aboutsummaryrefslogtreecommitdiffstats
path: root/backend/CSE3analysisproof.v
blob: 523b52df72f2245391cdb81e2226c2cbcb26fc55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
(* *************************************************************)
(*                                                             *)
(*             The Compcert verified compiler                  *)
(*                                                             *)
(*           David Monniaux     CNRS, VERIMAG                  *)
(*                                                             *)
(*  Copyright VERIMAG. All rights reserved.                    *)
(*  This file is distributed under the terms of the INRIA      *)
(*  Non-Commercial License Agreement.                          *)
(*                                                             *)
(* *************************************************************)

Require Import Coqlib Maps Errors Integers Floats Lattice Kildall.
Require Import AST Linking.
Require Import Memory Registers Op RTL Maps.

Require Import Globalenvs Values.
Require Import Linking Values Memory Globalenvs Events Smallstep.
Require Import Registers Op RTL.
Require Import CSE3analysis CSE2deps CSE2depsproof HashedSet.
Require Import RTLtyping.
Require Import Lia.

Lemma rel_leb_correct:
  forall x x',
    rel_leb x x' = true <-> RELATION.ge x' x.
Proof.
  unfold rel_leb, RELATION.ge.
  split; auto.
Qed.

Hint Resolve rel_leb_correct : cse3.

Lemma relb_leb_correct:
  forall x x',
    relb_leb x x' = true <-> RB.ge x' x.
Proof.
  unfold relb_leb, RB.ge.
  destruct x; destruct x'; split; trivial; try contradiction; discriminate.
Qed.

Hint Resolve relb_leb_correct : cse3.

Theorem loadv_storev_really_same:
  forall chunk: memory_chunk,
  forall m1: mem,
  forall addr v: val,
  forall m2: mem,
  forall ty : typ,
  forall TYPE: Val.has_type v ty,
  forall STORE: Mem.storev chunk m1 addr v = Some m2,
  forall COMPATIBLE: loadv_storev_compatible_type chunk ty = true,
    Mem.loadv chunk m2 addr = Some v.
Proof.
  intros.
  rewrite Mem.loadv_storev_same with (m1:=m1) (v:=v) by assumption.
  f_equal.
  destruct chunk; destruct ty; try discriminate.
  all: destruct v; trivial; try contradiction.
  all: unfold Val.load_result, Val.has_type in *.
  all: destruct Archi.ptr64; trivial; discriminate.
Qed.

Lemma subst_args_notin :
  forall (rs : regset) dst v args,
    ~ In dst args ->
    (rs # dst <- v) ## args = rs ## args.
Proof.
  induction args; simpl; trivial.
  intro NOTIN.
  destruct (peq a dst).
  {
    subst a.
    intuition congruence.
  }
  rewrite Regmap.gso by congruence.
  f_equal.
  apply IHargs.
  intuition congruence.
Qed.

Lemma add_i_j_adds : forall i j m,
    PSet.contains (Regmap.get i (add_i_j i j m)) j = true.
Proof.
  intros.
  unfold add_i_j.
  rewrite Regmap.gss.
  auto with pset.
Qed.
Hint Resolve add_i_j_adds: cse3.

Lemma add_i_j_monotone : forall i j i' j' m,
    PSet.contains (Regmap.get i' m) j' = true ->
    PSet.contains (Regmap.get i' (add_i_j i j m)) j' = true.
Proof.
  intros.
  unfold add_i_j.
  destruct (peq i i').
  - subst i'.
    rewrite Regmap.gss.
    destruct (peq j j').
    + subst j'.
      apply PSet.gadds.
    + eauto with pset.
  - rewrite Regmap.gso.
    assumption.
    congruence.
Qed.

Hint Resolve add_i_j_monotone: cse3.

Lemma add_ilist_j_monotone : forall ilist j i' j' m,
    PSet.contains (Regmap.get i' m) j' = true ->
    PSet.contains (Regmap.get i' (add_ilist_j ilist j m)) j' = true.
Proof.
  induction ilist; simpl; intros until m; intro CONTAINS; auto with cse3.
Qed.
Hint Resolve add_ilist_j_monotone: cse3.

Lemma add_ilist_j_adds : forall ilist j m,
    forall i, In i ilist ->
              PSet.contains (Regmap.get i (add_ilist_j ilist j m)) j = true.
Proof.
  induction ilist; simpl; intros until i; intro IN.
  contradiction.
  destruct IN as [HEAD | TAIL]; subst; auto with cse3.
Qed.
Hint Resolve add_ilist_j_adds: cse3.

Definition xlget_kills (eqs : list (eq_id * equation_or_condition))
                       (m :  Regmap.t PSet.t) :
  Regmap.t PSet.t :=
  List.fold_left (fun already (item : eq_id * equation_or_condition) =>
    match snd item with
    | Equ lhs sop args =>
      add_i_j lhs (fst item)
              (add_ilist_j args (fst item) already)
    | Cond cond args => add_ilist_j args (fst item) already
    end) eqs m.

Definition xlget_mem_kills (eqs : list (positive * equation_or_condition))
           (m : PSet.t) : PSet.t :=
(fold_left
       (fun (a : PSet.t) (item : positive * equation_or_condition) =>
          if eq_cond_depends_on_mem (snd item)
          then PSet.add (fst item) a
          else a
       )
       eqs m).

Definition xlget_store_kills (eqs : list (positive * equation_or_condition))
           (m : PSet.t) : PSet.t :=
(fold_left
       (fun (a : PSet.t) (item : positive * equation_or_condition) =>
          if eq_cond_depends_on_store (snd item)
          then PSet.add (fst item) a
          else a
       )
       eqs m).

Lemma xlget_kills_monotone :
  forall eqs m i j,
    PSet.contains (Regmap.get i m) j = true ->
    PSet.contains (Regmap.get i (xlget_kills eqs m)) j = true.
Proof.
  induction eqs; simpl; trivial.
  intros.
  destruct a as [id eq_cond]; cbn.
  destruct eq_cond as [eq_lhs eq_sop eq_args | eq_cond eq_args]; auto with cse3.
Qed.

Hint Resolve xlget_kills_monotone : cse3.

Lemma xlget_mem_kills_monotone :
  forall eqs m j,
    PSet.contains m j = true ->
    PSet.contains (xlget_mem_kills eqs m) j = true.
Proof.
  induction eqs; simpl; trivial.
  intros.
  destruct a as [id eq_cond]; cbn.
  destruct eq_cond_depends_on_mem.
  - apply IHeqs.
    destruct (peq id j).
    + subst j. apply PSet.gadds.
    + rewrite PSet.gaddo by congruence.
      trivial.
  - auto.
Qed.

