aboutsummaryrefslogtreecommitdiffstats
path: root/backend/CSE2proof.v
blob: 1d0a617a3369c7adad1877e62a424f43c30f3a12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
Require Import Coqlib Maps Errors Integers Floats Lattice Kildall.
Require Import AST Linking.
Require Import Memory Registers Op RTL Maps.

Require Import Globalenvs Values.
Require Import Linking Values Memory Globalenvs Events Smallstep.
Require Import Registers Op RTL.
Require Import CSE2.

Lemma args_unaffected:
  forall rs : regset,
  forall dst : reg,
  forall v,
  forall args : list reg,
    existsb (fun y : reg => peq dst y) args = false ->
    (rs # dst <- v ## args) = (rs ## args).
Proof.
  induction args; simpl; trivial.
  destruct (peq dst a) as [EQ | NEQ]; simpl.
  { discriminate.
  }
  intro EXIST.
  f_equal.
  {
    apply Regmap.gso.
    congruence.
  }
  apply IHargs.
  assumption.
Qed.

Section SOUNDNESS.
  Variable F V : Type.
  Variable genv: Genv.t F V.
  Variable sp : val.

Section SAME_MEMORY.
  Variable m : mem.

Definition sem_sym_val sym rs :=
  match sym with
  | SMove src => Some (rs # src)
  | SOp op args =>
    eval_operation genv sp op (rs ## args) m
  end.
    
Definition sem_reg (rel : RELATION.t) (x : reg) (rs : regset) : option val :=
  match rel ! x with
  | None => Some (rs # x)
  | Some sym => sem_sym_val sym rs
  end.

Definition sem_rel (rel : RELATION.t) (rs : regset) :=
  forall x : reg, (sem_reg rel x rs) = Some (rs # x).

Definition sem_rel_b (relb : RB.t) (rs : regset) :=
  match relb with
  | Some rel => sem_rel rel rs
  | None => False
  end.

Definition fmap_sem (fmap : option (PMap.t RB.t))
  (pc : node) (rs : regset) :=
  match fmap with
  | None => True
  | Some m => sem_rel_b (PMap.get pc m) rs
  end.

Lemma subst_arg_ok:
  forall f,
  forall pc,
  forall rs,
  forall arg,
    fmap_sem (forward_map f) pc rs ->
    rs # (subst_arg (forward_map f) pc arg) = rs # arg.
Proof.
  intros until arg.
  intro SEM.
  unfold fmap_sem in SEM.
  destruct (forward_map f) as [map |]in *; trivial.
  simpl.
  unfold sem_rel_b, sem_rel, sem_reg in *.
  destruct (map # pc).
  2: contradiction.
  pose proof (SEM arg) as SEMarg.
  simpl. unfold forward_move.
  unfold sem_sym_val in *.
  destruct (t ! arg); trivial.
  destruct s; congruence.
Qed.

Lemma subst_args_ok:
  forall f,
  forall pc,
  forall rs,
  fmap_sem (forward_map f) pc rs ->
  forall args,
    rs ## (subst_args (forward_map f) pc args) = rs ## args.
Proof.
  induction args; trivial.
  simpl.
  f_equal.
  apply subst_arg_ok; assumption.
  assumption.
Qed.

Lemma kill_reg_sound :
  forall rel : RELATION.t,
  forall dst : reg,
  forall rs,
  forall v,
    sem_rel rel rs ->
    sem_rel (kill_reg dst rel) (rs # dst <- v).
Proof.
  unfold sem_rel, kill_reg, sem_reg, sem_sym_val.
  intros until v.
  intros REL x.
  rewrite PTree.gfilter1.
  destruct (Pos.eq_dec dst x).
  {
    subst x.
    rewrite PTree.grs.
    rewrite Regmap.gss.
    reflexivity.
  }
  rewrite PTree.gro by congruence.
  rewrite Regmap.gso by congruence.
  destruct (rel ! x) as [relx | ] eqn:RELx.
  2: reflexivity.
  unfold kill_sym_val.
  pose proof (REL x) as RELinstx.
  rewrite RELx in RELinstx.
  destruct relx eqn:SYMVAL.
  {
    destruct (peq dst src); simpl.
    { reflexivity. }
    rewrite Regmap.gso by congruence.
    assumption.
  }
  { destruct existsb eqn:EXISTS; simpl.
    { reflexivity. }
    rewrite args_unaffected by exact EXISTS.
    assumption.
  }
Qed.

