aboutsummaryrefslogtreecommitdiffstats
path: root/backend/SelectDivproof.v
blob: 3f91b1ba6ee6c82d1d497f791a6bae1472432771 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Correctness of instruction selection for integer division *)

Require Import Zquot Coqlib Zbits.
Require Import AST Integers Floats Values Memory Globalenvs Events.
Require Import Cminor Op CminorSel.
Require Import OpHelpers OpHelpersproof.
Require Import SelectOp SelectOpproof SplitLong SplitLongproof SelectLong SelectLongproof SelectDiv.

Local Open Scope cminorsel_scope.

(** * Main approximation theorems *)

Section Z_DIV_MUL.

Variable N: Z.      (**r number of relevant bits *)
Hypothesis N_pos: N >= 0.
Variable d: Z.      (**r divisor *)
Hypothesis d_pos: d > 0.

(** This is theorem 4.2 from Granlund and Montgomery, PLDI 1994. *)

Lemma Zdiv_mul_pos:
  forall m l,
  l >= 0 ->
  two_p (N+l) <= m * d <= two_p (N+l) + two_p l ->
  forall n,
  0 <= n < two_p N ->
  Z.div n d = Z.div (m * n) (two_p (N + l)).
Proof.
  intros m l l_pos [LO HI] n RANGE.
  exploit (Z_div_mod_eq n d). auto.
  set (q := n / d).
  set (r := n mod d).
  intro EUCL.
  assert (0 <= r <= d - 1).
    unfold r. generalize (Z_mod_lt n d d_pos). lia.
  assert (0 <= m).
    apply Zmult_le_0_reg_r with d. auto.
    exploit (two_p_gt_ZERO (N + l)). lia. lia.
  set (k := m * d - two_p (N + l)).
  assert (0 <= k <= two_p l).
    unfold k; lia.
  assert ((m * n - two_p (N + l) * q) * d = k * n + two_p (N + l) * r).
    unfold k. rewrite EUCL. ring.
  assert (0 <= k * n).
    apply Z.mul_nonneg_nonneg; lia.
  assert (k * n <= two_p (N + l) - two_p l).
    apply Z.le_trans with (two_p l * n).
    apply Z.mul_le_mono_nonneg_r; lia.
    replace (N + l) with (l + N) by lia.
    rewrite two_p_is_exp.
    replace (two_p l * two_p N - two_p l)
       with (two_p l * (two_p N - 1))
         by ring.
    apply Z.mul_le_mono_nonneg_l. lia. exploit (two_p_gt_ZERO l). lia. lia.
    lia. lia.
  assert (0 <= two_p (N + l) * r).
    apply Z.mul_nonneg_nonneg.
    exploit (two_p_gt_ZERO (N + l)). lia. lia.
    lia.
  assert (two_p (N + l) * r <= two_p (N + l) * d - two_p (N + l)).
    replace (two_p (N + l) * d - two_p (N + l))
       with (two_p (N + l) * (d - 1)) by ring.
    apply Z.mul_le_mono_nonneg_l. 
    lia.
    exploit (two_p_gt_ZERO (N + l)). lia. lia.
  assert (0 <= m * n - two_p (N + l) * q).
    apply Zmult_le_reg_r with d. auto.
    replace (0 * d) with 0 by ring.  rewrite H2. lia.
  assert (m * n - two_p (N + l) * q < two_p (N + l)).
    apply Zmult_lt_reg_r with d. lia.
    rewrite H2.
    apply Z.le_lt_trans with (two_p (N + l) * d - two_p l).
    lia.
    exploit (two_p_gt_ZERO l). lia. lia.
  symmetry. apply Zdiv_unique with (m * n - two_p (N + l) * q).
  ring. lia.
Qed.

Lemma Zdiv_unique_2:
  forall x y q, y > 0 -> 0 < y * q - x <= y -> Z.div x y = q - 1.
Proof.
  intros. apply Zdiv_unique with (x - (q - 1) * y). ring.
  replace ((q - 1) * y) with (y * q - y) by ring. lia.
Qed.

Lemma Zdiv_mul_opp:
  forall m l,
  l >= 0 ->
  two_p (N+l) < m * d <= two_p (N+l) + two_p l ->
  forall n,
  0 < n <= two_p N ->
  Z.div n d = - Z.div (m * (-n)) (two_p (N + l)) - 1.
Proof.
  intros m l l_pos [LO HI] n RANGE.
  replace (m * (-n)) with (- (m * n)) by ring.
  exploit (Z_div_mod_eq n d). auto.
  set (q := n / d).
  set (r := n mod d).
  intro EUCL.
  assert (0 <= r <= d - 1).
    unfold r. generalize (Z_mod_lt n d d_pos). lia.
  assert (0 <= m).
    apply Zmult_le_0_reg_r with d. auto.
    exploit (two_p_gt_ZERO (N + l)). lia. lia.
  cut (Z.div (- (m * n)) (two_p (N + l)) = -q - 1).
    lia.
  apply Zdiv_unique_2.
  apply two_p_gt_ZERO. lia.
  replace (two_p (N + l) * - q - - (m * n))
     with (m * n - two_p (N + l) * q)
       by ring.
  set (k := m * d - two_p (N + l)).
  assert (0 < k <= two_p l).
    unfold k; lia.
  assert ((m * n - two_p (N + l) * q) * d = k * n + two_p (N + l) * r).
    unfold k. rewrite EUCL. ring.
  split.
  apply Zmult_lt_reg_r with d. lia.
  replace (0 * d) with 0 by lia.
  rewrite H2.
  assert (0 < k * n). apply Z.mul_pos_pos; lia.
  assert (0 <= two_p (N + l) * r).
    apply Z.mul_nonneg_nonneg. exploit (two_p_gt_ZERO (N + l)); lia. lia.
  lia.
  apply Zmult_le_reg_r with d. lia.
  rewrite H2.
  assert (k * n <= two_p (N + l)).
    rewrite Z.add_comm. rewrite two_p_is_exp; try lia.
    apply Z.le_trans with (two_p l * n). apply Z.mul_le_mono_nonneg_r; lia.
    apply Z.mul_le_mono_nonneg_l. lia. exploit (two_p_gt_ZERO l). lia. lia.
  assert (two_p (N + l) * r <= two_p (N + l) * d - two_p (N + l)).
    replace (two_p (N + l) * d - two_p (N + l))
       with (two_p (N + l) * (d - 1))
         by ring.
    apply Z.mul_le_mono_nonneg_l. exploit (two_p_gt_ZERO (N + l)). lia. lia. lia.
  lia.
Qed.