Hint Resolve xlget_mem_kills_monotone : cse3.

Lemma xlget_store_kills_monotone :
  forall eqs m j,
    PSet.contains m j = true ->
    PSet.contains (xlget_store_kills eqs m) j = true.
Proof.
  induction eqs; simpl; trivial.
  intros.
  destruct a as [id eq_cond]; cbn.
  destruct eq_cond_depends_on_store.
  - apply IHeqs.
    destruct (peq id j).
    + subst j. apply PSet.gadds.
    + rewrite PSet.gaddo by congruence.
      trivial.
  - auto.
Qed.

Hint Resolve xlget_store_kills_monotone : cse3.

Lemma xlget_kills_has_lhs :
  forall eqs m lhs sop args j,
    In (j, (Equ lhs sop args))  eqs ->
    PSet.contains (Regmap.get lhs (xlget_kills eqs m)) j = true.
Proof.
  induction eqs; simpl.
  contradiction.
  intros until j.
  intro HEAD_TAIL.
  destruct HEAD_TAIL as [HEAD | TAIL]; subst; simpl.
  - auto with cse3.
  - eapply IHeqs. eassumption.
Qed.
Hint Resolve xlget_kills_has_lhs : cse3.

Lemma xlget_kills_has_arg :
  forall eqs m lhs sop arg args j,
    In (j, (Equ lhs sop args)) eqs ->
    In arg args ->
    PSet.contains (Regmap.get arg (xlget_kills eqs m)) j = true.
Proof.
  induction eqs; simpl.
  contradiction.
  intros until j.
  intros HEAD_TAIL ARG.
  destruct HEAD_TAIL as [HEAD | TAIL]; subst; simpl.
  - auto with cse3.
  - eapply IHeqs; eassumption.
Qed.

Hint Resolve xlget_kills_has_arg : cse3.

Lemma xlget_cond_kills_has_arg :
  forall eqs m cond arg args j,
    In (j, (Cond cond args)) eqs ->
    In arg args ->
    PSet.contains (Regmap.get arg (xlget_kills eqs m)) j = true.
Proof.
  induction eqs; simpl.
  contradiction.
  intros until j.
  intros HEAD_TAIL ARG.
  destruct HEAD_TAIL as [HEAD | TAIL]; subst; simpl.
  - auto with cse3.
  - eapply IHeqs; eassumption.
Qed.

Hint Resolve xlget_cond_kills_has_arg : cse3.

Lemma get_kills_has_lhs :
  forall eqs lhs sop args j,
    PTree.get j eqs = Some (Equ lhs sop args) ->
    PSet.contains (Regmap.get lhs (get_reg_kills eqs)) j = true.
Proof.
  unfold get_reg_kills.
  intros.
  rewrite PTree.fold_spec.
  change (fold_left
       (fun (a : Regmap.t PSet.t) (p : positive * equation_or_condition) =>
        match snd p with
        | Equ lhs0 _ args0 =>
          add_i_j lhs0 (fst p) (add_ilist_j args0 (fst p) a)
        | Cond _ args0 => add_ilist_j args0 (fst p) a
        end))  with xlget_kills.
  eapply xlget_kills_has_lhs.
  apply PTree.elements_correct.
  eassumption.
Qed.

Hint Resolve get_kills_has_lhs : cse3.

Lemma context_from_hints_get_kills_has_lhs :
  forall hints lhs sop args j,
    PTree.get j (hint_eq_catalog hints) = Some (Equ lhs sop args) ->
    PSet.contains  (eq_kill_reg (context_from_hints hints) lhs) j = true.
Proof.
  intros; simpl.
  eapply get_kills_has_lhs.
  eassumption.
Qed.

Hint Resolve context_from_hints_get_kills_has_lhs : cse3.

Lemma get_kills_has_arg :
  forall eqs lhs sop arg args j,
    PTree.get j eqs = Some (Equ lhs sop args) ->
    In arg args ->
    PSet.contains (Regmap.get arg (get_reg_kills eqs)) j = true.
Proof.
  unfold get_reg_kills.
  intros.
  rewrite PTree.fold_spec.
  change (fold_left
       (fun (a : Regmap.t PSet.t) (p : positive * equation_or_condition) =>
        match snd p with
        | Equ lhs0 _ args0 =>
          add_i_j lhs0 (fst p) (add_ilist_j args0 (fst p) a)
        | Cond _ args0 => add_ilist_j args0 (fst p) a
        end)) with xlget_kills.
  eapply xlget_kills_has_arg.
  - apply PTree.elements_correct.
    eassumption.
  - assumption.
Qed.

Hint Resolve get_kills_has_arg : cse3.

Lemma context_from_hints_get_kills_has_arg :
  forall hints lhs sop arg args j,
    PTree.get j (hint_eq_catalog hints) = Some (Equ lhs sop args) ->
    In arg args ->
    PSet.contains (eq_kill_reg (context_from_hints hints) arg) j = true.
Proof.
  intros.
  simpl.
  eapply get_kills_has_arg; eassumption.
Qed.

Hint Resolve context_from_hints_get_kills_has_arg : cse3.

Lemma get_cond_kills_has_arg :
  forall eqs cond arg args j,
    PTree.get j eqs = Some (Cond cond args) ->
    In arg args ->
    PSet.contains (Regmap.get arg (get_reg_kills eqs)) j = true.
Proof.
  unfold get_reg_kills.
  intros.
  rewrite PTree.fold_spec.
  change (fold_left
       (fun (a : Regmap.t PSet.t) (p : positive * equation_or_condition) =>
        match snd p with
        | Equ lhs0 _ args0 =>
          add_i_j lhs0 (fst p) (add_ilist_j args0 (fst p) a)
        | Cond _ args0 => add_ilist_j args0 (fst p) a
        end)) with xlget_kills.
  eapply xlget_cond_kills_has_arg.
  - apply PTree.elements_correct.
    eassumption.
  - assumption.
Qed.

Hint Resolve get_cond_kills_has_arg : cse3.

Lemma context_from_hints_get_cond_kills_has_arg :
  forall hints cond arg args j,
    PTree.get j (hint_eq_catalog hints) = Some (Cond cond args) ->
    In arg args ->
    PSet.contains (eq_kill_reg (context_from_hints hints) arg) j = true.
Proof.
  intros.
  simpl.
  eapply get_cond_kills_has_arg; eassumption.
Qed.

Hint Resolve context_from_hints_get_cond_kills_has_arg : cse3.

