aboutsummaryrefslogtreecommitdiffstats
path: root/backend/Duplicateaux.ml
blob: 22bee0677c43117c12411e3263e3cb6f41743b5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
(* *************************************************************)
(*                                                             *)
(*             The Compcert verified compiler                  *)
(*                                                             *)
(*           Sylvain Boulmé     Grenoble-INP, VERIMAG          *)
(*           David Monniaux     CNRS, VERIMAG                  *)
(*           Cyril Six          Kalray                         *)
(*                                                             *)
(*  Copyright Kalray. Copyright VERIMAG. All rights reserved.  *)
(*  This file is distributed under the terms of the INRIA      *)
(*  Non-Commercial License Agreement.                          *)
(*                                                             *)
(* *************************************************************)

(* Oracle for Duplicate pass.
 * - Add static prediction information to Icond nodes
 * - Performs tail duplication on interesting traces to form superblocks
 * - Unrolls a single iteration of innermost loops
 * - (TODO: perform partial loop unrolling inside innermost loops)
 *)

open RTL
open Maps
open Camlcoq
open DebugPrint
open RTLcommonaux

let stats_oc = ref None

let set_stats_oc () =
  try
    let name = Sys.getenv "COMPCERT_PREDICT_STATS" in
    let oc = open_out_gen [Open_append; Open_creat; Open_text] 0o666 name in
    stats_oc := Some oc
  with Not_found -> ()

(* number of total CBs *)
let stats_nb_total = ref 0
(* we predicted the same thing as the profiling *)
let stats_nb_correct_predicts = ref 0
(* we predicted something (say Some true), but the profiling predicted the opposite (say Some false) *)
let stats_nb_mispredicts = ref 0
(* we did not predict anything (None) even though the profiling did predict something *)
let stats_nb_missed_opportunities = ref 0
(* we predicted something (say Some true) but the profiling preferred not to predict anything (None) *)
let stats_nb_overpredict = ref 0

(* heuristic specific counters *)
let wrong_opcode = ref 0
let wrong_return = ref 0
let wrong_loop2 = ref 0
let wrong_call = ref 0

let right_opcode = ref 0
let right_return = ref 0
let right_loop2 = ref 0
let right_call = ref 0

let reset_stats () = begin
  stats_nb_total := 0;
  stats_nb_correct_predicts := 0;
  stats_nb_mispredicts := 0;
  stats_nb_missed_opportunities := 0;
  stats_nb_overpredict := 0;
  wrong_opcode := 0;
  wrong_return := 0;
  wrong_loop2 := 0;
  wrong_call := 0;
  right_opcode := 0;
  right_return := 0;
  right_loop2 := 0;
  right_call := 0;
end

let incr theref = theref := !theref + 1

let has_some o = match o with Some _ -> true | None -> false

let stats_oc_recording () = has_some !stats_oc

let write_stats_oc () =
  match !stats_oc with
  | None -> ()
  | Some oc -> begin
      Printf.fprintf oc "%d %d %d %d %d %d %d %d %d %d %d %d %d\n" !stats_nb_total
        !stats_nb_correct_predicts !stats_nb_mispredicts !stats_nb_missed_opportunities
        !stats_nb_overpredict
        !wrong_opcode !wrong_return !wrong_loop2 !wrong_call
        !right_opcode !right_return !right_loop2 !right_call
        ;
      close_out oc
    end

let get_loop_headers = LICMaux.get_loop_headers
let rtl_successors = LICMaux.rtl_successors

(* Get list of nodes following a BFS of the code *)
(* Stops when predicate is reached
 * Excludes any node given in excluded function *)
let bfs_until code entrypoint (predicate: node->bool) (excluded: node->bool) = begin
  debug "bfs\n";
  let visited = ref (PTree.map (fun n i -> false) code)
  and bfs_list = ref []
  and to_visit = Queue.create ()
  and node = ref entrypoint
  in begin
    Queue.add entrypoint to_visit;
    while not (Queue.is_empty to_visit) do
      node := Queue.pop to_visit;
      if (not (get_some @@ PTree.get !node !visited)) then begin
        visited := PTree.set !node true !visited;
        if not (excluded !node) then begin
          match PTree.get !node code with
          | None -> failwith "No such node"
          | Some i ->
              bfs_list := !node :: !bfs_list;
              if not (predicate !node) then
                let succ = rtl_successors i in List.iter (fun n -> Queue.add n to_visit) succ
        end
      end
    done;
    List.rev !bfs_list
  end
end

let bfs code entrypoint = bfs_until code entrypoint (fun _ -> false) (fun _ -> false)

let optbool o = match o with Some _ -> true | None -> false

let ptree_get_some n ptree = get_some @@ PTree.get n ptree

(* Returns a PTree: node -> list of the predecessors of that node *)
let get_predecessors_rtl code = begin
  debug "get_predecessors_rtl\n";
  let preds = ref (PTree.map (fun n i -> []) code) in
  let process_inst (node, i) =
    let succ = rtl_successors i
    in List.iter (fun s ->
      let previous_preds = ptree_get_some s !preds in
      if optbool @@ List.find_opt (fun e -> e == node) previous_preds then ()
      else preds := PTree.set s (node::previous_preds) !preds) succ
  in begin
    List.iter process_inst (PTree.elements code);
    !preds
  end
end

module PInt = struct
  type t = P.t
  let compare x y = compare (P.to_int x) (P.to_int y)
end

module PSet = Set.Make(PInt)

let print_intset s =
  let seq = PSet.to_seq s
  in begin
    if !debug_flag then begin
      Printf.printf "{";
      Seq.iter (fun n ->
        Printf.printf "%d " (P.to_int n)
      ) seq;
      Printf.printf "}"
    end
  end

