aboutsummaryrefslogtreecommitdiffstats
path: root/backend/CSE2.v
blob: a70c3d9f190ce452bea795ef2906cb152074c066 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
Require Import Coqlib Maps Errors Integers Floats Lattice Kildall.
Require Import AST Linking.
Require Import Memory Registers Op RTL Maps.

Require Import Globalenvs Values.

(* Static analysis *)

Inductive sym_val : Type :=
| SMove (src : reg)
| SOp (op : operation) (args : list reg).

Definition eq_args (x y : list reg) : { x = y } + { x <> y } :=
  list_eq_dec peq x y.

Definition eq_sym_val : forall x y : sym_val,
    {x = y} + { x <> y }.
Proof.
  generalize eq_operation.
  generalize eq_args.
  generalize peq.
  decide equality.
Defined.

Module RELATION.
  
Definition t := (PTree.t sym_val).
Definition eq (r1 r2 : t) :=
  forall x, (PTree.get x r1) = (PTree.get x r2).

Definition top : t := PTree.empty sym_val.

Lemma eq_refl: forall x, eq x x.
Proof.
  unfold eq.
  intros; reflexivity.
Qed.

Lemma eq_sym: forall x y, eq x y -> eq y x.
Proof.
  unfold eq.
  intros; eauto.
Qed.

Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
Proof.
  unfold eq.
  intros; congruence.
Qed.

Definition sym_val_beq (x y : sym_val) :=
  if eq_sym_val x y then true else false.

Definition beq (r1 r2 : t) := PTree.beq sym_val_beq r1 r2.

Lemma beq_correct: forall r1 r2, beq r1 r2 = true -> eq r1 r2.
Proof.
  unfold beq, eq. intros r1 r2 EQ x.
  pose proof (PTree.beq_correct sym_val_beq r1 r2) as CORRECT.
  destruct CORRECT as [CORRECTF CORRECTB].
  pose proof (CORRECTF EQ x) as EQx.
  clear CORRECTF CORRECTB EQ.
  unfold sym_val_beq in *.
  destruct (r1 ! x) as [R1x | ] in *;
    destruct (r2 ! x) as [R2x | ] in *;
    trivial; try contradiction.
  destruct (eq_sym_val R1x R2x) in *; congruence.
Qed.

Definition ge (r1 r2 : t) :=
  forall x,
    match PTree.get x r1 with
    | None => True
    | Some v => (PTree.get x r2) = Some v
    end.

Lemma ge_refl: forall r1 r2, eq r1 r2 -> ge r1 r2.
Proof.
  unfold eq, ge.
  intros r1 r2 EQ x.
  pose proof (EQ x) as EQx.
  clear EQ.
  destruct (r1 ! x).
  - congruence.
  - trivial.
Qed.

Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
Proof.
  unfold ge.
  intros r1 r2 r3 GE12 GE23 x.
  pose proof (GE12 x) as GE12x; clear GE12.
  pose proof (GE23 x) as GE23x; clear GE23.
  destruct (r1 ! x); trivial.
  destruct (r2 ! x); congruence.
Qed.

Definition lub (r1 r2 : t) :=
  PTree.combine
    (fun ov1 ov2 =>
       match ov1, ov2 with
       | (Some v1), (Some v2) =>
         if eq_sym_val v1 v2
         then ov1
         else None
       | None, _
       | _, None => None
       end)
    r1 r2.

Lemma ge_lub_left: forall x y, ge (lub x y) x.
Proof.
  unfold ge, lub.
  intros r1 r2 x.
  rewrite PTree.gcombine by reflexivity.
  destruct (_ ! _); trivial.
  destruct (_ ! _); trivial.
  destruct (eq_sym_val _ _); trivial.
Qed.

