  (*| Pfreeframe (_,_) -> raise OpaqueInstruction*)
  (*| Ploadsymbol (rd, id) -> raise OpaqueInstruction (* XXX how to manage this one? *)*)
  (*| Pcvtsw2x (rd, r1) -> { inst = Sxtw; is_control = false }*)
  (*| Pcvtuw2x (rd, r1) -> { inst = Uxtw; is_control = false }*)
  (*| Pcvtx2w (rd) -> raise OpaqueInstruction (* XXX NYI in TargetPrinter? *)*)
  (*(*| Pget (rd, rs) -> get_rec rd rs*)*)
  (*(*| Pset (rd, rs) -> set_rec rd rs*)*)
  (*(*| Pnop -> { inst = nop_real; write_locs = []; read_locs = []; imm = None ; is_control = false; read_at_id = []; read_at_e1 = []}*)*)

let builtin_rec ef args res = raise OpaqueInstruction (* XXX not sure *)

(*let ctl_flow_rec i =*)
  (*let opweights = OpWeightsAsm.get_opweights () in*)
  (*{ inst = i; usage = opweights.resources_of_op i 0; latency = opweights.latency_of_op i 0; is_control = true }*)
  (*match i with*)
  (*| Pb(_) ->          { inst = B; is_control = true }*)
  (*| Pbc(_,_) ->       { inst = B; is_control = true }*)
  (*| Pbl(_,_) ->       { inst = Bl; is_control = true }*)
  (*| Pbs(_,_) ->       { inst = B; is_control = true }*)
  (*| Pblr(_,_) ->      { inst = Blr; is_control = true }*)
  (*| Pbr(_,_) ->       { inst = Br; is_control = true }*)
  (*| Pret(_) ->        { inst = Ret; is_control = true }*)
  (*| Pcbnz(_,_,_) ->   { inst = Cbnz; is_control = true }*)
  (*| Pcbz(_,_,_) ->    { inst = Cbz; is_control = true }*)
  (*| Ptbnz(_,_,_,_) -> { inst = Tbnz; is_control = true }*)
  (*| Ptbz(_,_,_,_) ->  { inst = Tbz; is_control = true }*)
  (*| Pbtbl(_,_) ->  raise OpaqueInstruction (* XXX how to manage this one? Maybe Br *)*)

let control_rec i =
  let opweights = get_opweights ()
  and i' = PControl i in
  { inst = i'; usage = opweights.resources_of_op i' 0; latency = opweights.latency_of_op i' 0; is_control = true }
  (*match i with*)
  (*| Pbuiltin (ef, args, res) -> builtin_rec ef args res*)
  (*| PCtlFlow (i') -> ctl_flow_rec i'*)

(* TODO Continue here by calling constructors *)
let rec basic_recs body = match body with
  | [] -> []
  | bi :: body -> (basic_rec bi) :: (basic_recs body)

let exit_rec exit = match exit with
  | None -> []
  | Some ex -> [control_rec ex]

let instruction_recs bb = (basic_recs bb.body) @ (exit_rec bb.exit)

(**
 * Providing informations relative to the real instructions
 *)

(** Abstraction providing all the necessary informations for solving the scheduling problem *)
(*type inst_info = {*)
  (*is_control : bool;*)
  (*usage: int array; (* resources consumed by the instruction *)*)
  (*latency: int;*)
(*}*)

(*(** Figuring out whether an immediate is s10, u27l10 or e27u27l10 *)*)
(*type imm_encoding = U6 | S10 | U27L5 | U27L10 | E27U27L10*)

(*let rec pow a = function*)
  (*| 0 -> Int64.one*)
  (*| 1 -> Int64.of_int a*)
  (*| n -> let b = pow a (n/2) in*)
         (*Int64.mul b (Int64.mul b (if n mod 2 = 0 then Int64.one else Int64.of_int a))*)

(*let signed_interval n : (int64 * int64) = begin *)
  (*assert (n > 0);*)
  (*let min = Int64.neg @@ pow 2 (n-1)*)
  (*and max = Int64.sub (pow 2 (n-1)) Int64.one*)
  (*in (min, max)*)
(*end*)

(*let within i interv = match interv with (min, max) -> (i >= min && i <= max)*)

