aboutsummaryrefslogtreecommitdiffstats
path: root/backend/Stackingproof.v
blob: 6d793961904f75d33982965c08266ac9e70a7d37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Correctness proof for the translation from Linear to Mach. *)

(** This file proves semantic preservation for the [Stacking] pass. *)

Require Import Coqlib Errors.
Require Import Integers AST Linking.
Require Import Values Memory Separation Events Globalenvs Smallstep.
Require Import LTL Op Locations Linear Mach.
Require Import Bounds Conventions Stacklayout Lineartyping.
Require Import Stacking.

Local Open Scope sep_scope.

Definition match_prog (p: Linear.program) (tp: Mach.program) :=
  match_program (fun _ f tf => transf_fundef f = OK tf) eq p tp.

Lemma transf_program_match:
  forall p tp, transf_program p = OK tp -> match_prog p tp.
Proof.
  intros. eapply match_transform_partial_program; eauto.
Qed.

(** * Basic properties of the translation *)

Lemma typesize_typesize:
  forall ty, AST.typesize ty = 4 * Locations.typesize ty.
Proof.
  destruct ty; auto.
Qed.

Remark size_type_chunk:
  forall ty, size_chunk (chunk_of_type ty) = AST.typesize ty.
Proof.
  destruct ty; reflexivity.
Qed.

Remark align_type_chunk:
  forall ty, align_chunk (chunk_of_type ty) = 4 * Locations.typealign ty.
Proof.
  destruct ty; reflexivity.
Qed.

Lemma slot_outgoing_argument_valid:
  forall f ofs ty sg,
  In (S Outgoing ofs ty) (regs_of_rpairs (loc_arguments sg)) -> slot_valid f Outgoing ofs ty = true.
Proof.
  intros. exploit loc_arguments_acceptable_2; eauto. intros [A B].
  unfold slot_valid. unfold proj_sumbool.
  rewrite zle_true by lia.
  rewrite pred_dec_true by auto.
  auto.
Qed.

Lemma load_result_inject:
  forall j ty v v',
  Val.inject j v v' -> Val.has_type v ty -> Val.inject j v (Val.load_result (chunk_of_type ty) v').
Proof.
  intros until v'; unfold Val.has_type, Val.load_result; destruct Archi.ptr64;
  destruct 1; intros; auto; destruct ty; simpl;
  try contradiction; try discriminate; econstructor; eauto.
Qed.

Section PRESERVATION.

Variable return_address_offset: Mach.function -> Mach.code -> ptrofs -> Prop.

Hypothesis return_address_offset_exists:
  forall f sg ros c,
  is_tail (Mcall sg ros :: c) (fn_code f) ->
  exists ofs, return_address_offset f c ofs.

Let step := Mach.step return_address_offset.

Variable prog: Linear.program.
Variable tprog: Mach.program.
Hypothesis TRANSF: match_prog prog tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.

Section FRAME_PROPERTIES.

Variable f: Linear.function.
Let b := function_bounds f.
Let fe := make_env b.
Variable tf: Mach.function.
Hypothesis TRANSF_F: transf_function f = OK tf.

Lemma unfold_transf_function:
  tf = Mach.mkfunction
         f.(Linear.fn_sig)
         (transl_body f fe)
         fe.(fe_size)
         (Ptrofs.repr fe.(fe_ofs_link))
         (Ptrofs.repr fe.(fe_ofs_retaddr)).
Proof.
  generalize TRANSF_F. unfold transf_function.
  destruct (wt_function f); simpl negb.
  destruct (zlt Ptrofs.max_unsigned (fe_size (make_env (function_bounds f)))).
  intros; discriminate.
  intros. unfold fe. unfold b. congruence.
  intros; discriminate.
Qed.

Lemma transf_function_well_typed:
  wt_function f = true.
Proof.
  generalize TRANSF_F. unfold transf_function.
  destruct (wt_function f); simpl negb. auto. intros; discriminate.
Qed.

Lemma size_no_overflow: fe.(fe_size) <= Ptrofs.max_unsigned.
Proof.
  generalize TRANSF_F. unfold transf_function.
  destruct (wt_function f); simpl negb.
  destruct (zlt Ptrofs.max_unsigned (fe_size (make_env (function_bounds f)))).
  intros; discriminate.
  intros. unfold fe. unfold b. lia.
  intros; discriminate.
Qed.

Remark bound_stack_data_stacksize:
  f.(Linear.fn_stacksize) <= b.(bound_stack_data).
Proof.
  unfold b, function_bounds, bound_stack_data. apply Z.le_max_l.
Qed.

(** * Memory assertions used to describe the contents of stack frames *)

Local Opaque Z.add Z.mul Z.divide.

(** Accessing the stack frame using [load_stack] and [store_stack]. *)

Lemma contains_get_stack:
  forall spec m ty sp ofs,
  m |= contains (chunk_of_type ty) sp ofs spec ->
  exists v, load_stack m (Vptr sp Ptrofs.zero) ty (Ptrofs.repr ofs) = Some v /\ spec v.
Proof.
  intros. unfold load_stack.
  replace (Val.offset_ptr (Vptr sp Ptrofs.zero) (Ptrofs.repr ofs)) with (Vptr sp (Ptrofs.repr ofs)).
  eapply loadv_rule; eauto.
  simpl. rewrite Ptrofs.add_zero_l; auto.
Qed.

Lemma hasvalue_get_stack:
  forall ty m sp ofs v,
  m |= hasvalue (chunk_of_type ty) sp ofs v ->
  load_stack m (Vptr sp Ptrofs.zero) ty (Ptrofs.repr ofs) = Some v.
Proof.
  intros. exploit contains_get_stack; eauto. intros (v' & A & B). congruence.
Qed.

Lemma contains_set_stack:
  forall (spec: val -> Prop) v spec1 m ty sp ofs P,
  m |= contains (chunk_of_type ty) sp ofs spec1 ** P ->
  spec (Val.load_result (chunk_of_type ty) v) ->
  exists m',
      store_stack m (Vptr sp Ptrofs.zero) ty (Ptrofs.repr ofs) v = Some m'
  /\ m' |= contains (chunk_of_type ty) sp ofs spec ** P.
Proof.
  intros. unfold store_stack.
  replace (Val.offset_ptr (Vptr sp Ptrofs.zero) (Ptrofs.repr ofs)) with (Vptr sp (Ptrofs.repr ofs)).
  eapply storev_rule; eauto.
  simpl. rewrite Ptrofs.add_zero_l; auto.
Qed.

(** [contains_locations j sp pos bound sl ls] is a separation logic assertion
  that holds if the memory area at block [sp], offset [pos], size [4 * bound],
  reflects the values of the stack locations of kind [sl] given by the
  location map [ls], up to the memory injection [j].

  Two such [contains_locations] assertions will be used later, one to
  reason about the values of [Local] slots, the other about the values of
  [Outgoing] slots. *)

Program Definition contains_locations (j: meminj) (sp: block) (pos bound: Z) (sl: slot) (ls: locset) : massert := {|
  m_pred := fun m =>
    (8 | pos) /\ 0 <= pos /\ pos + 4 * bound <= Ptrofs.modulus /\
    Mem.range_perm m sp pos (pos + 4 * bound) Cur Freeable /\
    forall ofs ty, 0 <= ofs -> ofs + typesize ty <= bound -> (typealign ty | ofs) ->
    exists v, Mem.load (chunk_of_type ty) m sp (pos + 4 * ofs) = Some v
           /\ Val.inject j (ls (S sl ofs ty)) v;
  m_footprint := fun b ofs =>
    b = sp /\ pos <= ofs < pos + 4 * bound
|}.
Next Obligation.
  intuition auto.
- red; intros. eapply Mem.perm_unchanged_on; eauto. simpl; auto.
- exploit H4; eauto. intros (v & A & B). exists v; split; auto.
  eapply Mem.load_unchanged_on; eauto.
  simpl; intros. rewrite size_type_chunk, typesize_typesize in H8.
  split; auto. lia.
Qed.
Next Obligation.
  eauto with mem.
Qed.

Remark valid_access_location:
  forall m sp pos bound ofs ty p,
  (8 | pos) ->
  Mem.range_perm m sp pos (pos + 4 * bound) Cur Freeable ->
  0 <= ofs -> ofs + typesize ty <= bound -> (typealign ty | ofs) ->
  Mem.valid_access m (chunk_of_type ty) sp (pos + 4 * ofs) p.
Proof.
  intros; split.
- red; intros. apply Mem.perm_implies with Freeable; auto with mem.
  apply H0. rewrite size_type_chunk, typesize_typesize in H4. lia.
- rewrite align_type_chunk. apply Z.divide_add_r.
  apply Z.divide_trans with 8; auto.
  exists (8 / (4 * typealign ty)); destruct ty; reflexivity.
  apply Z.mul_divide_mono_l. auto.
Qed.

Lemma get_location:
  forall m j sp pos bound sl ls ofs ty,
  m |= contains_locations j sp pos bound sl ls ->
  0 <= ofs -> ofs + typesize ty <= bound -> (typealign ty | ofs) ->
  exists v,
     load_stack m (Vptr sp Ptrofs.zero) ty (Ptrofs.repr (pos + 4 * ofs)) = Some v
  /\ Val.inject j (ls (S sl ofs ty)) v.
Proof.
  intros. destruct H as (D & E & F & G & H).
  exploit H; eauto. intros (v & U & V). exists v; split; auto.
  unfold load_stack; simpl. rewrite Ptrofs.add_zero_l, Ptrofs.unsigned_repr; auto.
  unfold Ptrofs.max_unsigned. generalize (typesize_pos ty). lia.
Qed.

Lemma set_location:
  forall m j sp pos bound sl ls P ofs ty v v',
  m |= contains_locations j sp pos bound sl ls ** P ->
  0 <= ofs -> ofs + typesize ty <= bound -> (typealign ty | ofs) ->
  Val.inject j v v' ->
  exists m',
     store_stack m (Vptr sp Ptrofs.zero) ty (Ptrofs.repr (pos + 4 * ofs)) v' = Some m'
  /\ m' |= contains_locations j sp pos bound sl (Locmap.set (S sl ofs ty) v ls) ** P.
Proof.
  intros. destruct H as (A & B & C). destruct A as (D & E & F & G & H).
  edestruct Mem.valid_access_store as [m' STORE].
  eapply valid_access_location; eauto.
  assert (PERM: Mem.range_perm m' sp pos (pos + 4 * bound) Cur Freeable).
  { red; intros; eauto with mem. }
  exists m'; split.
- unfold store_stack; simpl. rewrite Ptrofs.add_zero_l, Ptrofs.unsigned_repr; eauto.
  unfold Ptrofs.max_unsigned. generalize (typesize_pos ty). lia.
- simpl. intuition auto.
+ unfold Locmap.set.
  destruct (Loc.eq (S sl ofs ty) (S sl ofs0 ty0)); [|destruct (Loc.diff_dec (S sl ofs ty) (S sl ofs0 ty0))].
* (* same location *)
  inv e. rename ofs0 into ofs. rename ty0 into ty.
  exists (Val.load_result (chunk_of_type ty) v'); split.
  eapply Mem.load_store_similar_2; eauto. lia.
  apply Val.load_result_inject; auto.
* (* different locations *)
  exploit H; eauto. intros (v0 & X & Y). exists v0; split; auto.
  rewrite <- X; eapply Mem.load_store_other; eauto.
  destruct d. congruence. right. rewrite ! size_type_chunk, ! typesize_typesize. lia.
* (* overlapping locations *)
  destruct (Mem.valid_access_load m' (chunk_of_type ty0) sp (pos + 4 * ofs0)) as [v'' LOAD].
  apply Mem.valid_access_implies with Writable; auto with mem.
  eapply valid_access_location; eauto.
  exists v''; auto.
+ apply (m_invar P) with m; auto.
  eapply Mem.store_unchanged_on; eauto.
  intros i; rewrite size_type_chunk, typesize_typesize. intros; red; intros.
  eelim C; eauto. simpl. split; auto. lia.
Qed.

Lemma initial_locations:
  forall j sp pos bound P sl ls m,
  m |= range sp pos (pos + 4 * bound) ** P ->
  (8 | pos) ->
  (forall ofs ty, ls (S sl ofs ty) = Vundef) ->
  m |= contains_locations j sp pos bound sl ls ** P.
Proof.
  intros. destruct H as (A & B & C). destruct A as (D & E & F). split.
- simpl; intuition auto. red; intros; eauto with mem.
  destruct (Mem.valid_access_load m (chunk_of_type ty) sp (pos + 4 * ofs)) as [v LOAD].
  eapply valid_access_location; eauto.
  red; intros; eauto with mem.
  exists v; split; auto. rewrite H1; auto.
- split; assumption.
Qed.