Lemma xlget_kills_has_eq_depends_on_mem :
  forall eqs eq j m,
    In (j, eq) eqs ->
    eq_cond_depends_on_mem eq = true ->
    PSet.contains (xlget_mem_kills eqs m) j = true.
Proof.
  induction eqs; simpl.
  contradiction.
  intros.
  destruct H.
  { subst a.
    simpl.
    rewrite H0.
    apply xlget_mem_kills_monotone.
    apply PSet.gadds.
  }
  eauto.
Qed.

Hint Resolve xlget_kills_has_eq_depends_on_mem : cse3.

Lemma get_kills_has_eq_depends_on_mem :
  forall eqs eq j,
    PTree.get j eqs = Some eq ->
    eq_cond_depends_on_mem eq = true ->
    PSet.contains (get_mem_kills eqs) j = true.
Proof.
  intros.
  unfold get_mem_kills.
  rewrite PTree.fold_spec.
  change (fold_left
       (fun (a : PSet.t) (p : positive * equation_or_condition) =>
          if eq_cond_depends_on_mem (snd p) then PSet.add (fst p) a else a))
       with xlget_mem_kills.
  eapply xlget_kills_has_eq_depends_on_mem.
  apply PTree.elements_correct.
  eassumption.
  trivial.
Qed.
  
Lemma context_from_hints_get_kills_has_eq_depends_on_mem :
  forall hints eq j,
    PTree.get j (hint_eq_catalog hints) = Some eq ->
    eq_cond_depends_on_mem eq = true ->
    PSet.contains (eq_kill_mem (context_from_hints hints) tt) j = true.
Proof.
  intros.
  simpl.
  eapply get_kills_has_eq_depends_on_mem; eassumption.
Qed.

Hint Resolve context_from_hints_get_kills_has_eq_depends_on_mem : cse3.

Lemma xlget_kills_has_eq_depends_on_store :
  forall eqs eq j m,
    In (j, eq) eqs ->
    eq_cond_depends_on_store eq = true ->
    PSet.contains (xlget_store_kills eqs m) j = true.
Proof.
  induction eqs; simpl.
  contradiction.
  intros.
  destruct H.
  { subst a.
    simpl.
    rewrite H0.
    apply xlget_store_kills_monotone.
    apply PSet.gadds.
  }
  eauto.
Qed.

Hint Resolve xlget_kills_has_eq_depends_on_store : cse3.

Lemma get_kills_has_eq_depends_on_store :
  forall eqs eq j,
    PTree.get j eqs = Some eq ->
    eq_cond_depends_on_store eq = true ->
    PSet.contains (get_store_kills eqs) j = true.
Proof.
  intros.
  unfold get_store_kills.
  rewrite PTree.fold_spec.
  change (fold_left
       (fun (a : PSet.t) (p : positive * equation_or_condition) =>
          if eq_cond_depends_on_store (snd p) then PSet.add (fst p) a else a))
       with xlget_store_kills.
  eapply xlget_kills_has_eq_depends_on_store.
  apply PTree.elements_correct.
  eassumption.
  trivial.
Qed.
  
Lemma context_from_hints_get_kills_has_eq_depends_on_store :
  forall hints eq j,
    PTree.get j (hint_eq_catalog hints) = Some eq ->
    eq_cond_depends_on_store eq = true ->
    PSet.contains (eq_kill_store (context_from_hints hints) tt) j = true.
Proof.
  intros.
  simpl.
  eapply get_kills_has_eq_depends_on_store; eassumption.
Qed.

Hint Resolve context_from_hints_get_kills_has_eq_depends_on_store : cse3.

Definition eq_involves (eq : equation_or_condition) (i : reg) :=
  match eq with
  | Equ lhs sop args =>
    i = lhs \/ In i args
  | Cond cond args =>  In i args
  end.

Section SOUNDNESS.
  Context {F V : Type}.
  Context {genv: Genv.t F V}.
  Context {sp : val}.

  Context {ctx : eq_context}.

  Definition sem_rhs (sop : sym_op) (args : list reg)
             (rs : regset) (m : mem) (v' : val) :=
    match sop with
    | SOp op =>
      match eval_operation genv sp op (rs ## args) m with
      | Some v => v' = v
      | None => False
      end
    | SLoad chunk addr =>
      match
        match eval_addressing genv sp addr (rs ## args) with
        | Some a => Mem.loadv chunk m a
        | None => None
        end
      with
      | Some dat => v' = dat
      | None => v' = Vundef
      end
    end.
    
  Definition sem_eq (eq : equation_or_condition) (rs : regset) (m : mem) :=
    match eq with
    | Equ lhs sop args => sem_rhs sop args rs m (rs # lhs)
    | Cond cond args => eval_condition cond (rs ## args) m = Some true
    end.

  Definition sem_rel (rel : RELATION.t) (rs : regset) (m : mem) :=
    forall i eq,
      PSet.contains rel i = true ->
      eq_catalog ctx i = Some eq ->
      sem_eq eq rs m.

  Lemma sem_rel_glb:
    forall rel1 rel2 rs m,
      (sem_rel (RELATION.glb rel1 rel2) rs m) <->
      ((sem_rel rel1 rs m) /\
       (sem_rel rel2 rs m)).
  Proof.
    intros.
    unfold sem_rel, RELATION.glb.
    split.
    - intro IMPLIES.
      split;
        intros i eq CONTAINS;
        specialize IMPLIES with (i:=i) (eq0:=eq);
        rewrite PSet.gunion in IMPLIES;
        rewrite orb_true_iff in IMPLIES;
        intuition.
    - intros (IMPLIES1 & IMPLIES2) i eq.
      rewrite PSet.gunion.
      rewrite orb_true_iff.
      specialize IMPLIES1 with (i:=i) (eq0:=eq).
      specialize IMPLIES2 with (i:=i) (eq0:=eq).
      intuition.
  Qed.

  Hypothesis ctx_kill_reg_has_lhs :
    forall lhs sop args j,
      eq_catalog ctx j = Some (Equ lhs sop args) ->
      PSet.contains (eq_kill_reg ctx lhs) j = true.

  Hypothesis ctx_kill_reg_has_arg :
    forall lhs sop args j,
      eq_catalog ctx j = Some (Equ lhs sop args) ->
      forall arg,
      In arg args ->
      PSet.contains (eq_kill_reg ctx arg) j = true.

  Hypothesis ctx_cond_kill_reg_has_arg :
    forall cond args j,
      eq_catalog ctx j = Some (Cond cond args) ->
      forall arg,
      In arg args ->
      PSet.contains (eq_kill_reg ctx arg) j = true.