Lemma write_same:
  forall rs : regset,
  forall src dst : reg,
    (rs # dst <- (rs # src)) # src = rs # src.
Proof.
  intros.
  destruct (peq src dst).
  {
    subst dst.
    apply Regmap.gss.
  }
  rewrite Regmap.gso by congruence.
  reflexivity.
Qed.

Lemma move_sound :
  forall rel : RELATION.t,
  forall src dst : reg,
  forall rs,
    sem_rel rel rs ->
    sem_rel (move src dst rel) (rs # dst <- (rs # src)).
Proof.
  intros until rs. intros REL x.
  pose proof (kill_reg_sound rel dst rs (rs # src) REL x) as KILL.
  pose proof (REL src) as RELsrc.
  unfold move.
  destruct (peq x dst).
  {
    subst x.
    unfold sem_reg.
    rewrite PTree.gss.
    rewrite Regmap.gss.
    unfold sem_reg in RELsrc.
    simpl.
    unfold forward_move.
    destruct (rel ! src) as [ sv |]; simpl.
    destruct sv; simpl in *.
    {
      destruct (peq dst src0).
      {
        subst src0.
        rewrite Regmap.gss.
        reflexivity.
      }
      rewrite Regmap.gso by congruence.
      assumption.
    }
    all: f_equal; apply write_same.
  }
  rewrite Regmap.gso by congruence.
  unfold sem_reg.
  rewrite PTree.gso by congruence.
  rewrite Regmap.gso in KILL by congruence.
  exact KILL.
Qed.

Lemma move_cases_neq:
  forall dst rel a,
    a <> dst ->
    (forward_move (kill_reg dst rel) a) <> dst.
Proof.
  intros until a. intro NEQ.
  unfold kill_reg, forward_move.
  rewrite PTree.gfilter1.
  rewrite PTree.gro by congruence.
  destruct (rel ! a); simpl.
  2: congruence.
  destruct s.
  {
    unfold kill_sym_val.
    destruct peq; simpl; congruence.
  }
  all: simpl;
    destruct negb; simpl; congruence.
Qed.

Lemma args_replace_dst :
  forall rel,
  forall args : list reg,
  forall dst : reg,
  forall rs : regset,
  forall v,
    (sem_rel rel rs) ->
    not (In dst args) ->
    (rs # dst <- v)
    ## (map
          (forward_move (kill_reg dst rel)) args) = rs ## args.
Proof.
  induction args; simpl.
  1: reflexivity.
  intros until v.
  intros REL NOT_IN.
  rewrite IHargs by auto.
  f_equal.
  pose proof (REL a) as RELa.
  rewrite Regmap.gso by (apply move_cases_neq; auto).
  unfold kill_reg.
  unfold sem_reg in RELa.
  unfold forward_move.
  rewrite PTree.gfilter1.
  rewrite PTree.gro by auto.
  destruct (rel ! a); simpl; trivial.
  destruct s; simpl in *; destruct negb; simpl; congruence.
Qed.