(** This is theorem 5.1 from Granlund and Montgomery, PLDI 1994. *)

Lemma Zquot_mul:
  forall m l,
  l >= 0 ->
  two_p (N+l) < m * d <= two_p (N+l) + two_p l ->
  forall n,
  - two_p N <= n < two_p N ->
  Z.quot n d = Z.div (m * n) (two_p (N + l)) + (if zlt n 0 then 1 else 0).
Proof.
  intros. destruct (zlt n 0).
  exploit (Zdiv_mul_opp m l H H0 (-n)). lia.
  replace (- - n) with n by ring.
  replace (Z.quot n d) with (- Z.quot (-n) d).
  rewrite Zquot_Zdiv_pos by lia. lia.
  rewrite Z.quot_opp_l by lia. ring.
  rewrite Z.add_0_r. rewrite Zquot_Zdiv_pos by lia.
  apply Zdiv_mul_pos; lia.
Qed.

End Z_DIV_MUL.

(** * Correctness of the division parameters *)

Lemma divs_mul_params_sound:
  forall d m p,
  divs_mul_params d = Some(p, m) ->
  0 <= m < Int.modulus /\ 0 <= p < 32 /\
  forall n,
  Int.min_signed <= n <= Int.max_signed ->
  Z.quot n d = Z.div (m * n) (two_p (32 + p)) + (if zlt n 0 then 1 else 0).
Proof with (try discriminate).
  unfold divs_mul_params; intros d m' p'.
  destruct (find_div_mul_params Int.wordsize
               (Int.half_modulus - Int.half_modulus mod d - 1) d 32)
  as [[p m] | ]...
  generalize (p - 32). intro p1.
  destruct (zlt 0 d)...
  destruct (zlt (two_p (32 + p1)) (m * d))...
  destruct (zle (m * d) (two_p (32 + p1) + two_p (p1 + 1)))...
  destruct (zle 0 m)...
  destruct (zlt m Int.modulus)...
  destruct (zle 0 p1)...
  destruct (zlt p1 32)...
  intros EQ; inv EQ.
  split. auto. split. auto. intros.
  replace (32 + p') with (31 + (p' + 1)) by lia.
  apply Zquot_mul; try lia.
  replace (31 + (p' + 1)) with (32 + p') by lia. lia.
  change (Int.min_signed <= n < Int.half_modulus).
  unfold Int.max_signed in H. lia.
Qed.

Lemma divu_mul_params_sound:
  forall d m p,
  divu_mul_params d = Some(p, m) ->
  0 <= m < Int.modulus /\ 0 <= p < 32 /\
  forall n,
  0 <= n < Int.modulus ->
  Z.div n d = Z.div (m * n) (two_p (32 + p)).
Proof with (try discriminate).
  unfold divu_mul_params; intros d m' p'.
  destruct (find_div_mul_params Int.wordsize
               (Int.modulus - Int.modulus mod d - 1) d 32)
  as [[p m] | ]...
  generalize (p - 32); intro p1.
  destruct (zlt 0 d)...
  destruct (zle (two_p (32 + p1)) (m * d))...
  destruct (zle (m * d) (two_p (32 + p1) + two_p p1))...
  destruct (zle 0 m)...
  destruct (zlt m Int.modulus)...
  destruct (zle 0 p1)...
  destruct (zlt p1 32)...
  intros EQ; inv EQ.
  split. auto. split. auto. intros.
  apply Zdiv_mul_pos; try lia. assumption.
Qed.

Lemma divs_mul_shift_gen:
  forall x y m p,
  divs_mul_params (Int.signed y) = Some(p, m) ->
  0 <= m < Int.modulus /\ 0 <= p < 32 /\
  Int.divs x y = Int.add (Int.shr (Int.repr ((Int.signed x * m) / Int.modulus)) (Int.repr p))
                         (Int.shru x (Int.repr 31)).
Proof.
  intros. set (n := Int.signed x). set (d := Int.signed y) in *.
  exploit divs_mul_params_sound; eauto. intros (A & B & C).
  split. auto. split. auto.
  unfold Int.divs. fold n; fold d. rewrite C by (apply Int.signed_range).
  rewrite two_p_is_exp by lia. rewrite <- Zdiv_Zdiv.
  rewrite Int.shru_lt_zero. unfold Int.add. apply Int.eqm_samerepr. apply Int.eqm_add.
  rewrite Int.shr_div_two_p. apply Int.eqm_unsigned_repr_r. apply Int.eqm_refl2.
  rewrite Int.unsigned_repr. f_equal.
  rewrite Int.signed_repr. rewrite Int.modulus_power. f_equal. ring.
  cut (Int.min_signed <= n * m / Int.modulus < Int.half_modulus).
  unfold Int.max_signed; lia.
  apply Zdiv_interval_1. generalize Int.min_signed_neg; lia. apply Int.half_modulus_pos.
  apply Int.modulus_pos.
  split. apply Z.le_trans with (Int.min_signed * m). 
  apply Z.mul_le_mono_nonpos_l. generalize Int.min_signed_neg; lia. lia.
  apply Z.mul_le_mono_nonneg_r. lia. unfold n; generalize (Int.signed_range x); tauto.
  apply Z.le_lt_trans with (Int.half_modulus * m).
  apply Z.mul_le_mono_nonneg_r. tauto. generalize (Int.signed_range x); unfold n, Int.max_signed; lia.
  apply Zmult_lt_compat_l. generalize Int.half_modulus_pos; lia. tauto.
  assert (32 < Int.max_unsigned) by (compute; auto). lia.
  unfold Int.lt; fold n. rewrite Int.signed_zero. destruct (zlt n 0); apply Int.eqm_unsigned_repr.
  apply two_p_gt_ZERO. lia.
  apply two_p_gt_ZERO. lia.
Qed.

Theorem divs_mul_shift_1:
  forall x y m p,
  divs_mul_params (Int.signed y) = Some(p, m) ->
  m < Int.half_modulus ->
  0 <= p < 32 /\
  Int.divs x y = Int.add (Int.shr (Int.mulhs x (Int.repr m)) (Int.repr p))
                         (Int.shru x (Int.repr 31)).
Proof.
  intros. exploit divs_mul_shift_gen; eauto. instantiate (1 := x).
  intros (A & B & C). split. auto. rewrite C.
  unfold Int.mulhs. rewrite Int.signed_repr. auto.
  generalize Int.min_signed_neg; unfold Int.max_signed; lia.
Qed.

