aboutsummaryrefslogtreecommitdiffstats
path: root/backend/Duplicateproof.v
blob: 5752f5d26e1f6c4686b836fc6433445ce969303f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
(* *************************************************************)
(*                                                             *)
(*             The Compcert verified compiler                  *)
(*                                                             *)
(*           Sylvain Boulmé     Grenoble-INP, VERIMAG          *)
(*           David Monniaux     CNRS, VERIMAG                  *)
(*           Cyril Six          Kalray                         *)
(*                                                             *)
(*  Copyright Kalray. Copyright VERIMAG. All rights reserved.  *)
(*  This file is distributed under the terms of the INRIA      *)
(*  Non-Commercial License Agreement.                          *)
(*                                                             *)
(* *************************************************************)

(** Correctness proof for code duplication *)
Require Import AST Linking Errors Globalenvs Smallstep.
Require Import Coqlib Maps Events Values.
Require Import Op RTL Duplicate.

Module DuplicateProof (D: DuplicateOracle).
Include Duplicate D.

Local Open Scope positive_scope.

(** * Definition of [match_states] (independently of the translation) *)

(* est-ce plus simple de prendre dupmap: node -> node, avec un noeud hors CFG à la place de None ? *)
Inductive match_inst (dupmap: PTree.t node): instruction -> instruction -> Prop :=
  | match_inst_nop: forall n n',
      dupmap!n' = (Some n) -> match_inst dupmap (Inop n) (Inop n')
  | match_inst_op: forall n n' op lr r,
      dupmap!n' = (Some n) -> match_inst dupmap (Iop op lr r n) (Iop op lr r n')
  | match_inst_load: forall n n' tm m a lr r,
      dupmap!n' = (Some n) -> match_inst dupmap (Iload tm m a lr r n) (Iload tm m a lr r n')
  | match_inst_store: forall n n' m a lr r,
      dupmap!n' = (Some n) -> match_inst dupmap (Istore m a lr r n) (Istore m a lr r n')
  | match_inst_call: forall n n' s ri lr r,
      dupmap!n' = (Some n) -> match_inst dupmap (Icall s ri lr r n) (Icall s ri lr r n')
  | match_inst_tailcall: forall s ri lr,
      match_inst dupmap (Itailcall s ri lr) (Itailcall s ri lr)
  | match_inst_builtin: forall n n' ef la br,
      dupmap!n' = (Some n) -> match_inst dupmap (Ibuiltin ef la br n) (Ibuiltin ef la br n')
  | match_inst_cond: forall ifso ifso' ifnot ifnot' c lr i i',
      dupmap!ifso' = (Some ifso) -> dupmap!ifnot' = (Some ifnot) ->
      match_inst dupmap (Icond c lr ifso ifnot i) (Icond c lr ifso' ifnot' i')
  | match_inst_revcond: forall ifso ifso' ifnot ifnot' c lr i i',
      dupmap!ifso' = (Some ifso) -> dupmap!ifnot' = (Some ifnot) ->
      match_inst dupmap (Icond c lr ifso ifnot i) (Icond (negate_condition c) lr ifnot' ifso' i')
  | match_inst_jumptable: forall ln ln' r,
      list_forall2 (fun n n' => (dupmap!n' = (Some n))) ln ln' ->
      match_inst dupmap (Ijumptable r ln) (Ijumptable r ln')
  | match_inst_return: forall or, match_inst dupmap (Ireturn or) (Ireturn or).

Record match_function dupmap f f': Prop := {
  dupmap_correct: forall n n', dupmap!n' = Some n ->
    (forall i, (fn_code f)!n = Some i -> exists i', (fn_code f')!n' = Some i' /\ match_inst dupmap i i');
  dupmap_entrypoint: dupmap!(fn_entrypoint f') = Some (fn_entrypoint f);
  preserv_fnsig: fn_sig f = fn_sig f';
  preserv_fnparams: fn_params f = fn_params f';
  preserv_fnstacksize: fn_stacksize f = fn_stacksize f'
}.

Inductive match_fundef: RTL.fundef -> RTL.fundef -> Prop :=
  | match_Internal dupmap f f': match_function dupmap f f' -> match_fundef (Internal f) (Internal f')
  | match_External ef: match_fundef (External ef) (External ef).