Lemma oper1_sound :
  forall rel : RELATION.t,
  forall op : operation,
  forall dst : reg,
  forall args: list reg,
  forall rs : regset,
  forall v,
    sem_rel rel rs ->
    not (In dst args) ->
    eval_operation genv sp op (rs ## args) m = Some v ->
    sem_rel (oper1 op dst args rel) (rs # dst <- v).
Proof.
  intros until v.
  intros REL NOT_IN EVAL x.
  pose proof (kill_reg_sound rel dst rs v REL x) as KILL.
  unfold oper1.
  destruct (peq x dst).
  {
    subst x.
    unfold sem_reg.
    rewrite PTree.gss.
    rewrite Regmap.gss.
    simpl.
    rewrite args_replace_dst by auto.
    assumption.
  }
  rewrite Regmap.gso by congruence.
  unfold sem_reg.
  rewrite PTree.gso by congruence.
  rewrite Regmap.gso in KILL by congruence.
  exact KILL.
Qed.

Lemma oper_sound :
  forall rel : RELATION.t,
  forall op : operation,
  forall dst : reg,
  forall args: list reg,
  forall rs : regset,
  forall v,
    sem_rel rel rs ->
    eval_operation genv sp op (rs ## args) m = Some v ->
    sem_rel (oper op dst args rel) (rs # dst <- v).
Proof.
  intros until v.
  intros REL EVAL.
  unfold oper.
  destruct in_dec.
  {
    apply kill_reg_sound; auto. 
  }
  apply oper1_sound; auto.
Qed.

Lemma gen_oper_sound :
  forall rel : RELATION.t,
  forall op : operation,
  forall dst : reg,
  forall args: list reg,
  forall rs : regset,
  forall v,
    sem_rel rel rs ->
    eval_operation genv sp op (rs ## args) m = Some v ->
    sem_rel (gen_oper op dst args rel) (rs # dst <- v).
Proof.
  intros until v.
  intros REL EVAL.
  unfold gen_oper.
  destruct op.
  { destruct args as [ | h0 t0].
    apply oper_sound; auto.
    destruct t0.
    {
      simpl in *.
      replace v with (rs # h0) by congruence.
      apply move_sound; auto.
    }
    apply oper_sound; auto.
  }
  all: apply oper_sound; auto.
Qed.


Lemma find_op_sound :
  forall rel : RELATION.t,
  forall op : operation,
  forall src : reg,
  forall args: list reg,
  forall rs : regset,
    sem_rel rel rs ->
    find_op rel op args = Some src ->
    (eval_operation genv sp op (rs ## args) m) = Some (rs # src).
Proof.
  intros until rs.
  unfold find_op.
  rewrite PTree.fold_spec.
  intro REL.
  assert (
     forall start,
             match start with
             | None => True
             | Some src => eval_operation genv sp op rs ## args m = Some rs # src
             end -> fold_left
    (fun (a : option reg) (p : positive * sym_val) =>
     find_op_fold op args a (fst p) (snd p)) (PTree.elements rel) start =
                    Some src ->
             eval_operation genv sp op rs ## args m = Some rs # src) as REC.
  {
    unfold sem_rel, sem_reg in REL.
    generalize (PTree.elements_complete rel).
    generalize (PTree.elements rel).
    induction l; simpl.
    {
      intros.
      subst start.
      assumption.
    }
    destruct a as [r sv]; simpl.
    intros COMPLETE start GEN.
    apply IHl.
    {
      intros.
      apply COMPLETE.
      right.
      assumption.
    }
    unfold find_op_fold.
    destruct start.
    assumption.
    destruct sv.
    { trivial. }
    destruct eq_operation; trivial.
    subst op0.
    destruct eq_args; trivial.
    subst args0.
    simpl.
    assert ((rel ! r) = Some (SOp op args)) as RELatr.
    {
      apply COMPLETE.
      left.
      reflexivity.
    }
    pose proof (REL r) as RELr.
    rewrite RELatr in RELr.
    simpl in RELr.
    assumption.
  }
  apply REC; auto.
Qed.