Lemma contains_locations_exten:
  forall ls ls' j sp pos bound sl,
  (forall ofs ty, Val.lessdef (ls' (S sl ofs ty)) (ls (S sl ofs ty))) ->
  massert_imp (contains_locations j sp pos bound sl ls)
              (contains_locations j sp pos bound sl ls').
Proof.
  intros; split; simpl; intros; auto.
  intuition auto. exploit H5; eauto. intros (v & A & B). exists v; split; auto. 
  specialize (H ofs ty). inv H. congruence. auto. 
Qed.

Lemma contains_locations_incr:
  forall j j' sp pos bound sl ls,
  inject_incr j j' ->
  massert_imp (contains_locations j sp pos bound sl ls)
              (contains_locations j' sp pos bound sl ls).
Proof.
  intros; split; simpl; intros; auto.
  intuition auto. exploit H5; eauto. intros (v & A & B). exists v; eauto.
Qed.

(** [contains_callee_saves j sp pos rl ls] is a memory assertion that holds
  if block [sp], starting at offset [pos], contains the values of the
  callee-save registers [rl] as given by the location map [ls],
  up to the memory injection [j].  The memory layout of the registers in [rl]
  is the same as that implemented by [save_callee_save_rec]. *)

Fixpoint contains_callee_saves (j: meminj) (sp: block) (pos: Z) (rl: list mreg) (ls: locset) : massert :=
  match rl with
  | nil => pure True
  | r :: rl =>
      let ty := mreg_type r in
      let sz := AST.typesize ty in
      let pos1 := align pos sz in
      contains (chunk_of_type ty) sp pos1 (fun v => Val.inject j (ls (R r)) v)
      ** contains_callee_saves j sp (pos1 + sz) rl ls
  end.

Lemma contains_callee_saves_incr:
  forall j j' sp ls,
  inject_incr j j' ->
  forall rl pos,
  massert_imp (contains_callee_saves j sp pos rl ls)
              (contains_callee_saves j' sp pos rl ls).
Proof.
  induction rl as [ | r1 rl]; simpl; intros.
- reflexivity.
- apply sepconj_morph_1; auto. apply contains_imp. eauto.
Qed.

Lemma contains_callee_saves_exten:
  forall j sp ls ls' rl pos,
  (forall r, In r rl -> ls' (R r) = ls (R r)) ->
  massert_eqv (contains_callee_saves j sp pos rl ls)
              (contains_callee_saves j sp pos rl ls').
Proof.
  induction rl as [ | r1 rl]; simpl; intros.
- reflexivity.
- apply sepconj_morph_2; auto. rewrite H by auto. reflexivity.
Qed.

(** Separation logic assertions describing the stack frame at [sp].
  It must contain:
  - the values of the [Local] stack slots of [ls], as per [contains_locations]
  - the values of the [Outgoing] stack slots of [ls], as per [contains_locations]
  - the [parent] pointer representing the back link to the caller's frame
  - the [retaddr] pointer representing the saved return address
  - the initial values of the used callee-save registers as given by [ls0],
    as per [contains_callee_saves].

In addition, we use a nonseparating conjunction to record the fact that
we have full access rights on the stack frame, except the part that
represents the Linear stack data. *)

Definition frame_contents_1 (j: meminj) (sp: block) (ls ls0: locset) (parent retaddr: val) :=
    contains_locations j sp fe.(fe_ofs_local) b.(bound_local) Local ls
 ** contains_locations j sp fe_ofs_arg b.(bound_outgoing) Outgoing ls
 ** hasvalue Mptr sp fe.(fe_ofs_link) parent
 ** hasvalue Mptr sp fe.(fe_ofs_retaddr) retaddr
 ** contains_callee_saves j sp fe.(fe_ofs_callee_save) b.(used_callee_save) ls0.

Definition frame_contents (j: meminj) (sp: block) (ls ls0: locset) (parent retaddr: val) :=
  mconj (frame_contents_1 j sp ls ls0 parent retaddr)
        (range sp 0 fe.(fe_stack_data) **
         range sp (fe.(fe_stack_data) + b.(bound_stack_data)) fe.(fe_size)).

(** Accessing components of the frame. *)

Lemma frame_get_local:
  forall ofs ty j sp ls ls0 parent retaddr m P,
  m |= frame_contents j sp ls ls0 parent retaddr ** P ->
  slot_within_bounds b Local ofs ty -> slot_valid f Local ofs ty = true ->
  exists v,
     load_stack m (Vptr sp Ptrofs.zero) ty (Ptrofs.repr (offset_local fe ofs)) = Some v
  /\ Val.inject j (ls (S Local ofs ty)) v.
Proof.
  unfold frame_contents, frame_contents_1; intros. unfold slot_valid in H1; InvBooleans.
  apply mconj_proj1 in H. apply sep_proj1 in H. apply sep_proj1 in H.
  eapply get_location; eauto.
Qed.

Lemma frame_get_outgoing:
  forall ofs ty j sp ls ls0 parent retaddr m P,
  m |= frame_contents j sp ls ls0 parent retaddr ** P ->
  slot_within_bounds b Outgoing ofs ty -> slot_valid f Outgoing ofs ty = true ->
  exists v,
     load_stack m (Vptr sp Ptrofs.zero) ty (Ptrofs.repr (offset_arg ofs)) = Some v
  /\ Val.inject j (ls (S Outgoing ofs ty)) v.
Proof.
  unfold frame_contents, frame_contents_1; intros. unfold slot_valid in H1; InvBooleans.
  apply mconj_proj1 in H. apply sep_proj1 in H. apply sep_pick2 in H.
  eapply get_location; eauto.
Qed.

Lemma frame_get_parent:
  forall j sp ls ls0 parent retaddr m P,
  m |= frame_contents j sp ls ls0 parent retaddr ** P ->
  load_stack m (Vptr sp Ptrofs.zero) Tptr (Ptrofs.repr fe.(fe_ofs_link)) = Some parent.
Proof.
  unfold frame_contents, frame_contents_1; intros.
  apply mconj_proj1 in H. apply sep_proj1 in H. apply sep_pick3 in H. rewrite <- chunk_of_Tptr in H.
  eapply hasvalue_get_stack; eauto.
Qed.

Lemma frame_get_retaddr:
  forall j sp ls ls0 parent retaddr m P,
  m |= frame_contents j sp ls ls0 parent retaddr ** P ->
  load_stack m (Vptr sp Ptrofs.zero) Tptr (Ptrofs.repr fe.(fe_ofs_retaddr)) = Some retaddr.
Proof.
  unfold frame_contents, frame_contents_1; intros.
  apply mconj_proj1 in H. apply sep_proj1 in H. apply sep_pick4 in H. rewrite <- chunk_of_Tptr in H.
  eapply hasvalue_get_stack; eauto.
Qed.

(** Assigning a [Local] or [Outgoing] stack slot. *)

Lemma frame_set_local:
  forall ofs ty v v' j sp ls ls0 parent retaddr m P,
  m |= frame_contents j sp ls ls0 parent retaddr ** P ->
  slot_within_bounds b Local ofs ty -> slot_valid f Local ofs ty = true ->
  Val.inject j v v' ->
  exists m',
     store_stack m (Vptr sp Ptrofs.zero) ty (Ptrofs.repr (offset_local fe ofs)) v' = Some m'
  /\ m' |= frame_contents j sp (Locmap.set (S Local ofs ty) v ls) ls0 parent retaddr ** P.
Proof.
  intros. unfold frame_contents in H.
  exploit mconj_proj1; eauto. unfold frame_contents_1.
  rewrite ! sep_assoc; intros SEP.
  unfold slot_valid in H1; InvBooleans. simpl in H0.
  exploit set_location; eauto. intros (m' & A & B).
  exists m'; split; auto.
  assert (forall i k p, Mem.perm m sp i k p -> Mem.perm m' sp i k p).
  {  intros. unfold store_stack in A; simpl in A. eapply Mem.perm_store_1; eauto. }
  eapply frame_mconj. eauto.
  unfold frame_contents_1; rewrite ! sep_assoc; exact B.
  eapply sep_preserved.
  eapply sep_proj1. eapply mconj_proj2. eassumption.
  intros; eapply range_preserved; eauto.
  intros; eapply range_preserved; eauto.
Qed.

Lemma frame_set_outgoing:
  forall ofs ty v v' j sp ls ls0 parent retaddr m P,
  m |= frame_contents j sp ls ls0 parent retaddr ** P ->
  slot_within_bounds b Outgoing ofs ty -> slot_valid f Outgoing ofs ty = true ->
  Val.inject j v v' ->
  exists m',
     store_stack m (Vptr sp Ptrofs.zero) ty (Ptrofs.repr (offset_arg ofs)) v' = Some m'
  /\ m' |= frame_contents j sp (Locmap.set (S Outgoing ofs ty) v ls) ls0 parent retaddr ** P.
Proof.
  intros. unfold frame_contents in H.
  exploit mconj_proj1; eauto. unfold frame_contents_1.
  rewrite ! sep_assoc, sep_swap. intros SEP.
  unfold slot_valid in H1; InvBooleans. simpl in H0.
  exploit set_location; eauto. intros (m' & A & B).
  exists m'; split; auto.
  assert (forall i k p, Mem.perm m sp i k p -> Mem.perm m' sp i k p).
  {  intros. unfold store_stack in A; simpl in A. eapply Mem.perm_store_1; eauto. }
  eapply frame_mconj. eauto.
  unfold frame_contents_1; rewrite ! sep_assoc, sep_swap; eauto.
  eapply sep_preserved.
  eapply sep_proj1. eapply mconj_proj2. eassumption.
  intros; eapply range_preserved; eauto.
  intros; eapply range_preserved; eauto.
Qed.

(** Invariance by change of location maps. *)

Lemma frame_contents_exten:
  forall ls ls0 ls' ls0' j sp parent retaddr P m,
  (forall ofs ty, Val.lessdef (ls' (S Local ofs ty)) (ls (S Local ofs ty))) ->
  (forall ofs ty, Val.lessdef (ls' (S Outgoing ofs ty)) (ls (S Outgoing ofs ty))) ->
  (forall r, In r b.(used_callee_save) -> ls0' (R r) = ls0 (R r)) ->
  m |= frame_contents j sp ls ls0 parent retaddr ** P ->
  m |= frame_contents j sp ls' ls0' parent retaddr ** P.
Proof.
  unfold frame_contents, frame_contents_1; intros.
  rewrite <- ! (contains_locations_exten ls ls') by auto.
  erewrite  <- contains_callee_saves_exten by eauto.
  assumption.
Qed.

(** Invariance by assignment to registers. *)

Corollary frame_set_reg:
  forall r v j sp ls ls0 parent retaddr m P,
  m |= frame_contents j sp ls ls0 parent retaddr ** P ->
  m |= frame_contents j sp (Locmap.set (R r) v ls) ls0 parent retaddr ** P.
Proof.
  intros. apply frame_contents_exten with ls ls0; auto.
Qed.

Corollary frame_undef_regs:
  forall j sp ls ls0 parent retaddr m P rl,
  m |= frame_contents j sp ls ls0 parent retaddr ** P ->
  m |= frame_contents j sp (LTL.undef_regs rl ls) ls0 parent retaddr ** P.
Proof.
Local Opaque sepconj.
  induction rl; simpl; intros.
- auto.
- apply frame_set_reg; auto.
Qed.

Corollary frame_set_regpair:
  forall j sp ls0 parent retaddr m P p v ls,
  m |= frame_contents j sp ls ls0 parent retaddr ** P ->
  m |= frame_contents j sp (Locmap.setpair p v ls) ls0 parent retaddr ** P.
Proof.
  intros. destruct p; simpl.
  apply frame_set_reg; auto.
  apply frame_set_reg; apply frame_set_reg; auto.
Qed.

Corollary frame_set_res:
  forall j sp ls0 parent retaddr m P res v ls,
  m |= frame_contents j sp ls ls0 parent retaddr ** P ->
  m |= frame_contents j sp (Locmap.setres res v ls) ls0 parent retaddr ** P.
Proof.
  induction res; simpl; intros.
- apply frame_set_reg; auto.
- auto.
- eauto.
Qed.

(** Invariance by change of memory injection. *)

Lemma frame_contents_incr:
  forall j sp ls ls0 parent retaddr m P j',
  m |= frame_contents j sp ls ls0 parent retaddr ** P ->
  inject_incr j j' ->
  m |= frame_contents j' sp ls ls0 parent retaddr ** P.
Proof.
  unfold frame_contents, frame_contents_1; intros.
  rewrite <- (contains_locations_incr j j') by auto.
  rewrite <- (contains_locations_incr j j') by auto.
  erewrite  <- contains_callee_saves_incr by eauto.
  assumption.
Qed.