Lemma ge_lub_right: forall x y, ge (lub x y) y.
Proof.
  unfold ge, lub.
  intros r1 r2 x.
  rewrite PTree.gcombine by reflexivity.
  destruct (_ ! _); trivial.
  destruct (_ ! _); trivial.
  destruct (eq_sym_val _ _); trivial.
  congruence.
Qed.

End RELATION.

Module Type SEMILATTICE_WITHOUT_BOTTOM.

  Parameter t: Type.
  Parameter eq: t -> t -> Prop.
  Axiom eq_refl: forall x, eq x x.
  Axiom eq_sym: forall x y, eq x y -> eq y x.
  Axiom eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
  Parameter beq: t -> t -> bool.
  Axiom beq_correct: forall x y, beq x y = true -> eq x y.
  Parameter ge: t -> t -> Prop.
  Axiom ge_refl: forall x y, eq x y -> ge x y.
  Axiom ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
  Parameter lub: t -> t -> t.
  Axiom ge_lub_left: forall x y, ge (lub x y) x.
  Axiom ge_lub_right: forall x y, ge (lub x y) y.

End SEMILATTICE_WITHOUT_BOTTOM.

Module ADD_BOTTOM(L : SEMILATTICE_WITHOUT_BOTTOM).
  Definition t := option L.t.
  Definition eq (a b : t) :=
    match a, b with
    | None, None => True
    | Some x, Some y => L.eq x y
    | Some _, None | None, Some _ => False
    end.
  
  Lemma eq_refl: forall x, eq x x.
  Proof.
    unfold eq; destruct x; trivial.
    apply L.eq_refl.
  Qed.

  Lemma eq_sym: forall x y, eq x y -> eq y x.
  Proof.
    unfold eq; destruct x; destruct y; trivial.
    apply L.eq_sym.
  Qed.
  
  Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
  Proof.
    unfold eq; destruct x; destruct y; destruct z; trivial.
    - apply L.eq_trans.
    - contradiction.
  Qed.
  
  Definition beq (x y : t) :=
    match x, y with
    | None, None => true
    | Some x, Some y => L.beq x y
    | Some _, None | None, Some _ => false
    end.
  
  Lemma beq_correct: forall x y, beq x y = true -> eq x y.
  Proof.
    unfold beq, eq.
    destruct x; destruct y; trivial; try congruence.
    apply L.beq_correct.
  Qed.
  
  Definition ge (x y : t) :=
    match x, y with
    | None, Some _ => False
    | _, None => True
    | Some a, Some b => L.ge a b
    end.
  
  Lemma ge_refl: forall x y, eq x y -> ge x y.
  Proof.
    unfold eq, ge.
    destruct x; destruct y; trivial.
    apply L.ge_refl.
  Qed.
  
  Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
  Proof.
    unfold ge.
    destruct x; destruct y; destruct z; trivial; try contradiction.
    apply L.ge_trans.
  Qed.
  
  Definition bot: t := None.
  Lemma ge_bot: forall x, ge x bot.
  Proof.
    unfold ge, bot.
    destruct x; trivial.
  Qed.
  
  Definition lub (a b : t) :=
    match a, b with
    | None, _ => b
    | _, None => a
    | (Some x), (Some y) => Some (L.lub x y)
    end.

  Lemma ge_lub_left: forall x y, ge (lub x y) x.
  Proof.
    unfold ge, lub.
    destruct x; destruct y; trivial.
    - apply L.ge_lub_left.
    - apply L.ge_refl.
      apply L.eq_refl.
  Qed.
  
  Lemma ge_lub_right: forall x y, ge (lub x y) y.
  Proof.
    unfold ge, lub.
    destruct x; destruct y; trivial.
    - apply L.ge_lub_right.
    - apply L.ge_refl.
      apply L.eq_refl.
  Qed.
End ADD_BOTTOM.

Module RB := ADD_BOTTOM(RELATION).
Module DS := Dataflow_Solver(RB)(NodeSetForward).