(* Looks ahead (until a branch) to see if a node further down verifies
 * the given predicate *)
let rec look_ahead_gen (successors: RTL.instruction -> P.t list) code node is_loop_header predicate =
  if (predicate node) then true
  else match (successors @@ get_some @@ PTree.get node code) with
    | [n] -> if (predicate n) then true
        else (
          if (get_some @@ PTree.get n is_loop_header) then false
          else look_ahead_gen successors code n is_loop_header predicate
        )
    | _ -> false

let look_ahead = look_ahead_gen rtl_successors

(** 
 * Heuristics mostly based on the paper Branch Prediction for Free 
 *)

let do_call_heuristic code cond ifso ifnot is_loop_header =
  begin
    debug "\tCall heuristic..\n";
    let predicate n = (function
    | Icall _ -> true
    | _ -> false) @@ get_some @@ PTree.get n code
    in let ifso_call = look_ahead code ifso is_loop_header predicate
    in let ifnot_call = look_ahead code ifnot is_loop_header predicate
    in if ifso_call && ifnot_call then None
    else if ifso_call then Some false
    else if ifnot_call then Some true
    else None
  end

let do_opcode_heuristic code cond ifso ifnot is_loop_header =
  begin
    debug "\tOpcode heuristic..\n";
    DuplicateOpcodeHeuristic.opcode_heuristic code cond ifso ifnot is_loop_header
  end

let do_return_heuristic code cond ifso ifnot is_loop_header =
  begin
    debug "\tReturn heuristic..\n";
    let predicate n = (function
    | Ireturn _ -> true
    | _ -> false) @@ get_some @@ PTree.get n code
    in let ifso_return = look_ahead code ifso is_loop_header predicate
    in let ifnot_return = look_ahead code ifnot is_loop_header predicate
    in if ifso_return && ifnot_return then None
    else if ifso_return then Some false
    else if ifnot_return then Some true
    else None
  end

let do_store_heuristic code cond ifso ifnot is_loop_header =
  begin
    debug "\tStore heuristic..\n";
    let predicate n = (function
    | Istore _ -> true
    | _ -> false) @@ get_some @@ PTree.get n code
    in let ifso_store = look_ahead code ifso is_loop_header predicate
    in let ifnot_store = look_ahead code ifnot is_loop_header predicate
    in if ifso_store && ifnot_store then None
    else if ifso_store then Some false
    else if ifnot_store then Some true
    else None
  end

let do_loop_heuristic code cond ifso ifnot is_loop_header =
  begin
    debug "\tLoop heuristic..\n";
    let predicate n = get_some @@ PTree.get n is_loop_header in
    let ifso_loop = look_ahead code ifso is_loop_header predicate in
    let ifnot_loop = look_ahead code ifnot is_loop_header predicate in
    if ifso_loop && ifnot_loop then (debug "\t\tLOOP but can't choose which\n"; None) (* TODO - take the innermost loop ? *)
    else if ifso_loop then Some true
    else if ifnot_loop then Some false
    else None
  end

let do_loop2_heuristic loop_info n code cond ifso ifnot is_loop_header =
  begin
    debug "\tLoop2 heuristic..\n";
    match get_some @@ PTree.get n loop_info with
    | None -> None
    | Some b -> Some b
  end

(** Innermost loop detection *)

type innerLoop = {
  preds: P.t list;
  body: P.t list;
  head: P.t; (* head of the loop *)
  finals: P.t list; (* the final instructions, which loops back to the head *)
  (* There may be more than one ; for instance if there is an if inside the loop with both
   * branches leading to a goto backedge
   * Such cases usually happen after a tail-duplication *)
  sb_final: P.t option; (* if the innerloop wraps a superblock, this is its final instruction *)
    (* may be None if we predict that we do not loop *)
}

let print_pset = LICMaux.pp_pset

let rtl_successors_pref = function
| Itailcall _ | Ireturn _ -> []
| Icall(_,_,_,_,n) | Ibuiltin(_,_,_,n) | Inop n | Iop (_,_,_,n)
| Iload (_,_,_,_,_,n) | Istore (_,_,_,_,n) -> [n]
| Icond (_,_,n1,n2,p) -> (match p with
  | Some true -> [n1]
  | Some false -> [n2]
  | None -> [n1; n2])
| Ijumptable (_,ln) -> ln

(* Find the last node of a trace (starting at "node"), until a loop is encountered.
 * If a non-predicted branch is encountered, returns None *)
let rec find_last_node_before_loop code node trace is_loop_header =
  let rtl_succ = rtl_successors @@ get_some @@ PTree.get node code in
  let headers = List.filter (fun n -> 
    get_some @@ PTree.get n is_loop_header && HashedSet.PSet.contains trace n) rtl_succ in 
  match headers with
  | [] -> (
      let next_nodes = rtl_successors_pref @@ get_some @@ PTree.get node code in
      match next_nodes with
      | [n] -> (
          (* To prevent getting out of the superblock and loop infinitely when the prediction is false *)
          if HashedSet.PSet.contains trace n then
            find_last_node_before_loop code n trace is_loop_header
          else None
        )
      | _ -> None (* May happen when we predict that a loop is not taken *)
    )
  | [h] -> Some node
  | _ -> failwith "Multiple branches leading to a loop"