Theorem divs_mul_shift_2:
  forall x y m p,
  divs_mul_params (Int.signed y) = Some(p, m) ->
  m >= Int.half_modulus ->
  0 <= p < 32 /\
  Int.divs x y = Int.add (Int.shr (Int.add (Int.mulhs x (Int.repr m)) x) (Int.repr p))
                         (Int.shru x (Int.repr 31)).
Proof.
  intros. exploit divs_mul_shift_gen; eauto. instantiate (1 := x).
  intros (A & B & C). split. auto. rewrite C. f_equal. f_equal.
  rewrite Int.add_signed. unfold Int.mulhs. set (n := Int.signed x).
  transitivity (Int.repr (n * (m - Int.modulus) / Int.modulus + n)).
  apply f_equal.
  replace (n * (m - Int.modulus)) with (n * m +  (-n) * Int.modulus) by ring.
  rewrite Z_div_plus. ring. apply Int.modulus_pos.
  apply Int.eqm_samerepr. apply Int.eqm_add; auto with ints.
  apply Int.eqm_sym. eapply Int.eqm_trans. apply Int.eqm_signed_unsigned.
  apply Int.eqm_unsigned_repr_l. apply Int.eqm_refl2.
  apply (f_equal (fun x => n * x / Int.modulus)).
  rewrite Int.signed_repr_eq. rewrite Z.mod_small by assumption.
  apply zlt_false. assumption.
Qed.

Theorem divu_mul_shift:
  forall x y m p,
  divu_mul_params (Int.unsigned y) = Some(p, m) ->
  0 <= p < 32 /\
  Int.divu x y = Int.shru (Int.mulhu x (Int.repr m)) (Int.repr p).
Proof.
  intros. exploit divu_mul_params_sound; eauto. intros (A & B & C).
  split. auto.
  rewrite Int.shru_div_two_p. rewrite Int.unsigned_repr.
  unfold Int.divu, Int.mulhu. f_equal. rewrite C by apply Int.unsigned_range.
  rewrite two_p_is_exp by lia. rewrite <- Zdiv_Zdiv by (apply two_p_gt_ZERO; lia).
  f_equal. rewrite (Int.unsigned_repr m).
  rewrite Int.unsigned_repr. f_equal. ring.
  cut (0 <= Int.unsigned x * m / Int.modulus < Int.modulus).
  unfold Int.max_unsigned; lia.
  apply Zdiv_interval_1. lia. compute; auto. compute; auto.
  split. simpl. apply Z.mul_nonneg_nonneg. generalize (Int.unsigned_range x); lia. lia.
  apply Z.le_lt_trans with (Int.modulus * m).
  apply Zmult_le_compat_r. generalize (Int.unsigned_range x); lia. lia.
  apply Zmult_lt_compat_l. compute; auto. lia.
  unfold Int.max_unsigned; lia.
  assert (32 < Int.max_unsigned) by (compute; auto). lia.
Qed.

(** Same, for 64-bit integers *)

Lemma divls_mul_params_sound:
  forall d m p,
  divls_mul_params d = Some(p, m) ->
  0 <= m < Int64.modulus /\ 0 <= p < 64 /\
  forall n,
  Int64.min_signed <= n <= Int64.max_signed ->
  Z.quot n d = Z.div (m * n) (two_p (64 + p)) + (if zlt n 0 then 1 else 0).
Proof with (try discriminate).
  unfold divls_mul_params; intros d m' p'.
  destruct (find_div_mul_params Int64.wordsize
               (Int64.half_modulus - Int64.half_modulus mod d - 1) d 64)
  as [[p m] | ]...
  generalize (p - 64). intro p1.
  destruct (zlt 0 d)...
  destruct (zlt (two_p (64 + p1)) (m * d))...
  destruct (zle (m * d) (two_p (64 + p1) + two_p (p1 + 1)))...
  destruct (zle 0 m)...
  destruct (zlt m Int64.modulus)...
  destruct (zle 0 p1)...
  destruct (zlt p1 64)...
  intros EQ; inv EQ.
  split. auto. split. auto. intros.
  replace (64 + p') with (63 + (p' + 1)) by lia.
  apply Zquot_mul; try lia.
  replace (63 + (p' + 1)) with (64 + p') by lia. lia.
  change (Int64.min_signed <= n < Int64.half_modulus).
  unfold Int64.max_signed in H. lia.
Qed.

Lemma divlu_mul_params_sound:
  forall d m p,
  divlu_mul_params d = Some(p, m) ->
  0 <= m < Int64.modulus /\ 0 <= p < 64 /\
  forall n,
  0 <= n < Int64.modulus ->
  Z.div n d = Z.div (m * n) (two_p (64 + p)).
Proof with (try discriminate).
  unfold divlu_mul_params; intros d m' p'.
  destruct (find_div_mul_params Int64.wordsize
               (Int64.modulus - Int64.modulus mod d - 1) d 64)
  as [[p m] | ]...
  generalize (p - 64); intro p1.
  destruct (zlt 0 d)...
  destruct (zle (two_p (64 + p1)) (m * d))...
  destruct (zle (m * d) (two_p (64 + p1) + two_p p1))...
  destruct (zle 0 m)...
  destruct (zlt m Int64.modulus)...
  destruct (zle 0 p1)...
  destruct (zlt p1 64)...
  intros EQ; inv EQ.
  split. auto. split. auto. intros.
  apply Zdiv_mul_pos; try lia. assumption.
Qed.

Remark int64_shr'_div_two_p:
  forall x y, Int64.shr' x y = Int64.repr (Int64.signed x / two_p (Int.unsigned y)).
Proof.
  intros; unfold Int64.shr'. rewrite Zshiftr_div_two_p; auto. generalize (Int.unsigned_range y); lia.
Qed.