Lemma kill_reg_weaken:
  forall res mpc rs,
    sem_rel mpc rs ->
    sem_rel (kill_reg res mpc) rs.
Proof.
  intros until rs.
  intros REL x.
  pose proof (REL x) as RELx.
  unfold kill_reg, sem_reg in *.
  rewrite PTree.gfilter1.
  destruct (peq res x).
  { subst x.
    rewrite PTree.grs.
    reflexivity.
  }
  rewrite PTree.gro by congruence.
  destruct (mpc ! x) as [sv | ]; trivial.
  destruct negb; trivial.
Qed.

Lemma top_ok:
  forall rs, sem_rel RELATION.top rs.
Proof.
  unfold sem_rel, sem_reg, RELATION.top.
  intros.
  rewrite PTree.gempty.
  reflexivity.
Qed.

Lemma sem_rel_ge:
  forall r1 r2 : RELATION.t,
    (RELATION.ge r1 r2) ->
    forall rs : regset,
      (sem_rel r2 rs) -> (sem_rel r1 rs).
Proof.
  intros r1 r2 GE rs RE x.
  pose proof (RE x) as REx.
  pose proof (GE x) as GEx.
  unfold sem_reg in *.
  destruct (r1 ! x) as [r1x | ] in *;
    destruct (r2 ! x) as [r2x | ] in *;
    congruence.
Qed.
End SAME_MEMORY.

Lemma kill_mem_sound :
  forall m m' : mem,
  forall rel : RELATION.t,
  forall rs,
    sem_rel m rel rs -> sem_rel m' (kill_mem rel) rs.
Proof.
  unfold sem_rel, sem_reg.
  intros until rs.
  intros SEM x.
  pose proof (SEM x) as SEMx.
  unfold kill_mem.
  rewrite PTree.gfilter1.
  unfold kill_sym_val_mem.
  destruct (rel ! x) as [ sv | ].
  2: reflexivity.
  destruct sv; simpl in *; trivial.
  {
    destruct op_depends_on_memory eqn:DEPENDS; simpl; trivial.
    rewrite <- SEMx.
    apply op_depends_on_memory_correct; auto.
  }
Qed.

End SOUNDNESS.

Definition match_prog (p tp: RTL.program) :=
  match_program (fun cu f tf => tf = transf_fundef f) eq p tp.

Lemma transf_program_match:
  forall p, match_prog p (transf_program p).
Proof.
  intros. apply match_transform_program; auto.
Qed.

Section PRESERVATION.

Variables prog tprog: program.
Hypothesis TRANSL: match_prog prog tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.

Lemma functions_translated:
  forall v f,
  Genv.find_funct ge v = Some f ->
  Genv.find_funct tge v = Some (transf_fundef f).
Proof (Genv.find_funct_transf TRANSL).

Lemma function_ptr_translated:
  forall v f,
  Genv.find_funct_ptr ge v = Some f ->
  Genv.find_funct_ptr tge v = Some (transf_fundef f).
Proof (Genv.find_funct_ptr_transf TRANSL).

Lemma symbols_preserved:
  forall id,
  Genv.find_symbol tge id = Genv.find_symbol ge id.
Proof (Genv.find_symbol_transf TRANSL).

Lemma senv_preserved:
  Senv.equiv ge tge.
Proof (Genv.senv_transf TRANSL).

Lemma sig_preserved:
  forall f, funsig (transf_fundef f) = funsig f.
Proof.
  destruct f; trivial.
Qed.

Lemma find_function_translated:
  forall ros rs fd,
  find_function ge ros rs = Some fd ->
  find_function tge ros rs = Some (transf_fundef fd).
Proof.
  unfold find_function; intros. destruct ros as [r|id].
  eapply functions_translated; eauto.
  rewrite symbols_preserved. destruct (Genv.find_symbol ge id); try congruence.
  eapply function_ptr_translated; eauto.
Qed.