(** * Agreement between location sets and Mach states *)

(** Agreement with Mach register states *)

Definition agree_regs (j: meminj) (ls: locset) (rs: regset) : Prop :=
  forall r, Val.inject j (ls (R r)) (rs r).

(** Agreement over locations *)

Record agree_locs (ls ls0: locset) : Prop :=
  mk_agree_locs {

    (** Unused registers have the same value as in the caller *)
    agree_unused_reg:
       forall r, ~(mreg_within_bounds b r) -> ls (R r) = ls0 (R r);

    (** Incoming stack slots have the same value as the
        corresponding Outgoing stack slots in the caller *)
    agree_incoming:
       forall ofs ty,
       In (S Incoming ofs ty) (regs_of_rpairs (loc_parameters f.(Linear.fn_sig))) ->
       ls (S Incoming ofs ty) = ls0 (S Outgoing ofs ty)
}.

(** ** Properties of [agree_regs]. *)

(** Values of registers *)

Lemma agree_reg:
  forall j ls rs r,
  agree_regs j ls rs -> Val.inject j (ls (R r)) (rs r).
Proof.
  intros. auto.
Qed.

Lemma agree_reglist:
  forall j ls rs rl,
  agree_regs j ls rs -> Val.inject_list j (reglist ls rl) (rs##rl).
Proof.
  induction rl; simpl; intros.
  auto. constructor; auto using agree_reg.
Qed.

Hint Resolve agree_reg agree_reglist: stacking.

(** Preservation under assignments of machine registers. *)

Lemma agree_regs_set_reg:
  forall j ls rs r v v',
  agree_regs j ls rs ->
  Val.inject j v v' ->
  agree_regs j (Locmap.set (R r) v ls) (Regmap.set r v' rs).
Proof.
  intros; red; intros.
  unfold Regmap.set. destruct (RegEq.eq r0 r). subst r0.
  rewrite Locmap.gss; auto.
  rewrite Locmap.gso; auto. red. auto.
Qed.

Lemma agree_regs_set_pair:
  forall j p v v' ls rs,
  agree_regs j ls rs ->
  Val.inject j v v' ->
  agree_regs j (Locmap.setpair p v ls) (set_pair p v' rs).
Proof.
  intros. destruct p; simpl.
- apply agree_regs_set_reg; auto.
- apply agree_regs_set_reg. apply agree_regs_set_reg; auto.
  apply Val.hiword_inject; auto. apply Val.loword_inject; auto.
Qed.

Lemma agree_regs_set_res:
  forall j res v v' ls rs,
  agree_regs j ls rs ->
  Val.inject j v v' ->
  agree_regs j (Locmap.setres res v ls) (set_res res v' rs).
Proof.
  induction res; simpl; intros.
- apply agree_regs_set_reg; auto.
- auto.
- apply IHres2. apply IHres1. auto.
  apply Val.hiword_inject; auto.
  apply Val.loword_inject; auto.
Qed.

Lemma agree_regs_exten:
  forall j ls rs ls' rs',
  agree_regs j ls rs ->
  (forall r, ls' (R r) = Vundef \/ ls' (R r) = ls (R r) /\ rs' r = rs r) ->
  agree_regs j ls' rs'.
Proof.
  intros; red; intros.
  destruct (H0 r) as [A | [A B]].
  rewrite A. constructor.
  rewrite A; rewrite B; auto.
Qed.

Lemma agree_regs_undef_regs:
  forall j rl ls rs,
  agree_regs j ls rs ->
  agree_regs j (LTL.undef_regs rl ls) (Mach.undef_regs rl rs).
Proof.
  induction rl; simpl; intros.
  auto.
  apply agree_regs_set_reg; auto.
Qed.

Lemma agree_regs_undef_caller_save_regs:
  forall j ls rs,
  agree_regs j ls rs ->
  agree_regs j (LTL.undef_caller_save_regs ls) (Mach.undef_caller_save_regs rs).
Proof.
  intros; red; intros. 
  unfold LTL.undef_caller_save_regs, Mach.undef_caller_save_regs. 
  destruct (is_callee_save r); auto. 
Qed.

(** Preservation under assignment of stack slot *)

Lemma agree_regs_set_slot:
  forall j ls rs sl ofs ty v,
  agree_regs j ls rs ->
  agree_regs j (Locmap.set (S sl ofs ty) v ls) rs.
Proof.
  intros; red; intros. rewrite Locmap.gso; auto. red. auto.
Qed.

(** Preservation by increasing memory injections *)

Lemma agree_regs_inject_incr:
  forall j ls rs j',
  agree_regs j ls rs -> inject_incr j j' -> agree_regs j' ls rs.
Proof.
  intros; red; intros; eauto with stacking.
Qed.

(** Preservation at function entry. *)

Lemma agree_regs_call_regs:
  forall j ls rs,
  agree_regs j ls rs ->
  agree_regs j (call_regs ls) rs.
Proof.
  intros.
  unfold call_regs; intros; red; intros; auto.
Qed.

(** ** Properties of [agree_locs] *)

(** Preservation under assignment of machine register. *)

Lemma agree_locs_set_reg:
  forall ls ls0 r v,
  agree_locs ls ls0 ->
  mreg_within_bounds b r ->
  agree_locs (Locmap.set (R r) v ls) ls0.
Proof.
  intros. inv H; constructor; auto; intros.
  rewrite Locmap.gso. auto. red. intuition congruence.
Qed.

Lemma caller_save_reg_within_bounds:
  forall r,
  is_callee_save r = false -> mreg_within_bounds b r.
Proof.
  intros; red; intros. congruence.
Qed.

Lemma agree_locs_set_pair:
  forall ls0 p v ls,
  agree_locs ls ls0 ->
  forall_rpair (fun r => is_callee_save r = false) p ->
  agree_locs (Locmap.setpair p v ls) ls0.
Proof.
  intros.
  destruct p; simpl in *.
  apply agree_locs_set_reg; auto. apply caller_save_reg_within_bounds; auto.
  destruct H0.
  apply agree_locs_set_reg; auto. apply agree_locs_set_reg; auto.
  apply caller_save_reg_within_bounds; auto. apply caller_save_reg_within_bounds; auto.
Qed.

Lemma agree_locs_set_res:
  forall ls0 res v ls,
  agree_locs ls ls0 ->
  (forall r, In r (params_of_builtin_res res) -> mreg_within_bounds b r) ->
  agree_locs (Locmap.setres res v ls) ls0.
Proof.
  induction res; simpl; intros.
- eapply agree_locs_set_reg; eauto.
- auto.
- apply IHres2; auto using in_or_app.
Qed.

Lemma agree_locs_undef_regs:
  forall ls0 regs ls,
  agree_locs ls ls0 ->
  (forall r, In r regs -> mreg_within_bounds b r) ->
  agree_locs (LTL.undef_regs regs ls) ls0.
Proof.
  induction regs; simpl; intros.
  auto.
  apply agree_locs_set_reg; auto.
Qed.

Lemma agree_locs_undef_locs_1:
  forall ls0 regs ls,
  agree_locs ls ls0 ->
  (forall r, In r regs -> is_callee_save r = false) ->
  agree_locs (LTL.undef_regs regs ls) ls0.
Proof.
  intros. eapply agree_locs_undef_regs; eauto.
  intros. apply caller_save_reg_within_bounds. auto.
Qed.

Lemma agree_locs_undef_locs:
  forall ls0 regs ls,
  agree_locs ls ls0 ->
  existsb is_callee_save regs = false ->
  agree_locs (LTL.undef_regs regs ls) ls0.
Proof.
  intros. eapply agree_locs_undef_locs_1; eauto.
  intros. destruct (is_callee_save r) eqn:CS; auto.
  assert (existsb is_callee_save regs = true).
  { apply existsb_exists. exists r; auto. }
  congruence.
Qed.

(** Preservation by assignment to local slot *)

Lemma agree_locs_set_slot:
  forall ls ls0 sl ofs ty v,
  agree_locs ls ls0 ->
  slot_writable sl = true ->
  agree_locs (Locmap.set (S sl ofs ty) v ls) ls0.
Proof.
  intros. destruct H; constructor; intros.
- rewrite Locmap.gso; auto. red; auto.
- rewrite Locmap.gso; auto. red. left. destruct sl; discriminate.
Qed.

(** Preservation at return points (when [ls] is changed but not [ls0]). *)

Lemma agree_locs_return:
  forall ls ls0 ls',
  agree_locs ls ls0 ->
  agree_callee_save ls' ls ->
  agree_locs ls' ls0.
Proof.
  intros. red in H0. inv H; constructor; auto; intros.
- rewrite H0; auto. unfold mreg_within_bounds in H. tauto.
- rewrite <- agree_incoming0 by auto. apply H0. congruence.
Qed.

(** ** Properties of destroyed registers. *)

Definition no_callee_saves (l: list mreg) : Prop :=
  existsb is_callee_save l = false.

Remark destroyed_by_op_caller_save:
  forall op, no_callee_saves (destroyed_by_op op).
Proof.
  unfold no_callee_saves; destruct op; (reflexivity || destruct c; reflexivity).
Qed.

Remark destroyed_by_load_caller_save:
  forall chunk addr, no_callee_saves (destroyed_by_load chunk addr).
Proof.
  unfold no_callee_saves; destruct chunk; reflexivity.
Qed.

Remark destroyed_by_store_caller_save:
  forall chunk addr, no_callee_saves (destroyed_by_store chunk addr).
Proof.
Local Transparent destroyed_by_store.
  unfold no_callee_saves, destroyed_by_store; intros; destruct chunk; try reflexivity; destruct Archi.ptr64; reflexivity.
Qed.

Remark destroyed_by_cond_caller_save:
  forall cond, no_callee_saves (destroyed_by_cond cond).
Proof.
  unfold no_callee_saves; destruct cond; reflexivity.
Qed.

Remark destroyed_by_jumptable_caller_save:
  no_callee_saves destroyed_by_jumptable.
Proof.
  red; reflexivity.
Qed.

Remark destroyed_by_setstack_caller_save:
  forall ty, no_callee_saves (destroyed_by_setstack ty).
Proof.
  unfold no_callee_saves; destruct ty; reflexivity.
Qed.

Remark destroyed_at_function_entry_caller_save:
  no_callee_saves destroyed_at_function_entry.
Proof.
  red; reflexivity.
Qed.

Hint Resolve destroyed_by_op_caller_save destroyed_by_load_caller_save
    destroyed_by_store_caller_save
    destroyed_by_cond_caller_save destroyed_by_jumptable_caller_save
    destroyed_at_function_entry_caller_save: stacking.

Remark destroyed_by_setstack_function_entry:
  forall ty, incl (destroyed_by_setstack ty) destroyed_at_function_entry.
Proof.
Local Transparent destroyed_by_setstack destroyed_at_function_entry.
  unfold incl; destruct ty; simpl; tauto.
Qed.

Remark transl_destroyed_by_op:
  forall op e, destroyed_by_op (transl_op e op) = destroyed_by_op op.
Proof.
  intros; destruct op; try reflexivity; simpl.
Qed.

Remark transl_destroyed_by_load:
  forall chunk addr e, destroyed_by_load chunk (transl_addr e addr) = destroyed_by_load chunk addr.
Proof.
  intros; destruct chunk; reflexivity.
Qed.

Remark transl_destroyed_by_store:
  forall chunk addr e, destroyed_by_store chunk (transl_addr e addr) = destroyed_by_store chunk addr.
Proof.
  intros; destruct chunk; reflexivity.
Qed.

(** * Correctness of saving and restoring of callee-save registers *)

(** The following lemmas show the correctness of the register saving
  code generated by [save_callee_save]: after this code has executed,
  the register save areas of the current frame do contain the
  values of the callee-save registers used by the function. *)

Section SAVE_CALLEE_SAVE.

Variable j: meminj.
Variable cs: list stackframe.
Variable fb: block.
Variable sp: block.
Variable ls: locset.

Hypothesis ls_temp_undef:
  forall ty r, In r (destroyed_by_setstack ty) -> ls (R r) = Vundef.

Hypothesis wt_ls: forall r, Val.has_type (ls (R r)) (mreg_type r).