(*let signed_length (i:int64) =*)
  (*let rec f (i:int64) n = *)
    (*let interv = signed_interval n*)
    (*in if (within i interv) then n else f i (n+1)*)
  (*in f i 1*)

(*let unsigned_length (i:int64) = (signed_length i) - 1*)

(*let encode_imm (imm:int64) =*)
  (*if (Int64.compare imm Int64.zero < 0) then*)
    (*let length = signed_length imm*)
    (*in if length <= 10 then S10*)
    (*else if length <= 32 then U27L5*)
    (*else if length <= 37 then U27L10*)
    (*else if length <= 64 then E27U27L10*)
    (*else failwith @@ sprintf "encode_imm: integer too big! (%Ld)" imm*)
  (*else*)
    (*let length = unsigned_length imm*)
    (*in if length <= 6 then U6*)
    (*else if length <= 9 then S10 (* Special case for S10 - stay signed no matter what *)*)
    (*else if length <= 32 then U27L5*)
    (*else if length <= 37 then U27L10*)
    (*else if length <= 64 then E27U27L10*)
    (*else failwith @@ sprintf "encode_imm: integer too big! (%Ld)" imm*)

(*(** Resources *)*)
(*type rname = Rissue | Rtiny | Rlite | Rfull | Rlsu | Rmau | Rbcu | Rtca | Rauxr | Rauxw | Rcrrp | Rcrwl | Rcrwh | Rnop*)

(*let resource_names = [Rissue; Rtiny; Rlite; Rfull; Rlsu; Rmau; Rbcu; Rtca; Rauxr; Rauxw; Rcrrp; Rcrwl; Rcrwh; Rnop]*)

(*let rec find_index elt l =*)
  (*match l with*)
  (*| [] -> raise Not_found*)
  (*| e::l -> if (e == elt) then 0*)
            (*else 1 + find_index elt l*)

(*let resource_id resource : int = find_index resource resource_names*)

(*let resource_bound resource : int =*)
  (*match resource with*)
  (*| Rissue -> 8*)
  (*| Rtiny -> 4*)
  (*| Rlite -> 2*)
  (*| Rfull -> 1*)
  (*| Rlsu -> 1*)
  (*| Rmau -> 1*)
  (*| Rbcu -> 1*)
  (*| Rtca -> 1*)
  (*| Rauxr -> 1*)
  (*| Rauxw -> 1*)
  (*| Rcrrp -> 1*)
  (*| Rcrwl -> 1*)
  (*| Rcrwh -> 1*)
  (*| Rnop -> 4*)

(*let resource_bounds : int array = Array.of_list (List.map resource_bound resource_names)*)

(*(** Reservation tables *)*)
(*let alu_full : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 1 | Rtiny -> 1 | Rlite -> 1 | Rfull -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let alu_lite : int array = let resmap = fun r -> match r with *)
  (*| Rissue -> 1 | Rtiny -> 1 | Rlite -> 1 |  _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let alu_lite_x : int array = let resmap = fun r -> match r with *)
  (*| Rissue -> 2 | Rtiny -> 1 | Rlite -> 1 |  _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let alu_lite_y : int array = let resmap = fun r -> match r with *)
  (*| Rissue -> 3 | Rtiny -> 1 | Rlite -> 1 |  _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let alu_nop : int array = let resmap = fun r -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let alu_tiny : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 1 | Rtiny -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let alu_tiny_x : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 2 | Rtiny -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let alu_tiny_y : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 3 | Rtiny -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let bcu : int array = let resmap = fun r -> match r with *)
  (*| Rissue -> 1 | Rbcu -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let bcu_tiny_tiny_mau_xnop : int array = let resmap = fun r -> match r with *)
  (*| Rissue -> 1 | Rtiny -> 2 | Rmau -> 1 | Rbcu -> 1 | Rnop -> 4 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let lsu_auxr : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 1 | Rtiny -> 1 | Rlsu -> 1 | Rauxr -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let lsu_auxr_x : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 2 | Rtiny -> 1 | Rlsu -> 1 | Rauxr -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let lsu_auxr_y : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 3 | Rtiny -> 1 | Rlsu -> 1 | Rauxr -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let lsu_auxw : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 1 | Rtiny -> 1 | Rlsu -> 1 | Rauxw -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let lsu_auxw_x : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 2 | Rtiny -> 1 | Rlsu -> 1 | Rauxw -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let lsu_auxw_y : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 3 | Rtiny -> 1 | Rlsu -> 1 | Rauxw -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let mau : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 1 | Rtiny -> 1 | Rmau -> 1 |  _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let mau_x : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 2 | Rtiny -> 1 | Rmau -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let mau_y : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 3 | Rtiny -> 1 | Rmau -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let mau_auxr : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 1 | Rtiny -> 1 | Rmau -> 1 | Rauxr -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let mau_auxr_x : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 2 | Rtiny -> 1 | Rmau -> 1 | Rauxr -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*let mau_auxr_y : int array = let resmap = fun r -> match r with*)
  (*| Rissue -> 3 | Rtiny -> 1 | Rmau -> 1 | Rauxr -> 1 | _ -> 0*)
  (*in Array.of_list (List.map resmap resource_names)*)