(* The computation of sb_final requires to already have branch prediction *)
let get_inner_loops f code is_loop_header =
  let fake_f = { fn_sig = f.fn_sig; fn_params = f.fn_params; 
    fn_stacksize = f.fn_stacksize; fn_code = code; fn_entrypoint = f.fn_entrypoint } in
  let (_, predmap, loopmap) = LICMaux.inner_loops fake_f in
  begin
    debug "PREDMAP: "; print_ptree print_intlist predmap;
    debug "LOOPMAP: "; print_ptree print_pset loopmap;
    List.map (fun (n, body) ->
      let preds = List.filter (fun p -> not @@ HashedSet.PSet.contains body p) 
        @@ get_some @@ PTree.get n predmap in
      let head = (* the instruction from body which is a loop header *)
        let heads = HashedSet.PSet.elements @@ HashedSet.PSet.filter 
          (fun n -> ptree_get_some n is_loop_header) body in
        begin
          assert (List.length heads == 1);
          List.hd heads
        end in
      let finals = (* the predecessors from head that are in the body *)
        let head_preds = ptree_get_some head predmap in
        let filtered = List.filter (fun n -> HashedSet.PSet.contains body n) head_preds in
        begin
          debug "HEAD: %d\n" (P.to_int head);
          debug "BODY: %a\n" print_pset body;
          debug "HEADPREDS: %a\n" print_intlist head_preds;
          filtered
        end in
      let sb_final = find_last_node_before_loop code head body is_loop_header in
      let body = HashedSet.PSet.elements body in
      { preds = preds; body = body; head = head; finals = finals;
        sb_final = sb_final; }
    ) 
    (* LICMaux.inner_loops also returns non-inner loops, but with a body of 1 instruction
     * We remove those to get just the inner loops *)
    @@ List.filter (fun (n, body) ->
      let count = List.length @@ HashedSet.PSet.elements body in count != 1
    ) (PTree.elements loopmap)
  end

let get_loop_bodies code entrypoint =
  let predecessors = get_predecessors_rtl code in
  (* Algorithm from Muchnik, Compiler Design & Implementation, Figure 7.21 page 192 *)
  let natural_loop n m =
    debug "Natural Loop from %d to %d\n" (P.to_int n) (P.to_int m);
    let in_body = ref (PTree.map (fun n b -> false) code) in
    let body = ref [] in
    let add_to_body n = begin
      in_body := PTree.set n true !in_body;
      body := n :: !body
    end
    in let rec process_node p =
      debug "    Processing node %d\n" (P.to_int p);
      List.iter (fun pred ->
        debug "        Looking at predecessor of %d: %d\n" (P.to_int p) (P.to_int pred);
        let is_in_body = get_some @@ PTree.get pred !in_body in
        if (not @@ is_in_body) then begin
          debug "        --> adding to body\n";
          add_to_body pred;
          process_node pred
        end
      ) (get_some @@ PTree.get p predecessors)
    in begin
      add_to_body m;
      add_to_body n;
      (if (m != n) then process_node m);
      !body
    end
  in let option_natural_loop n = function
    | None -> None
    | Some m -> Some (natural_loop n m)
  in PTree.map option_natural_loop (LICMaux.get_loop_backedges code entrypoint)

(* Returns a PTree of either None or Some b where b determines the node in the loop body, for a cb instruction *)
let get_loop_info f is_loop_header bfs_order code =
  let loop_info = ref (PTree.map (fun n i -> None) code) in
  let mark_body body =
    List.iter (fun n ->
      match get_some @@ PTree.get n code with
      | Icond (_, _, ifso, ifnot, _) -> begin
          match PTree.get n !loop_info with
          | None -> ()
          | Some _ ->
              let b1 = List.mem ifso body in
              let b2 = List.mem ifnot body in
              if (b1 && b2) then ()
              else if (b1 || b2) then begin
                if b1 then loop_info := PTree.set n (Some true) !loop_info
                else if b2 then loop_info := PTree.set n (Some false) !loop_info
              end
        end
      | _ -> ()
    ) body
  in let bodymap = get_loop_bodies code f.fn_entrypoint in
  List.iter (fun (_,obody) ->
    match obody with
    | None -> ()
    | Some body -> mark_body body
    ) (PTree.elements bodymap);
  !loop_info

(* Remark - compared to the original Branch Prediction for Free paper, we don't use the store heuristic *)
let get_directions f code entrypoint = begin
  debug "get_directions\n";
  let bfs_order = bfs code entrypoint in
  let is_loop_header = get_loop_headers code entrypoint in
  let loop_info = get_loop_info f is_loop_header bfs_order code in
  let directions = ref (PTree.map (fun n i -> None) code) in (* None <=> no predicted direction *)
  begin
    (* ptree_printbool is_loop_header; *)
    (* debug "\n"; *)
    List.iter (fun n ->
      match (get_some @@ PTree.get n code) with
      | Icond (cond, lr, ifso, ifnot, pred) -> begin
          if stats_oc_recording () || not @@ has_some pred then
            (* debug "Analyzing %d.." (P.to_int n); *)
            let heuristics = [ do_opcode_heuristic;
              do_return_heuristic; do_loop2_heuristic loop_info n; (* do_loop_heuristic; *) do_call_heuristic;
               (* do_store_heuristic *) ] in
            let preferred = ref None in
            let current_heuristic = ref 0 in
            begin
              debug "Deciding condition for RTL node %d\n" (P.to_int n);
              List.iter (fun do_heur ->
                match !preferred with
                | None -> begin
                  preferred := do_heur code cond ifso ifnot is_loop_header;
                  if stats_oc_recording () then begin
                    (* Getting stats about mispredictions from each heuristic *)
                    (match !preferred, pred with
                      | Some false, Some true
                      | Some true, Some false
                      (* | Some _, None  *) (* Uncomment for overpredicts *)
                          -> begin
                          match !current_heuristic with
                          | 0 -> incr wrong_opcode
                          | 1 -> incr wrong_return
                          | 2 -> incr wrong_loop2
                          | 3 -> incr wrong_call
                          | _ -> failwith "Shouldn't happen"
                          end
                      | Some false, Some false
                      | Some true, Some true -> begin
                          match !current_heuristic with
                          | 0 -> incr right_opcode
                          | 1 -> incr right_return
                          | 2 -> incr right_loop2
                          | 3 -> incr right_call
                          | _ -> failwith "Shouldn't happen"
                          end
                      | _ -> ()
                    );
                    incr current_heuristic
                    end
                  end 
                | Some _ -> ()
              ) heuristics;
              directions := PTree.set n !preferred !directions;
              (match !preferred with | Some false -> debug "\tFALLTHROUGH\n"
                                     | Some true -> debug "\tBRANCH\n"
                                     | None -> debug "\tUNSURE\n");
              debug "---------------------------------------\n"
            end
        end
      | _ -> ()
    ) bfs_order;
    !directions
  end
end