Lemma divls_mul_shift_gen:
  forall x y m p,
  divls_mul_params (Int64.signed y) = Some(p, m) ->
  0 <= m < Int64.modulus /\ 0 <= p < 64 /\
  Int64.divs x y = Int64.add (Int64.shr' (Int64.repr ((Int64.signed x * m) / Int64.modulus)) (Int.repr p))
                             (Int64.shru x (Int64.repr 63)).
Proof.
  intros. set (n := Int64.signed x). set (d := Int64.signed y) in *.
  exploit divls_mul_params_sound; eauto. intros (A & B & C).
  split. auto. split. auto.
  unfold Int64.divs. fold n; fold d. rewrite C by (apply Int64.signed_range).
  rewrite two_p_is_exp by lia. rewrite <- Zdiv_Zdiv.
  rewrite Int64.shru_lt_zero. unfold Int64.add. apply Int64.eqm_samerepr. apply Int64.eqm_add.
  rewrite int64_shr'_div_two_p. apply Int64.eqm_unsigned_repr_r. apply Int64.eqm_refl2.
  rewrite Int.unsigned_repr. f_equal.
  rewrite Int64.signed_repr. rewrite Int64.modulus_power. f_equal. ring.
  cut (Int64.min_signed <= n * m / Int64.modulus < Int64.half_modulus).
  unfold Int64.max_signed; lia.
  apply Zdiv_interval_1. generalize Int64.min_signed_neg; lia. apply Int64.half_modulus_pos.
  apply Int64.modulus_pos.
  split. apply Z.le_trans with (Int64.min_signed * m).
  apply Z.mul_le_mono_nonpos_l. generalize Int64.min_signed_neg; lia. lia.
  apply Z.mul_le_mono_nonneg_r. tauto. unfold n; generalize (Int64.signed_range x); tauto.
  apply Z.le_lt_trans with (Int64.half_modulus * m).
  apply Zmult_le_compat_r. generalize (Int64.signed_range x); unfold n, Int64.max_signed; lia. tauto.
  apply Zmult_lt_compat_l. generalize Int64.half_modulus_pos; lia. tauto.
  assert (64 < Int.max_unsigned) by (compute; auto). lia.
  unfold Int64.lt; fold n. rewrite Int64.signed_zero. destruct (zlt n 0); apply Int64.eqm_unsigned_repr.
  apply two_p_gt_ZERO. lia.
  apply two_p_gt_ZERO. lia.
Qed.

Theorem divls_mul_shift_1:
  forall x y m p,
  divls_mul_params (Int64.signed y) = Some(p, m) ->
  m < Int64.half_modulus ->
  0 <= p < 64 /\
  Int64.divs x y = Int64.add (Int64.shr' (Int64.mulhs x (Int64.repr m)) (Int.repr p))
                             (Int64.shru' x (Int.repr 63)).
Proof.
  intros. exploit divls_mul_shift_gen; eauto. instantiate (1 := x).
  intros (A & B & C). split. auto. rewrite C.
  unfold Int64.mulhs. rewrite Int64.signed_repr. auto.
  generalize Int64.min_signed_neg; unfold Int64.max_signed; lia.
Qed.

Theorem divls_mul_shift_2:
  forall x y m p,
  divls_mul_params (Int64.signed y) = Some(p, m) ->
  m >= Int64.half_modulus ->
  0 <= p < 64 /\
  Int64.divs x y = Int64.add (Int64.shr' (Int64.add (Int64.mulhs x (Int64.repr m)) x) (Int.repr p))
                             (Int64.shru' x (Int.repr 63)).
Proof.
  intros. exploit divls_mul_shift_gen; eauto. instantiate (1 := x).
  intros (A & B & C). split. auto. rewrite C. f_equal. f_equal.
  rewrite Int64.add_signed. unfold Int64.mulhs. set (n := Int64.signed x).
  transitivity (Int64.repr (n * (m - Int64.modulus) / Int64.modulus + n)).
  apply f_equal.
  replace (n * (m - Int64.modulus)) with (n * m +  (-n) * Int64.modulus) by ring.
  rewrite Z_div_plus. ring. apply Int64.modulus_pos.
  apply Int64.eqm_samerepr. apply Int64.eqm_add; auto with ints.
  apply Int64.eqm_sym. eapply Int64.eqm_trans. apply Int64.eqm_signed_unsigned.
  apply Int64.eqm_unsigned_repr_l. apply Int64.eqm_refl2.
  apply (f_equal (fun x => n * x / Int64.modulus)).
  rewrite Int64.signed_repr_eq. rewrite Z.mod_small by assumption.
  apply zlt_false. assumption.
Qed.

Remark int64_shru'_div_two_p:
  forall x y, Int64.shru' x y = Int64.repr (Int64.unsigned x / two_p (Int.unsigned y)).
Proof.
  intros; unfold Int64.shru'. rewrite Zshiftr_div_two_p; auto. generalize (Int.unsigned_range y); lia.
Qed.

Theorem divlu_mul_shift:
  forall x y m p,
  divlu_mul_params (Int64.unsigned y) = Some(p, m) ->
  0 <= p < 64 /\
  Int64.divu x y = Int64.shru' (Int64.mulhu x (Int64.repr m)) (Int.repr p).
Proof.
  intros. exploit divlu_mul_params_sound; eauto. intros (A & B & C).
  split. auto.
  rewrite int64_shru'_div_two_p. rewrite Int.unsigned_repr.
  unfold Int64.divu, Int64.mulhu. f_equal. rewrite C by apply Int64.unsigned_range.
  rewrite two_p_is_exp by lia. rewrite <- Zdiv_Zdiv by (apply two_p_gt_ZERO; lia).
  f_equal. rewrite (Int64.unsigned_repr m).
  rewrite Int64.unsigned_repr. f_equal. ring.
  cut (0 <= Int64.unsigned x * m / Int64.modulus < Int64.modulus).
  unfold Int64.max_unsigned; lia.
  apply Zdiv_interval_1. lia. compute; auto. compute; auto.
  split. simpl. apply Z.mul_nonneg_nonneg. generalize (Int64.unsigned_range x); lia. lia.
  apply Z.le_lt_trans with (Int64.modulus * m).
  apply Zmult_le_compat_r. generalize (Int64.unsigned_range x); lia. lia.
  apply Zmult_lt_compat_l. compute; auto. lia.
  unfold Int64.max_unsigned; lia.
  assert (64 < Int.max_unsigned) by (compute; auto). lia.
Qed.

(** * Correctness of the smart constructors for division and modulus *)

Section CMCONSTRS.

Variable prog: program.
Variable hf: helper_functions.
Hypothesis HELPERS: helper_functions_declared prog hf.
Let ge := Genv.globalenv prog.
Variable sp: val.
Variable e: env.
Variable m: mem.

Lemma is_intconst_sound:
  forall v a n le,
  is_intconst a = Some n -> eval_expr ge sp e m le a v -> v = Vint n.
Proof with (try discriminate).
  intros. unfold is_intconst in *.
  destruct a... destruct o... inv H. inv H0. destruct vl; inv H5. auto.
Qed.