Inductive match_stackframes: stackframe -> stackframe -> Prop :=
  | match_stackframe_intro 
      dupmap res f sp pc rs f' pc'
      (TRANSF: match_function dupmap f f')
      (DUPLIC: dupmap!pc' = Some pc):
      match_stackframes (Stackframe res f sp pc rs) (Stackframe res f' sp pc' rs).

Inductive match_states: state -> state -> Prop :=
  | match_states_intro 
      dupmap st f sp pc rs m st' f' pc'
      (STACKS: list_forall2 match_stackframes st st')
      (TRANSF: match_function dupmap f f')
      (DUPLIC: dupmap!pc' = Some pc):
      match_states (State st f sp pc rs m) (State st' f' sp pc' rs m)
  | match_states_call:
    forall st st' f f' args m
      (STACKS: list_forall2 match_stackframes st st')
      (TRANSF: match_fundef f f'),
      match_states (Callstate st f args m) (Callstate st' f' args m)
  | match_states_return:
    forall st st' v m
      (STACKS: list_forall2 match_stackframes st st'),
      match_states (Returnstate st v m) (Returnstate st' v m).

(** * Auxiliary properties *)


Theorem transf_function_preserves:
  forall f f',
  transf_function f = OK f' ->
     fn_sig f = fn_sig f' /\ fn_params f = fn_params f' /\ fn_stacksize f = fn_stacksize f'.
Proof.
  intros. unfold transf_function in H. destruct (duplicate_aux _) as (tcte & mp). destruct tcte as (tc & te). monadInv H.
  repeat (split; try reflexivity).
Qed.


Lemma verify_mapping_mn_rec_step:
  forall dupmap lb b f f',
  In b lb ->
  verify_mapping_mn_rec dupmap f f' lb = OK tt ->
  verify_mapping_mn dupmap f f' b = OK tt.
Proof.
  induction lb; intros.
  - monadInv H0. inversion H.
  - inversion H.
    + subst. monadInv H0. destruct x. assumption.
    + monadInv H0. destruct x. eapply IHlb; assumption.
Qed.

Lemma verify_is_copy_correct:
  forall dupmap n n',
  verify_is_copy dupmap n n' = OK tt ->
  dupmap ! n' = Some n.
Proof.
  intros. unfold verify_is_copy in H. destruct (_ ! n') eqn:REVM; [|inversion H].
  destruct (n ?= p) eqn:NP; try (inversion H; fail).
  eapply Pos.compare_eq in NP. subst.
  reflexivity.
Qed.

Lemma verify_is_copy_list_correct:
  forall dupmap ln ln',
  verify_is_copy_list dupmap ln ln' = OK tt ->
  list_forall2 (fun n n' => dupmap ! n' = Some n) ln ln'.
Proof.
  induction ln.
  - intros. destruct ln'; monadInv H. constructor.
  - intros. destruct ln'; monadInv H. destruct x. apply verify_is_copy_correct in EQ.
    eapply IHln in EQ0. constructor; assumption.
Qed.