  Hypothesis ctx_kill_mem_has_depends_on_mem :
    forall eq j,
      eq_catalog ctx j = Some eq ->
      eq_cond_depends_on_mem eq = true ->
      PSet.contains (eq_kill_mem ctx tt) j = true.

  Hypothesis ctx_kill_store_has_depends_on_store :
    forall eq j,
      eq_catalog ctx j = Some eq ->
      eq_cond_depends_on_store eq = true ->
      PSet.contains (eq_kill_store ctx tt) j = true.

  Theorem kill_reg_sound :
    forall rel rs m dst v,
      (sem_rel rel rs m) ->
      (sem_rel (kill_reg (ctx:=ctx) dst rel) (rs#dst <- v) m).
  Proof.
    unfold sem_rel, sem_eq, sem_rhs, kill_reg.
    intros until v.
    intros REL i eq.
    specialize REL with (i := i) (eq0 := eq).
    destruct eq as [lhs sop args | cond args]; simpl.
  * specialize ctx_kill_reg_has_lhs with (lhs := lhs) (sop := sop) (args := args) (j := i).
    specialize ctx_kill_reg_has_arg with (lhs := lhs) (sop := sop) (args := args) (j := i) (arg := dst).
    intuition.
    rewrite PSet.gsubtract in H.
    rewrite andb_true_iff in H.
    rewrite negb_true_iff in H.
    intuition.
    simpl in *.
    assert ({In dst args} + {~In dst args}) as IN_ARGS.
    {
      apply List.in_dec.
      apply peq.
    }
    destruct IN_ARGS as [IN_ARGS | NOTIN_ARGS].
    { intuition.
      congruence.
    }
    destruct (peq dst lhs).
    {
      congruence.
    }
    rewrite subst_args_notin by assumption.
    destruct sop.
    - destruct (eval_operation genv sp o rs ## args m) as [ev | ]; trivial.
      rewrite Regmap.gso by congruence.
      assumption.
    - rewrite Regmap.gso by congruence.
      assumption.
  * specialize ctx_cond_kill_reg_has_arg with (cond := cond) (args := args) (j := i) (arg := dst).
    intuition.
    rewrite PSet.gsubtract in H.
    rewrite andb_true_iff in H.
    rewrite negb_true_iff in H.
    intuition.
    simpl in *.
    assert ({In dst args} + {~In dst args}) as IN_ARGS.
    {
      apply List.in_dec.
      apply peq.
    }
    destruct IN_ARGS as [IN_ARGS | NOTIN_ARGS].
    { intuition.
      congruence.
    }
    rewrite subst_args_notin by assumption.
    assumption.
  Qed.

  Hint Resolve kill_reg_sound : cse3.

  Theorem kill_reg_sound2 :
    forall rel rs m dst,
      (sem_rel rel rs m) ->
      (sem_rel (kill_reg (ctx:=ctx) dst rel) rs m).
  Proof.
    unfold sem_rel, sem_eq, sem_rhs, kill_reg.
    intros until dst.
    intros REL i eq.
    specialize REL with (i := i) (eq0 := eq).
    destruct eq as [lhs sop args | cond args]; simpl.
  * specialize ctx_kill_reg_has_lhs with (lhs := lhs) (sop := sop) (args := args) (j := i).
    specialize ctx_kill_reg_has_arg with (lhs := lhs) (sop := sop) (args := args) (j := i) (arg := dst).
    intuition.
    rewrite PSet.gsubtract in H.
    rewrite andb_true_iff in H.
    rewrite negb_true_iff in H.
    intuition.
  * specialize ctx_cond_kill_reg_has_arg with (cond := cond) (args := args) (j := i) (arg := dst).
    intuition.
    rewrite PSet.gsubtract in H.
    rewrite andb_true_iff in H.
    rewrite negb_true_iff in H.
    intuition.
  Qed.
    
  Lemma pick_source_sound :
    forall (l : list reg),
      match pick_source l with
      | Some x => In x l
      | None => True
      end.
  Proof.
    unfold pick_source.
    destruct l; simpl; trivial.
    left; trivial.
  Qed.
    
  Hint Resolve pick_source_sound : cse3.

  Theorem forward_move_sound :
    forall rel rs m x,
      (sem_rel rel rs m) ->
      rs # (forward_move (ctx := ctx) rel x) = rs # x.
  Proof.
    unfold sem_rel, forward_move.
    intros until x.
    intro REL.
    pose proof (pick_source_sound (PSet.elements (PSet.inter rel (eq_moves ctx x)))) as ELEMENT.
    destruct (pick_source (PSet.elements (PSet.inter rel (eq_moves ctx x)))).
    2: reflexivity.
    destruct (eq_catalog ctx r) as [eq | ] eqn:CATALOG.
    2: reflexivity.
    specialize REL with (i := r) (eq0 := eq).
    destruct eq as [lhs sop args | cond args]; cbn in *; trivial.
    destruct (is_smove sop) as [MOVE | ].
    2: reflexivity.
    rewrite MOVE in *; cbn in *.
    destruct (peq x lhs).
    2: reflexivity.
    simpl.
    subst x.
    rewrite PSet.elements_spec in ELEMENT.
    rewrite PSet.ginter in ELEMENT.
    rewrite andb_true_iff in ELEMENT.
    unfold sem_eq in REL.
    simpl in REL.
    destruct args as [ | h t].
    reflexivity.
    destruct t.
    2: reflexivity.
    simpl in REL.
    intuition congruence.
  Qed.

  Hint Resolve forward_move_sound : cse3.

  Theorem forward_move_l_sound :
    forall rel rs m l,
      (sem_rel rel rs m) ->
      rs ## (forward_move_l (ctx := ctx) rel l) = rs ## l.
  Proof.
    induction l; simpl; intros; trivial.
    erewrite forward_move_sound by eassumption.
    intuition congruence.
  Qed.
  
  Hint Resolve forward_move_l_sound : cse3.