Lemma eval_divu_mul:
  forall le x y p M,
  divu_mul_params (Int.unsigned y) = Some(p, M) ->
  nth_error le O = Some (Vint x) ->
  eval_expr ge sp e m le (divu_mul p M) (Vint (Int.divu x y)).
Proof.
  intros. unfold divu_mul. exploit (divu_mul_shift x); eauto. intros [A B].
  assert (C: eval_expr ge sp e m le (Eletvar 0) (Vint x)) by (apply eval_Eletvar; eauto).
  assert (D: eval_expr ge sp e m le (Eop (Ointconst (Int.repr M)) Enil) (Vint (Int.repr M))) by EvalOp.
  exploit eval_mulhu. eexact C. eexact D. intros (v & E & F). simpl in F. inv F. 
  exploit eval_shruimm. eexact E. instantiate (1 := Int.repr p).
  intros [v [P Q]]. simpl in Q.
  replace (Int.ltu (Int.repr p) Int.iwordsize) with true in Q.
  inv Q. rewrite B. auto.
  unfold Int.ltu. rewrite Int.unsigned_repr. rewrite zlt_true; auto. tauto.
  assert (32 < Int.max_unsigned) by (compute; auto). lia.
Qed.

Theorem eval_divuimm:
  forall le e1 x n2 z,
  eval_expr ge sp e m le e1 x ->
  Val.divu x (Vint n2) = Some z ->
  exists v, eval_expr ge sp e m le (divuimm e1 n2) v /\ Val.lessdef z v.
Proof.
  unfold divuimm; intros. generalize H0; intros DIV.
  destruct x; simpl in DIV; try discriminate.
  destruct (Int.eq n2 Int.zero) eqn:Z2; inv DIV.
  destruct (Int.is_power2 n2) as [l | ] eqn:P2.
- erewrite Int.divu_pow2 by eauto.
  replace (Vint (Int.shru i l)) with (Val.shru (Vint i) (Vint l)).
  apply eval_shruimm; auto.
  simpl. erewrite Int.is_power2_range; eauto.
- destruct (Compopts.optim_for_size tt).
  + eapply eval_divu_base; eauto. EvalOp.
  + destruct (divu_mul_params (Int.unsigned n2)) as [[p M] | ] eqn:PARAMS.
    * exists (Vint (Int.divu i n2)); split; auto.
      econstructor; eauto. eapply eval_divu_mul; eauto.
    * eapply eval_divu_base; eauto. EvalOp.
Qed.

Theorem eval_divu:
  forall le a b x y z,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.divu x y = Some z ->
  exists v, eval_expr ge sp e m le (divu a b) v /\ Val.lessdef z v.
Proof.
  unfold divu; intros.
  destruct (is_intconst b) as [n2|] eqn:B.
- exploit is_intconst_sound; eauto. intros EB; clear B.
  destruct (is_intconst a) as [n1|] eqn:A.
+ exploit is_intconst_sound; eauto. intros EA; clear A.
  destruct (Int.eq n2 Int.zero) eqn:Z. eapply eval_divu_base; eauto. 
  subst. simpl in H1. rewrite Z in H1; inv H1.
  TrivialExists.
+ subst. eapply eval_divuimm; eauto.
- eapply eval_divu_base; eauto.
Qed.

Lemma eval_mod_from_div:
  forall le a n x y,
  eval_expr ge sp e m le a (Vint y) ->
  nth_error le O = Some (Vint x) ->
  eval_expr ge sp e m le (mod_from_div a n) (Vint (Int.sub x (Int.mul y n))).
Proof.
  unfold mod_from_div; intros.
  exploit eval_mulimm; eauto. instantiate (1 := n). intros [v [A B]].
  simpl in B. inv B. EvalOp.
Qed.

Theorem eval_moduimm:
  forall le e1 x n2 z,
  eval_expr ge sp e m le e1 x ->
  Val.modu x (Vint n2) = Some z ->
  exists v, eval_expr ge sp e m le (moduimm e1 n2) v /\ Val.lessdef z v.
Proof.
  unfold moduimm; intros. generalize H0; intros MOD.
  destruct x; simpl in MOD; try discriminate.
  destruct (Int.eq n2 Int.zero) eqn:Z2; inv MOD.
  destruct (Int.is_power2 n2) as [l | ] eqn:P2.
- erewrite Int.modu_and by eauto.
  change (Vint (Int.and i (Int.sub n2 Int.one)))
    with (Val.and (Vint i) (Vint (Int.sub n2 Int.one))).
  apply eval_andimm. auto.
- destruct (Compopts.optim_for_size tt).
  + eapply eval_modu_base; eauto. EvalOp.
  + destruct (divu_mul_params (Int.unsigned n2)) as [[p M] | ] eqn:PARAMS.
     * econstructor; split.
      econstructor; eauto. eapply eval_mod_from_div.
      eapply eval_divu_mul; eauto. simpl; eauto. simpl; eauto.
      rewrite Int.modu_divu. auto.
      red; intros; subst n2; discriminate.
     * eapply eval_modu_base; eauto. EvalOp.
Qed.

Theorem eval_modu:
  forall le a b x y z,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.modu x y = Some z ->
  exists v, eval_expr ge sp e m le (modu a b) v /\ Val.lessdef z v.
Proof.
  unfold modu; intros.
  destruct (is_intconst b) as [n2|] eqn:B.
- exploit is_intconst_sound; eauto. intros EB; clear B.
  destruct (is_intconst a) as [n1|] eqn:A.
+ exploit is_intconst_sound; eauto. intros EA; clear A.
  destruct (Int.eq n2 Int.zero) eqn:Z. eapply eval_modu_base; eauto. 
  subst. simpl in H1. rewrite Z in H1; inv H1.
  TrivialExists.
+ subst. eapply eval_moduimm; eauto.
- eapply eval_modu_base; eauto.
Qed.

