aboutsummaryrefslogtreecommitdiffstats
path: root/backend/Linearizeaux.ml
blob: 8dccbb4beeee4b1eeeaed3322e5c6208f8b7a00e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

open LTL
open Maps

(* Trivial enumeration, in decreasing order of PC *)

(***
let enumerate_aux f reach =
  positive_rec
    Coq_nil
    (fun pc nodes ->
      if PMap.get pc reach
      then Coq_cons (pc, nodes)
      else nodes)
    f.fn_nextpc
***)

(* More clever enumeration that flattens basic blocks *)

open Camlcoq

module IntSet = Set.Make(struct type t = int let compare = compare end)

(* Determine join points: reachable nodes that have > 1 predecessor *)

let join_points f =
  let reached = ref IntSet.empty in
  let reached_twice = ref IntSet.empty in
  let rec traverse pc =
    let npc = P.to_int pc in
    if IntSet.mem npc !reached then begin
      if not (IntSet.mem npc !reached_twice) then
        reached_twice := IntSet.add npc !reached_twice
    end else begin
      reached := IntSet.add npc !reached;
      match PTree.get pc f.fn_code with
      | None -> ()
      | Some b -> traverse_succs (successors_block b)
    end
  and traverse_succs = function
    | [] -> ()
    | [pc] -> traverse pc
    | pc :: l -> traverse pc; traverse_succs l
  in traverse f.fn_entrypoint; !reached_twice

(* Cut into reachable basic blocks, annotated with the min value of the PC *)

let basic_blocks f joins =
  let blocks = ref [] in
  let visited = ref IntSet.empty in
  (* start_block:
       pc is the function entry point
          or a join point
          or the successor of a conditional test *)
  let rec start_block pc =
    let npc = P.to_int pc in
    if not (IntSet.mem npc !visited) then begin
      visited := IntSet.add npc !visited;
      in_block [] max_int pc
    end
  (* in_block: add pc to block and check successors *)
  and in_block blk minpc pc =
    let npc = P.to_int pc in
    let blk = pc :: blk in
    let minpc = min npc minpc in
    match PTree.get pc f.fn_code with
    | None -> assert false
    | Some b ->
       let rec do_instr_list = function
       | [] -> assert false
       | Lbranch s :: _ -> next_in_block blk minpc s
       | Ltailcall (sig0, ros) :: _ -> end_block blk minpc
       | Lcond (cond, args, ifso, ifnot) :: _ ->
             end_block blk minpc; start_block ifso; start_block ifnot
       | Ljumptable(arg, tbl) :: _ ->
             end_block blk minpc; List.iter start_block tbl
       | Lreturn :: _ -> end_block blk minpc
       | instr :: b' -> do_instr_list b' in
       do_instr_list b
  (* next_in_block: check if join point and either extend block
     or start block *)
  and next_in_block blk minpc pc =
    let npc = P.to_int pc in
    if IntSet.mem npc joins
    then (end_block blk minpc; start_block pc)
    else in_block blk minpc pc
  (* end_block: record block that we just discovered *)
  and end_block blk minpc =
    blocks := (minpc, List.rev blk) :: !blocks
  in
    start_block f.fn_entrypoint; !blocks

(* Flatten basic blocks in decreasing order of minpc *)

let flatten_blocks blks =
  let cmp_minpc (mpc1, _) (mpc2, _) =
    if mpc1 = mpc2 then 0 else if mpc1 > mpc2 then -1 else 1
  in
    List.flatten (List.map snd (List.sort cmp_minpc blks))

(* Build the enumeration *)

let enumerate_aux_flat f reach =
  flatten_blocks (basic_blocks f (join_points f))