Lemma save_callee_save_rec_correct:
  forall k l pos rs m P,
  (forall r, In r l -> is_callee_save r = true) ->
  m |= range sp pos (size_callee_save_area_rec l pos) ** P ->
  agree_regs j ls rs ->
  exists rs', exists m',
     star step tge
        (State cs fb (Vptr sp Ptrofs.zero) (save_callee_save_rec l pos k) rs m)
     E0 (State cs fb (Vptr sp Ptrofs.zero) k rs' m')
  /\ m' |= contains_callee_saves j sp pos l ls ** P
  /\ (forall ofs k p, Mem.perm m sp ofs k p -> Mem.perm m' sp ofs k p)
  /\ agree_regs j ls rs'.
Proof.
Local Opaque mreg_type.
  induction l as [ | r l]; simpl; intros until P; intros CS SEP AG.
- exists rs, m.
  split. apply star_refl.
  split. rewrite sep_pure; split; auto. eapply sep_drop; eauto.
  split. auto.
  auto.
- set (ty := mreg_type r) in *.
  set (sz := AST.typesize ty) in *.
  set (pos1 := align pos sz) in *.
  assert (SZPOS: sz > 0) by (apply AST.typesize_pos).
  assert (SZREC: pos1 + sz <= size_callee_save_area_rec l (pos1 + sz)) by (apply size_callee_save_area_rec_incr).
  assert (POS1: pos <= pos1) by (apply align_le; auto).
  assert (AL1: (align_chunk (chunk_of_type ty) | pos1)).
  { unfold pos1. apply Z.divide_trans with sz.
    unfold sz; rewrite <- size_type_chunk. apply align_size_chunk_divides.
    apply align_divides; auto. }
  apply range_drop_left with (mid := pos1) in SEP; [ | lia ].
  apply range_split with (mid := pos1 + sz) in SEP; [ | lia ].
  unfold sz at 1 in SEP. rewrite <- size_type_chunk in SEP.
  apply range_contains in SEP; auto.
  exploit (contains_set_stack (fun v' => Val.inject j (ls (R r)) v') (rs r)).
  eexact SEP.
  apply load_result_inject; auto. apply wt_ls.
  clear SEP; intros (m1 & STORE & SEP).
  set (rs1 := undef_regs (destroyed_by_setstack ty) rs).
  assert (AG1: agree_regs j ls rs1).
  { red; intros. unfold rs1. destruct (In_dec mreg_eq r0 (destroyed_by_setstack ty)).
    erewrite ls_temp_undef by eauto. auto.
    rewrite undef_regs_other by auto. apply AG. }
  rewrite sep_swap in SEP.
  exploit (IHl (pos1 + sz) rs1 m1); eauto.
  intros (rs2 & m2 & A & B & C & D).
  exists rs2, m2.
  split. eapply star_left; eauto. constructor. exact STORE. auto. traceEq.
  split. rewrite sep_assoc, sep_swap. exact B.
  split. intros. apply C. unfold store_stack in STORE; simpl in STORE. eapply Mem.perm_store_1; eauto.
  auto.
Qed.

End SAVE_CALLEE_SAVE.

Remark LTL_undef_regs_same:
  forall r rl ls, In r rl -> LTL.undef_regs rl ls (R r) = Vundef.
Proof.
  induction rl; simpl; intros. contradiction.
  unfold Locmap.set. destruct (Loc.eq (R a) (R r)). auto.
  destruct (Loc.diff_dec (R a) (R r)); auto.
  apply IHrl. intuition congruence.
Qed.

Remark LTL_undef_regs_others:
  forall r rl ls, ~In r rl -> LTL.undef_regs rl ls (R r) = ls (R r).
Proof.
  induction rl; simpl; intros. auto.
  rewrite Locmap.gso. apply IHrl. intuition. red. intuition.
Qed.

Remark LTL_undef_regs_slot:
  forall sl ofs ty rl ls, LTL.undef_regs rl ls (S sl ofs ty) = ls (S sl ofs ty).
Proof.
  induction rl; simpl; intros. auto.
  rewrite Locmap.gso. apply IHrl. red; auto.
Qed.

Remark undef_regs_type:
  forall ty l rl ls,
  Val.has_type (ls l) ty -> Val.has_type (LTL.undef_regs rl ls l) ty.
Proof.
  induction rl; simpl; intros.
- auto.
- unfold Locmap.set. destruct (Loc.eq (R a) l). red; auto.
  destruct (Loc.diff_dec (R a) l); auto. red; auto.
Qed.

Lemma save_callee_save_correct:
  forall j ls ls0 rs sp cs fb k m P,
  m |= range sp fe.(fe_ofs_callee_save) (size_callee_save_area b fe.(fe_ofs_callee_save)) ** P ->
  (forall r, Val.has_type (ls (R r)) (mreg_type r)) ->
  agree_callee_save ls ls0 ->
  agree_regs j ls rs ->
  let ls1 := LTL.undef_regs destroyed_at_function_entry (LTL.call_regs ls) in
  let rs1 := undef_regs destroyed_at_function_entry rs in
  exists rs', exists m',
     star step tge
        (State cs fb (Vptr sp Ptrofs.zero) (save_callee_save fe k) rs1 m)
     E0 (State cs fb (Vptr sp Ptrofs.zero) k rs' m')
  /\ m' |= contains_callee_saves j sp fe.(fe_ofs_callee_save) b.(used_callee_save) ls0 ** P
  /\ (forall ofs k p, Mem.perm m sp ofs k p -> Mem.perm m' sp ofs k p)
  /\ agree_regs j ls1 rs'.
Proof.
  intros until P; intros SEP TY AGCS AG; intros ls1 rs1.
  exploit (save_callee_save_rec_correct j cs fb sp ls1).
- intros. unfold ls1. apply LTL_undef_regs_same. eapply destroyed_by_setstack_function_entry; eauto.
- intros. unfold ls1. apply undef_regs_type. apply TY.
- exact b.(used_callee_save_prop).
- eexact SEP.
- instantiate (1 := rs1). apply agree_regs_undef_regs. apply agree_regs_call_regs. auto.
- clear SEP. intros (rs' & m' & EXEC & SEP & PERMS & AG').
  exists rs', m'.
  split. eexact EXEC.
  split. rewrite (contains_callee_saves_exten j sp ls0 ls1). exact SEP.
  intros. apply b.(used_callee_save_prop) in H.
    unfold ls1. rewrite LTL_undef_regs_others. unfold call_regs.
    apply AGCS; auto.
    red; intros.
    assert (existsb is_callee_save destroyed_at_function_entry = false)
       by  (apply destroyed_at_function_entry_caller_save).
    assert (existsb is_callee_save destroyed_at_function_entry = true).
    { apply existsb_exists. exists r; auto. }
    congruence.
  split. exact PERMS. exact AG'.
Qed.

(** As a corollary of the previous lemmas, we obtain the following
  correctness theorem for the execution of a function prologue
  (allocation of the frame + saving of the link and return address +
  saving of the used callee-save registers). *)

Lemma function_prologue_correct:
  forall j ls ls0 ls1 rs rs1 m1 m1' m2 sp parent ra cs fb k P,
  agree_regs j ls rs ->
  agree_callee_save ls ls0 ->
  agree_outgoing_arguments (Linear.fn_sig f) ls ls0 ->
  (forall r, Val.has_type (ls (R r)) (mreg_type r)) ->
  ls1 = LTL.undef_regs destroyed_at_function_entry (LTL.call_regs ls) ->
  rs1 = undef_regs destroyed_at_function_entry rs ->
  Mem.alloc m1 0 f.(Linear.fn_stacksize) = (m2, sp) ->
  Val.has_type parent Tptr -> Val.has_type ra Tptr ->
  m1' |= minjection j m1 ** globalenv_inject ge j ** P ->
  exists j', exists rs', exists m2', exists sp', exists m3', exists m4', exists m5',
     Mem.alloc m1' 0 tf.(fn_stacksize) = (m2', sp')
  /\ store_stack m2' (Vptr sp' Ptrofs.zero) Tptr tf.(fn_link_ofs) parent = Some m3'
  /\ store_stack m3' (Vptr sp' Ptrofs.zero) Tptr tf.(fn_retaddr_ofs) ra = Some m4'
  /\ star step tge
         (State cs fb (Vptr sp' Ptrofs.zero) (save_callee_save fe k) rs1 m4')
      E0 (State cs fb (Vptr sp' Ptrofs.zero) k rs' m5')
  /\ agree_regs j' ls1 rs'
  /\ agree_locs ls1 ls0
  /\ m5' |= frame_contents j' sp' ls1 ls0 parent ra ** minjection j' m2 ** globalenv_inject ge j' ** P
  /\ j' sp = Some(sp', fe.(fe_stack_data))
  /\ inject_incr j j'.
Proof.
  intros until P; intros AGREGS AGCS AGARGS WTREGS LS1 RS1 ALLOC TYPAR TYRA SEP.
  rewrite unfold_transf_function.
  unfold fn_stacksize, fn_link_ofs, fn_retaddr_ofs.
  (* Stack layout info *)
Local Opaque b fe.
  generalize (frame_env_range b) (frame_env_aligned b). replace (make_env b) with fe by auto. simpl.
  intros LAYOUT1 LAYOUT2.
  (* Allocation step *)
  destruct (Mem.alloc m1' 0 (fe_size fe)) as [m2' sp'] eqn:ALLOC'.
  exploit alloc_parallel_rule_2.
  eexact SEP. eexact ALLOC. eexact ALLOC'.
  instantiate (1 := fe_stack_data fe). tauto.
  reflexivity.
  instantiate (1 := fe_stack_data fe + bound_stack_data b). rewrite Z.max_comm. reflexivity.
  generalize (bound_stack_data_pos b) size_no_overflow; lia.
  tauto.
  tauto.
  clear SEP. intros (j' & SEP & INCR & SAME).
  (* Remember the freeable permissions using a mconj *)
  assert (SEPCONJ:
    m2' |= mconj (range sp' 0 (fe_stack_data fe) ** range sp' (fe_stack_data fe + bound_stack_data b) (fe_size fe))
                 (range sp' 0 (fe_stack_data fe) ** range sp' (fe_stack_data fe + bound_stack_data b) (fe_size fe))
           ** minjection j' m2 ** globalenv_inject ge j' ** P).
  { apply mconj_intro; rewrite sep_assoc; assumption. }
  (* Dividing up the frame *)
  apply (frame_env_separated b) in SEP. replace (make_env b) with fe in SEP by auto.
  (* Store of parent *)
  rewrite sep_swap3 in SEP.
  apply (range_contains Mptr) in SEP; [|tauto].
  exploit (contains_set_stack (fun v' => v' = parent) parent (fun _ => True) m2' Tptr).
  rewrite chunk_of_Tptr; eexact SEP. apply Val.load_result_same; auto.
  clear SEP; intros (m3' & STORE_PARENT & SEP).
  rewrite sep_swap3 in SEP.
  (* Store of return address *)
  rewrite sep_swap4 in SEP.
  apply (range_contains Mptr) in SEP; [|tauto].
  exploit (contains_set_stack (fun v' => v' = ra) ra (fun _ => True) m3' Tptr).
  rewrite chunk_of_Tptr; eexact SEP. apply Val.load_result_same; auto.
  clear SEP; intros (m4' & STORE_RETADDR & SEP).
  rewrite sep_swap4 in SEP.
  (* Saving callee-save registers *)
  rewrite sep_swap5 in SEP.
  exploit (save_callee_save_correct j' ls ls0 rs); eauto.
  apply agree_regs_inject_incr with j; auto.
  replace (LTL.undef_regs destroyed_at_function_entry (call_regs ls)) with ls1 by auto.
  replace (undef_regs destroyed_at_function_entry rs) with rs1 by auto.
  clear SEP; intros (rs2 & m5' & SAVE_CS & SEP & PERMS & AGREGS').
  rewrite sep_swap5 in SEP.
  (* Materializing the Local and Outgoing locations *)
  exploit (initial_locations j'). eexact SEP. tauto.
  instantiate (1 := Local). instantiate (1 := ls1).
  intros; rewrite LS1. rewrite LTL_undef_regs_slot. reflexivity.
  clear SEP; intros SEP.
  rewrite sep_swap in SEP.
  exploit (initial_locations j'). eexact SEP. tauto.
  instantiate (1 := Outgoing). instantiate (1 := ls1).
  intros; rewrite LS1. rewrite LTL_undef_regs_slot. reflexivity.
  clear SEP; intros SEP.
  rewrite sep_swap in SEP.
  (* Now we frame this *)
  assert (SEPFINAL: m5' |= frame_contents j' sp' ls1 ls0 parent ra ** minjection j' m2 ** globalenv_inject ge j' ** P).
  { eapply frame_mconj. eexact SEPCONJ.
    rewrite chunk_of_Tptr in SEP.
    unfold frame_contents_1; rewrite ! sep_assoc. exact SEP.
    assert (forall ofs k p, Mem.perm m2' sp' ofs k p -> Mem.perm m5' sp' ofs k p).
    { intros. apply PERMS.
      unfold store_stack in STORE_PARENT, STORE_RETADDR.
      simpl in STORE_PARENT, STORE_RETADDR.
      eauto using Mem.perm_store_1. }
    eapply sep_preserved. eapply sep_proj1. eapply mconj_proj2. eexact SEPCONJ.
    intros; apply range_preserved with m2'; auto.
    intros; apply range_preserved with m2'; auto.
  }
  clear SEP SEPCONJ.
(* Conclusions *)
  exists j', rs2, m2', sp', m3', m4', m5'.
  split. auto.
  split. exact STORE_PARENT.
  split. exact STORE_RETADDR.
  split. eexact SAVE_CS.
  split. exact AGREGS'.
  split. rewrite LS1. apply agree_locs_undef_locs; [|reflexivity].
    constructor; intros. unfold call_regs. apply AGCS.
    unfold mreg_within_bounds in H; tauto.
    unfold call_regs. apply AGARGS. apply incoming_slot_in_parameters; auto.
  split. exact SEPFINAL.
  split. exact SAME. exact INCR.
Qed.