(*(** Real instructions *)*)

(*exception InvalidEncoding*)

(*let rec_to_usage r =*)
  (*let encoding = match r.imm with None -> None | Some (I32 i) | Some (I64 i) -> Some (encode_imm @@ Z.to_int64 i)*)
                                  (*| Some (Off ptr) -> Some (encode_imm @@ camlint64_of_ptrofs ptr)*)

  (*in match r.inst with*)
  (*| Addw | Andw | Nandw | Orw | Norw | Sbfw | Xorw*)
  (*| Nxorw | Andnw | Ornw -> *)
      (*(match encoding with None | Some U6 | Some S10 -> alu_tiny *)
                          (*| Some U27L5 | Some U27L10 -> alu_tiny_x*)
                          (*| _ -> raise InvalidEncoding)*)
  (*| Sbfxw | Sbfxd ->*)
      (*(match encoding with None -> alu_lite*)
                          (*| Some U6 | Some S10 | Some U27L5 -> alu_lite_x*)
                          (*| _ -> raise InvalidEncoding)*)
  (*| Addd | Andd | Nandd | Ord | Nord | Sbfd | Xord*)
  (*| Nxord | Andnd | Ornd ->*)
      (*(match encoding with None | Some U6 | Some S10 -> alu_tiny *)
                          (*| Some U27L5 | Some U27L10 -> alu_tiny_x*)
                          (*| Some E27U27L10 -> alu_tiny_y)*)
  (*|Cmoved ->*)
      (*(match encoding with None | Some U6 | Some S10 -> alu_lite*)
                          (*| Some U27L5 | Some U27L10 -> alu_lite_x*)
                          (*| Some E27U27L10 -> alu_lite_y)*)
  (*| Addxw -> *)
      (*(match encoding with None | Some U6 | Some S10 -> alu_lite *)
                          (*| Some U27L5 | Some U27L10 -> alu_lite_x*)
                          (*| _ -> raise InvalidEncoding)*)
  (*| Addxd -> *)
      (*(match encoding with None | Some U6 | Some S10 -> alu_lite *)
                          (*| Some U27L5 | Some U27L10 -> alu_lite_x*)
                          (*| Some E27U27L10 -> alu_lite_y)*)
  (*| Compw -> (match encoding with None -> alu_tiny*)
                                (*| Some U6 | Some S10 | Some U27L5 -> alu_tiny_x*)
                                (*| _ -> raise InvalidEncoding)*)
  (*| Compd -> (match encoding with None | Some U6 | Some S10 -> alu_tiny*)
                                (*| Some U27L5 | Some U27L10 -> alu_tiny_x*)
                                (*| Some E27U27L10 -> alu_tiny_y)*)
  (*| Fcompw -> (match encoding with None -> alu_lite*)
                                (*| Some U6 | Some S10 | Some U27L5 -> alu_lite_x*)
                                (*| _ -> raise InvalidEncoding)*)
  (*| Fcompd -> (match encoding with None -> alu_lite*)
                                (*| Some U6 | Some S10 | Some U27L5 -> alu_lite_x*)
                                (*| _ -> raise InvalidEncoding)*)
  (*| Make -> (match encoding with Some U6 | Some S10 -> alu_tiny *)
                          (*| Some U27L5 | Some U27L10 -> alu_tiny_x *)
                          (*| Some E27U27L10 -> alu_tiny_y *)
                          (*| _ -> raise InvalidEncoding)*)
  (*| Maddw | Msbfw -> (match encoding with None -> mau_auxr*)
                (*| Some U6 | Some S10 | Some U27L5 -> mau_auxr_x*)
                (*| _ -> raise InvalidEncoding)*)
  (*| Maddd | Msbfd -> (match encoding with None | Some U6 | Some S10 -> mau_auxr*)
                (*| Some U27L5 | Some U27L10 -> mau_auxr_x*)
                (*| Some E27U27L10 -> mau_auxr_y)*)
  (*| Mulw -> (match encoding with None -> mau*)
                                (*| Some U6 | Some S10 | Some U27L5 -> mau_x*)
                                (*| _ -> raise InvalidEncoding)*)
  (*| Muld -> (match encoding with None | Some U6 | Some S10 -> mau*)
                                (*| Some U27L5 | Some U27L10 -> mau_x*)
                                (*| Some E27U27L10 -> mau_y)*)
  (*| Nop -> alu_nop*)
  (*| Sraw | Srlw | Sllw | Srad | Srld | Slld -> (match encoding with None | Some U6 -> alu_tiny | _ -> raise InvalidEncoding)*)
  (*(* TODO: check *)*)
  (*| Srsw | Srsd | Rorw -> (match encoding with None | Some U6 -> alu_lite | _ -> raise InvalidEncoding)*)
  (*| Extfz | Extfs | Insf -> (match encoding with None -> alu_lite | _ -> raise InvalidEncoding)*)
  (*| Fixeduwz | Fixedwz | Floatwz | Floatuwz | Fixeddz | Fixedudz | Floatdz | Floatudz -> mau*)
  (*| Lbs | Lbz | Lhs | Lhz | Lws | Ld | Lq | Lo -> *)
      (*(match encoding with None | Some U6 | Some S10 -> lsu_auxw*)
                          (*| Some U27L5 | Some U27L10 -> lsu_auxw_x*)
                          (*| Some E27U27L10 -> lsu_auxw_y)*)
  (*| Sb | Sh | Sw | Sd | Sq | So ->*)
      (*(match encoding with None | Some U6 | Some S10 -> lsu_auxr*)
                          (*| Some U27L5 | Some U27L10 -> lsu_auxr_x*)
                          (*| Some E27U27L10 -> lsu_auxr_y)*)
  (*| Icall | Call | Cb | Igoto | Goto | Ret | Set -> bcu*)
  (*| Get -> bcu_tiny_tiny_mau_xnop*)
  (*| Fnegd | Fnegw | Fabsd | Fabsw | Fwidenlwd*)
  (*| Fmind | Fmaxd | Fminw | Fmaxw -> alu_lite*)
  (*| Fnarrowdw -> alu_full*)
  (*| Faddd | Faddw | Fsbfd | Fsbfw | Fmuld | Fmulw | Finvw*)
  (*| Ffmad | Ffmaw | Ffmsd | Ffmsw -> mau*)