Lemma eval_divs_mul:
  forall le x y p M,
  divs_mul_params (Int.signed y) = Some(p, M) ->
  nth_error le O = Some (Vint x) ->
  eval_expr ge sp e m le (divs_mul p M) (Vint (Int.divs x y)).
Proof.
  intros. unfold divs_mul.
  assert (C: eval_expr ge sp e m le (Eletvar 0) (Vint x)) by (apply eval_Eletvar; eauto).
  assert (D: eval_expr ge sp e m le (Eop (Ointconst (Int.repr M)) Enil) (Vint (Int.repr M))) by EvalOp.
  exploit eval_mulhs. eexact C. eexact D. intros (v & X & F). simpl in F; inv F.
  exploit eval_shruimm. eexact C. instantiate (1 := Int.repr (Int.zwordsize - 1)).
  intros [v1 [Y LD]]. simpl in LD.
  change (Int.ltu (Int.repr 31) Int.iwordsize) with true in LD.
  simpl in LD. inv LD.
  assert (RANGE: 0 <= p < 32 -> Int.ltu (Int.repr p) Int.iwordsize = true).
  { intros. unfold Int.ltu. rewrite Int.unsigned_repr. rewrite zlt_true by tauto. auto.
    assert (32 < Int.max_unsigned) by (compute; auto). lia. }
  destruct (zlt M Int.half_modulus).
- exploit (divs_mul_shift_1 x); eauto. intros [A B].
  exploit eval_shrimm. eexact X. instantiate (1 := Int.repr p). intros [v1 [Z LD]].
  simpl in LD. rewrite RANGE in LD by auto. inv LD.
  exploit eval_add. eexact Z. eexact Y. intros [v1 [W LD]].
  simpl in LD. inv LD.
  rewrite B. exact W.
- exploit (divs_mul_shift_2 x); eauto. intros [A B].
  exploit eval_add. eexact X. eexact C. intros [v1 [Z LD]].
  simpl in LD. inv LD.
  exploit eval_shrimm. eexact Z. instantiate (1 := Int.repr p). intros [v1 [U LD]].
  simpl in LD. rewrite RANGE in LD by auto. inv LD.
  exploit eval_add. eexact U. eexact Y. intros [v1 [W LD]].
  simpl in LD. inv LD.
  rewrite B. exact W.
Qed.

Theorem eval_divsimm:
  forall le e1 x n2 z,
  eval_expr ge sp e m le e1 x ->
  Val.divs x (Vint n2) = Some z ->
  exists v, eval_expr ge sp e m le (divsimm e1 n2) v /\ Val.lessdef z v.
Proof.
  unfold divsimm; intros. generalize H0; intros DIV.
  destruct x; simpl in DIV; try discriminate.
  destruct (Int.eq n2 Int.zero
            || Int.eq i (Int.repr Int.min_signed) && Int.eq n2 Int.mone) eqn:Z2; inv DIV.
  destruct (Int.is_power2 n2) as [l | ] eqn:P2.
- destruct (Int.ltu l (Int.repr 31)) eqn:LT31.
  + eapply eval_shrximm; eauto. eapply Val.divs_pow2; eauto.
  + eapply eval_divs_base; eauto. EvalOp.
- destruct (Compopts.optim_for_size tt).
  + eapply eval_divs_base; eauto. EvalOp.
  + destruct (divs_mul_params (Int.signed n2)) as [[p M] | ] eqn:PARAMS.
    * exists (Vint (Int.divs i n2)); split; auto.
      econstructor; eauto. eapply eval_divs_mul; eauto.
    * eapply eval_divs_base; eauto. EvalOp.
Qed.

Theorem eval_divs:
  forall le a b x y z,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.divs x y = Some z ->
  exists v, eval_expr ge sp e m le (divs a b) v /\ Val.lessdef z v.
Proof.
  unfold divs; intros.
  destruct (is_intconst b) as [n2|] eqn:B.
- exploit is_intconst_sound; eauto. intros EB; clear B.
  destruct (is_intconst a) as [n1|] eqn:A.
+ exploit is_intconst_sound; eauto. intros EA; clear A.
  destruct (Int.eq n2 Int.zero) eqn:Z. eapply eval_divs_base; eauto.
  subst. simpl in H1. 
  destruct (Int.eq n2 Int.zero || Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone); inv H1.
  TrivialExists.
+ subst. eapply eval_divsimm; eauto.
- eapply eval_divs_base; eauto.
Qed.

Theorem eval_modsimm:
  forall le e1 x n2 z,
  eval_expr ge sp e m le e1 x ->
  Val.mods x (Vint n2) = Some z ->
  exists v, eval_expr ge sp e m le (modsimm e1 n2) v /\ Val.lessdef z v.
Proof.
  unfold modsimm; intros.
  exploit Val.mods_divs; eauto. intros [y [A B]].
  generalize A; intros DIV.
  destruct x; simpl in DIV; try discriminate.
  destruct (Int.eq n2 Int.zero
            || Int.eq i (Int.repr Int.min_signed) && Int.eq n2 Int.mone) eqn:Z2; inv DIV.
  destruct (Int.is_power2 n2) as [l | ] eqn:P2.
- destruct (Int.ltu l (Int.repr 31)) eqn:LT31.
  + exploit (eval_shrximm prog sp e m (Vint i :: le) (Eletvar O)).
    constructor. simpl; eauto. eapply Val.divs_pow2; eauto.
    intros [v1 [X LD]]. inv LD.
    econstructor; split. econstructor. eauto.
    apply eval_mod_from_div. eexact X. simpl; eauto.
    simpl. auto.
  + eapply eval_mods_base; eauto. EvalOp.
- destruct (Compopts.optim_for_size tt).
  + eapply eval_mods_base; eauto. EvalOp.
  + destruct (divs_mul_params (Int.signed n2)) as [[p M] | ] eqn:PARAMS.
    * econstructor; split.
      econstructor. eauto. apply eval_mod_from_div with (x := i); auto.
      eapply eval_divs_mul with (x := i); eauto.
      simpl. auto.
    * eapply eval_mods_base; eauto. EvalOp.
Qed.

Theorem eval_mods:
  forall le a b x y z,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.mods x y = Some z ->
  exists v, eval_expr ge sp e m le (mods a b) v /\ Val.lessdef z v.
Proof.
  unfold mods; intros.
  destruct (is_intconst b) as [n2|] eqn:B.
- exploit is_intconst_sound; eauto. intros EB; clear B.
  destruct (is_intconst a) as [n1|] eqn:A.
+ exploit is_intconst_sound; eauto. intros EA; clear A.
  destruct (Int.eq n2 Int.zero) eqn:Z. eapply eval_mods_base; eauto.
  subst. simpl in H1. 
  destruct (Int.eq n2 Int.zero || Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone); inv H1.
  TrivialExists.
+ subst. eapply eval_modsimm; eauto.
- eapply eval_mods_base; eauto.
Qed.

