aboutsummaryrefslogtreecommitdiffstats
path: root/backend/Unusedglobproof.v
blob: ce9c7a86d1ce7f9e6033db82478fe9058aa522c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Elimination of unreferenced static definitions *)

Require Import FSets Coqlib Maps Ordered Iteration Errors.
Require Import AST Linking.
Require Import Integers Values Memory Globalenvs Events Smallstep.
Require Import Op Registers RTL.
Require Import Unusedglob.

Module ISF := FSetFacts.Facts(IS).
Module ISP := FSetProperties.Properties(IS).

(** * Relational specification of the transformation *)

(** The transformed program is obtained from the original program
  by keeping only the global definitions that belong to a given
  set [u] of names.  *)

Record match_prog_1 (u: IS.t) (p tp: program) : Prop := {
  match_prog_main:
    tp.(prog_main) = p.(prog_main);
  match_prog_public:
    tp.(prog_public) = p.(prog_public);
  match_prog_def:
    forall id,
       (prog_defmap tp)!id = if IS.mem id u then (prog_defmap p)!id else None;
  match_prog_unique:
    list_norepet (prog_defs_names tp)
}.

(** This set [u] (as "used") must be closed under references, and
  contain the entry point and the public identifiers of the program. *)

Definition ref_function (f: function) (id: ident) : Prop :=
  exists pc i, f.(fn_code)!pc = Some i /\ In id (ref_instruction i).

Definition ref_fundef (fd: fundef) (id: ident) : Prop :=
  match fd with Internal f => ref_function f id | External ef => False end.

Definition ref_init (il: list init_data) (id: ident) : Prop :=
  exists ofs, In (Init_addrof id ofs) il.

Definition ref_def (gd: globdef fundef unit) (id: ident) : Prop :=
  match gd with
  | Gfun fd => ref_fundef fd id
  | Gvar gv => ref_init gv.(gvar_init) id
  end.

Record valid_used_set (p: program) (u: IS.t) : Prop := {
  used_closed: forall id gd id',
    IS.In id u -> (prog_defmap p)!id = Some gd -> ref_def gd id' ->
    IS.In id' u;
  used_main:
    IS.In p.(prog_main) u;
  used_public: forall id,
    In id p.(prog_public) -> IS.In id u;
  used_defined: forall id,
    IS.In id u -> In id (prog_defs_names p) \/ id = p.(prog_main)
}.

Definition match_prog (p tp: program) : Prop :=
  exists u: IS.t, valid_used_set p u /\ match_prog_1 u p tp.

(** * Properties of the static analysis *)

(** Monotonic evolution of the workset. *)

Inductive workset_incl (w1 w2: workset) : Prop :=
  workset_incl_intro:
    forall (SEEN: IS.Subset w1.(w_seen) w2.(w_seen))
           (TODO: List.incl w1.(w_todo) w2.(w_todo))
           (TRACK: forall id, IS.In id w2.(w_seen) ->
                      IS.In id w1.(w_seen) \/ List.In id w2.(w_todo)),
    workset_incl w1 w2.

Lemma seen_workset_incl:
  forall w1 w2 id, workset_incl w1 w2 -> IS.In id w1 -> IS.In id w2.
Proof.
  intros. destruct H. auto.
Qed.

Lemma workset_incl_refl: forall w, workset_incl w w.
Proof.
  intros; split. red; auto. red; auto. auto.
Qed.

Lemma workset_incl_trans:
  forall w1 w2 w3, workset_incl w1 w2 -> workset_incl w2 w3 -> workset_incl w1 w3.
Proof.
  intros. destruct H, H0; split.
  red; eauto.
  red; eauto.
  intros. edestruct TRACK0; eauto. edestruct TRACK; eauto.
Qed.

Lemma add_workset_incl:
  forall id w, workset_incl w (add_workset id w).
Proof.
  unfold add_workset; intros. destruct (IS.mem id w) eqn:MEM.
- apply workset_incl_refl.
- split; simpl.
  + red; intros. apply IS.add_2; auto.
  + red; simpl; auto.
  + intros. destruct (ident_eq id id0); auto. apply IS.add_3 in H; auto.
Qed.

Lemma addlist_workset_incl:
  forall l w, workset_incl w (addlist_workset l w).
Proof.
  induction l; simpl; intros.
  apply workset_incl_refl.
  eapply workset_incl_trans. apply add_workset_incl. eauto.
Qed.

Lemma add_ref_function_incl:
  forall f w, workset_incl w (add_ref_function f w).
Proof.
  unfold add_ref_function; intros. apply PTree_Properties.fold_rec.
- auto.
- apply workset_incl_refl.
- intros. apply workset_incl_trans with a; auto.
  unfold add_ref_instruction. apply addlist_workset_incl.
Qed.

Lemma add_ref_globvar_incl:
  forall gv w, workset_incl w (add_ref_globvar gv w).
Proof.
  unfold add_ref_globvar; intros.
  revert w. induction (gvar_init gv); simpl; intros.
  apply workset_incl_refl.
  eapply workset_incl_trans; [ | eauto ].
  unfold add_ref_init_data.
  destruct a; (apply workset_incl_refl || apply add_workset_incl).
Qed.

Lemma add_ref_definition_incl:
  forall pm id w, workset_incl w (add_ref_definition pm id w).
Proof.
  unfold add_ref_definition; intros.
  destruct (pm!id) as [[[] | ? ] | ].
  apply add_ref_function_incl.
  apply workset_incl_refl.
  apply add_ref_globvar_incl.
  apply workset_incl_refl.
Qed.