Lemma verify_match_inst_correct:
  forall dupmap i i',
  verify_match_inst dupmap i i' = OK tt ->
  match_inst dupmap i i'.
Proof.
  intros. unfold verify_match_inst in H.
  destruct i; try (inversion H; fail).
(* Inop *)
  - destruct i'; try (inversion H; fail).
    eapply verify_is_copy_correct in H.
    constructor; eauto.
(* Iop *)
  - destruct i'; try (inversion H; fail). monadInv H.
    destruct x. eapply verify_is_copy_correct in EQ.
    destruct (eq_operation _ _); try discriminate.
    destruct (list_eq_dec _ _ _); try discriminate.
    destruct (Pos.eq_dec _ _); try discriminate. clear EQ0. subst.
    constructor. assumption.
(* Iload *)
  - destruct i'; try (inversion H; fail). monadInv H.
    destruct x. eapply verify_is_copy_correct in EQ.
    destruct (trapping_mode_eq _ _); try discriminate.
    destruct (chunk_eq _ _); try discriminate.
    destruct (eq_addressing _ _); try discriminate.
    destruct (list_eq_dec _ _ _); try discriminate.
    destruct (Pos.eq_dec _ _); try discriminate. clear EQ0. subst.
    constructor. assumption.
(* Istore *)
  - destruct i'; try (inversion H; fail). monadInv H.
    destruct x. eapply verify_is_copy_correct in EQ.
    destruct (chunk_eq _ _); try discriminate.
    destruct (eq_addressing _ _); try discriminate.
    destruct (list_eq_dec _ _ _); try discriminate.
    destruct (Pos.eq_dec _ _); try discriminate. clear EQ0. subst.
    constructor. assumption.
(* Icall *)
  - destruct i'; try (inversion H; fail). monadInv H.
    destruct x. eapply verify_is_copy_correct in EQ.
    destruct (signature_eq _ _); try discriminate.
    destruct (product_eq _ _ _ _); try discriminate.
    destruct (list_eq_dec _ _ _); try discriminate.
    destruct (Pos.eq_dec _ _); try discriminate. subst.
    constructor. assumption.
(* Itailcall *)
  - destruct i'; try (inversion H; fail).
    destruct (signature_eq _ _); try discriminate.
    destruct (product_eq _ _ _ _); try discriminate.
    destruct (list_eq_dec _ _ _); try discriminate. subst. clear H.
    constructor.
(* Ibuiltin *)
  - destruct i'; try (inversion H; fail). monadInv H.
    destruct x. eapply verify_is_copy_correct in EQ.
    destruct (external_function_eq _ _); try discriminate.
    destruct (list_eq_dec _ _ _); try discriminate.
    destruct (builtin_res_eq_pos _ _); try discriminate. subst.
    constructor. assumption.
(* Icond *)
  - destruct i'; try (inversion H; fail).
    destruct (list_eq_dec _ _ _); try discriminate. subst.
    destruct (eq_condition _ _); try discriminate.
    + monadInv H. destruct x. eapply verify_is_copy_correct in EQ.
      eapply verify_is_copy_correct in EQ0.
      subst; constructor; assumption.
    + destruct (eq_condition _ _); try discriminate.
      monadInv H. destruct x. eapply verify_is_copy_correct in EQ.
      eapply verify_is_copy_correct in EQ0.
      subst; constructor; assumption.
(* Ijumptable *)
  - destruct i'; try (inversion H; fail). monadInv H.
    destruct x. eapply verify_is_copy_list_correct in EQ.
    destruct (Pos.eq_dec _ _); try discriminate. subst.
    constructor. assumption.
(* Ireturn *)
  - destruct i'; try (inversion H; fail).
    destruct (option_eq _ _ _); try discriminate. subst. clear H.
    constructor.
Qed.


Lemma verify_mapping_mn_correct mp n n' i f f' tc:
  mp ! n' = Some n ->
  (fn_code f) ! n = Some i ->
  (fn_code f') = tc ->
  verify_mapping_mn mp f f' (n', n) = OK tt ->
  exists i',
     tc ! n' = Some i'
  /\ match_inst mp i i'.
Proof.
  unfold verify_mapping_mn; intros H H0 H1 H2. rewrite H0 in H2. clear H0. rewrite H1 in H2. clear H1.
  destruct (tc ! n') eqn:TCN; [| inversion H2].
  exists i0. split; auto.
  eapply verify_match_inst_correct. assumption.
Qed.


Lemma verify_mapping_mn_rec_correct:
  forall mp n n' i f f' tc,
  mp ! n' = Some n ->
  (fn_code f) ! n = Some i ->
  (fn_code f') = tc ->
  verify_mapping_mn_rec mp f f' (PTree.elements mp) = OK tt ->
  exists i',
     tc ! n' = Some i'
  /\ match_inst mp i i'.
Proof.
  intros. exploit PTree.elements_correct. eapply H. intros IN.
  eapply verify_mapping_mn_rec_step in H2; eauto.
  eapply verify_mapping_mn_correct; eauto.
Qed.