(*let inst_info_to_dlatency i = *)
  (*begin*)
  (*assert (not (i.reads_at_id && i.reads_at_e1));*)
  (*match i.reads_at_id with*)
  (*| true -> +1*)
  (*| false -> (match i.reads_at_e1 with*)
              (*| true -> -1*)
              (*| false -> 0)*)
  (*end*)

(*let real_inst_to_latency = function*)
  (*| Nop -> 0 (* Only goes through ID *)*)
  (*| Addw | Andw | Compw | Orw | Sbfw | Sbfxw | Sraw | Srsw | Srlw | Sllw | Xorw*)
    (*(* TODO check rorw *)*)
  (*| Rorw | Nandw | Norw | Nxorw | Ornw | Andnw*)
  (*| Nandd | Nord | Nxord | Ornd | Andnd*)
  (*| Addd | Andd | Compd | Ord | Sbfd | Sbfxd | Srad | Srsd | Srld | Slld | Xord | Make*)
  (*| Extfs | Extfz | Insf | Fcompw | Fcompd | Cmoved | Addxw | Addxd*)
  (*| Fmind | Fmaxd | Fminw | Fmaxw*)
        (*-> 1*)
  (*| Floatwz | Floatuwz | Fixeduwz | Fixedwz | Floatdz | Floatudz | Fixeddz | Fixedudz -> 4*)
  (*| Mulw | Muld | Maddw | Maddd | Msbfw | Msbfd -> 2 (* FIXME - WORST CASE. If it's S10 then it's only 1 *)*)
  (*| Lbs | Lbz | Lhs | Lhz | Lws | Ld | Lq | Lo -> 3*)
  (*| Sb | Sh | Sw | Sd | Sq | So -> 1 (* See kvx-Optimization.pdf page 19 *)*)
  (*| Get -> 1*)
  (*| Set -> 4 (* According to the manual should be 3, but I measured 4 *)*)
  (*| Icall | Call | Cb | Igoto | Goto | Ret -> 42 (* Should not matter since it's the final instruction of the basic block *)*)
  (*| Fnegd | Fnegw | Fabsd | Fabsw | Fwidenlwd | Fnarrowdw -> 1*)
  (*| Faddd | Faddw | Fsbfd | Fsbfw | Fmuld | Fmulw | Finvw*)
  (*| Ffmaw | Ffmad | Ffmsw | Ffmsd -> 4*)