Lemma initial_workset_incl:
  forall p, workset_incl {| w_seen := IS.empty; w_todo := nil |} (initial_workset p).
Proof.
  unfold initial_workset; intros.
  eapply workset_incl_trans. 2: apply add_workset_incl.
  generalize {| w_seen := IS.empty; w_todo := nil |}. induction (prog_public p); simpl; intros.
  apply workset_incl_refl.
  eapply workset_incl_trans. apply add_workset_incl. apply IHl.
Qed.

(** Soundness properties for functions that add identifiers to the workset *)

Lemma seen_add_workset:
  forall id (w: workset), IS.In id (add_workset id w).
Proof.
  unfold add_workset; intros.
  destruct (IS.mem id w) eqn:MEM.
  apply IS.mem_2; auto.
  simpl. apply IS.add_1; auto.
Qed.

Lemma seen_addlist_workset:
  forall id l (w: workset),
  In id l -> IS.In id (addlist_workset l w).
Proof.
  induction l; simpl; intros.
  tauto.
  destruct H. subst a.
  eapply seen_workset_incl. apply addlist_workset_incl. apply seen_add_workset.
  apply IHl; auto.
Qed.

Lemma seen_add_ref_function:
  forall id f w,
  ref_function f id -> IS.In id (add_ref_function f w).
Proof.
  intros until w. unfold ref_function, add_ref_function. apply PTree_Properties.fold_rec; intros.
- destruct H1 as (pc & i & A & B). apply H0; auto. exists pc, i; split; auto. rewrite H; auto.
- destruct H as (pc & i & A & B). rewrite PTree.gempty in A; discriminate.
- destruct H2 as (pc & i & A & B). rewrite PTree.gsspec in A. destruct (peq pc k).
  + inv A. unfold add_ref_instruction. apply seen_addlist_workset; auto.
  + unfold add_ref_instruction. eapply seen_workset_incl. apply addlist_workset_incl.
    apply H1. exists pc, i; auto.
Qed.

Lemma seen_add_ref_definition:
  forall pm id gd id' w,
  pm!id = Some gd -> ref_def gd id' -> IS.In id' (add_ref_definition pm id w).
Proof.
  unfold add_ref_definition; intros. rewrite H. red in H0; destruct gd as [[f|ef]|gv].
  apply seen_add_ref_function; auto.
  contradiction.
  destruct H0 as (ofs & IN).
  unfold add_ref_globvar.
  assert (forall l (w: workset),
          IS.In id' w \/ In (Init_addrof id' ofs) l ->
          IS.In id' (fold_left add_ref_init_data l w)).
  {
    induction l; simpl; intros.
    tauto.
    apply IHl. intuition auto.
    left. destruct a; simpl; auto. eapply seen_workset_incl. apply add_workset_incl. auto.
    subst; left; simpl. apply seen_add_workset.
  }
  apply H0; auto.
Qed.

Lemma seen_main_initial_workset:
  forall p, IS.In p.(prog_main) (initial_workset p).
Proof.
  intros. apply seen_add_workset.
Qed.

Lemma seen_public_initial_workset:
  forall p id, In id p.(prog_public) -> IS.In id (initial_workset p).
Proof.
  intros. unfold initial_workset. eapply seen_workset_incl. apply add_workset_incl.
  assert (forall l (w: workset),
          IS.In id w \/ In id l -> IS.In id (fold_left (fun w id => add_workset id w) l w)).
  {
    induction l; simpl; intros.
    tauto.
    apply IHl. intuition auto; left.
    eapply seen_workset_incl. apply add_workset_incl. auto.
    subst a. apply seen_add_workset.
  }
  apply H0. auto.
Qed.

(** * Correctness of the transformation with respect to the relational specification *)

(** Correctness of the dependency graph traversal. *)

Section ANALYSIS.

Variable p: program.
Let pm := prog_defmap p.

Definition workset_invariant (w: workset) : Prop :=
  forall id gd id',
  IS.In id w -> ~List.In id (w_todo w) -> pm!id = Some gd -> ref_def gd id' ->
  IS.In id' w.

Definition used_set_closed (u: IS.t) : Prop :=
  forall id gd id',
  IS.In id u -> pm!id = Some gd -> ref_def gd id' -> IS.In id' u.

Lemma iter_step_invariant:
  forall w,
  workset_invariant w ->
  match iter_step pm w with
  | inl u => used_set_closed u
  | inr w' => workset_invariant w'
  end.
Proof.
  unfold iter_step, workset_invariant, used_set_closed; intros.
  destruct (w_todo w) as [ | id rem ]; intros.
- eapply H; eauto.
- set (w' := {| w_seen := w.(w_seen); w_todo := rem |}) in *.
  destruct (add_ref_definition_incl pm id w').
  destruct (ident_eq id id0).
  + subst id0. eapply seen_add_ref_definition; eauto.
  + exploit TRACK; eauto. intros [A|A].
    * apply SEEN. eapply H; eauto. simpl.
      assert (~ In id0 rem).
      { change rem with (w_todo w'). red; intros. elim H1; auto. }
      tauto.
    * contradiction.
Qed.

Theorem used_globals_sound:
  forall u, used_globals p pm = Some u -> used_set_closed u.
Proof.
  unfold used_globals; intros. eapply PrimIter.iterate_prop with (P := workset_invariant); eauto.
- intros. apply iter_step_invariant; auto.
- destruct (initial_workset_incl p).
  red; intros. edestruct TRACK; eauto.
  simpl in H4. eelim IS.empty_1; eauto.
  contradiction.
Qed.