  Theorem kill_mem_sound :
    forall rel rs m m',
      (sem_rel rel rs m) ->
      (sem_rel (kill_mem (ctx:=ctx) rel) rs m').
  Proof.
    unfold sem_rel, sem_eq, sem_rhs, kill_mem.
    intros until m'.
    intros REL i eq.
    specialize REL with (i := i) (eq0 := eq).
    intros SUBTRACT CATALOG.
    rewrite PSet.gsubtract in SUBTRACT.
    rewrite andb_true_iff in SUBTRACT.
    intuition.
    destruct eq as [lhs sop args | cond args] eqn:EQ.
  * destruct sop as [op | chunk addr] eqn:OP.
    - specialize ctx_kill_mem_has_depends_on_mem with (eq0 := eq) (j := i).
      rewrite EQ in ctx_kill_mem_has_depends_on_mem.
      unfold eq_cond_depends_on_mem in ctx_kill_mem_has_depends_on_mem.
      rewrite (op_depends_on_memory_correct genv sp op) with (m2 := m).
      assumption.
      destruct (op_depends_on_memory op) in *; trivial.
      rewrite ctx_kill_mem_has_depends_on_mem in H0; trivial.
      discriminate H0.
    - specialize ctx_kill_mem_has_depends_on_mem with (eq0 := eq) (j := i).
      rewrite EQ in ctx_kill_mem_has_depends_on_mem.
      rewrite negb_true_iff in H0.
      intuition.
      congruence.
  * specialize ctx_kill_mem_has_depends_on_mem with (eq0 := eq) (j := i).
    rewrite EQ in ctx_kill_mem_has_depends_on_mem.
    unfold eq_cond_depends_on_mem in ctx_kill_mem_has_depends_on_mem.
    rewrite (cond_depends_on_memory_correct cond) with (m2 := m).
    assumption.
    destruct (cond_depends_on_memory cond) in *; trivial.
    rewrite negb_true_iff in H0.
    intuition.
    congruence.
  Qed.

  Hint Resolve kill_mem_sound : cse3.

  (* TODO: shouldn't this already be proved somewhere else? *)
  Lemma store_preserves_validity:
    forall m m' wchunk a v
      (STORE : Mem.storev wchunk m a v = Some m')
      (b : block) (z : Z),
      Mem.valid_pointer m' b z = Mem.valid_pointer m b z.
  Proof.
    unfold Mem.storev.
    intros.
    destruct a; try discriminate.
    Local Transparent Mem.store.
    unfold Mem.store in STORE.
    destruct Mem.valid_access_dec in STORE.
    2: discriminate.
    inv STORE.
    reflexivity.
  Qed.

  Hint Resolve store_preserves_validity : cse3.
  
  Theorem kill_store_sound :
    forall rel rs m m' wchunk a v,
      (sem_rel rel rs m) ->
      (Mem.storev wchunk m a v = Some m') ->
      (sem_rel (kill_store (ctx:=ctx) rel) rs m').
  Proof.
    unfold sem_rel, sem_eq, sem_rhs, kill_store.
    intros until v.
    intros REL STORE i eq.
    specialize REL with (i := i) (eq0 := eq).
    intros SUBTRACT CATALOG.
    rewrite PSet.gsubtract in SUBTRACT.
    rewrite andb_true_iff in SUBTRACT.
    intuition.
    destruct eq as [lhs sop args | cond args] eqn:EQ.
  * destruct sop as [op | chunk addr] eqn:OP.
    - rewrite op_valid_pointer_eq with (m2 := m).
      assumption.
      eapply store_preserves_validity; eauto.
    - specialize ctx_kill_store_has_depends_on_store with (eq0 := eq) (j := i).
      rewrite EQ in ctx_kill_store_has_depends_on_store.
      rewrite negb_true_iff in H0.
      intuition.
      congruence.
  * rewrite cond_valid_pointer_eq with (m2 := m).
    assumption.
    eapply store_preserves_validity; eauto.
  Qed.
 
  Hint Resolve kill_store_sound : cse3.
 
  Theorem eq_find_sound:
    forall no eq id,
      eq_find (ctx := ctx) no eq = Some id ->
      eq_catalog ctx id = Some eq.
  Proof.
    unfold eq_find.
    intros.
    destruct (eq_find_oracle ctx no eq) as [ id' | ].
    2: discriminate.
    destruct (eq_catalog ctx id') as [eq' |] eqn:CATALOG.
    2: discriminate.
    destruct (eq_dec_equation eq eq').
    2: discriminate.
    congruence.
  Qed.

  Hint Resolve eq_find_sound : cse3.

  Theorem is_condition_present_sound :
    forall node rel cond args rs m
      (REL : sem_rel rel rs m)
      (COND : (is_condition_present (ctx := ctx) node rel cond args) = true),
      (eval_condition cond (rs ## args) m) = Some true.
  Proof.
    unfold sem_rel, is_condition_present.
    intros.
    destruct eq_find as [i |] eqn:FIND.
    2: discriminate.
    pose proof (eq_find_sound node (Cond cond args) i FIND) as CATALOG.
    exact (REL i (Cond cond args) COND CATALOG).
  Qed.

  Hint Resolve is_condition_present_sound : cse3.
  
  Theorem rhs_find_sound:
    forall no sop args rel src rs m,
      sem_rel rel rs m ->
      rhs_find (ctx := ctx) no sop args rel = Some src ->
      sem_rhs sop args rs m (rs # src).
  Proof.
    unfold rhs_find, sem_rel, sem_eq.
    intros until m.
    intros REL FIND.
    pose proof (pick_source_sound (PSet.elements (PSet.inter (eq_rhs_oracle ctx no sop args) rel))) as SOURCE.
    destruct (pick_source (PSet.elements (PSet.inter (eq_rhs_oracle ctx no sop args) rel))) as [ src' | ].
    2: discriminate.
    rewrite PSet.elements_spec in SOURCE.
    rewrite PSet.ginter in SOURCE.
    rewrite andb_true_iff in SOURCE.
    destruct (eq_catalog ctx src') as [eq | ] eqn:CATALOG.
    2: discriminate.
    specialize REL with (i := src') (eq0 := eq).
    destruct eq as [eq_lhs eq_sop eq_args | eq_cond eq_args] eqn:EQ.
    2: discriminate.
    destruct (eq_dec_sym_op sop eq_sop).
    2: discriminate.
    destruct (eq_dec_args args eq_args).
    2: discriminate.
    simpl in FIND.
    intuition congruence.
  Qed.

  Hint Resolve rhs_find_sound : cse3.
  
  Theorem forward_move_rhs_sound :
    forall sop args rel rs m v,
      (sem_rel rel rs m) ->
      (sem_rhs sop args rs m v) ->
      (sem_rhs sop (forward_move_l (ctx := ctx) rel args) rs m v).
  Proof.
    intros until v.
    intros REL RHS.
    destruct sop; simpl in *.
    all: erewrite forward_move_l_sound by eassumption; assumption.
  Qed.

  Hint Resolve forward_move_rhs_sound : cse3.

  Lemma arg_not_replaced:
    forall (rs : regset) dst v args,
      ~ In dst args ->
      (rs # dst <- v) ## args = rs ## args.
  Proof.
    induction args; simpl; trivial.
    intuition.
    f_equal; trivial.
    apply Regmap.gso; congruence.
  Qed.