Theorem transf_function_correct f f':
    transf_function f = OK f' -> exists dupmap, match_function dupmap f f'.
Proof.
  unfold transf_function.
  intros TRANSF.
  destruct (duplicate_aux _) as (tcte & mp). destruct tcte as (tc & te).
  monadInv TRANSF.
  unfold verify_mapping in EQ. monadInv EQ.
  exists mp; constructor 1; simpl; auto.
  + (* correct *) 
  intros until n'. intros REVM i FNC.
  unfold verify_mapping_match_nodes in EQ1. simpl in EQ1. destruct x.
  eapply verify_mapping_mn_rec_correct; eauto.
  simpl; eauto.
  + (* entrypoint *)
  intros. unfold verify_mapping_entrypoint in EQ0. simpl in EQ0.
  eapply verify_is_copy_correct; eauto.
  destruct x0; auto.
Qed.

Lemma transf_fundef_correct f f':
  transf_fundef f = OK f' -> match_fundef f f'.
Proof.
  intros TRANSF; destruct f; simpl; monadInv TRANSF.
  + exploit transf_function_correct; eauto.
    intros (dupmap & MATCH_F).
    eapply match_Internal; eauto.
  + eapply match_External.
Qed.

(** * Preservation proof *)

Definition match_prog (p tp: program) :=
  match_program (fun _ f tf => transf_fundef f = OK tf) eq p tp.

Lemma transf_program_match:
  forall prog tprog, transf_program prog = OK tprog -> match_prog prog tprog.
Proof.
  intros. eapply match_transform_partial_program_contextual; eauto.
Qed.

Section PRESERVATION.

Variable prog: program.
Variable tprog: program.

Hypothesis TRANSL: match_prog prog tprog.

Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.

Lemma symbols_preserved s: Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof.
  rewrite <- (Genv.find_symbol_match TRANSL). reflexivity.
Qed.

(* UNUSED LEMMA ?
Lemma senv_transitivity x y z: Senv.equiv x y -> Senv.equiv y z -> Senv.equiv x z.
Proof.
  unfold Senv.equiv. intuition congruence.
Qed.
*)

Lemma senv_preserved:
  Senv.equiv ge tge.
Proof.
  eapply (Genv.senv_match TRANSL).
Qed.

Lemma functions_translated:
  forall (v: val) (f: fundef),
  Genv.find_funct ge v = Some f ->
  exists tf cunit, transf_fundef f = OK tf /\ Genv.find_funct tge v = Some tf /\ linkorder cunit prog.
Proof.
  intros. exploit (Genv.find_funct_match TRANSL); eauto.
  intros (cu & tf & A & B & C).
  repeat eexists; intuition eauto.
  + unfold incl; auto.
  + eapply linkorder_refl.
Qed.

Lemma function_ptr_translated:
  forall v f,
  Genv.find_funct_ptr ge v = Some f ->
  exists tf,
  Genv.find_funct_ptr tge v = Some tf /\ transf_fundef f = OK tf.
Proof.
  intros.
  exploit (Genv.find_funct_ptr_transf_partial TRANSL); eauto.
Qed.

Lemma function_sig_translated:
  forall f tf, transf_fundef f = OK tf -> funsig tf = funsig f.
Proof.
  intros. destruct f.
  - simpl in H. monadInv H. simpl. symmetry. apply transf_function_preserves. assumption.
  - simpl in H. monadInv H. reflexivity.
Qed.

Lemma list_nth_z_dupmap:
  forall dupmap ln ln' (pc pc': node) val,
  list_nth_z ln val = Some pc ->
  list_forall2 (fun n n' => dupmap!n' = Some n) ln ln' ->
  exists pc',
     list_nth_z ln' val = Some pc'
  /\ dupmap!pc' = Some pc.
Proof.
  induction ln; intros until val; intros LNZ LFA.
  - inv LNZ.
  - inv LNZ. destruct (zeq val 0) eqn:ZEQ.
    + inv H0. destruct ln'; inv LFA.
      simpl. exists p. split; auto.
    + inv LFA. simpl. rewrite ZEQ. exploit IHln. 2: eapply H0. all: eauto.
      intros (pc'1 & LNZ & REV). exists pc'1. split; auto. congruence.
Qed.