(** The following lemmas show the correctness of the register reloading
  code generated by [reload_callee_save]: after this code has executed,
  all callee-save registers contain the same values they had at
  function entry. *)

Section RESTORE_CALLEE_SAVE.

Variable j: meminj.
Variable cs: list stackframe.
Variable fb: block.
Variable sp: block.
Variable ls0: locset.
Variable m: mem.

Definition agree_unused (ls0: locset) (rs: regset) : Prop :=
  forall r, ~(mreg_within_bounds b r) -> Val.inject j (ls0 (R r)) (rs r).

Lemma restore_callee_save_rec_correct:
  forall l ofs rs k,
  m |= contains_callee_saves j sp ofs l ls0 ->
  agree_unused ls0 rs ->
  (forall r, In r l -> mreg_within_bounds b r) ->
  exists rs',
    star step tge
      (State cs fb (Vptr sp Ptrofs.zero) (restore_callee_save_rec l ofs k) rs m)
   E0 (State cs fb (Vptr sp Ptrofs.zero) k rs' m)
  /\ (forall r, In r l -> Val.inject j (ls0 (R r)) (rs' r))
  /\ (forall r, ~(In r l) -> rs' r = rs r)
  /\ agree_unused ls0 rs'.
Proof.
Local Opaque mreg_type.
  induction l as [ | r l]; simpl; intros.
- (* base case *)
  exists rs. intuition auto. apply star_refl.
- (* inductive case *)
  set (ty := mreg_type r) in *.
  set (sz := AST.typesize ty) in *.
  set (ofs1 := align ofs sz).
  assert (SZPOS: sz > 0) by (apply AST.typesize_pos).
  assert (OFSLE: ofs <= ofs1) by (apply align_le; auto).
  assert (BOUND: mreg_within_bounds b r) by eauto.
  exploit contains_get_stack.
    eapply sep_proj1; eassumption.
  intros (v & LOAD & SPEC).
  exploit (IHl (ofs1 + sz) (rs#r <- v)).
    eapply sep_proj2; eassumption.
    red; intros. rewrite Regmap.gso. auto. intuition congruence.
    eauto.
  intros (rs' & A & B & C & D).
  exists rs'.
  split. eapply star_step; eauto.
    econstructor. exact LOAD. traceEq.
  split. intros.
    destruct (In_dec mreg_eq r0 l). auto.
    assert (r = r0) by tauto. subst r0.
    rewrite C by auto. rewrite Regmap.gss. exact SPEC.
  split. intros.
    rewrite C by tauto. apply Regmap.gso. intuition auto.
  exact D.
Qed.

End RESTORE_CALLEE_SAVE.

Lemma restore_callee_save_correct:
  forall m j sp ls ls0 pa ra P rs k cs fb,
  m |= frame_contents j sp ls ls0 pa ra ** P ->
  agree_unused j ls0 rs ->
  exists rs',
    star step tge
       (State cs fb (Vptr sp Ptrofs.zero) (restore_callee_save fe k) rs m)
    E0 (State cs fb (Vptr sp Ptrofs.zero) k rs' m)
  /\ (forall r,
        is_callee_save r = true -> Val.inject j (ls0 (R r)) (rs' r))
  /\ (forall r,
        is_callee_save r = false -> rs' r = rs r).
Proof.
  intros.
  unfold frame_contents, frame_contents_1 in H.
  apply mconj_proj1 in H. rewrite ! sep_assoc in H. apply sep_pick5 in H.
  exploit restore_callee_save_rec_correct; eauto.
  intros; unfold mreg_within_bounds; auto.
  intros (rs' & A & B & C & D).
  exists rs'.
  split. eexact A.
  split; intros.
  destruct (In_dec mreg_eq r (used_callee_save b)).
  apply B; auto.
  rewrite C by auto. apply H0. unfold mreg_within_bounds; tauto.
  apply C. red; intros. apply (used_callee_save_prop b) in H2. congruence.
Qed.

(** As a corollary, we obtain the following correctness result for
  the execution of a function epilogue (reloading of used callee-save
  registers + reloading of the link and return address + freeing
  of the frame). *)

Lemma function_epilogue_correct:
  forall m' j sp' ls ls0 pa ra P m rs sp m1 k cs fb,
  m' |= frame_contents j sp' ls ls0 pa ra ** minjection j m ** P ->
  agree_regs j ls rs ->
  agree_locs ls ls0 ->
  j sp = Some(sp', fe.(fe_stack_data)) ->
  Mem.free m sp 0 f.(Linear.fn_stacksize) = Some m1 ->
  exists rs1, exists m1',
     load_stack m' (Vptr sp' Ptrofs.zero) Tptr tf.(fn_link_ofs) = Some pa
  /\ load_stack m' (Vptr sp' Ptrofs.zero) Tptr tf.(fn_retaddr_ofs) = Some ra
  /\ Mem.free m' sp' 0 tf.(fn_stacksize) = Some m1'
  /\ star step tge
       (State cs fb (Vptr sp' Ptrofs.zero) (restore_callee_save fe k) rs m')
    E0 (State cs fb (Vptr sp' Ptrofs.zero) k rs1 m')
  /\ agree_regs j (return_regs ls0 ls) rs1
  /\ agree_callee_save (return_regs ls0 ls) ls0
  /\ m1' |= minjection j m1 ** P.
Proof.
  intros until fb; intros SEP AGR AGL INJ FREE.
  (* Can free *)
  exploit free_parallel_rule.
    rewrite <- sep_assoc. eapply mconj_proj2. eexact SEP.
    eexact FREE.
    eexact INJ.
    auto. rewrite Z.max_comm; reflexivity.
  intros (m1' & FREE' & SEP').
  (* Reloading the callee-save registers *)
  exploit restore_callee_save_correct.
    eexact SEP.
    instantiate (1 := rs).
    red; intros. destruct AGL. rewrite <- agree_unused_reg0 by auto. apply AGR.
  intros (rs' & LOAD_CS & CS & NCS).
  (* Reloading the back link and return address *)
  unfold frame_contents in SEP; apply mconj_proj1 in SEP.
  unfold frame_contents_1 in SEP; rewrite ! sep_assoc in SEP.
  exploit (hasvalue_get_stack Tptr). rewrite chunk_of_Tptr. eapply sep_pick3; eexact SEP. intros LOAD_LINK.
  exploit (hasvalue_get_stack Tptr). rewrite chunk_of_Tptr. eapply sep_pick4; eexact SEP. intros LOAD_RETADDR.
  clear SEP.
  (* Conclusions *)
  rewrite unfold_transf_function; simpl.
  exists rs', m1'.
  split. assumption.
  split. assumption.
  split. assumption.
  split. eassumption.
  split. red; unfold return_regs; intros.
    destruct (is_callee_save r) eqn:C.
    apply CS; auto.
    rewrite NCS by auto. apply AGR.
  split. red; unfold return_regs; intros.
    destruct l. rewrite H; auto. destruct sl; auto; contradiction. 
  assumption.
Qed.

End FRAME_PROPERTIES.

(** * Call stack invariants *)

(** This is the memory assertion that captures the contents of the stack frames
  mentioned in the call stacks. *)

Fixpoint stack_contents (j: meminj) (cs: list Linear.stackframe) (cs': list Mach.stackframe) : massert :=
  match cs, cs' with
  | nil, nil => pure True
  | Linear.Stackframe f _ ls c :: cs, Mach.Stackframe fb (Vptr sp' _) ra c' :: cs' =>
      frame_contents f j sp' ls (parent_locset cs) (parent_sp cs') (parent_ra cs')
      ** stack_contents j cs cs'
  | _, _ => pure False
  end.

(** [match_stacks] captures additional properties (not related to memory)
  of the Linear and Mach call stacks. *)

Inductive match_stacks (j: meminj):
       list Linear.stackframe -> list stackframe -> signature -> Prop :=
  | match_stacks_empty: forall sg,
      tailcall_possible sg ->
      match_stacks j nil nil sg
  | match_stacks_cons: forall f sp ls c cs fb sp' ra c' cs' sg trf
        (TAIL: is_tail c (Linear.fn_code f))
        (FINDF: Genv.find_funct_ptr tge fb = Some (Internal trf))
        (TRF: transf_function f = OK trf)
        (TRC: transl_code (make_env (function_bounds f)) c = c')
        (INJ: j sp = Some(sp', (fe_stack_data (make_env (function_bounds f)))))
        (TY_RA: Val.has_type ra Tptr)
        (AGL: agree_locs f ls (parent_locset cs))
        (ARGS: forall ofs ty,
           In (S Outgoing ofs ty) (regs_of_rpairs (loc_arguments sg)) ->
           slot_within_bounds (function_bounds f) Outgoing ofs ty)
        (STK: match_stacks j cs cs' (Linear.fn_sig f)),
      match_stacks j
                   (Linear.Stackframe f (Vptr sp Ptrofs.zero) ls c :: cs)
                   (Stackframe fb (Vptr sp' Ptrofs.zero) ra c' :: cs')
                   sg.

(** Invariance with respect to change of memory injection. *)

Lemma stack_contents_change_meminj:
  forall m j j', inject_incr j j' ->
  forall cs cs' P,
  m |= stack_contents j cs cs' ** P ->
  m |= stack_contents j' cs cs' ** P.
Proof.
Local Opaque sepconj.
  induction cs as [ | [] cs]; destruct cs' as [ | [] cs']; simpl; intros; auto.
  destruct sp0; auto.
  rewrite sep_assoc in *.
  apply frame_contents_incr with (j := j); auto.
  rewrite sep_swap. apply IHcs. rewrite sep_swap. assumption.
Qed.

Lemma match_stacks_change_meminj:
  forall j j', inject_incr j j' ->
  forall cs cs' sg,
  match_stacks j cs cs' sg ->
  match_stacks j' cs cs' sg.
Proof.
  induction 2; intros.
- constructor; auto.
- econstructor; eauto.
Qed.

(** Invariance with respect to change of signature. *)

Lemma match_stacks_change_sig:
  forall sg1 j cs cs' sg,
  match_stacks j cs cs' sg ->
  tailcall_possible sg1 ->
  match_stacks j cs cs' sg1.
Proof.
  induction 1; intros.
  econstructor; eauto.
  econstructor; eauto. intros. elim (H0 _ H1).
Qed.

(** Typing properties of [match_stacks]. *)

Lemma match_stacks_type_sp:
  forall j cs cs' sg,
  match_stacks j cs cs' sg ->
  Val.has_type (parent_sp cs') Tptr.
Proof.
  induction 1; unfold parent_sp. apply Val.Vnullptr_has_type. apply Val.Vptr_has_type.
Qed.

Lemma match_stacks_type_retaddr:
  forall j cs cs' sg,
  match_stacks j cs cs' sg ->
  Val.has_type (parent_ra cs') Tptr.
Proof.
  induction 1; unfold parent_ra. apply Val.Vnullptr_has_type. auto.
Qed.

(** * Syntactic properties of the translation *)

(** Preservation of code labels through the translation. *)

Section LABELS.

Remark find_label_save_callee_save:
  forall lbl l ofs k,
  Mach.find_label lbl (save_callee_save_rec l ofs k) = Mach.find_label lbl k.
Proof.
  induction l; simpl; auto.
Qed.

Remark find_label_restore_callee_save:
  forall lbl l ofs k,
  Mach.find_label lbl (restore_callee_save_rec l ofs k) = Mach.find_label lbl k.
Proof.
  induction l; simpl; auto.
Qed.

Lemma transl_code_eq:
  forall fe i c, transl_code fe (i :: c) = transl_instr fe i (transl_code fe c).
Proof.
  unfold transl_code; intros. rewrite list_fold_right_eq. auto.
Qed.