  Lemma sem_rhs_depends_on_args_only:
    forall sop args rs dst m v,
      sem_rhs sop args rs m v ->
      ~ In dst args ->
      sem_rhs sop args (rs # dst <- v) m v.
  Proof.
    unfold sem_rhs.
    intros.
    rewrite arg_not_replaced by assumption.
    assumption.
  Qed.
  
  Lemma replace_sound:
    forall no eqno dst sop args rel rs m v,
    sem_rel rel rs m ->
    sem_rhs sop args rs m  v ->
    ~ In dst args ->
    eq_find (ctx := ctx) no (Equ dst sop args) = Some eqno ->
    sem_rel (PSet.add eqno (kill_reg (ctx := ctx) dst rel)) (rs # dst <- v) m.
  Proof.
    intros until v.
    intros REL RHS NOTIN FIND i eq CONTAINS CATALOG.
    destruct (peq i eqno).
    - subst i.
      rewrite eq_find_sound with (no := no) (eq0 := Equ dst sop args) in CATALOG by exact FIND.
      clear FIND.
      inv CATALOG.
      unfold sem_eq.
      simpl in *.
      rewrite Regmap.gss.
      apply sem_rhs_depends_on_args_only; auto.
    - rewrite PSet.gaddo in CONTAINS by congruence.
      eapply kill_reg_sound; eauto.
  Qed.

  Lemma sem_rhs_det:
    forall {sop} {args} {rs} {m} {v} {v'},
      sem_rhs sop args rs m v ->
      sem_rhs sop args rs m v' ->
      v = v'.
  Proof.
    intros until v'. intro SEMv.
    destruct sop; simpl in *.
    - destruct eval_operation.
      congruence.
      contradiction.
    - destruct eval_addressing.
      + destruct Mem.loadv; congruence.
      + congruence.
  Qed.

  Lemma arglist_idem_write:
    forall { A : Type} args (rs : Regmap.t A) dst,
      (rs # dst <- (rs # dst)) ## args = rs ## args.
  Proof.
    induction args; trivial.
    intros. cbn.
    f_equal; trivial.
    apply Regmap.gsident.
  Qed.
  
  Lemma sem_rhs_idem_write:
    forall sop args rs dst m v,
      sem_rhs sop args rs m v ->
      sem_rhs sop args (rs # dst <- (rs # dst)) m v.
  Proof.
    intros.
    unfold sem_rhs in *.
    rewrite arglist_idem_write.
    assumption.
  Qed.
  
  Theorem oper2_sound:
    forall no dst sop args rel rs m v,
      sem_rel rel rs m ->
      not (In dst args) ->
      sem_rhs sop args rs m v ->
      sem_rel (oper2 (ctx := ctx) no dst sop args rel) (rs # dst <- v) m.
  Proof.
    unfold oper2.
    intros until v.
    intros REL NOTIN RHS.    
    pose proof (eq_find_sound no (Equ dst sop args)) as EQ_FIND_SOUND.
    destruct eq_find.
    2: auto with cse3; fail.
    specialize EQ_FIND_SOUND with (id := e).
    intuition.
    intros i eq CONTAINS.
    destruct (peq i e).
    { subst i.
      rewrite H.
      clear H.
      intro Z.
      inv Z.
      unfold sem_eq.
      simpl.
      rewrite Regmap.gss.
      apply sem_rhs_depends_on_args_only; auto.
    }
    intros INi.
    destruct (PSet.contains rel e) eqn:CONTAINSe.
    { pose proof (REL e (Equ dst sop args) CONTAINSe H) as RELe.
      pose proof (REL i eq CONTAINS INi) as RELi.
      destruct eq as [eq_lhs eq_sop eq_args | eq_cond eq_args]; cbn in *.
      - replace v with (rs # dst) by (eapply sem_rhs_det; eassumption).
        rewrite Regmap.gsident.
        apply sem_rhs_idem_write.
        assumption.
      - replace v with (rs # dst) by (eapply sem_rhs_det; eassumption).
        rewrite arglist_idem_write.
        assumption.
    }
    rewrite PSet.gaddo in CONTAINS by congruence.
    apply (kill_reg_sound rel rs m dst v REL i eq); auto.
  Qed.

  Hint Resolve oper2_sound : cse3.
  
  Theorem oper1_sound:
    forall no dst sop args rel rs m v,
      sem_rel rel rs m ->
      sem_rhs sop args rs m v ->
      sem_rel (oper1 (ctx := ctx) no dst sop args rel) (rs # dst <- v) m.
  Proof.
    intros.
    unfold oper1.
    destruct in_dec; auto with cse3.
  Qed.

  Hint Resolve oper1_sound : cse3.

  Lemma rel_idem_replace:
    forall rel rs r m,
      sem_rel rel rs m ->
      sem_rel rel rs # r <- (rs # r) m.
  Proof.
    intros until m.
    intro REL.
    unfold sem_rel, sem_eq, sem_rhs in *.
    intros.
    specialize REL with (i:=i) (eq0:=eq).
    destruct eq as [lhs sop args | cond args] eqn:EQ.
  * rewrite Regmap.gsident.
    replace ((rs # r <- (rs # r)) ## args) with
        (rs ## args).
    { apply REL; auto. }
    apply list_map_exten.
    intros.
    apply Regmap.gsident.
    (* TODO simplify? *)
  * rewrite arglist_idem_write.
    auto.
  Qed.
      
  Lemma move_sound :
    forall no : node,
    forall rel : RELATION.t,
    forall src dst : reg,
    forall rs m,
      sem_rel rel rs m ->
      sem_rel (move (ctx:=ctx) no src dst rel) (rs # dst <- (rs # src)) m.
  Proof.
    unfold move.
    intros until m.
    intro REL.
    destruct (peq src dst).
    { subst dst.
      apply rel_idem_replace; auto.
    }
    pose proof (eq_find_sound no (Equ dst (SOp Omove) (src::nil))) as EQ_FIND_SOUND.
    destruct eq_find.
    - intros i eq CONTAINS.
      destruct (peq i e).
      + subst i.
        rewrite (EQ_FIND_SOUND e) by trivial.
        intro Z.
        inv Z.
        unfold sem_eq.
        simpl.
        destruct (peq src dst).
        * subst dst.
          reflexivity.
        * rewrite Regmap.gss.
          rewrite Regmap.gso by congruence.
          reflexivity.
      + intros.
        rewrite PSet.gaddo in CONTAINS by congruence.
        apply (kill_reg_sound rel rs m dst (rs # src) REL i); auto.
    - apply kill_reg_sound; auto.
  Qed.

  Hint Resolve move_sound : cse3.
  