Theorem transf_initial_states:
  forall s1, initial_state prog s1 ->
  exists s2, initial_state tprog s2 /\ match_states s1 s2.
Proof.
  intros. inv H.
  exploit function_ptr_translated; eauto. intros (tf & FIND & TRANSF).
  eexists. split.
  - econstructor; eauto.
    + eapply (Genv.init_mem_transf_partial TRANSL); eauto.
    + replace (prog_main tprog) with (prog_main prog). rewrite symbols_preserved. eauto.
      symmetry. eapply match_program_main. eauto.
    + destruct f.
      * monadInv TRANSF. rewrite <- H3. symmetry; eapply transf_function_preserves. assumption.
      * monadInv TRANSF. assumption.
  - constructor; eauto.
    + constructor. 
    + apply transf_fundef_correct; auto.
Qed.

Theorem transf_final_states:
  forall s1 s2 r,
  match_states s1 s2 -> final_state s1 r -> final_state s2 r.
Proof.
  intros. inv H0. inv H. inv STACKS. constructor.
Qed.

Theorem step_simulation:
  forall s1 t s1', step ge s1 t s1' ->
  forall s2 (MS: match_states s1 s2),
  exists s2',
     step tge s2 t s2'
  /\ match_states s1' s2'.
Proof.
  Local Hint Resolve transf_fundef_correct: core.
  induction 1; intros; inv MS.
(* Inop *)
  - eapply dupmap_correct in DUPLIC; eauto.
    destruct DUPLIC as (i' & H2 & H3).
    inv H3.
    eexists. split.
    + eapply exec_Inop; eauto.
    + econstructor; eauto.
(* Iop *)
  - eapply dupmap_correct in DUPLIC; eauto.
    destruct DUPLIC as (i' & H2 & H3). inv H3.
    pose symbols_preserved as SYMPRES.
    eexists. split.
    + eapply exec_Iop; eauto. erewrite eval_operation_preserved; eauto.
    + econstructor; eauto.
(* Iload *)
  - eapply dupmap_correct in DUPLIC; eauto.
    destruct DUPLIC as (i' & H2 & H3). inv H3.
    pose symbols_preserved as SYMPRES. inv H0.
    + eexists; split.
      * try (eapply exec_Iload; eauto; eapply has_loaded_normal; eauto; erewrite eval_addressing_preserved; eauto).
      * econstructor; eauto.
    + destruct (eval_addressing) eqn:EVAL in LOAD.
      * specialize (LOAD v). eexists; split.
        -- eapply exec_Iload; eauto. eapply has_loaded_default; eauto. erewrite eval_addressing_preserved; eauto.
           intros a EVAL'; rewrite EVAL in EVAL'; inv EVAL'. apply LOAD; auto.
        -- econstructor; eauto.
      * eexists; split.
        -- eapply exec_Iload; eauto. eapply has_loaded_default; eauto. erewrite eval_addressing_preserved; eauto.
           intros a EVAL'; rewrite EVAL in EVAL'; inv EVAL'.
        -- econstructor; eauto.
(* Istore *)
  - eapply dupmap_correct in DUPLIC; eauto.
    destruct DUPLIC as (i' & H2 & H3). inv H3.
    pose symbols_preserved as SYMPRES.
    eexists. split.
    + eapply exec_Istore; eauto; erewrite eval_addressing_preserved; eauto.
    + econstructor; eauto.
(* Icall *)
  - eapply dupmap_correct in DUPLIC; eauto.
    destruct DUPLIC as (i' & H2 & H3). inv H3.
    pose symbols_preserved as SYMPRES.
    destruct ros.
    * simpl in H0. apply functions_translated in H0.
      destruct H0 as (tf & cunit & TFUN & GFIND & LO).
      eexists. split.
      + eapply exec_Icall. eassumption. simpl. eassumption.
        apply function_sig_translated. assumption.
      + repeat (econstructor; eauto).
    * simpl in H0. destruct (Genv.find_symbol _ _) eqn:GFS; try discriminate.
      apply function_ptr_translated in H0. destruct H0 as (tf & GFF & TF).
      eexists. split.
      + eapply exec_Icall. eassumption. simpl. rewrite symbols_preserved. rewrite GFS.