let update_direction direction = function
| Icond (cond, lr, n, n', pred) -> begin
    (* Counting stats from profiling *)
    if stats_oc_recording () then begin
      incr stats_nb_total;
      match pred, direction with
      | None, None -> incr stats_nb_correct_predicts
      | None, Some _ -> incr stats_nb_overpredict
      | Some _, None -> incr stats_nb_missed_opportunities
      | Some false, Some false -> incr stats_nb_correct_predicts
      | Some false, Some true -> incr stats_nb_mispredicts
      | Some true, Some false -> incr stats_nb_mispredicts
      | Some true, Some true -> incr stats_nb_correct_predicts
    end;

    (* only update if there is no prior existing branch prediction *)
    (match pred with
    | None -> Icond (cond, lr, n, n', direction)
    | Some _ -> begin
        Icond (cond, lr, n, n', pred) 
      end
    )
    end
| i -> i

(* Uses branch prediction to write prediction annotations in Icond *)
let update_directions f code entrypoint = begin
  debug "Update_directions\n";
  let directions = get_directions f code entrypoint in
  let code' = ref code in
  begin
    debug "Get Directions done, now proceeding to update all direction information..\n";
    (* debug "Ifso directions: ";
    ptree_printbool directions;
    debug "\n"; *)
    List.iter (fun (n, i) ->
      let direction = get_some @@ PTree.get n directions in
      code' := PTree.set n (update_direction direction i) !code'
    ) (PTree.elements code);
    !code'
  end
end

(** Trace selection *)

let rec exists_false_rec = function
  | [] -> false
  | m::lm -> let (_, b) = m in if b then exists_false_rec lm else true

let exists_false boolmap = exists_false_rec (PTree.elements boolmap)

(* DFS using prediction info to guide the exploration *)
let dfs code entrypoint = begin
  debug "dfs\n";
  let visited = ref (PTree.map (fun n i -> false) code) in
  let rec dfs_list code = function
  | [] -> []
  | node :: ln ->
      if get_some @@ PTree.get node !visited then dfs_list code ln
      else begin
        visited := PTree.set node true !visited;
        let next_nodes = (match get_some @@ PTree.get node code with
        | Icall(_, _, _, _, n) | Ibuiltin (_, _, _, n) | Iop (_, _, _, n)
        | Iload (_, _, _, _, _, n) | Istore (_, _, _, _, n) | Inop n -> [n]
        | Ijumptable (_, ln) -> ln
        | Itailcall _ | Ireturn _ -> []
        | Icond (_, _, n1, n2, info) -> (match info with
          | Some false -> [n2; n1]
          | _ -> [n1; n2]
          )
        ) in node :: dfs_list code (next_nodes @ ln)
      end
  in dfs_list code [entrypoint]
end

let rec select_unvisited_node is_visited = function
| [] -> failwith "Empty list"
| n :: ln -> if not (ptree_get_some n is_visited) then n else select_unvisited_node is_visited ln

let best_successor_of node code is_visited =
  match (PTree.get node code) with
  | None -> failwith "No such node in the code"
  | Some i ->
      let next_node = match i with
      | Inop n | Iop (_,_,_,n) | Iload (_,_,_,_,_,n) | Istore(_,_,_,_,n)
      | Icall (_,_,_,_,n) | Ibuiltin (_,_,_,n) -> Some n
      | Icond (_, _, n1, n2, ob) -> (match ob with None -> None | Some false -> Some n2 | Some true -> Some n1)
      | _ -> None
      in match next_node with
      | None -> None
      | Some n -> if not (ptree_get_some n is_visited) then Some n else None

(* FIXME - could be improved by selecting in priority the predicted paths *)
let best_predecessor_of node predecessors code order is_visited =
  match (PTree.get node predecessors) with
  | None -> failwith "No predecessor list found"
  | Some lp ->
      try Some (List.find (fun n ->
          if (List.mem n lp) && (not (ptree_get_some n is_visited)) then
            match ptree_get_some n code with
            | Icond (_, _, n1, n2, ob) -> (match ob with
              | None -> false
              | Some false -> n == n2
              | Some true -> n == n1
              )
            | _ -> true
          else false
        ) order)
      with Not_found -> None

let print_trace = print_intlist

let print_traces oc traces =
  let rec f oc = function
  | [] -> ()
  | t::lt -> Printf.fprintf oc "\n\t%a,\n%a" print_trace t f lt
  in begin
    if !debug_flag then
      Printf.fprintf oc "Traces: {%a}\n" f traces
  end