  Theorem oper_sound:
    forall no dst sop args rel rs m v,
      sem_rel rel rs m ->
      sem_rhs sop args rs m v ->
      sem_rel (oper (ctx := ctx) no dst sop args rel) (rs # dst <- v) m.
  Proof.
    intros until v.
    intros REL RHS.
    unfold oper.
    destruct (is_smove sop).
    - subst.
      simpl in RHS.
      destruct args. contradiction.
      destruct args. 2: contradiction.
      cbn in *.
      subst.
      rewrite <- (forward_move_sound rel rs m r) by auto.
      apply move_sound; auto.
    - destruct rhs_find as [src |] eqn:RHS_FIND.
      + destruct (Compopts.optim_CSE3_glb tt).
        * apply sem_rel_glb; split.
          ** pose proof (rhs_find_sound no sop args rel src rs m REL RHS_FIND) as SOUND.                                                                    
             rewrite <- (sem_rhs_det SOUND RHS).
             apply move_sound; auto.
          ** apply sem_rel_glb; split.
             *** apply oper1_sound; auto.
             *** apply oper1_sound; auto.
                 apply forward_move_rhs_sound; auto.
        * apply sem_rel_glb; split.
          ** apply oper1_sound; auto.
          ** apply oper1_sound; auto.
             apply forward_move_rhs_sound; auto.
      + apply sem_rel_glb; split.
        * apply oper1_sound; auto.
        * apply oper1_sound; auto.
          apply forward_move_rhs_sound; auto.
  Qed.

  Hint Resolve oper_sound : cse3.


  Theorem clever_kill_store_sound:
    forall chunk addr args a src rel rs m m',
      sem_rel rel rs m ->
      eval_addressing genv sp addr (rs ## args) = Some a ->
      Mem.storev chunk m a (rs # src) = Some m' ->
      sem_rel (clever_kill_store (ctx:=ctx) chunk addr args src rel) rs m'.
  Proof.
    unfold clever_kill_store.
    intros until m'. intros REL ADDR STORE i eq CONTAINS CATALOG.
    autorewrite with pset in CONTAINS.
    destruct (PSet.contains rel i) eqn:RELi; simpl in CONTAINS.
    2: discriminate.
    rewrite CATALOG in CONTAINS.
    unfold sem_rel in REL.
    specialize REL with (i := i) (eq0 := eq).
    destruct eq as [eq_lhs eq_sop eq_args | eq_cond eq_args]; simpl in *.
  * unfold sem_eq in *.
    simpl in *.
    destruct eq_sop as [op' | chunk' addr']; simpl.
    - rewrite op_valid_pointer_eq with (m2 := m).
      + cbn in *.
        apply REL; auto.
      + eapply store_preserves_validity; eauto.
    - simpl in REL.
      erewrite ctx_kill_store_has_depends_on_store in CONTAINS by eauto.
      simpl in CONTAINS.
      rewrite negb_true_iff in CONTAINS.
      destruct (eval_addressing genv sp addr' rs ## eq_args) as [a'|] eqn:ADDR'.
      + erewrite may_overlap_sound with (chunk:=chunk) (addr:=addr) (args:=args) (chunk':=chunk') (addr':=addr') (args':=eq_args); try eassumption.
        apply REL; auto.
      + apply REL; auto.
  * rewrite cond_valid_pointer_eq with (m2 := m).
    auto.
    eapply store_preserves_validity; eauto.
  Qed.

  Hint Resolve clever_kill_store_sound : cse3.

  Theorem store2_sound:
    forall chunk addr args a src rel rs m m',
      sem_rel rel rs m ->
      eval_addressing genv sp addr (rs ## args) = Some a ->
      Mem.storev chunk m a (rs # src) = Some m' ->
      sem_rel (store2 (ctx:=ctx) chunk addr args src rel) rs m'.
  Proof.
    unfold store2.
    intros.
    destruct (Compopts.optim_CSE3_alias_analysis tt); eauto with cse3.
  Qed.
  
  Hint Resolve store2_sound : cse3.

  Theorem store1_sound:
    forall no chunk addr args a src rel tenv rs m m',
      sem_rel rel rs m ->
      wt_regset tenv rs ->
      eval_addressing genv sp addr (rs ## args) = Some a ->
      Mem.storev chunk m a (rs#src) = Some m' ->
      sem_rel (store1 (ctx:=ctx) no chunk addr args src (tenv src) rel) rs m'.
  Proof.
    unfold store1.
    intros until m'.
    intros REL WT ADDR STORE.
    assert (sem_rel (store2 (ctx:=ctx) chunk addr args src rel) rs m') as REL' by eauto with cse3.
    destruct loadv_storev_compatible_type eqn:COMPATIBLE.
    2: auto; fail.
    destruct eq_find as [eq_id | ] eqn:FIND.
    2: auto; fail.
    intros i eq CONTAINS CATALOG.
    destruct (peq i eq_id).
    { subst i.
      rewrite eq_find_sound with (no:=no) (eq0:=Equ src (SLoad chunk addr) args) in CATALOG; trivial.
      inv CATALOG.
      unfold sem_eq.
      simpl.
      rewrite ADDR.
      rewrite loadv_storev_really_same with (m1:=m) (v:=rs#src) (ty:=(tenv src)); trivial.
    }
    unfold sem_rel in REL'.
    rewrite PSet.gaddo in CONTAINS by congruence.
    eauto.
  Qed.
  
  Hint Resolve store1_sound : cse3.
    
    
  Theorem store_sound:
    forall no chunk addr args a src rel tenv rs m m',
      sem_rel rel rs m ->
      wt_regset tenv rs ->
      eval_addressing genv sp addr (rs ## args) = Some a ->
      Mem.storev chunk m a (rs#src) = Some m' ->
      sem_rel (store (ctx:=ctx) no tenv chunk addr args src rel) rs m'.
  Proof.
    unfold store.
    intros until m'.
    intros REL WT ADDR STORE.
    apply sem_rel_glb; split.
    - apply sem_rel_glb; split.
      * apply store1_sound with (a := a) (m := m); trivial.
      * rewrite <- forward_move_l_sound with (rel:=rel) (m:=m) in ADDR by trivial.
        apply store1_sound with (a := a) (m := m); trivial.
    - rewrite <- forward_move_sound with (rel:=rel) (m:=m) in STORE by trivial.
      apply sem_rel_glb; split.
      * apply store1_sound with (a := a) (m := m); trivial.
      * rewrite <- forward_move_l_sound with (rel:=rel) (m:=m) in ADDR by trivial.
        apply store1_sound with (a := a) (m := m); trivial.
  Qed.

  Hint Resolve store_sound : cse3.