Theorem used_globals_incl:
  forall u, used_globals p pm = Some u -> IS.Subset (initial_workset p) u.
Proof.
  unfold used_globals; intros.
  eapply PrimIter.iterate_prop with (P := fun (w: workset) => IS.Subset (initial_workset p) w); eauto.
- fold pm; unfold iter_step; intros. destruct (w_todo a) as [ | id rem ].
  auto.
  destruct (add_ref_definition_incl pm id {| w_seen := a; w_todo := rem |}).
  red; auto.
- red; auto.
Qed.

Corollary used_globals_valid:
  forall u,
  used_globals p pm = Some u ->
  IS.for_all (global_defined p pm) u = true ->
  valid_used_set p u.
Proof.
  intros. constructor.
- intros. eapply used_globals_sound; eauto.
- eapply used_globals_incl; eauto. apply seen_main_initial_workset.
- intros. eapply used_globals_incl; eauto. apply seen_public_initial_workset; auto.
- intros. apply ISF.for_all_iff in H0.
+ red in H0. apply H0 in H1. unfold global_defined in H1.
  destruct pm!id as [g|] eqn:E.
* left. change id with (fst (id,g)). apply in_map. apply in_prog_defmap; auto.
* InvBooleans; auto.
+ hnf. simpl; intros; congruence.
Qed.

End ANALYSIS.

(** Properties of the elimination of unused global definitions. *)

Section TRANSFORMATION.

Variable p: program.
Variable used: IS.t.

Let add_def (m: prog_map) idg := PTree.set (fst idg) (snd idg) m.

Remark filter_globdefs_accu:
  forall defs accu1 accu2 u,
  filter_globdefs u (accu1 ++ accu2) defs = filter_globdefs u accu1 defs ++ accu2.
Proof.
  induction defs; simpl; intros.
  auto.
  destruct a as [id gd]. destruct (IS.mem id u); auto.
  rewrite <- IHdefs. auto.
Qed.

Remark filter_globdefs_nil:
  forall u accu defs,
  filter_globdefs u accu defs = filter_globdefs u nil defs ++ accu.
Proof.
  intros. rewrite <- filter_globdefs_accu. auto.
Qed.

Lemma filter_globdefs_map_1:
  forall id l u m1,
  IS.mem id u = false ->
  m1!id = None ->
  (fold_left add_def (filter_globdefs u nil l) m1)!id = None.
Proof.
  induction l as [ | [id1 gd1] l]; simpl; intros.
- auto.
- destruct (IS.mem id1 u) eqn:MEM.
+ rewrite filter_globdefs_nil. rewrite fold_left_app. simpl.
  unfold add_def at 1. simpl. rewrite PTree.gso by congruence. eapply IHl; eauto.
  rewrite ISF.remove_b. rewrite H; auto.
+ eapply IHl; eauto.
Qed.

Lemma filter_globdefs_map_2:
  forall id l u m1 m2,
  IS.mem id u = true ->
  m1!id = m2!id ->
  (fold_left add_def (filter_globdefs u nil l) m1)!id = (fold_left add_def (List.rev l) m2)!id.
Proof.
  induction l as [ | [id1 gd1] l]; simpl; intros.
- auto.
- rewrite fold_left_app. simpl.
  destruct (IS.mem id1 u) eqn:MEM.
+ rewrite filter_globdefs_nil. rewrite fold_left_app. simpl.
  unfold add_def at 1 3. simpl.
  rewrite ! PTree.gsspec. destruct (peq id id1). auto.
  apply IHl; auto.
  apply IS.mem_1. apply IS.remove_2; auto. apply IS.mem_2; auto.
+ unfold add_def at 2. simpl. rewrite PTree.gso by congruence. apply IHl; auto.
Qed.

Lemma filter_globdefs_map:
  forall id u defs,
  (PTree_Properties.of_list (filter_globdefs u nil (List.rev defs)))! id =
  if IS.mem id u then (PTree_Properties.of_list defs)!id else None.
Proof.
  intros. unfold PTree_Properties.of_list. fold prog_map. unfold PTree.elt. fold add_def.
  destruct (IS.mem id u) eqn:MEM.
- erewrite filter_globdefs_map_2. rewrite List.rev_involutive. reflexivity.
  auto. auto.
- apply filter_globdefs_map_1. auto. apply PTree.gempty.
Qed.

Lemma filter_globdefs_domain:
  forall id l u,
  In id (map fst (filter_globdefs u nil l)) -> IS.In id u /\ In id (map fst l).
Proof.
  induction l as [ | [id1 gd1] l]; simpl; intros.
- tauto.
- destruct (IS.mem id1 u) eqn:MEM.
+ rewrite filter_globdefs_nil, map_app, in_app_iff in H. destruct H.
  apply IHl in H. rewrite ISF.remove_iff in H. tauto.
  simpl in H. destruct H; try tauto. subst id1. split; auto. apply IS.mem_2; auto.
+ apply IHl in H. tauto.
Qed.

Lemma filter_globdefs_unique_names:
  forall l u, list_norepet (map fst (filter_globdefs u nil l)).
Proof.
  induction l as [ | [id1 gd1] l]; simpl; intros.
- constructor.
- destruct (IS.mem id1 u) eqn:MEM; auto.
  rewrite filter_globdefs_nil, map_app. simpl.
  apply list_norepet_append; auto.
  constructor. simpl; tauto. constructor.
  red; simpl; intros. destruct H0; try tauto. subst y.
  apply filter_globdefs_domain in H. rewrite ISF.remove_iff in H. intuition.
Qed.