Lemma transf_function_at:
  forall (f : function) (pc : node) (i : instruction),
  (fn_code f)!pc = Some i ->
  (fn_code (transf_function f))!pc =
    Some(transf_instr (forward_map f) pc i).
Proof.
  intros until i. intro CODE.
  unfold transf_function; simpl.
  rewrite PTree.gmap.
  unfold option_map.
  rewrite CODE.
  reflexivity.
Qed.

Definition is_killed_in_map (map : PMap.t RB.t) pc res :=
  match PMap.get pc map with
  | None => True
  | Some rel => exists rel', RELATION.ge rel (kill_reg res rel')
  end.

Definition is_killed_in_fmap fmap pc res :=
  match fmap with
  | None => True
  | Some map => is_killed_in_map map pc res
  end.

Definition sem_rel_b' := sem_rel_b fundef unit ge.
Definition fmap_sem' := fmap_sem fundef unit ge.
Definition subst_arg_ok' := subst_arg_ok fundef unit ge.
Definition subst_args_ok' := subst_args_ok fundef unit ge.
Definition kill_mem_sound' := kill_mem_sound fundef unit ge.

Lemma sem_rel_b_ge:
  forall rb1 rb2 : RB.t,
    (RB.ge rb1 rb2) ->
    forall sp m,
    forall rs : regset,
      (sem_rel_b' sp m rb2 rs) -> (sem_rel_b' sp m rb1 rs).
Proof.
  unfold sem_rel_b', sem_rel_b.
  destruct rb1 as [r1 | ];
    destruct rb2 as [r2 | ]; simpl;
      intros GE sp m rs RE; try contradiction.
  apply sem_rel_ge with (r2 := r2); assumption.
Qed.

Lemma apply_instr'_bot :
  forall code,
  forall pc,
    RB.eq (apply_instr' code pc RB.bot) RB.bot.
Proof.
  reflexivity.
Qed.

Inductive match_frames: RTL.stackframe -> RTL.stackframe -> Prop :=
| match_frames_intro: forall res f sp pc rs,
    (forall m : mem,
     forall vres, (fmap_sem' sp m (forward_map f) pc rs # res <- vres)) ->
    match_frames (Stackframe res f sp pc rs)
                 (Stackframe res (transf_function f) sp pc rs).

Inductive match_states: RTL.state -> RTL.state -> Prop :=
  | match_regular_states: forall stk f sp pc rs m stk'
                                 (STACKS: list_forall2 match_frames stk stk'),
      (fmap_sem' sp m (forward_map f) pc rs) ->
      match_states (State stk f sp pc rs m)
                   (State stk' (transf_function f) sp pc rs m)
  | match_callstates: forall stk f args m stk'
        (STACKS: list_forall2 match_frames stk stk'),
      match_states (Callstate stk f args m)
                   (Callstate stk' (transf_fundef f) args m)
  | match_returnstates: forall stk v m stk'
        (STACKS: list_forall2 match_frames stk stk'),
      match_states (Returnstate stk v m)
                   (Returnstate stk' v m).
  
Ltac TR_AT :=
  match goal with
  | [ A: (fn_code _)!_ = Some _ |- _ ] =>
        generalize (transf_function_at _ _ _ A); intros
  end.

Lemma step_simulation:
  forall S1 t S2, RTL.step ge S1 t S2 ->
  forall S1', match_states S1 S1' ->
              exists S2', RTL.step tge S1' t S2' /\ match_states S2 S2'.
Proof.
  induction 1; intros S1' MS; inv MS; try TR_AT.
- (* nop *)
  econstructor; split. eapply exec_Inop; eauto.
  constructor; auto.
  