  Lemma kill_builtin_res_sound:
    forall res (m : mem) (rs : regset) vres (rel : RELATION.t)
           (REL : sem_rel rel rs m),
      (sem_rel (kill_builtin_res (ctx:=ctx) res rel)
               (regmap_setres res vres rs) m).
  Proof.
    destruct res; simpl; intros; trivial.
    apply kill_reg_sound; trivial.
  Qed.

  Hint Resolve kill_builtin_res_sound : cse3.

  Lemma top_sound:
    forall rs m, (sem_rel RELATION.top rs m).
  Proof.
    unfold RELATION.top, sem_rel.
    intros.
    rewrite PSet.gempty in H.
    discriminate.
  Qed.

  Hint Resolve top_sound : cse3.

  Lemma external_call_sound:
    forall ge ef (rel : RELATION.t) (m m' : mem) (rs : regset) vargs t vres
           (REL : sem_rel rel rs m)
           (CALL : external_call ef ge vargs m t vres m'),
      sem_rel (apply_external_call (ctx:=ctx) ef rel) rs m'.
  Proof.
    destruct ef; intros; simpl in *.
    all: eauto using kill_mem_sound.
    all: unfold builtin_or_external_sem in *.
    1, 2, 3, 5, 6: destruct (Compopts.optim_CSE3_across_calls tt).
    all: eauto using kill_mem_sound, top_sound.
    1, 2, 3: destruct (Builtins.lookup_builtin_function name sg).
    all: eauto using kill_mem_sound, top_sound.
    all: inv CALL; eauto using kill_mem_sound.
  Qed.

  Hint Resolve external_call_sound : cse3.


  Definition sem_rel_b (rel : RB.t) (rs : regset) (m : mem) :=
    match rel with
    | None => False
    | Some rel => sem_rel rel rs m
    end.
  
  Lemma apply_cond1_sound :
    forall pc cond args rel rs m
      (COND : (eval_condition cond (rs ## args) m) = Some true)
      (REL : (sem_rel rel rs m)),
      (sem_rel_b (apply_cond1 (ctx:=ctx) pc cond args rel) rs m).
  Proof.
    intros.
    unfold apply_cond1.
    destruct eq_find as [eq_id | ] eqn:FIND; cbn.
    2: assumption.
    destruct PSet.contains eqn:CONTAINS.
    {
      pose proof (eq_find_sound pc (Cond (negate_condition cond) args) eq_id FIND) as FIND_SOUND.
      unfold sem_rel in REL.
      pose proof (REL eq_id (Cond (negate_condition cond) args) CONTAINS FIND_SOUND) as REL_id.
      cbn in REL_id.
      rewrite eval_negate_condition in REL_id.
      rewrite COND in REL_id.
      discriminate.
    }
    exact REL.
  Qed.
  
  Lemma apply_cond0_sound :
    forall pc cond args rel rs m
      (COND : (eval_condition cond (rs ## args) m) = Some true)
      (REL : (sem_rel rel rs m)),
      (sem_rel (apply_cond0 (ctx:=ctx) pc cond args rel) rs m).
  Proof.
    intros.
    unfold apply_cond0.
    destruct eq_find as [eq_id | ] eqn:FIND; cbn.
    2: assumption.
    pose proof (eq_find_sound pc (Cond cond args) eq_id FIND) as FIND_SOUND.
    intros eq_id' eq' CONTAINS CATALOG.
    destruct (peq eq_id eq_id').
    { subst eq_id'.
      unfold sem_eq.
      rewrite FIND_SOUND in CATALOG.
      inv CATALOG.
      assumption.
    }
    rewrite PSet.gaddo in CONTAINS by assumption.
    unfold sem_rel in REL.
    eapply REL; eassumption.
  Qed.

  Lemma apply_cond_sound :
    forall pc cond args rel rs m
      (COND : (eval_condition cond (rs ## args) m) = Some true)
      (REL : (sem_rel rel rs m)),
      (sem_rel_b (apply_cond (ctx:=ctx) pc cond args rel) rs m).
  Proof.
    unfold apply_cond.
    intros.
    pose proof (apply_cond1_sound pc cond args rel rs m COND REL) as SOUND1.
    destruct apply_cond1 eqn:COND1.
    { apply apply_cond0_sound; auto. }
    exact SOUND1.
  Qed.
  
  (*
  Section INDUCTIVENESS.
    Variable fn : RTL.function.
    Variable tenv : typing_env.
    Variable inv: invariants.
    
    Definition is_inductive_step (pc pc' : node) :=
      forall instr,
        PTree.get pc (fn_code fn) = Some instr ->
        In pc' (successors_instr instr) ->
        RB.ge (PMap.get pc' inv)
              (match apply_instr' (ctx:=ctx) tenv (fn_code fn) pc
                                  (PMap.get pc inv) with
               | Abst_same rel' => rel'
              end).

    Definition is_inductive_allstep :=
      forall pc pc', is_inductive_step pc pc'.

    Lemma checked_is_inductive_allstep:
      (check_inductiveness (ctx:=ctx) fn tenv inv) = true ->
      is_inductive_allstep.
    Proof.
      unfold check_inductiveness, is_inductive_allstep, is_inductive_step.
      rewrite andb_true_iff.
      rewrite PTree_Properties.for_all_correct.
      intros (ENTRYPOINT & ALL).
      intros until instr.
      intros INSTR IN_SUCC.
      specialize ALL with (x := pc) (a := instr).
      pose proof (ALL INSTR) as AT_PC.
      destruct (inv # pc).
      2: apply RB.ge_bot.
      unfold apply_instr'.
      rewrite INSTR.
      destruct apply_instr.
      { (* same *)
        rewrite List.forallb_forall in AT_PC.
        apply relb_leb_correct.
        auto.
      }
    Qed.
    
    Lemma checked_is_inductive_entry:
      (check_inductiveness (ctx:=ctx) fn tenv inv) = true ->
      inv # (fn_entrypoint fn) = Some RELATION.top.
    Proof.
      unfold check_inductiveness, is_inductive_allstep, is_inductive_step.
      rewrite andb_true_iff.
      intros (ENTRYPOINT & ALL).
      apply RB.beq_correct in ENTRYPOINT.
      unfold RB.eq, RELATION.eq in ENTRYPOINT.
      destruct (inv # (fn_entrypoint fn)) as [rel | ].
      2: contradiction.
      f_equal.
      symmetry.
      assumption.
    Qed.
  End INDUCTIVENESS.

  Hint Resolve checked_is_inductive_allstep checked_is_inductive_entry : cse3.
  *)
End SOUNDNESS.