        eassumption. apply function_sig_translated. assumption.
      + repeat (econstructor; eauto).
(* Itailcall *)
  - eapply dupmap_correct in DUPLIC; eauto.
    destruct DUPLIC as (i' & H10 & H11). inv H11.
    pose symbols_preserved as SYMPRES.
    destruct ros.
    * simpl in H0. apply functions_translated in H0.
      destruct H0 as (tf & cunit & TFUN & GFIND & LO).
      eexists. split.
      + eapply exec_Itailcall. eassumption. simpl. eassumption.
        apply function_sig_translated. assumption.
        erewrite <- preserv_fnstacksize; eauto.
      + repeat (constructor; auto).
    * simpl in H0. destruct (Genv.find_symbol _ _) eqn:GFS; try discriminate.
      apply function_ptr_translated in H0. destruct H0 as (tf & GFF & TF).
      eexists. split.
      + eapply exec_Itailcall. eassumption. simpl. rewrite symbols_preserved. rewrite GFS.
        eassumption. apply function_sig_translated. assumption.
        erewrite <- preserv_fnstacksize; eauto.
      + repeat (constructor; auto).
(* Ibuiltin *)
  - eapply dupmap_correct in DUPLIC; eauto.
    destruct DUPLIC as (i' & H2 & H3). inv H3.
    pose symbols_preserved as SYMPRES.
    eexists. split.
    + eapply exec_Ibuiltin; eauto. eapply eval_builtin_args_preserved; eauto.
      eapply external_call_symbols_preserved; eauto. eapply senv_preserved.
    + econstructor; eauto.
(* Icond *)
  - eapply dupmap_correct in DUPLIC; eauto.
    destruct DUPLIC as (i' & H2 & H3). inv H3.
    * (* match_inst_cond *)
      pose symbols_preserved as SYMPRES.
      eexists. split.
      + eapply exec_Icond; eauto.
      + econstructor; eauto. destruct b; auto.
    * (* match_inst_revcond *)
      pose symbols_preserved as SYMPRES.
      eexists. split.
      + eapply exec_Icond; eauto. rewrite eval_negate_condition. rewrite H0. simpl. eauto.
      + econstructor; eauto. destruct b; auto.
(* Ijumptable *)
  - eapply dupmap_correct in DUPLIC; eauto.
    destruct DUPLIC as (i' & H2 & H3). inv H3.
    pose symbols_preserved as SYMPRES.
    exploit list_nth_z_dupmap; eauto. intros (pc'1 & LNZ & REVM).
    eexists. split.
    + eapply exec_Ijumptable; eauto.
    + econstructor; eauto.
(* Ireturn *)
  - eapply dupmap_correct in DUPLIC; eauto.
    destruct DUPLIC as (i' & H2 & H3). inv H3.
    pose symbols_preserved as SYMPRES.
    eexists. split.
    + eapply exec_Ireturn; eauto. erewrite <- preserv_fnstacksize; eauto.
    + econstructor; eauto.
(* exec_function_internal *)
  - inversion TRANSF as [dupmap f0 f0' MATCHF|]; subst. eexists. split.
    + eapply exec_function_internal. erewrite <- preserv_fnstacksize; eauto.
    + erewrite preserv_fnparams; eauto.
      econstructor; eauto. apply dupmap_entrypoint. assumption.
(* exec_function_external *)
  - inversion TRANSF as [|]; subst. eexists. split.
    + econstructor. eapply external_call_symbols_preserved; eauto. apply senv_preserved.
    + constructor. assumption.
(* exec_return *)
  - inv STACKS. destruct b1 as [res' f' sp' pc' rs']. eexists. split.
    + constructor.
    + inv H1. econstructor; eauto.
Qed.

Theorem transf_program_correct:
  forward_simulation (semantics prog) (semantics tprog).
Proof.
  eapply forward_simulation_step with match_states.
  - eapply senv_preserved.
  - eapply transf_initial_states.
  - eapply transf_final_states.
  - eapply step_simulation.
Qed.

End PRESERVATION.

End DuplicateProof.