aboutsummaryrefslogtreecommitdiffstats
path: root/backend/CSE3analysis.v
blob: 485b606774f259f8039f7d797b3eba15a385bcbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
Require Import Coqlib Maps Errors Integers Floats Lattice Kildall.
Require Import AST Linking.
Require Import Memory Registers Op RTL Maps CSE2deps.
Require Import HashedSet.

Module RELATION <: SEMILATTICE_WITHOUT_BOTTOM.
  Definition t := PSet.t.
  Definition eq (x : t) (y : t) := x = y.
  
  Lemma eq_refl: forall x, eq x x.
  Proof.
    unfold eq. trivial.
  Qed.

  Lemma eq_sym: forall x y, eq x y -> eq y x.
  Proof.
    unfold eq. congruence.
  Qed.

  Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
  Proof.
    unfold eq. congruence.
  Qed.
  
  Definition beq (x y : t) := if PSet.eq x y then true else false.
  
  Lemma beq_correct: forall x y, beq x y = true -> eq x y.
  Proof.
    unfold beq.
    intros.
    destruct PSet.eq; congruence.
  Qed.
  
  Definition ge (x y : t) := (PSet.is_subset x y) = true.

  Lemma ge_refl: forall x y, eq x y -> ge x y.
  Proof.
    unfold eq, ge.
    intros.
    subst y.
    apply PSet.is_subset_spec.
    trivial.
  Qed.
  
  Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
  Proof.
    unfold ge.
    intros.
    rewrite PSet.is_subset_spec in *.
    intuition.
  Qed.
  
  Definition lub := PSet.inter.
  
  Lemma ge_lub_left: forall x y, ge (lub x y) x.
  Proof.
    unfold ge, lub.
    intros.
    apply PSet.is_subset_spec.
    intro.
    rewrite PSet.ginter.
    rewrite andb_true_iff.
    intuition.
  Qed.
  
  Lemma ge_lub_right: forall x y, ge (lub x y) y.
  Proof.
    unfold ge, lub.
    intros.
    apply PSet.is_subset_spec.
    intro.
    rewrite PSet.ginter.
    rewrite andb_true_iff.
    intuition.
  Qed.
End RELATION.

Module RB := ADD_BOTTOM(RELATION).
Module DS := Dataflow_Solver(RB)(NodeSetForward).

Inductive sym_op : Type :=
| SOp : operation -> sym_op
| SLoad : memory_chunk -> addressing -> sym_op.

Record equation :=
  mkequation
    { eq_lhs : reg;
      eq_op : sym_op;
      eq_args : list reg }.

Definition eq_id := node.

Definition add_i_j (i : reg) (j : eq_id) (m : Regmap.t PSet.t) :=
  Regmap.set i (PSet.add j (Regmap.get i m)) m.

Definition add_ilist_j (ilist : list reg) (j : eq_id) (m : Regmap.t PSet.t) :=
  List.fold_left (fun already i => add_i_j i j already) ilist m.

Definition get_kills (eqs : PTree.t equation) :
  Regmap.t PSet.t :=
  PTree.fold (fun already (eqno : eq_id) (eq : equation) =>
                add_i_j (eq_lhs eq) eqno
                        (add_ilist_j (eq_args eq) eqno already)) eqs
  (PMap.init PSet.empty). 

Record eq_context := mkeqcontext
                       { eq_catalog : node -> option equation;
                         eq_kills : reg -> PSet.t }.

Section OPERATIONS.
  Context {ctx : eq_context}.
  
  Definition kill_reg (r : reg) (rel : RELATION.t) : RELATION.t :=
    PSet.subtract rel (eq_kills ctx r).
End OPERATIONS.

Definition totoro := RELATION.lub.