Lemma find_label_transl_code:
  forall fe lbl c,
  Mach.find_label lbl (transl_code fe c) =
    option_map (transl_code fe) (Linear.find_label lbl c).
Proof.
  induction c; simpl; intros.
- auto.
- rewrite transl_code_eq.
  destruct a; unfold transl_instr; auto.
  destruct s; simpl; auto.
  destruct s; simpl; auto.
  unfold restore_callee_save. rewrite find_label_restore_callee_save. auto.
  simpl. destruct (peq lbl l). reflexivity. auto.
  unfold restore_callee_save. rewrite find_label_restore_callee_save. auto.
Qed.

Lemma transl_find_label:
  forall f tf lbl c,
  transf_function f = OK tf ->
  Linear.find_label lbl f.(Linear.fn_code) = Some c ->
  Mach.find_label lbl tf.(Mach.fn_code) =
    Some (transl_code (make_env (function_bounds f)) c).
Proof.
  intros. rewrite (unfold_transf_function _ _ H).  simpl.
  unfold transl_body. unfold save_callee_save. rewrite find_label_save_callee_save.
  rewrite find_label_transl_code. rewrite H0. reflexivity.
Qed.

End LABELS.

(** Code tail property for Linear executions. *)

Lemma find_label_tail:
  forall lbl c c',
  Linear.find_label lbl c = Some c' -> is_tail c' c.
Proof.
  induction c; simpl.
  intros; discriminate.
  intro c'. case (Linear.is_label lbl a); intros.
  injection H; intro; subst c'. auto with coqlib.
  auto with coqlib.
Qed.

(** Code tail property for translations *)

Lemma is_tail_save_callee_save:
  forall l ofs k,
  is_tail k (save_callee_save_rec l ofs k).
Proof.
  induction l; intros; simpl. auto with coqlib.
  constructor; auto.
Qed.

Lemma is_tail_restore_callee_save:
  forall l ofs k,
  is_tail k (restore_callee_save_rec l ofs k).
Proof.
  induction l; intros; simpl. auto with coqlib.
  constructor; auto.
Qed.

Lemma is_tail_transl_instr:
  forall fe i k,
  is_tail k (transl_instr fe i k).
Proof.
  intros. destruct i; unfold transl_instr; auto with coqlib.
  destruct s; auto with coqlib.
  destruct s; auto with coqlib.
  unfold restore_callee_save.  eapply is_tail_trans. 2: apply is_tail_restore_callee_save. auto with coqlib.
  unfold restore_callee_save.  eapply is_tail_trans. 2: apply is_tail_restore_callee_save. auto with coqlib.
Qed.

Lemma is_tail_transl_code:
  forall fe c1 c2, is_tail c1 c2 -> is_tail (transl_code fe c1) (transl_code fe c2).
Proof.
  induction 1; simpl. auto with coqlib.
  rewrite transl_code_eq.
  eapply is_tail_trans. eauto. apply is_tail_transl_instr.
Qed.

Lemma is_tail_transf_function:
  forall f tf c,
  transf_function f = OK tf ->
  is_tail c (Linear.fn_code f) ->
  is_tail (transl_code (make_env (function_bounds f)) c) (fn_code tf).
Proof.
  intros. rewrite (unfold_transf_function _ _ H). simpl.
  unfold transl_body, save_callee_save.
  eapply is_tail_trans. 2: apply is_tail_save_callee_save.
  apply is_tail_transl_code; auto.
Qed.

(** * Semantic preservation *)

(** Preservation / translation of global symbols and functions. *)

Lemma symbols_preserved:
  forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof (Genv.find_symbol_match TRANSF).

Lemma senv_preserved:
  Senv.equiv ge tge.
Proof (Genv.senv_match TRANSF).

Lemma functions_translated:
  forall v f,
  Genv.find_funct ge v = Some f ->
  exists tf,
  Genv.find_funct tge v = Some tf /\ transf_fundef f = OK tf.
Proof (Genv.find_funct_transf_partial TRANSF).

Lemma function_ptr_translated:
  forall b f,
  Genv.find_funct_ptr ge b = Some f ->
  exists tf,
  Genv.find_funct_ptr tge b = Some tf /\ transf_fundef f = OK tf.
Proof (Genv.find_funct_ptr_transf_partial TRANSF).

Lemma sig_preserved:
  forall f tf, transf_fundef f = OK tf -> Mach.funsig tf = Linear.funsig f.
Proof.
  intros until tf; unfold transf_fundef, transf_partial_fundef.
  destruct f; intros; monadInv H.
  rewrite (unfold_transf_function _ _ EQ). auto.
  auto.
Qed.

Lemma find_function_translated:
  forall j ls rs m ros f,
  agree_regs j ls rs ->
  m |= globalenv_inject ge j ->
  Linear.find_function ge ros ls = Some f ->
  exists bf, exists tf,
     find_function_ptr tge ros rs = Some bf
  /\ Genv.find_funct_ptr tge bf = Some tf
  /\ transf_fundef f = OK tf.
Proof.
  intros until f; intros AG [bound [_ [?????]]] FF.
  destruct ros; simpl in FF.
- exploit Genv.find_funct_inv; eauto. intros [b EQ]. rewrite EQ in FF.
  rewrite Genv.find_funct_find_funct_ptr in FF.
  exploit function_ptr_translated; eauto. intros [tf [A B]].
  exists b; exists tf; split; auto. simpl.
  generalize (AG m0). rewrite EQ. intro INJ. inv INJ.
  rewrite DOMAIN in H2. inv H2. simpl. auto. eapply FUNCTIONS; eauto.
- destruct (Genv.find_symbol ge i) as [b|] eqn:?; try discriminate.
  exploit function_ptr_translated; eauto. intros [tf [A B]].
  exists b; exists tf; split; auto. simpl.
  rewrite symbols_preserved. auto.
Qed.

(** Preservation of the arguments to an external call. *)

Section EXTERNAL_ARGUMENTS.

Variable j: meminj.
Variable cs: list Linear.stackframe.
Variable cs': list stackframe.
Variable sg: signature.
Variables bound bound': block.
Hypothesis MS: match_stacks j cs cs' sg.
Variable ls: locset.
Variable rs: regset.
Hypothesis AGR: agree_regs j ls rs.
Hypothesis AGCS: agree_callee_save ls (parent_locset cs).
Hypothesis AGARGS: agree_outgoing_arguments sg ls (parent_locset cs).
Variable m': mem.
Hypothesis SEP: m' |= stack_contents j cs cs'.

Lemma transl_external_argument:
  forall l,
  In l (regs_of_rpairs (loc_arguments sg)) ->
  exists v, extcall_arg rs m' (parent_sp cs') l v /\ Val.inject j (ls l) v.
Proof.
  intros.
  assert (loc_argument_acceptable l) by (apply loc_arguments_acceptable_2 with sg; auto).
  destruct l; red in H0.
- exists (rs r); split. constructor. auto.
- destruct sl; try contradiction.
  inv MS.
+ elim (H1 _ H).
+ simpl in SEP. unfold parent_sp.
  assert (slot_valid f Outgoing pos ty = true).
  { destruct H0. unfold slot_valid, proj_sumbool.
    rewrite zle_true by lia. rewrite pred_dec_true by auto. reflexivity. }
  assert (slot_within_bounds (function_bounds f) Outgoing pos ty) by eauto.
  exploit frame_get_outgoing; eauto. intros (v & A & B).
  exists v; split.
  constructor. exact A. rewrite AGARGS by auto. exact B. 
Qed.

Lemma transl_external_argument_2:
  forall p,
  In p (loc_arguments sg) ->
  exists v, extcall_arg_pair rs m' (parent_sp cs') p v /\ Val.inject j (Locmap.getpair p ls) v.
Proof.
  intros. destruct p as [l | l1 l2].
- destruct (transl_external_argument l) as (v & A & B). eapply in_regs_of_rpairs; eauto; simpl; auto.
  exists v; split; auto. constructor; auto.
- destruct (transl_external_argument l1) as (v1 & A1 & B1). eapply in_regs_of_rpairs; eauto; simpl; auto.
  destruct (transl_external_argument l2) as (v2 & A2 & B2). eapply in_regs_of_rpairs; eauto; simpl; auto.
  exists (Val.longofwords v1 v2); split.
  constructor; auto.
  apply Val.longofwords_inject; auto.
Qed.

Lemma transl_external_arguments_rec:
  forall locs,
  incl locs (loc_arguments sg) ->
  exists vl,
      list_forall2 (extcall_arg_pair rs m' (parent_sp cs')) locs vl
   /\ Val.inject_list j (map (fun p => Locmap.getpair p ls) locs) vl.
Proof.
  induction locs; simpl; intros.
  exists (@nil val); split. constructor. constructor.
  exploit transl_external_argument_2; eauto with coqlib. intros [v [A B]].
  exploit IHlocs; eauto with coqlib. intros [vl [C D]].
  exists (v :: vl); split; constructor; auto.
Qed.

Lemma transl_external_arguments:
  exists vl,
      extcall_arguments rs m' (parent_sp cs') sg vl
   /\ Val.inject_list j (map (fun p => Locmap.getpair p ls) (loc_arguments sg)) vl.
Proof.
  unfold extcall_arguments.
  apply transl_external_arguments_rec.
  auto with coqlib.
Qed.

End EXTERNAL_ARGUMENTS.

(** Preservation of the arguments to a builtin. *)

Section BUILTIN_ARGUMENTS.

Variable f: Linear.function.
Let b := function_bounds f.
Let fe := make_env b.
Variable tf: Mach.function.
Hypothesis TRANSF_F: transf_function f = OK tf.
Variable j: meminj.
Variables m m': mem.
Variables ls ls0: locset.
Variable rs: regset.
Variables sp sp': block.
Variables parent retaddr: val.
Hypothesis INJ: j sp = Some(sp', fe.(fe_stack_data)).
Hypothesis AGR: agree_regs j ls rs.
Hypothesis SEP: m' |= frame_contents f j sp' ls ls0 parent retaddr ** minjection j m ** globalenv_inject ge j.

Lemma transl_builtin_arg_correct:
  forall a v,
  eval_builtin_arg ge ls (Vptr sp Ptrofs.zero) m a v ->
  (forall l, In l (params_of_builtin_arg a) -> loc_valid f l = true) ->
  (forall sl ofs ty, In (S sl ofs ty) (params_of_builtin_arg a) -> slot_within_bounds b sl ofs ty) ->
  exists v',
     eval_builtin_arg ge rs (Vptr sp' Ptrofs.zero) m' (transl_builtin_arg fe a) v'
  /\ Val.inject j v v'.
Proof.
  assert (SYMB: forall id ofs, Val.inject j (Senv.symbol_address ge id ofs) (Senv.symbol_address ge id ofs)).
  { assert (G: meminj_preserves_globals ge j).
    { eapply globalenv_inject_preserves_globals. eapply sep_proj2. eapply sep_proj2. eexact SEP. }
    intros; unfold Senv.symbol_address; simpl; unfold Genv.symbol_address.
    destruct (Genv.find_symbol ge id) eqn:FS; auto.
    destruct G. econstructor. eauto. rewrite Ptrofs.add_zero; auto. }
Local Opaque fe.
  induction 1; simpl; intros VALID BOUNDS.
- assert (loc_valid f x = true) by auto.
  destruct x as [r | [] ofs ty]; try discriminate.
  + exists (rs r); auto with barg.
  + exploit frame_get_local; eauto. intros (v & A & B).
    exists v; split; auto. constructor; auto.
- econstructor; eauto with barg.
- econstructor; eauto with barg.
- econstructor; eauto with barg.
- econstructor; eauto with barg.
- set (ofs' := Ptrofs.add ofs (Ptrofs.repr (fe_stack_data fe))).
  apply sep_proj2 in SEP. apply sep_proj1 in SEP. exploit loadv_parallel_rule; eauto.
  instantiate (1 := Val.offset_ptr (Vptr sp' Ptrofs.zero) ofs').
  simpl. rewrite ! Ptrofs.add_zero_l. econstructor; eauto.
  intros (v' & A & B). exists v'; split; auto. constructor; auto.
- econstructor; split; eauto with barg.
  unfold Val.offset_ptr. rewrite ! Ptrofs.add_zero_l. econstructor; eauto.
- apply sep_proj2 in SEP. apply sep_proj1 in SEP. exploit loadv_parallel_rule; eauto.
  intros (v' & A & B). exists v'; auto with barg.
- econstructor; split; eauto with barg.
- destruct IHeval_builtin_arg1 as (v1 & A1 & B1); auto using in_or_app.
  destruct IHeval_builtin_arg2 as (v2 & A2 & B2); auto using in_or_app.
  exists (Val.longofwords v1 v2); split; auto with barg.
  apply Val.longofwords_inject; auto.
- destruct IHeval_builtin_arg1 as (v1' & A1 & B1); auto using in_or_app.
  destruct IHeval_builtin_arg2 as (v2' & A2 & B2); auto using in_or_app.
  econstructor; split. eauto with barg.
  destruct Archi.ptr64; auto using Val.add_inject, Val.addl_inject.
Qed.