(* Dumb (but linear) trace selection *)
let select_traces_linear code entrypoint =
  let is_visited = ref (PTree.map (fun n i -> false) code) in
  let bfs_order = bfs code entrypoint in
  let rec go_through node = begin
    is_visited := PTree.set node true !is_visited;
    let next_node = match (get_some @@ PTree.get node code) with
      | Icall(_, _, _, _, n) | Ibuiltin (_, _, _, n) | Iop (_, _, _, n)
      | Iload (_, _, _, _, _, n) | Istore (_, _, _, _, n) | Inop n -> Some n
      | Ijumptable _ | Itailcall _ | Ireturn _ -> None
      | Icond (_, _, n1, n2, info) -> (match info with
        | Some false -> Some n2
        | Some true -> Some n1
        | None -> None
        )
    in match next_node with
    | None -> [node]
    | Some n ->
        if not (get_some @@ PTree.get n !is_visited) then node :: go_through n
        else [node]
    end
  in let traces = ref [] in begin
    List.iter (fun n ->
      if not (get_some @@ PTree.get n !is_visited) then
        traces := (go_through n) :: !traces
    ) bfs_order;
    !traces
  end


(* Algorithm mostly inspired from Chang and Hwu 1988
 * "Trace Selection for Compiling Large C Application Programs to Microcode" *)
let select_traces_chang code entrypoint = begin
  debug "select_traces\n";
  let order = dfs code entrypoint in
  let predecessors = get_predecessors_rtl code in
  let traces = ref [] in
  let is_visited = ref (PTree.map (fun n i -> false) code) in begin (* mark all nodes visited *)
    debug "Length: %d\n" (List.length order);
    while exists_false !is_visited do (* while (there are unvisited nodes) *)
      let seed = select_unvisited_node !is_visited order in
      let trace = ref [seed] in
      let current = ref seed in begin
        is_visited := PTree.set seed true !is_visited; (* mark seed visited *)
        let quit_loop = ref false in begin
          while not !quit_loop do
            let s = best_successor_of !current code !is_visited in
            match s with
            | None -> quit_loop := true (* if (s==0) exit loop *)
            | Some succ -> begin
                trace := !trace @ [succ];
                is_visited := PTree.set succ true !is_visited; (* mark s visited *)
                current := succ
                end
          done;
          current := seed;
          quit_loop := false;
          while not !quit_loop do
            let s = best_predecessor_of !current predecessors code order !is_visited in
            match s with
            | None -> quit_loop := true (* if (s==0) exit loop *)
            | Some pred -> begin
                trace := pred :: !trace;
                is_visited := PTree.set pred true !is_visited; (* mark s visited *)
                current := pred
                end
          done;
          traces := !trace :: !traces;
        end
      end
    done;
    (* debug "DFS: \t"; print_intlist order; debug "\n"; *)
    debug "Traces: %a" print_traces !traces;
    !traces
  end
end

let select_traces code entrypoint =
  let length = List.length @@ PTree.elements code in
  if (length < 5000) then select_traces_chang code entrypoint
  else select_traces_linear code entrypoint

let rec make_identity_ptree_rec = function
| [] -> PTree.empty
| m::lm -> let (n, _) = m in PTree.set n n (make_identity_ptree_rec lm)

let make_identity_ptree code = make_identity_ptree_rec (PTree.elements code)

(* Change the pointers of nodes to point to n' instead of n *)
let rec change_pointers code n n' = function
  | [] -> code
  | node :: nodes ->
      let new_pred_inst = match ptree_get_some node code with
        | Icall(a, b, c, d, n0) -> assert (n0 = n); Icall(a, b, c, d, n')
        | Ibuiltin(a, b, c, n0) -> assert (n0 = n); Ibuiltin(a, b, c, n')
        | Ijumptable(a, ln) -> assert (optbool @@ List.find_opt (fun e -> e = n) ln);
                               Ijumptable(a, List.map (fun e -> if (e = n) then n' else e) ln)
        | Icond(a, b, n1, n2, i) -> assert (n1 = n || n2 = n);
                                 let n1' = if (n1 = n) then n' else n1
                                 in let n2' = if (n2 = n) then n' else n2
                                 in Icond(a, b, n1', n2', i)
        | Inop n0 -> assert (n0 = n); Inop n'
        | Iop (a, b, c, n0) -> assert (n0 = n); Iop (a, b, c, n')
        | Iload (a, b, c, d, e, n0) -> assert (n0 = n); Iload (a, b, c, d, e, n')
        | Istore (a, b, c, d, n0) -> assert (n0 = n); Istore (a, b, c, d, n')
        | Itailcall _ | Ireturn _ -> failwith "That instruction cannot be a predecessor"
      in let new_code = PTree.set node new_pred_inst code
      in change_pointers new_code n n' nodes

(* parent: parent of n to keep as parent
 * preds: all the other parents of n
 * n': the integer which should contain the duplicate of n
 * returns: new code, new ptree *)
let duplicate code ptree parent n preds n' =
  debug "Duplicating node %d into %d..\n" (P.to_int n) (P.to_int n');
  match PTree.get n' code with
  | Some _ -> failwith "The PTree already has a node n'"
  | None ->
      let c' = change_pointers code n n' preds
      in let new_code = PTree.set n' (ptree_get_some n code) c'
      and new_ptree = PTree.set n' n ptree
      in (new_code, new_ptree)

let rec maxint = function
  | [] -> 0
  | i :: l -> assert (i >= 0); let m = maxint l in if i > m then i else m

let is_empty = function
  | [] -> true
  | _ -> false

let next_free_pc code = maxint (List.map (fun e -> let (n, _) = e in P.to_int n) (PTree.elements code)) + 1

let is_a_nop code n =
  match get_some @@ PTree.get n code with
  | Inop _ -> true
  | _ -> false