End TRANSFORMATION.

Theorem transf_program_match:
  forall p tp, transf_program p = OK tp -> match_prog p tp.
Proof.
  unfold transf_program; intros p tp TR. set (pm := prog_defmap p) in *.
  destruct (used_globals p pm) as [u|] eqn:U; try discriminate.
  destruct (IS.for_all (global_defined p pm) u) eqn:DEF; inv TR.
  exists u; split.
  apply used_globals_valid; auto.
  constructor; simpl; auto.
  intros. unfold prog_defmap; simpl. apply filter_globdefs_map.
  apply filter_globdefs_unique_names.
Qed.

(** * Semantic preservation *)

Section SOUNDNESS.

Variable p: program.
Variable tp: program.
Variable used: IS.t.
Hypothesis USED_VALID: valid_used_set p used.
Hypothesis TRANSF: match_prog_1 used p tp.
Let ge := Genv.globalenv p.
Let tge := Genv.globalenv tp.
Let pm := prog_defmap p.

Definition kept (id: ident) : Prop := IS.In id used.

Lemma kept_closed:
  forall id gd id',
  kept id -> pm!id = Some gd -> ref_def gd id' -> kept id'.
Proof.
  intros. eapply used_closed; eauto.
Qed.

Lemma kept_main:
  kept p.(prog_main).
Proof.
  eapply used_main; eauto.
Qed.

Lemma kept_public:
  forall id, In id p.(prog_public) -> kept id.
Proof.
  intros. eapply used_public; eauto.
Qed.

(** Relating [Genv.find_symbol] operations in the original and transformed program *)

Lemma transform_find_symbol_1:
  forall id b,
  Genv.find_symbol ge id = Some b -> kept id -> exists b', Genv.find_symbol tge id = Some b'.
Proof.
  intros.
  assert (A: exists g, (prog_defmap p)!id = Some g).
  { apply prog_defmap_dom. eapply Genv.find_symbol_inversion; eauto. }
  destruct A as (g & P).
  apply Genv.find_symbol_exists with g.
  apply in_prog_defmap.
  erewrite match_prog_def by eauto. rewrite IS.mem_1 by auto. auto.
Qed.

Lemma transform_find_symbol_2:
  forall id b,
  Genv.find_symbol tge id = Some b -> kept id /\ exists b', Genv.find_symbol ge id = Some b'.
Proof.
  intros.
  assert (A: exists g, (prog_defmap tp)!id = Some g).
  { apply prog_defmap_dom. eapply Genv.find_symbol_inversion; eauto. }
  destruct A as (g & P).
  erewrite match_prog_def in P by eauto.
  destruct (IS.mem id used) eqn:U; try discriminate.
  split. apply IS.mem_2; auto.
  apply Genv.find_symbol_exists with g.
  apply in_prog_defmap. auto.
Qed.

(** Injections that preserve used globals. *)

Record meminj_preserves_globals (f: meminj) : Prop := {
  symbols_inject_1: forall id b b' delta,
    f b = Some(b', delta) -> Genv.find_symbol ge id = Some b ->
    delta = 0 /\ Genv.find_symbol tge id = Some b';
  symbols_inject_2: forall id b,
    kept id -> Genv.find_symbol ge id = Some b ->
    exists b', Genv.find_symbol tge id = Some b' /\ f b = Some(b', 0);
  symbols_inject_3: forall id b',
    Genv.find_symbol tge id = Some b' ->
    exists b, Genv.find_symbol ge id = Some b /\ f b = Some(b', 0);
  defs_inject: forall b b' delta gd,
    f b = Some(b', delta) -> Genv.find_def ge b = Some gd ->
    Genv.find_def tge b' = Some gd /\ delta = 0 /\
    (forall id, ref_def gd id -> kept id);
  defs_rev_inject: forall b b' delta gd,
    f b = Some(b', delta) -> Genv.find_def tge b' = Some gd ->
    Genv.find_def ge b = Some gd /\ delta = 0
}.

Definition init_meminj : meminj :=
  fun b =>
    match Genv.invert_symbol ge b with
    | Some id =>
        match Genv.find_symbol tge id with
        | Some b' => Some (b', 0)
        | None => None
        end
    | None => None
    end.

Remark init_meminj_eq:
  forall id b b',
  Genv.find_symbol ge id = Some b -> Genv.find_symbol tge id = Some b' ->
  init_meminj b = Some(b', 0).
Proof.
  intros. unfold init_meminj. erewrite Genv.find_invert_symbol by eauto. rewrite H0. auto.
Qed.

Remark init_meminj_invert:
  forall b b' delta,
  init_meminj b = Some(b', delta) ->
  delta = 0 /\ exists id, Genv.find_symbol ge id = Some b /\ Genv.find_symbol tge id = Some b'.
Proof.
  unfold init_meminj; intros.
  destruct (Genv.invert_symbol ge b) as [id|] eqn:S; try discriminate.
  destruct (Genv.find_symbol tge id) as [b''|] eqn:F; inv H.
  split. auto. exists id. split. apply Genv.invert_find_symbol; auto. auto.
Qed.