(*let rec empty_inter la = function*)
  (*| [] -> true*)
  (*| b::lb -> if (List.mem b la) then false else empty_inter la lb*)

(*let rec_to_info (r : ab_inst_rec) : inst_info =*)
  (*let opweights = OpWeightsAsm.get_opweights ()*)
  (*in { usage=opweights.resources_of_op r.inst; latency=opweights.latency_of_op r.inst; is_control=r.is_control }*)

(*let instruction_infos bb = List.map rec_to_info (instruction_recs bb)*)
let instruction_infos bb = instruction_recs bb

let instruction_usages bb =
  let usages = List.map (fun info -> info.usage) (instruction_infos bb)
  in Array.of_list usages

(**
 * Latency constraints building
 *)

(*(* type access = { inst: int; loc: location } *)*)

(*let preg2int pr = Camlcoq.P.to_int @@ Asmblockdeps.ppos pr*)

(*let loc2int = function*)
  (*| Mem -> 1*)
  (*| Reg pr -> preg2int pr*)

(*(* module HashedLoc = struct*)
  (*type t = { loc: location; key: int }*)
  (*let equal l1 l2 = (l1.key = l2.key)*)
  (*let hash l = l.key*)
  (*let create (l:location) : t = { loc=l; key = loc2int l }*)
(*end *)*)

(*(* module LocHash = Hashtbl.Make(HashedLoc) *)*)
(*module LocHash = Hashtbl*)

(*(* Hash table : location => list of instruction ids *)*)

(*let rec intlist n =*)
  (*if n < 0 then failwith "intlist: n < 0"*)
  (*else if n = 0 then []*)
  (*else (n-1) :: (intlist (n-1))*)

(*let find_in_hash hashloc loc =*)
  (*match LocHash.find_opt hashloc loc with*)
  (*| Some idl -> idl*)
  (*| None -> []*)

(*(* Returns a list of instruction ids *)*)
(*let rec get_accesses hashloc (ll: location list) = match ll with*)
  (*| [] -> []*)
  (*| loc :: llocs -> (find_in_hash hashloc loc) @ (get_accesses hashloc llocs)*)

(*let compute_latency (ifrom: inst_info) (ito: inst_info) =*)
  (*let dlat = inst_info_to_dlatency ito*)
  (*in let lat = ifrom.latency + dlat*)
  (*in assert (lat >= 0); if (lat == 0) then 1 else lat*)

let latency_constraints bb =
  let count = ref 0
  and constraints = ref []
  and instr_infos = instruction_infos bb
  in let step (i: ab_inst_rec) =
    begin
      constraints := {instr_from = !count; instr_to = !count+1; latency = i.latency} :: !constraints;
      count := !count + 1
    end
  in (List.iter step instr_infos; !constraints)

(**
 * Using the InstructionScheduler
 *)

(* TODO RESUME HERE *)

let opweights = OpWeightsAsm.get_opweights () 

let build_problem bb = 
{ max_latency = -1; resource_bounds = opweights.pipelined_resource_bounds;
  instruction_usages = instruction_usages bb; latency_constraints = latency_constraints bb }