Lemma eval_modl_from_divl:
  forall le a n x y,
  eval_expr ge sp e m le a (Vlong y) ->
  nth_error le O = Some (Vlong x) ->
  eval_expr ge sp e m le (modl_from_divl a n) (Vlong (Int64.sub x (Int64.mul y n))).
Proof.
  unfold modl_from_divl; intros.
  exploit eval_mullimm; eauto. instantiate (1 := n). intros (v1 & A1 & B1).
  assert (A0: eval_expr ge sp e m le (Eletvar O) (Vlong x)) by (constructor; auto).
  exploit eval_subl ; auto ; try apply HELPERS. exact A0. exact A1.
  intros (v2 & A2 & B2).
  simpl in B1; inv B1. simpl in B2; inv B2. exact A2.
Qed.

Lemma eval_divlu_mull:
  forall le x y p M,
  divlu_mul_params (Int64.unsigned y) = Some(p, M) ->
  nth_error le O = Some (Vlong x) ->
  eval_expr ge sp e m le (divlu_mull p M) (Vlong (Int64.divu x y)).
Proof.
  intros. unfold divlu_mull. exploit (divlu_mul_shift x); eauto. intros [A B].
  assert (A0: eval_expr ge sp e m le (Eletvar O) (Vlong x)) by (constructor; auto).
  exploit eval_mullhu. try apply HELPERS. eexact A0. instantiate (1 := Int64.repr M). intros (v1 & A1 & B1).
  exploit eval_shrluimm. try apply HELPERS. eexact A1. instantiate (1 := Int.repr p). intros (v2 & A2 & B2).
  simpl in B1; inv B1. simpl in B2. replace (Int.ltu (Int.repr p) Int64.iwordsize') with true in B2. inv B2.
  rewrite B. assumption.
  unfold Int.ltu. rewrite Int.unsigned_repr. rewrite zlt_true; auto. tauto.
  assert (64 < Int.max_unsigned) by (compute; auto). lia.
Qed.

Theorem eval_divlu:
  forall le a b x y z,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.divlu x y = Some z ->
  exists v, eval_expr ge sp e m le (divlu a b) v /\ Val.lessdef z v.
Proof.
  unfold divlu; intros.
  destruct (is_longconst b) as [n2|] eqn:N2.
- assert (y = Vlong n2) by (eapply is_longconst_sound; eauto). subst y.
  destruct (is_longconst a) as [n1|] eqn:N1.
+ assert (x = Vlong n1) by (eapply is_longconst_sound; eauto). subst x.
  simpl in H1. destruct (Int64.eq n2 Int64.zero); inv H1.
  econstructor; split. apply eval_longconst. constructor.
+ destruct (Int64.is_power2' n2) as [l|] eqn:POW.
* exploit Val.divlu_pow2; eauto. intros EQ; subst z. apply eval_shrluimm; auto.
* destruct (Compopts.optim_for_size tt). eapply eval_divlu_base; eauto.
  (* destruct (divlu_mul_params (Int64.unsigned n2)) as [[p M]|] eqn:PARAMS.
** destruct x; simpl in H1; try discriminate.
   destruct (Int64.eq n2 Int64.zero); inv H1.
   econstructor; split; eauto. econstructor. eauto. eapply eval_divlu_mull; eauto. *) (* FIXME - K1 hack *)
** eapply eval_divlu_base; eauto.
- eapply eval_divlu_base; eauto.
Qed.

Theorem eval_modlu:
  forall le a b x y z,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.modlu x y = Some z ->
  exists v, eval_expr ge sp e m le (modlu a b) v /\ Val.lessdef z v.
Proof.
  unfold modlu; intros.
  destruct (is_longconst b) as [n2|] eqn:N2.
- assert (y = Vlong n2) by (eapply is_longconst_sound; eauto). subst y.
  destruct (is_longconst a) as [n1|] eqn:N1.
+ assert (x = Vlong n1) by (eapply is_longconst_sound; eauto). subst x.
  simpl in H1. destruct (Int64.eq n2 Int64.zero); inv H1.
  econstructor; split. apply eval_longconst. constructor.
+ destruct (Int64.is_power2 n2) as [l|] eqn:POW.
* exploit Val.modlu_pow2; eauto. intros EQ; subst z. eapply eval_andl; eauto. apply eval_longconst.
* destruct (Compopts.optim_for_size tt). eapply eval_modlu_base; eauto.
  (* destruct (divlu_mul_params (Int64.unsigned n2)) as [[p M]|] eqn:PARAMS.
** destruct x; simpl in H1; try discriminate.
   destruct (Int64.eq n2 Int64.zero) eqn:Z; inv H1.
   rewrite Int64.modu_divu.
    econstructor; split; eauto. econstructor. eauto.
    eapply eval_modl_from_divl; eauto.
    eapply eval_divlu_mull; eauto.
    red; intros; subst n2; discriminate Z. *)
** eapply eval_modlu_base; eauto.
- eapply eval_modlu_base; eauto.
Qed.

Lemma eval_divls_mull:
  forall le x y p M,
  divls_mul_params (Int64.signed y) = Some(p, M) ->
  nth_error le O = Some (Vlong x) ->
  eval_expr ge sp e m le (divls_mull p M) (Vlong (Int64.divs x y)).
Proof.
  intros. unfold divls_mull.
  assert (A0: eval_expr ge sp e m le (Eletvar O) (Vlong x)).
  { constructor; auto. }
  exploit eval_mullhs. try apply HELPERS. eexact A0. instantiate (1 := Int64.repr M).  intros (v1 & A1 & B1).
  exploit eval_addl. auto. eexact A1. eexact A0. intros (v2 & A2 & B2).
  exploit eval_shrluimm. try apply HELPERS. eexact A0. instantiate (1 := Int.repr 63). intros (v3 & A3 & B3).
  set (a4 := if zlt M Int64.half_modulus
             then mullhs (Eletvar 0) (Int64.repr M)
             else addl (mullhs (Eletvar 0) (Int64.repr M)) (Eletvar 0)).
  set (v4 := if zlt M Int64.half_modulus then v1 else v2).
  assert (A4: eval_expr ge sp e m le a4 v4).
  { unfold a4, v4; destruct (zlt M Int64.half_modulus); auto. }
  exploit eval_shrlimm. try apply HELPERS. eexact A4. instantiate (1 := Int.repr p). intros (v5 & A5 & B5).
  exploit eval_addl. auto. eexact A5. eexact A3. intros (v6 & A6 & B6).
  assert (RANGE: forall x, 0 <= x < 64 -> Int.ltu (Int.repr x) Int64.iwordsize' = true).
  { intros. unfold Int.ltu. rewrite Int.unsigned_repr. rewrite zlt_true by tauto. auto.
    assert (64 < Int.max_unsigned) by (compute; auto). lia. }
  simpl in B1; inv B1.
  simpl in B2; inv B2.
  simpl in B3; rewrite RANGE in B3 by lia; inv B3.
  destruct (zlt M Int64.half_modulus).
- exploit (divls_mul_shift_1 x); eauto. intros [A B].
  simpl in B5; rewrite RANGE in B5 by auto; inv B5.
  simpl in B6; inv B6.
  rewrite B; exact A6.
- exploit (divls_mul_shift_2 x); eauto. intros [A B].
  simpl in B5; rewrite RANGE in B5 by auto; inv B5.
  simpl in B6; inv B6.
  rewrite B; exact A6.
Qed.