Lemma init_meminj_preserves_globals:
  meminj_preserves_globals init_meminj.
Proof.
  constructor; intros.
- exploit init_meminj_invert; eauto. intros (A & id1 & B & C).
  assert (id1 = id) by (eapply (Genv.genv_vars_inj ge); eauto). subst id1.
  auto.
- exploit transform_find_symbol_1; eauto. intros (b' & F). exists b'; split; auto.
  eapply init_meminj_eq; eauto.
- exploit transform_find_symbol_2; eauto. intros (K & b & F).
  exists b; split; auto. eapply init_meminj_eq; eauto.
- exploit init_meminj_invert; eauto. intros (A & id & B & C).
  assert (kept id) by (eapply transform_find_symbol_2; eauto).
  assert (pm!id = Some gd).
  { unfold pm; rewrite Genv.find_def_symbol. exists b; auto. }
  assert ((prog_defmap tp)!id = Some gd).
  { erewrite match_prog_def by eauto. rewrite IS.mem_1 by auto. auto. }
  rewrite Genv.find_def_symbol in H3. destruct H3 as (b1 & P & Q).
  fold tge in P. replace b' with b1 by congruence. split; auto. split; auto.
  intros. eapply kept_closed; eauto.
- exploit init_meminj_invert; eauto. intros (A & id & B & C).
  assert ((prog_defmap tp)!id = Some gd).
  { rewrite Genv.find_def_symbol. exists b'; auto. }
  erewrite match_prog_def in H1 by eauto.
  destruct (IS.mem id used); try discriminate.
  rewrite Genv.find_def_symbol in H1. destruct H1 as (b1 & P & Q).
  fold ge in P. replace b with b1 by congruence. auto.
Qed.

Lemma globals_symbols_inject:
  forall j, meminj_preserves_globals j -> symbols_inject j ge tge.
Proof.
  intros.
  assert (E1: Genv.genv_public ge = p.(prog_public)).
  { apply Genv.globalenv_public. }
  assert (E2: Genv.genv_public tge = p.(prog_public)).
  { unfold tge; rewrite Genv.globalenv_public. eapply match_prog_public; eauto. }
  split; [|split;[|split]]; intros.
  + simpl; unfold Genv.public_symbol; rewrite E1, E2.
    destruct (Genv.find_symbol tge id) as [b'|] eqn:TFS.
    exploit symbols_inject_3; eauto. intros (b & FS & INJ). rewrite FS. auto.
    destruct (Genv.find_symbol ge id) as [b|] eqn:FS; auto.
    destruct (in_dec ident_eq id (prog_public p)); simpl; auto.
    exploit symbols_inject_2; eauto.
    eapply kept_public; eauto.
    intros (b' & TFS' & INJ). congruence.
  + eapply symbols_inject_1; eauto.
  + simpl in *; unfold Genv.public_symbol in H0.
    destruct (Genv.find_symbol ge id) as [b|] eqn:FS; try discriminate.
    rewrite E1 in H0.
    destruct (in_dec ident_eq id (prog_public p)); try discriminate. inv H1.
    exploit symbols_inject_2; eauto.
    eapply kept_public; eauto.
    intros (b' & A & B); exists b'; auto.
  + simpl. unfold Genv.block_is_volatile.
    destruct (Genv.find_var_info ge b1) as [gv|] eqn:V1.
    rewrite Genv.find_var_info_iff in V1.
    exploit defs_inject; eauto. intros (A & B & C).
    rewrite <- Genv.find_var_info_iff in A. rewrite A; auto.
    destruct (Genv.find_var_info tge b2) as [gv|] eqn:V2; auto.
    rewrite Genv.find_var_info_iff in V2.
    exploit defs_rev_inject; eauto. intros (A & B).
    rewrite <- Genv.find_var_info_iff in A. congruence.
Qed.

Lemma symbol_address_inject:
  forall j id ofs,
  meminj_preserves_globals j -> kept id ->
  Val.inject j (Genv.symbol_address ge id ofs) (Genv.symbol_address tge id ofs).
Proof.
  intros. unfold Genv.symbol_address. destruct (Genv.find_symbol ge id) as [b|] eqn:FS; auto.
  exploit symbols_inject_2; eauto. intros (b' & TFS & INJ). rewrite TFS.
  econstructor; eauto. rewrite Ptrofs.add_zero; auto.
Qed.

(** Semantic preservation *)

Definition regset_inject (f: meminj) (rs rs': regset): Prop :=
  forall r, Val.inject f rs#r rs'#r.

Lemma regs_inject:
  forall f rs rs', regset_inject f rs rs' -> forall l, Val.inject_list f rs##l rs'##l.
Proof.
  induction l; simpl. constructor. constructor; auto.
Qed.

Lemma set_reg_inject:
  forall f rs rs' r v v',
  regset_inject f rs rs' -> Val.inject f v v' ->
  regset_inject f (rs#r <- v) (rs'#r <- v').
Proof.
  intros; red; intros. rewrite ! Regmap.gsspec. destruct (peq r0 r); auto.
Qed.

Lemma set_res_inject:
  forall f rs rs' res v v',
  regset_inject f rs rs' -> Val.inject f v v' ->
  regset_inject f (regmap_setres res v rs) (regmap_setres res v' rs').
Proof.
  intros. destruct res; auto. apply set_reg_inject; auto.
Qed.

Lemma regset_inject_incr:
  forall f f' rs rs', regset_inject f rs rs' -> inject_incr f f' -> regset_inject f' rs rs'.
Proof.
  intros; red; intros. apply val_inject_incr with f; auto.
Qed.

Lemma regset_undef_inject:
  forall f, regset_inject f (Regmap.init Vundef) (Regmap.init Vundef).
Proof.
  intros; red; intros. rewrite Regmap.gi. auto.
Qed.