Definition kill_sym_val (dst : reg) (sv : sym_val) :=
  match sv with
  | SMove src => if peq dst src then true else false
  | SOp op args => List.existsb (peq dst) args
  end.
                                                 
Definition kill (dst : reg) (rel : RELATION.t) :=
  PTree.filter1 (fun x => negb (kill_sym_val dst x))
                (PTree.remove dst rel).

Lemma args_unaffected:
  forall rs : regset,
  forall dst : reg,
  forall v,
  forall args : list reg,
    existsb (fun y : reg => peq dst y) args = false ->
    (rs # dst <- v ## args) = (rs ## args).
Proof.
  induction args; simpl; trivial.
  destruct (peq dst a) as [EQ | NEQ]; simpl.
  { discriminate.
  }
  intro EXIST.
  f_equal.
  {
    apply Regmap.gso.
    congruence.
  }
  apply IHargs.
  assumption.
Qed.

Inductive sym_cases : option sym_val -> Type :=
| Move_case : forall src, (sym_cases (Some (SMove src)))
| Other_case : forall osv, (sym_cases osv).

Definition move_cases (osv : option sym_val) : (sym_cases osv).
Proof.
  destruct osv as [sv |].
  { destruct sv; try apply Move_case; apply Other_case. }
  apply Other_case.
Defined.

Definition move (src dst : reg) (rel : RELATION.t) :=
  PTree.set dst (match move_cases (PTree.get src rel) with
                 | Move_case src' => SMove src'
                 | Other_case _ => SMove src
                 end) (kill dst rel).

Definition oper1 (op: operation) (dst : reg) (args : list reg)
           (rel : RELATION.t) :=
  let rel' := kill dst rel in
  PTree.set dst (SOp op (List.map (fun arg =>
                                     match move_cases (rel' ! arg) with
                                     | Move_case arg' => arg'
                                     | Other_case _ => arg
                                     end) args)) rel'.
Definition oper (op: operation) (dst : reg) (args : list reg)
           (rel : RELATION.t) :=
  if List.in_dec peq dst args
  then kill dst rel
  else oper1 op dst args rel.

Section SOUNDNESS.
  Parameter F V : Type.
  Parameter genv: Genv.t F V.
  Parameter sp : val.
  Parameter m : mem.

Definition sem_sym_val sym rs :=
  match sym with
  | SMove src => Some (rs # src)
  | SOp op args =>
    eval_operation genv sp op (rs ## args) m
  end.
    
Definition sem_reg (rel : RELATION.t) (x : reg) (rs : regset) : option val :=
  match rel ! x with
  | None => Some (rs # x)
  | Some sym => sem_sym_val sym rs
  end.

Definition sem_rel (rel : RELATION.t) (rs : regset) :=
  forall x : reg, (sem_reg rel x rs) = Some (rs # x).

Lemma kill_sound :
  forall rel : RELATION.t,
  forall dst : reg,
  forall rs,
  forall v,
    sem_rel rel rs ->
    sem_rel (kill dst rel) (rs # dst <- v).
Proof.
  unfold sem_rel, kill, sem_reg, sem_sym_val.
  intros until v.
  intros REL x.
  rewrite PTree.gfilter1.
  destruct (Pos.eq_dec dst x).
  {
    subst x.
    rewrite PTree.grs.
    rewrite Regmap.gss.
    reflexivity.
  }
  rewrite PTree.gro by congruence.
  rewrite Regmap.gso by congruence.
  destruct (rel ! x) as [relx | ] eqn:RELx.
  2: reflexivity.
  unfold kill_sym_val.
  pose proof (REL x) as RELinstx.
  rewrite RELx in RELinstx.
  destruct relx eqn:SYMVAL.
  {
    destruct (peq dst src); simpl.
    { reflexivity. }
    rewrite Regmap.gso by congruence.
    assumption.
  }
  { destruct existsb eqn:EXISTS; simpl.
    { reflexivity. }
    rewrite args_unaffected by exact EXISTS.
    assumption.
  }
Qed.