(* code: RTL code
 * preds: mapping node -> predecessors
 * ptree: the revmap
 * trace: the trace to follow tail duplication on *)
let tail_duplicate code preds is_loop_header ptree trace =
  debug "Tail_duplicate on that trace: %a\n" print_trace trace;
  (* next_int: unused integer that can be used for the next duplication *)
  let next_int = ref (next_free_pc code)
  (* last_node and last_duplicate store resp. the last processed node of the trace, and its duplication *)
  in let last_node = ref None
  in let last_duplicate = ref None
  in let nb_duplicated = ref 0
  (* recursive function on a trace *)
  in let rec f code ptree is_first = function
    | [] -> (code, ptree)
    | n :: t ->
        let (new_code, new_ptree) =
          if is_first then (code, ptree) (* first node is never duplicated regardless of its inputs *)
          else
            let node_preds = ptree_get_some n preds
            in let node_preds_nolast = 
              (* We traverse loop headers without initiating tail duplication 
               * (see case of two imbricated loops) *)
              if (get_some @@ PTree.get n is_loop_header) then []
              else List.filter (fun e -> e <> get_some !last_node) node_preds
            (* in let node_preds_nolast = List.filter (fun e -> not @@ List.mem e t) node_preds_nolast *)
            in let final_node_preds = match !last_duplicate with
              | None -> node_preds_nolast
              | Some n' -> n' :: node_preds_nolast
            in if not (is_empty final_node_preds) then
              let n' = !next_int
              in let (newc, newp) = duplicate code ptree !last_node n final_node_preds (P.of_int n')
              in begin
                next_int := !next_int + 1;
                (if not @@ is_a_nop code n then nb_duplicated := !nb_duplicated + 1);
                last_duplicate := Some (P.of_int n');
                (newc, newp)
              end
            else (code, ptree)
        in begin
          last_node := Some n;
          f new_code new_ptree false t
        end
  in let new_code, new_ptree = f code ptree true trace
  in (new_code, new_ptree, !nb_duplicated)

let superblockify_traces code preds is_loop_header traces ptree =
  let max_nb_duplicated = !Clflags.option_ftailduplicate (* FIXME - should be architecture dependent *)
  in let rec f code ptree = function
    | [] -> (code, ptree, 0)
    | trace :: traces ->
        let new_code, new_ptree, nb_duplicated = tail_duplicate code preds is_loop_header ptree trace
        in if (nb_duplicated < max_nb_duplicated)
          then (debug "End duplication\n"; f new_code new_ptree traces)
          else (debug "Too many duplicated nodes, aborting tail duplication\n"; (code, ptree, 0))
  in let new_code, new_ptree, _ = f code ptree traces
  in (new_code, new_ptree)

let invert_iconds code =
  PTree.map1 (fun i -> match i with
    | Icond (c, lr, ifso, ifnot, info) -> (match info with
        | Some true -> begin
            (* debug "Reversing ifso/ifnot for node %d\n" (P.to_int n); *)
            Icond (Op.negate_condition c, lr, ifnot, ifso, Some false)
          end
        | _ -> i)
    | _ -> i
  ) code

(** Partial loop unrolling
 *
 * The following code seeks innermost loops, and unfolds the first iteration
 * Most of the code has been moved from LICMaux.ml to Duplicateaux.ml to solve
 * cyclic dependencies between LICMaux and Duplicateaux
 *)

let print_inner_loop iloop =
  debug "{preds: %a, body: %a, head: %d, finals: %a, sb_final: %a}\n"
    print_intlist iloop.preds
    print_intlist iloop.body
    (P.to_int iloop.head)
    print_intlist iloop.finals
    print_option_pint iloop.sb_final

let rec print_inner_loops = function
| [] -> ()
| iloop :: iloops -> begin
    print_inner_loop iloop;
    debug "\n";
    print_inner_loops iloops
  end

let cb_exit_node = function
  | Icond (_,_,n1,n2,p) -> begin match p with
      | Some true -> Some n2
      | Some false -> Some n1
      | None -> None
    end
  | _ -> None

      (*
(* Alternative code to get inner_loops - use it if we suspect the other function to be bugged *)
let get_natural_loop code predmap n =
  let is_final_node m =
    let successors = rtl_successors @@ get_some @@ PTree.get m code in
    List.exists (fun s -> (P.to_int s) == (P.to_int n)) successors
  in 
  let excluded_node = cb_exit_node @@ get_some @@ PTree.get n code in
  let is_excluded m = match excluded_node with
    | None -> false
    | Some ex -> P.to_int ex == P.to_int m
  in
  debug "get_natural_loop for %d\n" (P.to_int n);
  let body = bfs_until code n is_final_node is_excluded in
  debug "BODY: %a\n" print_intlist body;
  let final = List.find is_final_node body in
  debug "FINAL: %d\n" (P.to_int final);
  let preds = List.filter (fun pred -> List.mem pred body) @@ get_some @@ PTree.get n predmap in
  debug "PREDS: %a\n" print_intlist preds;
  { preds = preds; body = body; head = n; final = final }

let rec count_loop_headers is_loop_header = function
  | [] -> 0
  | n :: ln ->
      let rem = count_loop_headers is_loop_header ln in
      if (get_some @@ PTree.get n is_loop_header) then rem + 1 else rem