Lemma init_regs_inject:
  forall f args args', Val.inject_list f args args' ->
  forall params,
  regset_inject f (init_regs args params) (init_regs args' params).
Proof.
  induction 1; intros; destruct params; simpl; try (apply regset_undef_inject).
  apply set_reg_inject; auto.
Qed.

Inductive match_stacks (j: meminj):
        list stackframe -> list stackframe -> block -> block -> Prop :=
  | match_stacks_nil: forall bound tbound,
      meminj_preserves_globals j ->
      Ple (Genv.genv_next ge) bound -> Ple (Genv.genv_next tge) tbound ->
      match_stacks j nil nil bound tbound
  | match_stacks_cons: forall res f sp pc rs s tsp trs ts bound tbound
         (STACKS: match_stacks j s ts sp tsp)
         (KEPT: forall id, ref_function f id -> kept id)
         (SPINJ: j sp = Some(tsp, 0))
         (REGINJ: regset_inject j rs trs)
         (BELOW: Plt sp bound)
         (TBELOW: Plt tsp tbound),
      match_stacks j (Stackframe res f (Vptr sp Ptrofs.zero) pc rs :: s)
                     (Stackframe res f (Vptr tsp Ptrofs.zero) pc trs :: ts)
                     bound tbound.

Lemma match_stacks_preserves_globals:
  forall j s ts bound tbound,
  match_stacks j s ts bound tbound ->
  meminj_preserves_globals j.
Proof.
  induction 1; auto.
Qed.

Lemma match_stacks_incr:
  forall j j', inject_incr j j' ->
  forall s ts bound tbound, match_stacks j s ts bound tbound ->
  (forall b1 b2 delta,
      j b1 = None -> j' b1 = Some(b2, delta) -> Ple bound b1 /\ Ple tbound b2) ->
  match_stacks j' s ts bound tbound.
Proof.
  induction 2; intros.
- assert (SAME: forall b b' delta, Plt b (Genv.genv_next ge) ->
                                   j' b = Some(b', delta) -> j b = Some(b', delta)).
  { intros. destruct (j b) as [[b1 delta1] | ] eqn: J.
    exploit H; eauto. congruence.
    exploit H3; eauto. intros [A B]. elim (Plt_strict b).
    eapply Plt_Ple_trans. eauto. eapply Ple_trans; eauto. }
  assert (SAME': forall b b' delta, Plt b' (Genv.genv_next tge) ->
                                   j' b = Some(b', delta) -> j b = Some (b', delta)).
  { intros. destruct (j b) as [[b1 delta1] | ] eqn: J.
    exploit H; eauto. congruence.
    exploit H3; eauto. intros [A B]. elim (Plt_strict b').
    eapply Plt_Ple_trans. eauto. eapply Ple_trans; eauto. }
  constructor; auto.  constructor; intros.
  + exploit symbols_inject_1; eauto. apply SAME; auto.
    eapply Genv.genv_symb_range; eauto.
  + exploit symbols_inject_2; eauto. intros (b' & A & B).
    exists b'; auto.
  + exploit symbols_inject_3; eauto. intros (b & A & B).
    exists b; auto.
  + eapply defs_inject; eauto. apply SAME; auto.
    eapply Genv.genv_defs_range; eauto.
  + eapply defs_rev_inject; eauto. apply SAME'; auto.
    eapply Genv.genv_defs_range; eauto.
- econstructor; eauto.
  apply IHmatch_stacks.
  intros. exploit H1; eauto. intros [A B]. split; eapply Ple_trans; eauto.
  apply Plt_Ple; auto. apply Plt_Ple; auto.
  apply regset_inject_incr with j; auto.
Qed.

Lemma match_stacks_bound:
  forall j s ts bound tbound bound' tbound',
  match_stacks j s ts bound tbound ->
  Ple bound bound' -> Ple tbound tbound' ->
  match_stacks j s ts bound' tbound'.
Proof.
  induction 1; intros.
- constructor; auto. eapply Ple_trans; eauto. eapply Ple_trans; eauto.
- econstructor; eauto. eapply Plt_Ple_trans; eauto. eapply Plt_Ple_trans; eauto.
Qed.

Inductive match_states: state -> state -> Prop :=
  | match_states_regular: forall s f sp pc rs m ts tsp trs tm j
         (STACKS: match_stacks j s ts sp tsp)
         (KEPT: forall id, ref_function f id -> kept id)
         (SPINJ: j sp = Some(tsp, 0))
         (REGINJ: regset_inject j rs trs)
         (MEMINJ: Mem.inject j m tm),
      match_states (State s f (Vptr sp Ptrofs.zero) pc rs m)
                   (State ts f (Vptr tsp Ptrofs.zero) pc trs tm)
  | match_states_call: forall s fd args m ts targs tm j
         (STACKS: match_stacks j s ts (Mem.nextblock m) (Mem.nextblock tm))
         (KEPT: forall id, ref_fundef fd id -> kept id)
         (ARGINJ: Val.inject_list j args targs)
         (MEMINJ: Mem.inject j m tm),
      match_states (Callstate s fd args m)
                   (Callstate ts fd targs tm)
  | match_states_return: forall s res m ts tres tm j
         (STACKS: match_stacks j s ts (Mem.nextblock m) (Mem.nextblock tm))
         (RESINJ: Val.inject j res tres)
         (MEMINJ: Mem.inject j m tm),
      match_states (Returnstate s res m)
                   (Returnstate ts tres tm).