Lemma write_same:
  forall rs : regset,
  forall src dst : reg,
    (rs # dst <- (rs # src)) # src = rs # src.
Proof.
  intros.
  destruct (peq src dst).
  {
    subst dst.
    apply Regmap.gss.
  }
  rewrite Regmap.gso by congruence.
  reflexivity.
Qed.

Lemma move_sound :
  forall rel : RELATION.t,
  forall src dst : reg,
  forall rs,
    sem_rel rel rs ->
    sem_rel (move src dst rel) (rs # dst <- (rs # src)).
Proof.
  intros until rs. intros REL x.
  pose proof (kill_sound rel dst rs (rs # src) REL x) as KILL.
  pose proof (REL src) as RELsrc.
  unfold move.
  destruct (peq x dst).
  {
    subst x.
    unfold sem_reg.
    rewrite PTree.gss.
    rewrite Regmap.gss.
    unfold sem_reg in RELsrc.
    destruct move_cases; simpl.
    {
      simpl in RELsrc.
      destruct (peq dst src0).
      {
        subst src0.
        rewrite Regmap.gss.
        reflexivity.
      }
      rewrite Regmap.gso by congruence.
      assumption.
    }
    rewrite write_same.
    reflexivity.
  }
  rewrite Regmap.gso by congruence.
  unfold sem_reg.
  rewrite PTree.gso by congruence.
  rewrite Regmap.gso in KILL by congruence.
  exact KILL.
Qed.

Lemma move_cases_neq:
  forall dst rel a,
    a <> dst ->
    (match move_cases (kill dst rel) ! a with
     | Move_case a' => a'
     | Other_case _ => a
     end) <> dst.
Proof.
  intros until a. intro NEQ.
  unfold kill.
  rewrite PTree.gfilter1.
  rewrite PTree.gro by congruence.
  destruct (rel ! a); simpl.
  2: congruence.
  destruct s.
  { simpl.
    destruct peq; simpl; congruence.
  }
  { simpl.
    destruct negb; simpl; congruence.
  }
Qed.

Lemma args_replace_dst :
  forall rel,
  forall args : list reg,
  forall dst : reg,
  forall rs : regset,
  forall v,
    (sem_rel rel rs) ->
    not (In dst args) ->
    (rs # dst <- v)
    ## (map
          (fun arg : positive =>
           match move_cases (kill dst rel) ! arg with
           | Move_case arg' => arg'
           | Other_case _ => arg
           end) args) = rs ## args.
Proof.
  induction args; simpl; trivial.
  intros until v.
  intros REL NOT_IN.
  rewrite IHargs by auto.
  f_equal.
  pose proof (REL a) as RELa.
  rewrite Regmap.gso by (apply move_cases_neq; auto).
  unfold kill.
  unfold sem_reg in RELa.
  rewrite PTree.gfilter1.
  rewrite PTree.gro by auto.
  destruct (rel ! a); simpl; trivial.
  destruct s; simpl in *; destruct negb; simpl; congruence.
Qed.

Lemma oper1_sound :
  forall rel : RELATION.t,
  forall op : operation,
  forall dst : reg,
  forall args: list reg,
  forall rs : regset,
  forall v,
    sem_rel rel rs ->
    not (In dst args) ->
    eval_operation genv sp op (rs ## args) m = Some v ->
    sem_rel (oper1 op dst args rel) (rs # dst <- v).
Proof.
  intros until v.
  intros REL NOT_IN EVAL x.
  pose proof (kill_sound rel dst rs v REL x) as KILL.
  unfold oper1.
  destruct (peq x dst).
  {
    subst x.
    unfold sem_reg.
    rewrite PTree.gss.
    rewrite Regmap.gss.
    simpl.
    rewrite args_replace_dst by auto.
    assumption.
  }
  rewrite Regmap.gso by congruence.
  unfold sem_reg.
  rewrite PTree.gso by congruence.
  rewrite Regmap.gso in KILL by congruence.
  exact KILL.
Qed.