(*let rec find_min_opt (l: int option list) =*)
  (*match l with*)
  (*| [] -> None *)
  (*| e :: l ->*)
    (*begin match find_min_opt l with*)
    (*| None -> e*)
    (*| Some m ->*)
      (*begin match e with*)
      (*| None -> Some m*)
      (*| Some n -> if n < m then Some n else Some m*)
      (*end*)
    (*end*)

(*let rec filter_indexes predicate = function*)
  (*| [] -> []*)
  (*| e :: l -> if (predicate e) then e :: (filter_indexes predicate l) else filter_indexes predicate l*)

let get_from_indexes indexes l = List.map (List.nth l) indexes

(*let is_basic = function PBasic _ -> true | _ -> false*)
let is_control = function PControl _ -> true | _ -> false
let to_basic = function PBasic i -> i | _ -> failwith "to_basic: control instruction found"
let to_control = function PControl i -> i | _ -> failwith "to_control: basic instruction found"

let rec body_to_instrs bdy = 
  match bdy with
  | [] -> []
  | i :: l' -> PBasic i :: body_to_instrs l'

let rec instrs_to_bdy instrs =
  match instrs with
  | [] -> []
  | PBasic i :: l' -> i :: instrs_to_bdy l'
  | PControl _ :: l' -> failwith "instrs_to_bdy: control instruction found"

let repack li hd =
  let last = List.nth li (List.length li - 1)
  in if is_control last then
      let cut_li = Array.to_list @@ Array.sub (Array.of_list li) 0 (List.length li - 1)
      in { header = hd; body = (instrs_to_bdy cut_li); exit = Some (to_control last) }
    else 
      { header = hd; body = (instrs_to_bdy li); exit = None }

(*let extract_some o = match o with Some e -> e | None -> failwith "extract_some: None found"*)

(*let rec find_min = function*)
  (*| [] -> None*)
  (*| e :: l ->*)
    (*match find_min l with*)
    (*| None -> Some e*)
    (*| Some m -> if (e < m) then Some e else Some m*)

(*let rec remove_all m = function*)
  (*| [] -> []*)
  (*| e :: l -> if m=e then remove_all m l*)
                     (*else e :: (remove_all m l)*)

(*let rec find_mins l = match find_min l with*)
  (*| None -> []*)
  (*| Some m -> m :: find_mins (remove_all m l)*)

(*let find_all_indices m l = *)
  (*let rec find m off = function*)
    (*| [] -> []*)
    (*| e :: l -> if m=e then off :: find m (off+1) l*)
                       (*else find m (off+1) l*)
  (*in find m 0 l*)

module TimeHash = Hashtbl

(*Hash table : time => list of instruction ids *)

let hashtbl2flatarray h maxint = 
  let rec f i = match TimeHash.find_opt h i with
  | None -> if (i > maxint) then [] else (f (i+1))
  | Some bund -> bund @ (f (i+1))
  in f 0

let find_max l =
  let rec f = function
    | [] -> None
    | e :: l -> match f l with
        | None -> Some e
        | Some m -> if (e > m) then Some e else Some m
  in match (f l) with
  | None -> raise Not_found
  | Some m -> m 

(*(* [0, 2, 3, 1, 1, 2, 4, 5] -> [[0], [3, 4], [1, 5], [2], [6], [7]] *)*)
let minpack_list (l: int list) =
  let timehash = TimeHash.create (List.length l)
  in let rec f i = function
  | [] -> ()
  | t::l -> begin
      (match TimeHash.find_opt timehash t with
      | None -> TimeHash.add timehash t [i] 
      | Some bund -> TimeHash.replace timehash t (bund @ [i]));
      f (i+1) l
    end 
  in begin
    f 0 l;
    hashtbl2flatarray timehash (find_max l)
  end;;

(*let minpack_list l =*)
  (*let mins = find_mins l*)
  (*in List.map (fun m -> find_all_indices m l) mins*)

let bb_to_instrs bb = body_to_instrs bb.body @ (match bb.exit with None -> [] | Some e -> [PControl e])

let build_solution bb sol =
  (* Remove last element - the total *)
  let tmp = (Array.to_list @@ Array.sub sol 0 (Array.length sol - 1))
  in let pack = minpack_list tmp
  and instrs = bb_to_instrs bb
  in repack (get_from_indexes pack instrs) bb.header
  (*in let rec bund hd = function*)
    (*| [] -> []*)
    (*| pack :: packs -> repack (get_from_indexes pack instrs) hd :: (bund [] packs)*)
  (*in bund bb.header packs*)