  simpl in *.
  unfold fmap_sem', fmap_sem in *.
  destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
  apply sem_rel_b_ge with (rb2 := map # pc); trivial.
  replace (map # pc) with (apply_instr' (fn_code f) pc (map # pc)).
  {
    eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
    2: apply apply_instr'_bot.
    simpl. tauto.
  }
  unfold apply_instr'.
  unfold sem_rel_b in *.
  destruct (map # pc) in *; try contradiction.
  rewrite H.
  reflexivity.
- (* op *)
  unfold transf_instr in *.
  destruct find_op_in_fmap eqn:FIND_OP.
  {
    unfold find_op_in_fmap, fmap_sem', fmap_sem in *.
    destruct (forward_map f) as [map |] eqn:MAP.
    2: discriminate.
    change (@PMap.get (option RELATION.t) pc map) with (map # pc) in *. 
    destruct (map # pc) as [mpc | ] eqn:MPC.
    2: discriminate.
    econstructor; split.
    {
      eapply exec_Iop with (v := v); eauto.
      simpl.
      rewrite find_op_sound with (rel := mpc) (src := r) in H0 by assumption.
      assumption.
    }
    constructor; eauto.
    unfold fmap_sem', fmap_sem in *.
    rewrite MAP.
    apply sem_rel_b_ge with (rb2 := Some (gen_oper op res args mpc)).
    {
      replace (Some (gen_oper op res args mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
      {
        eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
        2: apply apply_instr'_bot.
        simpl. tauto.
      }
      unfold apply_instr'.
      rewrite H.
      rewrite MPC.
      reflexivity.
    }
    unfold sem_rel_b', sem_rel_b.
    apply gen_oper_sound; auto.
  }
  {
    econstructor; split.
    {
      eapply exec_Iop with (v := v); eauto.
      rewrite (subst_args_ok' sp m) by assumption.
      rewrite <- H0.
      apply eval_operation_preserved. exact symbols_preserved.
    }
    constructor; eauto.
    unfold fmap_sem', fmap_sem in *.
    unfold find_op_in_fmap, fmap_sem', fmap_sem in *.
    destruct (forward_map f) as [map |] eqn:MAP.
    2: constructor.
    change (@PMap.get (option RELATION.t) pc map) with (map # pc) in *. 
    destruct (map # pc) as [mpc | ] eqn:MPC.
    2: contradiction.

    apply sem_rel_b_ge with (rb2 := Some (gen_oper op res args mpc)).
    {
      replace (Some (gen_oper op res args mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
      {
        eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
        2: apply apply_instr'_bot.
        simpl. tauto.
      }
      unfold apply_instr'.
      rewrite H.
      rewrite MPC.
      reflexivity.
    }
    unfold sem_rel_b', sem_rel_b.
    apply gen_oper_sound; auto.
  }
    
(* load *)
- econstructor; split.
  assert (eval_addressing tge sp addr rs ## args = Some a).
  rewrite <- H0.
  apply eval_addressing_preserved. exact symbols_preserved.
  eapply exec_Iload; eauto.
  rewrite (subst_args_ok' sp m); assumption.
  constructor; auto.

  simpl in *.
  unfold fmap_sem', fmap_sem in *.
  destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
  destruct (map # pc) as [mpc |] eqn:MPC in *; try contradiction.
  apply sem_rel_b_ge with (rb2 := Some (kill_reg dst mpc)).
  {
    replace (Some (kill_reg dst mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
    {
      eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
      2: apply apply_instr'_bot.
      simpl. tauto.
    }
    unfold apply_instr'.
    rewrite H.
    rewrite MPC.
    reflexivity.
  }
  apply kill_reg_sound.
  assumption.

  (* NOT IN THIS VERSION 
- (* load notrap1 *)
  econstructor; split.
  assert (eval_addressing tge sp addr rs ## args = None).
  rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
  eapply exec_Iload_notrap1; eauto.
  rewrite subst_args_ok; assumption.
  constructor; auto.

  simpl in *.
  unfold fmap_sem in *.
  destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
  destruct (map # pc) as [mpc |] eqn:MPC in *; try contradiction.
  apply sem_rel_b_ge with (rb2 := Some (kill dst mpc)).
  {
    replace (Some (kill dst mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
    {
      eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
      2: apply apply_instr'_bot.
      simpl. tauto.
    }
    unfold apply_instr'.
    rewrite H.
    rewrite MPC.
    reflexivity.
  }
  apply kill_ok.
  assumption.
  