Theorem eval_divls:
  forall le a b x y z,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.divls x y = Some z ->
  exists v, eval_expr ge sp e m le (divls a b) v /\ Val.lessdef z v.
Proof.
  unfold divls; intros.
  destruct (is_longconst b) as [n2|] eqn:N2.
- assert (y = Vlong n2) by (eapply is_longconst_sound; eauto). subst y.
  destruct (is_longconst a) as [n1|] eqn:N1.
+ assert (x = Vlong n1) by (eapply is_longconst_sound; eauto). subst x.
  simpl in H1.
  destruct (Int64.eq n2 Int64.zero
         || Int64.eq n1 (Int64.repr Int64.min_signed) && Int64.eq n2 Int64.mone); inv H1.
  econstructor; split. apply eval_longconst. constructor.
+ destruct (Int64.is_power2' n2) as [l|] eqn:POW.
* destruct (Int.ltu l (Int.repr 63)) eqn:LT.
** exploit Val.divls_pow2; eauto. intros EQ. eapply eval_shrxlimm; eauto.
** eapply eval_divls_base; eauto.
* destruct (Compopts.optim_for_size tt). eapply eval_divls_base; eauto.
  (* destruct (divls_mul_params (Int64.signed n2)) as [[p M]|] eqn:PARAMS.
** destruct x; simpl in H1; try discriminate.
   destruct (Int64.eq n2 Int64.zero
             || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq n2 Int64.mone); inv H1.
   econstructor; split; eauto. econstructor. eauto.
   eapply eval_divls_mull; eauto. *)
** eapply eval_divls_base; eauto.
- eapply eval_divls_base; eauto.
Qed.

Theorem eval_modls:
  forall le a b x y z,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.modls x y = Some z ->
  exists v, eval_expr ge sp e m le (modls a b) v /\ Val.lessdef z v.
Proof.
  unfold modls; intros.
  destruct (is_longconst b) as [n2|] eqn:N2.
- assert (y = Vlong n2) by (eapply is_longconst_sound; eauto). subst y.
  destruct (is_longconst a) as [n1|] eqn:N1.
+ assert (x = Vlong n1) by (eapply is_longconst_sound; eauto). subst x.
  simpl in H1.
  destruct (Int64.eq n2 Int64.zero
         || Int64.eq n1 (Int64.repr Int64.min_signed) && Int64.eq n2 Int64.mone); inv H1.
  econstructor; split. apply eval_longconst. constructor.
+ destruct (Int64.is_power2' n2) as [l|] eqn:POW.
* destruct (Int.ltu l (Int.repr 63)) eqn:LT.
**destruct x; simpl in H1; try discriminate.
  destruct (Int64.eq n2 Int64.zero
         || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq n2 Int64.mone) eqn:D; inv H1.
  assert (Val.divls (Vlong i) (Vlong n2) = Some (Vlong (Int64.divs i n2))).
  { simpl; rewrite D; auto. }
  exploit Val.divls_pow2; eauto. intros EQ.
  set (le' := Vlong i :: le).
  assert (A: eval_expr ge sp e m le' (Eletvar O) (Vlong i)) by (constructor; auto).
  exploit eval_shrxlimm; eauto. intros (v1 & A1 & B1). inv B1.
  econstructor; split.
  econstructor. eauto. eapply eval_modl_from_divl. eexact A1. reflexivity.
  rewrite Int64.mods_divs. auto.
**eapply eval_modls_base; eauto.
* destruct (Compopts.optim_for_size tt). eapply eval_modls_base; eauto.
  (* destruct (divls_mul_params (Int64.signed n2)) as [[p M]|] eqn:PARAMS.
** destruct x; simpl in H1; try discriminate.
   destruct (Int64.eq n2 Int64.zero
             || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq n2 Int64.mone); inv H1.
   econstructor; split; eauto. econstructor. eauto.
   rewrite Int64.mods_divs.
   eapply eval_modl_from_divl; auto.
   eapply eval_divls_mull; eauto. *)
** eapply eval_modls_base; eauto.
- eapply eval_modls_base; eauto.
Qed.

(** * Floating-point division *)

Theorem eval_divf:
  forall le a b x y,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  exists v, eval_expr ge sp e m le (divf a b) v /\ Val.lessdef (Val.divf x y) v.
Proof.
  intros until y. unfold divf. destruct (divf_match b); intros.
- unfold divfimm. destruct (Float.exact_inverse n2) as [n2' | ] eqn:EINV.
  + inv H0. inv H4. simpl in H6. inv H6. econstructor; split.
    repeat (econstructor; eauto). 
    destruct x; simpl; auto. erewrite Float.div_mul_inverse; eauto.
  + apply eval_divf_base; trivial.
- apply eval_divf_base; trivial.
Qed.

Theorem eval_divfs:
  forall le a b x y,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  exists v, eval_expr ge sp e m le (divfs a b) v /\ Val.lessdef (Val.divfs x y) v.
Proof.
  intros until y. unfold divfs. destruct (divfs_match b); intros.
- unfold divfsimm. destruct (Float32.exact_inverse n2) as [n2' | ] eqn:EINV.
  + inv H0. inv H4. simpl in H6. inv H6. econstructor; split.
    repeat (econstructor; eauto). 
    destruct x; simpl; auto. erewrite Float32.div_mul_inverse; eauto.
  + apply eval_divfs_base; trivial.
- apply eval_divfs_base; trivial.
Qed.

End CMCONSTRS.