Lemma transl_builtin_args_correct:
  forall al vl,
  eval_builtin_args ge ls (Vptr sp Ptrofs.zero) m al vl ->
  (forall l, In l (params_of_builtin_args al) -> loc_valid f l = true) ->
  (forall sl ofs ty, In (S sl ofs ty) (params_of_builtin_args al) -> slot_within_bounds b sl ofs ty) ->
  exists vl',
     eval_builtin_args ge rs (Vptr sp' Ptrofs.zero) m' (List.map (transl_builtin_arg fe) al) vl'
  /\ Val.inject_list j vl vl'.
Proof.
  induction 1; simpl; intros VALID BOUNDS.
- exists (@nil val); split; constructor.
- exploit transl_builtin_arg_correct; eauto using in_or_app. intros (v1' & A & B).
  exploit IHlist_forall2; eauto using in_or_app. intros (vl' & C & D).
  exists (v1'::vl'); split; constructor; auto.
Qed.

End BUILTIN_ARGUMENTS.

(** The proof of semantic preservation relies on simulation diagrams
  of the following form:
<<
           st1 --------------- st2
            |                   |
           t|                  +|t
            |                   |
            v                   v
           st1'--------------- st2'
>>
  Matching between source and target states is defined by [match_states]
  below.  It implies:
- Satisfaction of the separation logic assertions that describe the contents
  of memory.  This is a separating conjunction of facts about:
-- the current stack frame
-- the frames in the call stack
-- the injection from the Linear memory state into the Mach memory state
-- the preservation of the global environment.
- Agreement between, on the Linear side, the location sets [ls]
  and [parent_locset s] of the current function and its caller,
  and on the Mach side the register set [rs].
- The Linear code [c] is a suffix of the code of the
  function [f] being executed.
- Well-typedness of [f].
*)

Inductive match_states: Linear.state -> Mach.state -> Prop :=
  | match_states_intro:
      forall cs f sp c ls m cs' fb sp' rs m' j tf
        (STACKS: match_stacks j cs cs' f.(Linear.fn_sig))
        (TRANSL: transf_function f = OK tf)
        (FIND: Genv.find_funct_ptr tge fb = Some (Internal tf))
        (AGREGS: agree_regs j ls rs)
        (AGLOCS: agree_locs f ls (parent_locset cs))
        (INJSP: j sp = Some(sp', fe_stack_data (make_env (function_bounds f))))
        (TAIL: is_tail c (Linear.fn_code f))
        (SEP: m' |= frame_contents f j sp' ls (parent_locset cs) (parent_sp cs') (parent_ra cs')
                 ** stack_contents j cs cs'
                 ** minjection j m
                 ** globalenv_inject ge j),
      match_states (Linear.State cs f (Vptr sp Ptrofs.zero) c ls m)
                   (Mach.State cs' fb (Vptr sp' Ptrofs.zero) (transl_code (make_env (function_bounds f)) c) rs m')
  | match_states_call:
      forall cs f ls m cs' fb rs m' j tf
        (STACKS: match_stacks j cs cs' (Linear.funsig f))
        (TRANSL: transf_fundef f = OK tf)
        (FIND: Genv.find_funct_ptr tge fb = Some tf)
        (AGREGS: agree_regs j ls rs)
        (SEP: m' |= stack_contents j cs cs'
                 ** minjection j m
                 ** globalenv_inject ge j),
      match_states (Linear.Callstate cs f ls m)
                   (Mach.Callstate cs' fb rs m')
  | match_states_return:
      forall cs ls m cs' rs m' j sg
        (STACKS: match_stacks j cs cs' sg)
        (AGREGS: agree_regs j ls rs)
        (SEP: m' |= stack_contents j cs cs'
                 ** minjection j m
                 ** globalenv_inject ge j),
      match_states (Linear.Returnstate cs ls m)
                  (Mach.Returnstate cs' rs m').

Theorem transf_step_correct:
  forall s1 t s2, Linear.step ge s1 t s2 ->
  forall (WTS: wt_state s1) s1' (MS: match_states s1 s1'),
  exists s2', plus step tge s1' t s2' /\ match_states s2 s2'.
Proof.
  induction 1; intros;
  try inv MS;
  try rewrite transl_code_eq;
  try (generalize (function_is_within_bounds f _ (is_tail_in TAIL));
       intro BOUND; simpl in BOUND);
  unfold transl_instr.

- (* Lgetstack *)
  destruct BOUND as [BOUND1 BOUND2].
  exploit wt_state_getstack; eauto. intros SV.
  unfold destroyed_by_getstack; destruct sl.
+ (* Lgetstack, local *)
  exploit frame_get_local; eauto. intros (v & A & B).
  econstructor; split.
  apply plus_one. apply exec_Mgetstack. exact A.
  econstructor; eauto with coqlib.
  apply agree_regs_set_reg; auto.
  apply agree_locs_set_reg; auto.
+ (* Lgetstack, incoming *)
  unfold slot_valid in SV. InvBooleans.
  exploit incoming_slot_in_parameters; eauto. intros IN_ARGS.
  inversion STACKS; clear STACKS.
  elim (H1 _ IN_ARGS).
  subst s cs'.
  exploit frame_get_outgoing.
  apply sep_proj2 in SEP. simpl in SEP. rewrite sep_assoc in SEP. eexact SEP.
  eapply ARGS; eauto.
  eapply slot_outgoing_argument_valid; eauto.
  intros (v & A & B).
  econstructor; split.
  apply plus_one. eapply exec_Mgetparam; eauto.
  rewrite (unfold_transf_function _ _ TRANSL). unfold fn_link_ofs.
  eapply frame_get_parent. eexact SEP.
  econstructor; eauto with coqlib. econstructor; eauto.
  apply agree_regs_set_reg. apply agree_regs_set_reg. auto. auto.
  erewrite agree_incoming by eauto. exact B.
  apply agree_locs_set_reg; auto. apply agree_locs_undef_locs; auto.
+ (* Lgetstack, outgoing *)
  exploit frame_get_outgoing; eauto. intros (v & A & B).
  econstructor; split.
  apply plus_one. apply exec_Mgetstack. exact A.
  econstructor; eauto with coqlib.
  apply agree_regs_set_reg; auto.
  apply agree_locs_set_reg; auto.

- (* Lsetstack *)
  exploit wt_state_setstack; eauto. intros (SV & SW).
  set (ofs' := match sl with
               | Local => offset_local (make_env (function_bounds f)) ofs
               | Incoming => 0 (* dummy *)
               | Outgoing => offset_arg ofs
               end).
  eapply frame_undef_regs with (rl := destroyed_by_setstack ty) in SEP.
  assert (A: exists m'',
              store_stack m' (Vptr sp' Ptrofs.zero) ty (Ptrofs.repr ofs') (rs0 src) = Some m''
           /\ m'' |= frame_contents f j sp' (Locmap.set (S sl ofs ty) (rs (R src))
                                               (LTL.undef_regs (destroyed_by_setstack ty) rs))
                                            (parent_locset s) (parent_sp cs') (parent_ra cs')
                  ** stack_contents j s cs' ** minjection j m ** globalenv_inject ge j).
  { unfold ofs'; destruct sl; try discriminate.
    eapply frame_set_local; eauto.
    eapply frame_set_outgoing; eauto. }
  clear SEP; destruct A as (m'' & STORE & SEP).
  econstructor; split.
  apply plus_one. destruct sl; try discriminate.
    econstructor. eexact STORE. eauto.
    econstructor. eexact STORE. eauto.
  econstructor. eauto. eauto. eauto.
  apply agree_regs_set_slot. apply agree_regs_undef_regs. auto.
  apply agree_locs_set_slot. apply agree_locs_undef_locs. auto. apply destroyed_by_setstack_caller_save. auto.
  eauto. eauto with coqlib. eauto.

- (* Lop *)
  assert (exists v',
          eval_operation ge (Vptr sp' Ptrofs.zero) (transl_op (make_env (function_bounds f)) op) rs0##args m' = Some v'
       /\ Val.inject j v v').
  eapply eval_operation_inject; eauto.
  eapply globalenv_inject_preserves_globals. eapply sep_proj2. eapply sep_proj2. eapply sep_proj2. eexact SEP.
  eapply agree_reglist; eauto.
  apply sep_proj2 in SEP. apply sep_proj2 in SEP. apply sep_proj1 in SEP. exact SEP.
  destruct H0 as [v' [A B]].
  econstructor; split.
  apply plus_one. econstructor.
  instantiate (1 := v'). rewrite <- A. apply eval_operation_preserved.
  exact symbols_preserved. eauto.
  econstructor; eauto with coqlib;
  try (apply agree_regs_set_reg; auto);
  (* generic proof *)
  solve [ 
    (rewrite transl_destroyed_by_op; apply agree_regs_undef_regs; auto) |
    (apply agree_locs_set_reg; auto; apply agree_locs_undef_locs; auto; apply destroyed_by_op_caller_save) |
    (apply frame_set_reg; apply frame_undef_regs; exact SEP) ].
- (* Lload *)
  assert (exists a',
          eval_addressing ge (Vptr sp' Ptrofs.zero) (transl_addr (make_env (function_bounds f)) addr) rs0##args = Some a'
       /\ Val.inject j a a').
  eapply eval_addressing_inject; eauto.
  eapply globalenv_inject_preserves_globals. eapply sep_proj2. eapply sep_proj2. eapply sep_proj2. eexact SEP.
  eapply agree_reglist; eauto.
  destruct H1 as [a' [A B]].
  exploit loadv_parallel_rule.
  apply sep_proj2 in SEP. apply sep_proj2 in SEP. apply sep_proj1 in SEP. eexact SEP.
  eauto. eauto.
  intros [v' [C D]].
  econstructor; split.
  apply plus_one. econstructor.
  instantiate (1 := a'). rewrite <- A. apply eval_addressing_preserved. exact symbols_preserved.
  eexact C. eauto.
  econstructor; eauto with coqlib.
  apply agree_regs_set_reg. rewrite transl_destroyed_by_load. apply agree_regs_undef_regs; auto. auto.
  apply agree_locs_set_reg. apply agree_locs_undef_locs. auto. apply destroyed_by_load_caller_save. auto.

- (* Lload notrap1*)
  assert (eval_addressing ge (Vptr sp' Ptrofs.zero) (transl_addr (make_env (function_bounds f)) addr) rs0##args = None) as Haddress.
  eapply eval_addressing_inject_none; eauto.
  eapply globalenv_inject_preserves_globals. eapply sep_proj2. eapply sep_proj2. eapply sep_proj2. eexact SEP.
  eapply agree_reglist; eauto.
  econstructor; split.
  apply plus_one. apply exec_Mload_notrap1.
  rewrite <- Haddress. apply eval_addressing_preserved. exact symbols_preserved.
  eauto. econstructor; eauto with coqlib.
  apply agree_regs_set_reg. rewrite transl_destroyed_by_load. apply agree_regs_undef_regs; auto. auto.
  apply agree_locs_set_reg. apply agree_locs_undef_locs. auto. apply destroyed_by_load_caller_save. auto.
  
- (* Lload notrap2 *)
  assert (exists a',
          eval_addressing ge (Vptr sp' Ptrofs.zero) (transl_addr (make_env (function_bounds f)) addr) rs0##args = Some a'
       /\ Val.inject j a a').
  eapply eval_addressing_inject; eauto.
  eapply globalenv_inject_preserves_globals. eapply sep_proj2. eapply sep_proj2. eapply sep_proj2. eexact SEP.
  eapply agree_reglist; eauto.
  destruct H1 as [a' [A B]].

  destruct ( Mem.loadv chunk m' a') as [v'|] eqn:Hloadv.
  {
  econstructor; split.
  apply plus_one. apply exec_Mload with (a:=a') (v:=v'); eauto.
  try (rewrite <- A; apply eval_addressing_preserved; auto; exact symbols_preserved).
  econstructor; eauto with coqlib.
  apply agree_regs_set_reg. rewrite transl_destroyed_by_load. apply agree_regs_undef_regs; auto. auto.
  apply agree_locs_set_reg. apply agree_locs_undef_locs. auto. apply destroyed_by_load_caller_save. auto.
  }
  {
  econstructor; split.
  apply plus_one. apply exec_Mload_notrap2 with (a:=a'); eauto.
  try (rewrite <- A; apply eval_addressing_preserved; auto; exact symbols_preserved).
  
  econstructor; eauto with coqlib.
  apply agree_regs_set_reg. rewrite transl_destroyed_by_load. apply agree_regs_undef_regs; auto. auto.
  apply agree_locs_set_reg. apply agree_locs_undef_locs. auto. apply destroyed_by_load_caller_save. auto.
  }

- (* Lstore *)
  assert (exists a',
          eval_addressing ge (Vptr sp' Ptrofs.zero) (transl_addr (make_env (function_bounds f)) addr) rs0##args = Some a'
       /\ Val.inject j a a').
  eapply eval_addressing_inject; eauto.
  eapply globalenv_inject_preserves_globals. eapply sep_proj2. eapply sep_proj2. eapply sep_proj2. eexact SEP.
  eapply agree_reglist; eauto.
  destruct H1 as [a' [A B]].
  rewrite sep_swap3 in SEP.
  exploit storev_parallel_rule. eexact SEP. eauto. eauto. apply AGREGS.
  clear SEP; intros (m1' & C & SEP).
  rewrite sep_swap3 in SEP.
  econstructor; split.
  apply plus_one. econstructor.
  instantiate (1 := a'). rewrite <- A. apply eval_addressing_preserved. exact symbols_preserved.
  eexact C. eauto.
  econstructor. eauto. eauto. eauto.
  rewrite transl_destroyed_by_store. apply agree_regs_undef_regs; auto.
  apply agree_locs_undef_locs. auto. apply destroyed_by_store_caller_save.
  auto. eauto with coqlib.
  eapply frame_undef_regs; eauto.