- (* load notrap2 *)
  econstructor; split.
  assert (eval_addressing tge sp addr rs ## args = Some a).
  rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
  eapply exec_Iload_notrap2; eauto.
  rewrite subst_args_ok; assumption.
  constructor; auto.

  simpl in *.
  unfold fmap_sem in *.
  destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
  destruct (map # pc) as [mpc |] eqn:MPC in *; try contradiction.
  apply sem_rel_b_ge with (rb2 := Some (kill dst mpc)).
  {
    replace (Some (kill dst mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
    {
      eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
      2: apply apply_instr'_bot.
      simpl. tauto.
    }
    unfold apply_instr'.
    rewrite H.
    rewrite MPC.
    reflexivity.
  }
  apply kill_ok.
  assumption.
   *)
  
- (* store *)
  econstructor. split.
  {
    assert (eval_addressing tge sp addr rs ## args = Some a).
    rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
    eapply exec_Istore; eauto.
    rewrite (subst_args_ok' sp m); assumption.
  }
  
  constructor; auto.
  simpl in *.
  unfold fmap_sem', fmap_sem in *.
  destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
  destruct (map # pc) as [mpc |] eqn:MPC in *; try contradiction.
  apply sem_rel_b_ge with (rb2 := Some (kill_mem mpc)); trivial.
  {
  replace (Some (kill_mem mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
  {
    eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
    2: apply apply_instr'_bot.
    simpl. tauto.
  }
  unfold apply_instr'.
  unfold sem_rel_b in *.
  rewrite MPC.
  rewrite H.
  reflexivity.
  }
  apply (kill_mem_sound' sp m).
  assumption.
  
(* call *)
- econstructor; split.
  eapply exec_Icall with (fd := transf_fundef fd); eauto.
    eapply find_function_translated; eauto.
    apply sig_preserved.
  rewrite (subst_args_ok' sp m) by assumption.
  constructor. constructor; auto.

  constructor.
  {
    intros m' vres.
    unfold fmap_sem', fmap_sem in *.
    destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
    destruct (map # pc) as [mpc |] eqn:MPC in *; try contradiction.
    apply sem_rel_b_ge with (rb2 := Some (kill_reg res (kill_mem mpc))).
    {
      replace (Some (kill_reg res (kill_mem mpc))) with (apply_instr' (fn_code f) pc (map # pc)).
      {
        eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
        2: apply apply_instr'_bot.
        simpl. tauto.
      }
      unfold apply_instr'.
      rewrite H.
      rewrite MPC.
      reflexivity.
    }
    apply kill_reg_sound.
    apply (kill_mem_sound' sp m).
    assumption.
  }
  
(* tailcall *)
- econstructor; split.
  eapply exec_Itailcall with (fd := transf_fundef fd); eauto.
    eapply find_function_translated; eauto.
    apply sig_preserved.
  rewrite (subst_args_ok' (Vptr stk Ptrofs.zero) m) by assumption.
  constructor. auto.

(* builtin *)
- econstructor; split.
  eapply exec_Ibuiltin; eauto.
    eapply eval_builtin_args_preserved with (ge1 := ge); eauto. exact symbols_preserved.
    eapply external_call_symbols_preserved; eauto. apply senv_preserved.
  constructor; auto.

  simpl in *.
  unfold fmap_sem', fmap_sem in *.
  destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
  destruct (map # pc) as [mpc |] eqn:MPC in *; try contradiction.
  
  apply sem_rel_b_ge with (rb2 := Some RELATION.top).
  {
    replace (Some RELATION.top) with (apply_instr' (fn_code f) pc (map # pc)).
    {
      eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
      2: apply apply_instr'_bot.
      simpl. tauto.
    }
    unfold apply_instr'.
    rewrite H.
    rewrite MPC.
    reflexivity.
  }
  apply top_ok.
  