(**
 * Enumeration based on traces as identified by Duplicate.v 
 *
 * The Duplicate phase heuristically identifies the most frequented paths. Each
 * Icond is modified so that the preferred condition is a fallthrough (ifnot)
 * rather than a branch (ifso).
 *
 * The enumeration below takes advantage of this - preferring to layout nodes
 * following the fallthroughs of the Lcond branches.
 *
 * It is slightly adapted from the work of Petris and Hansen 90 on intraprocedural
 * code positioning - only we do it on a broader grain, since we don't have the exact
 * frequencies (we only know which branch is the preferred one)
 *)

let get_some = function
| None -> failwith "Did not get some"
| Some thing -> thing

exception EmptyList

let rec last_element = function
  | [] -> raise EmptyList
  | e :: [] -> e
  | e' :: e :: l -> last_element (e::l)

(** old version
let dfs code entrypoint =
  let visited = ref (PTree.map (fun n i -> false) code) in
  let rec dfs_list code = function
  | [] -> []
  | node :: ln ->
      let node_dfs =
        if not (get_some @@ PTree.get node !visited) then begin
          visited := PTree.set node true !visited;
          match PTree.get node code with
          | None -> failwith "No such node"
          | Some bb -> [node] @ match (last_element bb) with
            | Lop _ | Lload _ | Lgetstack _ | Lsetstack _ | Lstore _ | Lcall _
            | Lbuiltin _ -> assert false
            | Ltailcall _ | Lreturn -> []
            | Lbranch n -> dfs_list code [n]
            | Lcond (_, _, ifso, ifnot) -> dfs_list code [ifnot; ifso]
            | Ljumptable(_, ln) -> dfs_list code ln
          end
        else []
      in node_dfs @ (dfs_list code ln)
  in dfs_list code [entrypoint]

let enumerate_aux_trace f reach = dfs f.fn_code f.fn_entrypoint
*)


let forward_sequences code entry =
  let visited = ref (PTree.map (fun n i -> false) code) in
  (* returns the list of traversed nodes, and a list of nodes to start traversing next *)
  let rec traverse_fallthrough code node =
    if not (get_some @@ PTree.get node !visited) then begin
      visited := PTree.set node true !visited;
      match PTree.get node code with
      | None -> failwith "No such node"
      | Some bb ->
          let ln, rem = match (last_element bb) with
          | Lop _ | Lload _ | Lgetstack _ | Lsetstack _ | Lstore _ | Lcall _
          | Lbuiltin _ -> assert false
          | Ltailcall _ | Lreturn -> ([], [])
          | Lbranch n -> let ln, rem = traverse_fallthrough code n in (ln, rem)
          | Lcond (_, _, ifso, ifnot) -> let ln, rem = traverse_fallthrough code ifnot in (ln, [ifso] @ rem)
          | Ljumptable(_, ln) -> match ln with
              | [] -> ([], [])
              | n :: ln -> let lln, rem = traverse_fallthrough code n in (lln, ln @ rem)
          in ([node] @ ln, rem)
      end
    else ([], [])
  in let rec f code = function
  | [] -> []
  | node :: ln ->
      let fs, rem = traverse_fallthrough code node
      in [fs] @ (f code rem)
  in (f code [entry])

let iter_set f s = Seq.iter f (Set.to_seq s)

let try_merge code fs =
  let seqs = ref (Set.of_list fs) in
  let oldLength = ref (Set.cardinal !seqs) in
  let continue = ref true in
  while !continue do
    iter_set (fun s ->
      iter_set (fun s' ->
        if (s == s') then ()
        else if (can_be_merged s s') then
          begin
            seqs
          end
        else ()
      ) !seqs
    ) !seqs
 (* FIXME - FIXME - continue *)


    if !oldLength == List.length !seqs then
      continue := false
    else
      oldLength := List.length !seqs
  done

let order_sequences fs = fs

let enumerate_aux_trace f reach =
  let fs = forward_sequences f.fn_code f.fn_entrypoint
  in let ofs = order_sequences fs
  in List.flatten ofs

let enumerate_aux f reach =
  if !Clflags.option_ftracelinearize then enumerate_aux_trace f reach
  else enumerate_aux_flat f reach