- (* Lcall *)
  exploit find_function_translated; eauto.
    eapply sep_proj2. eapply sep_proj2. eapply sep_proj2. eexact SEP.
  intros [bf [tf' [A [B C]]]].
  exploit is_tail_transf_function; eauto. intros IST.
  rewrite transl_code_eq in IST. simpl in IST.
  exploit return_address_offset_exists. eexact IST. intros [ra D].
  econstructor; split.
  apply plus_one. econstructor; eauto.
  econstructor; eauto.
  econstructor; eauto with coqlib.
  apply Val.Vptr_has_type.
  intros; red.
    apply Z.le_trans with (size_arguments (Linear.funsig f')); auto. 
    apply loc_arguments_bounded; auto.
  simpl. rewrite sep_assoc. exact SEP.

- (* Ltailcall *)
  rewrite (sep_swap (stack_contents j s cs')) in SEP.
  exploit function_epilogue_correct; eauto.
  clear SEP. intros (rs1 & m1' & P & Q & R & S & T & U & SEP).
  rewrite sep_swap in SEP.
  exploit find_function_translated; eauto.
    eapply sep_proj2. eapply sep_proj2. eexact SEP.
  intros [bf [tf' [A [B C]]]].
  econstructor; split.
  eapply plus_right. eexact S. econstructor; eauto. traceEq.
  econstructor; eauto.
  apply match_stacks_change_sig with (Linear.fn_sig f); auto.
  apply zero_size_arguments_tailcall_possible. eapply wt_state_tailcall; eauto.

- (* Lbuiltin *)
  destruct BOUND as [BND1 BND2].
  exploit transl_builtin_args_correct.
    eauto. eauto. rewrite sep_swap in SEP; apply sep_proj2 in SEP; eexact SEP.
    eauto. rewrite <- forallb_forall. eapply wt_state_builtin; eauto.
    exact BND2.
  intros [vargs' [P Q]].
  rewrite <- sep_assoc, sep_comm, sep_assoc in SEP.
  exploit external_call_parallel_rule; eauto.
  clear SEP; intros (j' & res' & m1' & EC & RES & SEP & INCR & ISEP).
  rewrite <- sep_assoc, sep_comm, sep_assoc in SEP.
  econstructor; split.
  apply plus_one. econstructor; eauto.
  eapply eval_builtin_args_preserved with (ge1 := ge); eauto. exact symbols_preserved.
  eapply external_call_symbols_preserved; eauto. apply senv_preserved.
  eapply match_states_intro with (j := j'); eauto with coqlib.
  eapply match_stacks_change_meminj; eauto.
  apply agree_regs_set_res; auto. apply agree_regs_undef_regs; auto. eapply agree_regs_inject_incr; eauto.
  apply agree_locs_set_res; auto. apply agree_locs_undef_regs; auto.
  apply frame_set_res. apply frame_undef_regs. apply frame_contents_incr with j; auto.
  rewrite sep_swap2. apply stack_contents_change_meminj with j; auto. rewrite sep_swap2.
  exact SEP.

- (* Llabel *)
  econstructor; split.
  apply plus_one; apply exec_Mlabel.
  econstructor; eauto with coqlib.

- (* Lgoto *)
  econstructor; split.
  apply plus_one; eapply exec_Mgoto; eauto.
  apply transl_find_label; eauto.
  econstructor; eauto.
  eapply find_label_tail; eauto.

- (* Lcond, true *)
  econstructor; split.
  apply plus_one. eapply exec_Mcond_true; eauto.
  eapply eval_condition_inject with (m1 := m). eapply agree_reglist; eauto. apply sep_pick3 in SEP; exact SEP. auto.
  eapply transl_find_label; eauto.
  econstructor. eauto. eauto. eauto.
  apply agree_regs_undef_regs; auto.
  apply agree_locs_undef_locs. auto. apply destroyed_by_cond_caller_save.
  auto.
  eapply find_label_tail; eauto.
  apply frame_undef_regs; auto.

- (* Lcond, false *)
  econstructor; split.
  apply plus_one. eapply exec_Mcond_false; eauto.
  eapply eval_condition_inject with (m1 := m). eapply agree_reglist; eauto. apply sep_pick3 in SEP; exact SEP. auto.
  econstructor. eauto. eauto. eauto.
  apply agree_regs_undef_regs; auto.
  apply agree_locs_undef_locs. auto. apply destroyed_by_cond_caller_save.
  auto. eauto with coqlib.
  apply frame_undef_regs; auto.

- (* Ljumptable *)
  assert (rs0 arg = Vint n).
  { generalize (AGREGS arg). rewrite H. intro IJ; inv IJ; auto. }
  econstructor; split.
  apply plus_one; eapply exec_Mjumptable; eauto.
  apply transl_find_label; eauto.
  econstructor. eauto. eauto. eauto.
  apply agree_regs_undef_regs; auto.
  apply agree_locs_undef_locs. auto. apply destroyed_by_jumptable_caller_save.
  auto. eapply find_label_tail; eauto.
  apply frame_undef_regs; auto.

- (* Lreturn *)
  rewrite (sep_swap (stack_contents j s cs')) in SEP.
  exploit function_epilogue_correct; eauto.
  intros (rs' & m1' & A & B & C & D & E & F & G).
  econstructor; split.
  eapply plus_right. eexact D. econstructor; eauto. traceEq.
  econstructor; eauto.
  rewrite sep_swap; exact G.

- (* internal function *)
  revert TRANSL. unfold transf_fundef, transf_partial_fundef.
  destruct (transf_function f) as [tfn|] eqn:TRANSL; simpl; try congruence.
  intros EQ; inversion EQ; clear EQ; subst tf.
  rewrite sep_comm, sep_assoc in SEP.
  exploit wt_callstate_agree; eauto. intros [AGCS AGARGS].
  exploit function_prologue_correct; eauto.
  red; intros; eapply wt_callstate_wt_regs; eauto.
  eapply match_stacks_type_sp; eauto.
  eapply match_stacks_type_retaddr; eauto.
  clear SEP;
  intros (j' & rs' & m2' & sp' & m3' & m4' & m5' & A & B & C & D & E & F & SEP & J & K).
  rewrite (sep_comm (globalenv_inject ge j')) in SEP.
  rewrite (sep_swap (minjection j' m')) in SEP.
  econstructor; split.
  eapply plus_left. econstructor; eauto.
  rewrite (unfold_transf_function _ _ TRANSL). unfold fn_code. unfold transl_body.
  eexact D. traceEq.
  eapply match_states_intro with (j := j'); eauto with coqlib.
  eapply match_stacks_change_meminj; eauto.
  rewrite sep_swap in SEP. rewrite sep_swap. eapply stack_contents_change_meminj; eauto.

- (* external function *)
  simpl in TRANSL. inversion TRANSL; subst tf.
  exploit wt_callstate_agree; eauto. intros [AGCS AGARGS].
  exploit transl_external_arguments; eauto. apply sep_proj1 in SEP; eauto. intros [vl [ARGS VINJ]].
  rewrite sep_comm, sep_assoc in SEP.
  exploit external_call_parallel_rule; eauto.
  intros (j' & res' & m1' & A & B & C & D & E).
  econstructor; split.
  apply plus_one. eapply exec_function_external; eauto.
  eapply external_call_symbols_preserved; eauto. apply senv_preserved.
  eapply match_states_return with (j := j').
  eapply match_stacks_change_meminj; eauto.
  apply agree_regs_set_pair. apply agree_regs_undef_caller_save_regs. 
  apply agree_regs_inject_incr with j; auto.
  auto.
  apply stack_contents_change_meminj with j; auto.
  rewrite sep_comm, sep_assoc; auto.

- (* return *)
  inv STACKS. exploit wt_returnstate_agree; eauto. intros [AGCS OUTU].
  simpl in AGCS. simpl in SEP. rewrite sep_assoc in SEP.
  econstructor; split.
  apply plus_one. apply exec_return.
  econstructor; eauto.
  apply agree_locs_return with rs0; auto.
  apply frame_contents_exten with rs0 (parent_locset s); auto.
  intros; apply Val.lessdef_same; apply AGCS; red; congruence.
  intros; rewrite (OUTU ty ofs); auto. 
Qed.

Lemma transf_initial_states:
  forall st1, Linear.initial_state prog st1 ->
  exists st2, Mach.initial_state tprog st2 /\ match_states st1 st2.
Proof.
  intros. inv H.
  exploit function_ptr_translated; eauto. intros [tf [FIND TR]].
  econstructor; split.
  econstructor.
  eapply (Genv.init_mem_transf_partial TRANSF); eauto.
  rewrite (match_program_main TRANSF).
  rewrite symbols_preserved. eauto.
  set (j := Mem.flat_inj (Mem.nextblock m0)).
  eapply match_states_call with (j := j); eauto.
  constructor. red; intros. rewrite H3, loc_arguments_main in H. contradiction.
  red; simpl; auto.
  simpl. rewrite sep_pure. split; auto. split;[|split].
  eapply Genv.initmem_inject; eauto.
  simpl. exists (Mem.nextblock m0); split. apply Ple_refl.
  unfold j, Mem.flat_inj; constructor; intros.
    apply pred_dec_true; auto.
    destruct (plt b1 (Mem.nextblock m0)); congruence.
    change (Mem.valid_block m0 b0). eapply Genv.find_symbol_not_fresh; eauto.
    change (Mem.valid_block m0 b0). eapply Genv.find_funct_ptr_not_fresh; eauto.
    change (Mem.valid_block m0 b0). eapply Genv.find_var_info_not_fresh; eauto.
  red; simpl; tauto.
Qed.

Lemma transf_final_states:
  forall st1 st2 r,
  match_states st1 st2 -> Linear.final_state st1 r -> Mach.final_state st2 r.
Proof.
  intros. inv H0. inv H. inv STACKS.
  assert (R: exists r, loc_result signature_main = One r).
  { destruct (loc_result signature_main) as [r1 | r1 r2] eqn:LR.
  - exists r1; auto.
  - generalize (loc_result_type signature_main). rewrite LR. discriminate.
  }
  destruct R as [rres EQ]. rewrite EQ in H1. simpl in H1.
  generalize (AGREGS rres). rewrite H1. intros A; inv A.
  econstructor; eauto.
Qed.

Lemma wt_prog:
  forall i fd, In (i, Gfun fd) prog.(prog_defs) -> wt_fundef fd.
Proof.
  intros.
  exploit list_forall2_in_left. eexact (proj1 TRANSF). eauto.
  intros ([i' g] & P & Q & R). simpl in *. inv R. destruct fd; simpl in *.
- monadInv H2. unfold transf_function in EQ.
  destruct (wt_function f). auto. discriminate.
- auto.
Qed.

Theorem transf_program_correct:
  forward_simulation (Linear.semantics prog) (Mach.semantics return_address_offset tprog).
Proof.
  set (ms := fun s s' => wt_state s /\ match_states s s').
  eapply forward_simulation_plus with (match_states := ms).
- apply senv_preserved.
- intros. exploit transf_initial_states; eauto. intros [st2 [A B]].
  exists st2; split; auto. split; auto.
  apply wt_initial_state with (prog := prog); auto. exact wt_prog.
- intros. destruct H. eapply transf_final_states; eauto.
- intros. destruct H0.
  exploit transf_step_correct; eauto. intros [s2' [A B]].
  exists s2'; split. exact A. split.
  eapply step_type_preservation; eauto. eexact wt_prog. eexact H.
  auto.
Qed.

End PRESERVATION.