Lemma external_call_inject:
  forall ef vargs m1 t vres m2 f m1' vargs',
  meminj_preserves_globals f ->
  external_call ef ge vargs m1 t vres m2 ->
  Mem.inject f m1 m1' ->
  Val.inject_list f vargs vargs' ->
  exists f', exists vres', exists m2',
    external_call ef tge vargs' m1' t vres' m2'
    /\ Val.inject f' vres vres'
    /\ Mem.inject f' m2 m2'
    /\ Mem.unchanged_on (loc_unmapped f) m1 m2
    /\ Mem.unchanged_on (loc_out_of_reach f m1) m1' m2'
    /\ inject_incr f f'
    /\ inject_separated f f' m1 m1'.
Proof.
  intros. eapply external_call_mem_inject_gen; eauto.
  apply globals_symbols_inject; auto.
Qed.

Lemma find_function_inject:
  forall j ros rs fd trs,
  meminj_preserves_globals j ->
  find_function ge ros rs = Some fd ->
  match ros with inl r => regset_inject j rs trs | inr id => kept id end ->
  find_function tge ros trs = Some fd /\ (forall id, ref_fundef fd id -> kept id).
Proof.
  intros. destruct ros as [r|id]; simpl in *.
- exploit Genv.find_funct_inv; eauto. intros (b & R). rewrite R in H0.
  rewrite Genv.find_funct_find_funct_ptr in H0.
  specialize (H1 r). rewrite R in H1. inv H1.
  rewrite Genv.find_funct_ptr_iff in H0.
  exploit defs_inject; eauto. intros (A & B & C).
  rewrite <- Genv.find_funct_ptr_iff in A.
  rewrite B; auto.
- destruct (Genv.find_symbol ge id) as [b|] eqn:FS; try discriminate.
  exploit symbols_inject_2; eauto. intros (tb & P & Q). rewrite P.
  rewrite Genv.find_funct_ptr_iff in H0.
  exploit defs_inject; eauto. intros (A & B & C).
  rewrite <- Genv.find_funct_ptr_iff in A.
  auto.
Qed.

Lemma eval_builtin_arg_inject:
  forall rs sp m j rs' sp' m' a v,
  eval_builtin_arg ge (fun r => rs#r) (Vptr sp Ptrofs.zero) m a v ->
  j sp = Some(sp', 0) ->
  meminj_preserves_globals j ->
  regset_inject j rs rs' ->
  Mem.inject j m m' ->
  (forall id, In id (globals_of_builtin_arg a) -> kept id) ->
  exists v',
     eval_builtin_arg tge (fun r => rs'#r) (Vptr sp' Ptrofs.zero) m' a v'
  /\ Val.inject j v v'.
Proof.
  induction 1; intros SP GL RS MI K; simpl in K.
- exists rs'#x; split; auto. constructor.
- econstructor; eauto with barg.
- econstructor; eauto with barg.
- econstructor; eauto with barg.
- econstructor; eauto with barg.
- simpl in H. exploit Mem.load_inject; eauto. rewrite Z.add_0_r.
  intros (v' & A & B). exists v'; auto with barg.
- econstructor; split; eauto with barg. simpl. econstructor; eauto. rewrite Ptrofs.add_zero; auto.
- assert (Val.inject j (Senv.symbol_address ge id ofs) (Senv.symbol_address tge id ofs)).
  { unfold Senv.symbol_address; simpl; unfold Genv.symbol_address.
    destruct (Genv.find_symbol ge id) as [b|] eqn:FS; auto.
    exploit symbols_inject_2; eauto. intros (b' & A & B). rewrite A.
    econstructor; eauto. rewrite Ptrofs.add_zero; auto. }
  exploit Mem.loadv_inject; eauto. intros (v' & A & B). exists v'; auto with barg.
- econstructor; split; eauto with barg.
  unfold Senv.symbol_address; simpl; unfold Genv.symbol_address.
  destruct (Genv.find_symbol ge id) as [b|] eqn:FS; auto.
  exploit symbols_inject_2; eauto. intros (b' & A & B). rewrite A.
  econstructor; eauto. rewrite Ptrofs.add_zero; auto.
- destruct IHeval_builtin_arg1 as (v1' & A1 & B1); eauto using in_or_app.
  destruct IHeval_builtin_arg2 as (v2' & A2 & B2); eauto using in_or_app.
  exists (Val.longofwords v1' v2'); split; auto with barg.
  apply Val.longofwords_inject; auto.
- destruct IHeval_builtin_arg1 as (v1' & A1 & B1); eauto using in_or_app.
  destruct IHeval_builtin_arg2 as (v2' & A2 & B2); eauto using in_or_app.
  econstructor; split; eauto with barg.
  destruct Archi.ptr64; auto using Val.add_inject, Val.addl_inject.
Qed.

Lemma eval_builtin_args_inject:
  forall rs sp m j rs' sp' m' al vl,
  eval_builtin_args ge (fun r => rs#r) (Vptr sp Ptrofs.zero) m al vl ->
  j sp = Some(sp', 0) ->
  meminj_preserves_globals j ->
  regset_inject j rs rs' ->
  Mem.inject j m m' ->
  (forall id, In id (globals_of_builtin_args al) -> kept id) ->
  exists vl',
     eval_builtin_args tge (fun r => rs'#r) (Vptr sp' Ptrofs.zero) m' al vl'
  /\ Val.inject_list j vl vl'.
Proof.
  induction 1; intros.
- exists (@nil val); split; constructor.
- simpl in H5.
  exploit eval_builtin_arg_inject; eauto using in_or_app. intros (v1' & A & B).
  destruct IHlist_forall2 as (vl' & C & D); eauto using in_or_app.
  exists (v1' :: vl'); split; constructor; auto.
Qed.