let get_inner_loops f code is_loop_header =
  let predmap = get_predecessors_rtl code in
  let iloops = ref [] in
  List.iter (fun (n, ilh) -> if ilh then begin
    let iloop = get_natural_loop code predmap n in
    let nb_headers = count_loop_headers is_loop_header iloop.body in
    if nb_headers == 1 then (* innermost loop *)
      iloops := iloop :: !iloops end
  ) (PTree.elements is_loop_header);
  !iloops
  *)

let rec generate_fwmap ln ln' fwmap =
  match ln with
  | [] -> begin
      match ln' with
      | [] -> fwmap
      | _ -> failwith "ln and ln' have different lengths"
    end
  | n :: ln -> begin
      match ln' with
      | n' :: ln' -> generate_fwmap ln ln' (PTree.set n n' fwmap)
      | _ -> failwith "ln and ln' have different lengths"
    end

let generate_revmap ln ln' revmap = generate_fwmap ln' ln revmap

let apply_map fw n = P.of_int @@ ptree_get_some n fw

let apply_map_list fw ln = List.map (apply_map fw) ln

let apply_map_opt fw n =
  match PTree.get n fw with
  | Some n' -> P.of_int n'
  | None -> n

let change_nexts fwmap = function
  | Icall (a, b, c, d, n) -> Icall (a, b, c, d, apply_map fwmap n)
  | Ibuiltin (a, b, c, n) -> Ibuiltin (a, b, c, apply_map fwmap n)
  | Ijumptable (a, ln) -> Ijumptable (a, List.map (apply_map_opt fwmap) ln)
  | Icond (a, b, n1, n2, i) -> Icond (a, b, apply_map_opt fwmap n1, apply_map_opt fwmap n2, i)
  | Inop n -> Inop (apply_map fwmap n)
  | Iop (a, b, c, n) -> Iop (a, b, c, apply_map fwmap n)
  | Iload (a, b, c, d, e, n) -> Iload (a, b, c, d, e, apply_map fwmap n)
  | Istore (a, b, c, d, n) -> Istore (a, b, c, d, apply_map fwmap n)
  | Itailcall (a, b, c) -> Itailcall (a, b, c)
  | Ireturn o -> Ireturn o

(** Clone a list of instructions into free pc indexes
 *
 * The list of instructions should be contiguous, and not include any loop.
 * It is assumed that the first instruction of the list is the head.
 * Also, the last instruction of the list should be the loop backedge.
 *
 * Returns: (code', revmap', ln', fwmap)
 *  code' is the updated code, after cloning
 *  revmap' is the updated revmap
 *  ln' is the list of the new indexes used to reference the cloned instructions
 *  fwmap is a map from ln to ln'
 *)
let clone code revmap ln = begin
  assert (List.length ln > 0);
  let head' = next_free_pc code in
  (* +head' to ensure we never overlap with the existing code *)
  let ln' = List.map (fun n -> n + head') @@ List.map P.to_int ln in
  let fwmap = generate_fwmap ln ln' PTree.empty in
  let revmap' = generate_revmap ln (List.map P.of_int ln') revmap in
  let code' = ref code in
  List.iter (fun n ->
    let instr = get_some @@ PTree.get n code in
    let instr' = change_nexts fwmap instr in
    code' := PTree.set (apply_map fwmap n) instr' !code'
  ) ln;
  (!code', revmap', ln', fwmap)
end

let rec count_ignore_nops code = function
  | [] -> 0
  | n::ln ->
      let inst = get_some @@ PTree.get n code in
      match inst with
      | Inop _ -> count_ignore_nops code ln
      | _ -> 1 + count_ignore_nops code ln

(* Unrolls a single interation of the inner loop
 * 1) Clones the body into body'
 * 2) Links the preds to the first instruction of body'
 * 3) Links the last instruction of body' into the first instruction of body
 *)
let unroll_inner_loop_single code revmap iloop =
  let body = iloop.body in
  if count_ignore_nops code body > !Clflags.option_funrollsingle then begin
    debug "Too many nodes in the loop body (%d > %d)" (List.length body) !Clflags.option_funrollsingle;
    (code, revmap)
  end else
    let (code2, revmap2, dupbody, fwmap) = clone code revmap body in
    let code' = ref code2 in
    let head' = apply_map fwmap (iloop.head) in
    let finals' = apply_map_list fwmap (iloop.finals) in
    begin
      debug "PREDS: %a\n" print_intlist iloop.preds;
      debug "IHEAD: %d\n" (P.to_int iloop.head);
      code' := change_pointers !code' (iloop.head) head' (iloop.preds);
      code' := change_pointers !code' head' (iloop.head) finals';
      (!code', revmap2)
    end

let unroll_inner_loops_single f code revmap =
  let is_loop_header = get_loop_headers code (f.fn_entrypoint) in
  let inner_loops = get_inner_loops f code is_loop_header in
  let code' = ref code in
  let revmap' = ref revmap in
  begin
    print_inner_loops inner_loops;
    List.iter (fun iloop ->
      let (new_code, new_revmap) = unroll_inner_loop_single !code' !revmap' iloop in
      code' := new_code; revmap' := new_revmap
    ) inner_loops;
    (!code', !revmap')
  end

let is_some o = match o with Some _ -> true | None -> false

let rec go_through_predicted code start final =
  if start == final then
    Some [start]
  else
    match rtl_successors_pref @@ get_some @@ PTree.get start code with
    | [n] -> (
        match go_through_predicted code n final with
        | Some ln -> Some (start :: ln)
        | None -> None
      )
    | _ -> None