(*let print_inst oc = function*)
  (*| i -> TargetPrinter.Target.print_instruction oc i*)
  (*(*| Asm.Pallocframe(sz, ofs) -> Printf.fprintf oc "	Pallocframe\n"*)*)
  (*(*| Asm.Pfreeframe(sz, ofs) -> Printf.fprintf oc "	Pfreeframe\n"*)*)
  (*(*| Asm.Pbuiltin(ef, args, res) -> Printf.fprintf oc "	Pbuiltin\n"*)*)
  (*(*| i -> TargetPrinter.Target.print_instruction oc i*)*)

(*let print_bb oc bb =*)
  (*match Asmgen.Asmblock_TRANSF.unfold_bblock bb with*)
  (*| Errors.OK instructions -> List.iter (print_inst oc) instructions*)
  (*| Errors.Error _ -> Printf.eprintf "Error in print_bb"*)

let print_schedule sched =
  print_string "[ ";
  Array.iter (fun x -> Printf.printf "%d; " x) sched;
  print_endline "]";;

let do_schedule bb =
  let problem = build_problem bb in
  (if debug then print_problem stdout problem);
  let solution = scheduler_by_name (!Clflags.option_fpostpass_sched) problem
  in match solution with
  | None -> failwith "Could not find a valid schedule"
  | Some sol ->
     ((if debug then print_schedule sol);
     build_solution bb sol)

(**
 * Dumb schedule if the above doesn't work
 *)

(* Identity scheduling *)
let dumb_schedule (bb : bblock) = (bb.body, bb.exit)

(**
 * Separates the opaque instructions such as Pfreeframe and Pallocframe
 *)

let is_opaque = function
  | Pallocframe _ | Pfreeframe _ -> true
  | _ -> false

(* Returns : (accumulated instructions, remaining instructions, opaque instruction if found) *)
(*let rec biggest_wo_opaque = function
  | [] -> ([], [], None)
  | i :: li -> if is_opaque i then ([], li, Some i)
               else let big, rem, opaque = biggest_wo_opaque li in (i :: big, rem, opaque);;

let separate_opaque bb =
  let instrs = bb_to_instrs bb
  in let rec f hd li =
    match li with
    | [] -> []
    | li -> let big, rem, opaque = biggest_wo_opaque li in
            match opaque with
            | Some i ->
                (match big with
                | [] -> (bundlize [i] hd) :: (f [] rem)
                | big -> (bundlize big hd) :: (bundlize [i] []) :: (f [] rem)
                )
            | None -> (bundlize big hd) :: (f [] rem)
  in f bb.header instrs*)

let smart_schedule bb =
  (*let lbb = separate_opaque bb in*)
  let bb' = do_schedule bb in (bb'.body, bb'.exit)
        (*try do_schedule bb*)
        (*with OpaqueInstruction -> dumb_schedule bb*)
        (*| e -> *)
          (*let msg = Printexc.to_string e*)
          (*and stack = Printexc.get_backtrace ()*)
          (*in begin*)
            (*Printf.eprintf "In regards to this group of instructions:\n";*)
            (*print_bb stderr bb;*)
            (*Printf.eprintf "Postpass scheduling could not complete: %s\n%s" msg stack;*)
            (*failwith "Invalid schedule"*)
            (*(**)
            (*Printf.eprintf "Issuing one instruction per bundle instead\n\n";*)
            (*dumb_schedule bb*)
            (**)*)
          (*end*)

let bblock_schedule bb =
  if debug then (Printf.eprintf "###############################\n"; Printf.eprintf "SCHEDULING\n");
  print_problem stdout (build_problem bb); 
  (*if Compopts.optim_postpass () then smart_schedule bb else dumb_schedule bb*)
  smart_schedule bb

(** Called schedule function from Coq *)

(*let schedule_notime bb = let toto = bblock_schedule in toto*)
let schedule bb = Timing.time_coq ('P'::('o'::('s'::('t'::('p'::('a'::('s'::('s'::('S'::('c'::('h'::('e'::('d'::('u'::('l'::('i'::('n'::('g'::(' '::('o'::('r'::('a'::('c'::('l'::('e'::([])))))))))))))))))))))))))) bblock_schedule bb