Lemma oper_sound :
  forall rel : RELATION.t,
  forall op : operation,
  forall dst : reg,
  forall args: list reg,
  forall rs : regset,
  forall v,
    sem_rel rel rs ->
    eval_operation genv sp op (rs ## args) m = Some v ->
    sem_rel (oper op dst args rel) (rs # dst <- v).
Proof.
  intros until v.
  intros REL EVAL.
  unfold oper.
  destruct in_dec.
  {
    apply kill_sound; auto. 
  }
  apply oper1_sound; auto.
Qed.

(*
Definition apply_instr instr x :=
  match instr with
  | Inop _
  | Icond _ _ _ _
  | Ijumptable _ _
  | Istore _ _ _ _ _ => Some x
  | Iop Omove (src :: nil) dst _ => Some (move src dst x)
  | Iop _ _ dst _
  | Iload _ _ _ _ dst _
  | Icall _ _ _ dst _ => Some (kill dst x)
  | Ibuiltin _ _ res _ => Some (RELATION.top) (* TODO (kill_builtin_res res x) *)
  | Itailcall _ _ _ | Ireturn _ => RB.bot
  end.

Definition apply_instr' code (pc : node) (ro : RB.t) : RB.t :=
  match ro with
  | None => None
  | Some x =>
    match code ! pc with
    | None => RB.bot
    | Some instr => apply_instr instr x
    end
  end.

Definition forward_map (f : RTL.function) := DS.fixpoint
  (RTL.fn_code f) RTL.successors_instr
  (apply_instr' (RTL.fn_code f)) (RTL.fn_entrypoint f) (Some RELATION.top).

Definition get_r (rel : RELATION.t) (x : reg) :=
  match PTree.get x rel with
  | None => x
  | Some src => src
  end.

Definition get_rb (rb : RB.t) (x : reg) :=
  match rb with
  | None => x
  | Some rel => get_r rel x
  end.

Definition subst_arg (fmap : option (PMap.t RB.t)) (pc : node) (x : reg) : reg :=
  match fmap with
  | None => x
  | Some inv => get_rb (PMap.get pc inv) x
  end.

Definition subst_args fmap pc := List.map (subst_arg fmap pc).

(* Transform *)
Definition transf_instr (fmap : option (PMap.t RB.t))
           (pc: node) (instr: instruction) :=
  match instr with
  | Iop op args dst s =>
    Iop op (subst_args fmap pc args) dst s
  | Iload trap chunk addr args dst s =>
    Iload trap chunk addr (subst_args fmap pc args) dst s
  | Istore chunk addr args src s =>
    Istore chunk addr (subst_args fmap pc args) src s
  | Icall sig ros args dst s =>
    Icall sig ros (subst_args fmap pc args) dst s
  | Itailcall sig ros args =>
    Itailcall sig ros (subst_args fmap pc args)
  | Icond cond args s1 s2 =>
    Icond cond (subst_args fmap pc args) s1 s2
  | Ijumptable arg tbl =>
    Ijumptable (subst_arg fmap pc arg) tbl
  | Ireturn (Some arg) =>
    Ireturn (Some (subst_arg fmap pc arg))
  | _ => instr
  end.

Definition transf_function (f: function) : function :=
  {| fn_sig := f.(fn_sig);
     fn_params := f.(fn_params);
     fn_stacksize := f.(fn_stacksize);
     fn_code := PTree.map (transf_instr (forward_map f)) f.(fn_code);
     fn_entrypoint := f.(fn_entrypoint) |}.


Definition transf_fundef (fd: fundef) : fundef :=
  AST.transf_fundef transf_function fd.

Definition transf_program (p: program) : program :=
  transform_program transf_fundef p.
*)