(* Unrolls the body of the inner loop once - duplicating the exit condition as well 
 * 1) Clones body into body'
 * 2) Links the last instruction of body (sb_final) into the first of body' 
 * 3) Links the last instruction of body' into the first of body
 *)
let unroll_inner_loop_body code revmap iloop =
  debug "iloop = "; print_inner_loop iloop;
  let body = iloop.body in
  let limit = !Clflags.option_funrollbody in
  if count_ignore_nops code body > limit then begin
    debug "Too many nodes in the loop body (%d > %d)\n" (List.length body) limit;
    (code, revmap)
  end else if not @@ is_some iloop.sb_final then begin
    debug "The loop body does not form a superblock OR we have predicted that we do not loop\n";
    (code, revmap)
  end else
    let sb_final = get_some @@ iloop.sb_final in
    let sb_body = get_some @@ go_through_predicted code iloop.head sb_final in
    let (code2, revmap2, dupbody, fwmap) = clone code revmap sb_body in
    let code' = ref code2 in
    let head' = apply_map fwmap (iloop.head) in
    let sb_final' = apply_map fwmap sb_final in
    begin
      code' := change_pointers !code' iloop.head head' [sb_final];
      code' := change_pointers !code' head' iloop.head [sb_final']; 
      (!code', revmap2)
    end

let unroll_inner_loops_body f code revmap =
  let is_loop_header = get_loop_headers code (f.fn_entrypoint) in
  let inner_loops = get_inner_loops f code is_loop_header in
  debug "Number of loops found: %d\n" (List.length inner_loops);
  let code' = ref code in
  let revmap' = ref revmap in
  begin
    print_inner_loops inner_loops;
    List.iter (fun iloop ->
      let (new_code, new_revmap) = unroll_inner_loop_body !code' !revmap' iloop in
      code' := new_code; revmap' := new_revmap
    ) inner_loops;
    (!code', !revmap')
  end

let extract_upto_icond f code head =
  let rec extract h =
    let inst = get_some @@ PTree.get h code in
    match inst with
    | Icond _ -> [h]
    | _ -> ( match rtl_successors inst with
        | [n] -> h :: (extract n)
        | _ -> failwith "Found a node with more than one successor??"
      )
  in List.rev @@ extract head

let rotate_inner_loop f code revmap iloop =
  let header = extract_upto_icond f code iloop.head in
  let limit = !Clflags.option_flooprotate in
  let nb_duplicated = count_ignore_nops code header in
  if nb_duplicated > limit then begin
    debug "Loop Rotate: too many nodes to duplicate (%d > %d)" (List.length header) limit;
    (code, revmap)
  end else if nb_duplicated == count_ignore_nops code iloop.body then begin
    debug "The conditional branch is already at the end! No need to rotate.";
    (code, revmap)
  end else
    let (code2, revmap2, dupheader, fwmap) = clone code revmap header in
    let code' = ref code2 in
    let head' = apply_map fwmap iloop.head in
    begin
      code' := change_pointers !code' iloop.head head' iloop.preds;
      (!code', revmap2)
    end

let rotate_inner_loops f code revmap =
  let is_loop_header = get_loop_headers code (f.fn_entrypoint) in
  let inner_loops = get_inner_loops f code is_loop_header in
  let code' = ref code in
  let revmap' = ref revmap in
  begin
    print_inner_loops inner_loops;
    List.iter (fun iloop ->
      let (new_code, new_revmap) = rotate_inner_loop f !code' !revmap' iloop in
      code' := new_code; revmap' := new_revmap
    ) inner_loops;
    (!code', !revmap')
  end

let loop_rotate f =
  let entrypoint = f.fn_entrypoint in
  let code = f.fn_code in
  let revmap = make_identity_ptree code in
  let (code, revmap) =
    if !Clflags.option_flooprotate > 0 then
      rotate_inner_loops f code revmap
    else (code, revmap) in
  ((code, entrypoint), revmap)

let static_predict f =
  let entrypoint = f.fn_entrypoint in
  let code = f.fn_code in
  let revmap = make_identity_ptree code in
  begin
    reset_stats ();
    set_stats_oc ();
    let code =
      if !Clflags.option_fpredict then
        update_directions f code entrypoint
      else code in
    write_stats_oc ();
    let code =
      if !Clflags.option_fpredict then
        invert_iconds code
      else code in
    ((code, entrypoint), revmap)
  end

let unroll_single f =
  let entrypoint = f.fn_entrypoint in
  let code = f.fn_code in
  let revmap = make_identity_ptree code in
  let (code, revmap) =
    if !Clflags.option_funrollsingle > 0 then
      unroll_inner_loops_single f code revmap
    else (code, revmap) in
  ((code, entrypoint), revmap)

let unroll_body f =
  let entrypoint = f.fn_entrypoint in
  let code = f.fn_code in
  let revmap = make_identity_ptree code in
  let (code, revmap) =
    if !Clflags.option_funrollbody > 0 then
      unroll_inner_loops_body f code revmap
    else (code, revmap) in
  ((code, entrypoint), revmap)

let tail_duplicate f =
  let entrypoint = f.fn_entrypoint in
  let code = f.fn_code in
  let revmap = make_identity_ptree code in
  let (code, revmap) =
    if !Clflags.option_ftailduplicate > 0 then
      let traces = select_traces code entrypoint in
      let preds = get_predecessors_rtl code in
      let is_loop_header = get_loop_headers code entrypoint in
      superblockify_traces code preds is_loop_header traces revmap
    else (code, revmap) in
  ((code, entrypoint), revmap)