(* cond *)
- econstructor; split.
  eapply exec_Icond; eauto.
  rewrite (subst_args_ok' sp m); eassumption.
  constructor; auto.

  simpl in *.
  unfold fmap_sem', fmap_sem in *.
  destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
  apply sem_rel_b_ge with (rb2 := map # pc); trivial.
  replace (map # pc) with (apply_instr' (fn_code f) pc (map # pc)).
  {
    eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
    2: apply apply_instr'_bot.
    simpl.
    destruct b; tauto.
  }
  unfold apply_instr'.
  unfold sem_rel_b in *.
  destruct (map # pc) in *; try contradiction.
  rewrite H.
  reflexivity.

(* jumptbl *)
- econstructor; split.
  eapply exec_Ijumptable; eauto.
  rewrite (subst_arg_ok' sp m); eassumption.
  constructor; auto.

  simpl in *.
  unfold fmap_sem', fmap_sem in *.
  destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
  apply sem_rel_b_ge with (rb2 := map # pc); trivial.
  replace (map # pc) with (apply_instr' (fn_code f) pc (map # pc)).
  {
    eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
    2: apply apply_instr'_bot.
    simpl.
    apply list_nth_z_in with (n := Int.unsigned n).
    assumption.
  }
  unfold apply_instr'.
  unfold sem_rel_b in *.
  destruct (map # pc) in *; try contradiction.
  rewrite H.
  reflexivity.
  
(* return *)
- destruct or as [arg | ].
  {
    econstructor; split.
    eapply exec_Ireturn; eauto.
    unfold regmap_optget.
    rewrite (subst_arg_ok' (Vptr stk Ptrofs.zero) m) by eassumption.
    constructor; auto.
  }
    econstructor; split.
    eapply exec_Ireturn; eauto.
    constructor; auto.
  
  
(* internal function *)
-  simpl. econstructor; split.
  eapply exec_function_internal; eauto.
  constructor; auto.

  simpl in *.
  unfold fmap_sem', fmap_sem in *.
  destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
  apply sem_rel_b_ge with (rb2 := Some RELATION.top).
  {
    eapply DS.fixpoint_entry with (code := fn_code f) (successors := successors_instr); try eassumption.
  }
  apply top_ok.
  
(* external function *)
- econstructor; split.
  eapply exec_function_external; eauto.
    eapply external_call_symbols_preserved; eauto. apply senv_preserved.
    constructor; auto.

(* return *)
- inv STACKS. inv H1.
  econstructor; split.
  eapply exec_return; eauto.
  constructor; auto.
Admitted.


Lemma transf_initial_states:
  forall S1, RTL.initial_state prog S1 ->
  exists S2, RTL.initial_state tprog S2 /\ match_states S1 S2.
Proof.
  intros. inv H. econstructor; split.
  econstructor.
    eapply (Genv.init_mem_transf TRANSL); eauto.
    rewrite symbols_preserved. rewrite (match_program_main TRANSL). eauto.
    eapply function_ptr_translated; eauto.
    rewrite <- H3; apply sig_preserved.
  constructor. constructor.
Qed.

Lemma transf_final_states:
  forall S1 S2 r, match_states S1 S2 -> RTL.final_state S1 r -> RTL.final_state S2 r.
Proof.
  intros. inv H0. inv H. inv STACKS. constructor.
Qed.

Theorem transf_program_correct:
  forward_simulation (RTL.semantics prog) (RTL.semantics tprog).
Proof.
  eapply forward_simulation_step.
  apply senv_preserved.
  eexact transf_initial_states.
  eexact transf_final_states.
  exact step_simulation.
Qed.

End PRESERVATION.