Theorem step_simulation:
  forall S1 t S2, step ge S1 t S2 ->
  forall S1' (MS: match_states S1 S1'),
  exists S2', step tge S1' t S2' /\ match_states S2 S2'.
Proof.
  induction 1; intros; inv MS.

- (* nop *)
  econstructor; split.
  eapply exec_Inop; eauto.
  econstructor; eauto.

- (* op *)
  assert (A: exists tv,
               eval_operation tge (Vptr tsp Ptrofs.zero) op trs##args tm = Some tv
            /\ Val.inject j v tv).
  { apply eval_operation_inj with (ge1 := ge) (m1 := m) (sp1 := Vptr sp0 Ptrofs.zero) (vl1 := rs##args).
    intros; eapply Mem.valid_pointer_inject_val; eauto.
    intros; eapply Mem.weak_valid_pointer_inject_val; eauto.
    intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto.
    intros; eapply Mem.different_pointers_inject; eauto.
    intros. apply symbol_address_inject. eapply match_stacks_preserves_globals; eauto.
    apply KEPT. red. exists pc, (Iop op args res pc'); auto.
    econstructor; eauto.
    apply regs_inject; auto.
    assumption. }
  destruct A as (tv & B & C).
  econstructor; split. eapply exec_Iop; eauto.
  econstructor; eauto. apply set_reg_inject; auto.

- (* load *)
  inv H0.
  + assert (A: exists ta,
                 eval_addressing tge (Vptr tsp Ptrofs.zero) addr trs##args = Some ta
              /\ Val.inject j a ta).
    { apply eval_addressing_inj with (ge1 := ge) (sp1 := Vptr sp0 Ptrofs.zero) (vl1 := rs##args).
      intros. apply symbol_address_inject. eapply match_stacks_preserves_globals; eauto.
      apply KEPT. red. exists pc, (Iload trap chunk addr args dst pc'); auto.
      econstructor; eauto.
      apply regs_inject; auto.
      assumption. }
    destruct A as (ta & B & C).
    exploit Mem.loadv_inject; eauto. intros (tv & D & E).
    econstructor; split. eapply exec_Iload; eauto. eapply has_loaded_normal; eauto.
    econstructor; eauto. apply set_reg_inject; auto.
  + destruct (eval_addressing) eqn:EVAL in LOAD.
    * specialize (LOAD v).
      assert (A: exists ta,
                   eval_addressing tge (Vptr tsp Ptrofs.zero) addr trs##args = Some ta
                /\ Val.inject j v ta).
      { apply eval_addressing_inj with (ge1 := ge) (sp1 := Vptr sp0 Ptrofs.zero) (vl1 := rs##args).
        intros. apply symbol_address_inject. eapply match_stacks_preserves_globals; eauto.
        apply KEPT. red. exists pc, (Iload NOTRAP chunk addr args dst pc'); auto.
        econstructor; eauto.
        apply regs_inject; auto.
        assumption. }
      destruct A as (ta & B & C).
      destruct (Mem.loadv chunk tm ta) eqn:Echunk2.
      ** econstructor; split. eapply exec_Iload; eauto. eapply has_loaded_normal; eauto.
         econstructor; eauto. apply set_reg_inject; auto.
      ** econstructor; split. eapply exec_Iload; eauto. eapply has_loaded_default; eauto.
         intros a EVAL'; rewrite B in EVAL'; inv EVAL'. auto.
         econstructor; eauto. apply set_reg_inject; auto.
    * assert (eval_addressing tge (Vptr tsp Ptrofs.zero) addr trs##args = None).
      { eapply eval_addressing_inj_none.
        intros. apply symbol_address_inject. eapply match_stacks_preserves_globals; eauto.
        apply KEPT. red. exists pc, (Iload NOTRAP chunk addr args dst pc'); auto.
        econstructor; eauto.
        rewrite Ptrofs.add_zero; reflexivity.
        apply regs_inject; auto.
        eassumption.
        assumption. }
     
      econstructor; split. eapply exec_Iload; eauto. eapply has_loaded_default; eauto.
      intros a EVAL'; rewrite H0 in EVAL'; inv EVAL'.
      econstructor; eauto. apply set_reg_inject; auto.

- (* store *)
  assert (A: exists ta,
               eval_addressing tge (Vptr tsp Ptrofs.zero) addr trs##args = Some ta
            /\ Val.inject j a ta).
  { apply eval_addressing_inj with (ge1 := ge) (sp1 := Vptr sp0 Ptrofs.zero) (vl1 := rs##args).
    intros. apply symbol_address_inject. eapply match_stacks_preserves_globals; eauto.
    apply KEPT. red. exists pc, (Istore chunk addr args src pc'); auto.
    econstructor; eauto.
    apply regs_inject; auto.
    assumption. }
  destruct A as (ta & B & C).
  exploit Mem.storev_mapped_inject; eauto. intros (tm' & D & E).
  econstructor; split. eapply exec_Istore; eauto.
  econstructor; eauto.

- (* call *)
  exploit find_function_inject.
  eapply match_stacks_preserves_globals; eauto. eauto.
  destruct ros as [r|id]. eauto. apply KEPT. red. econstructor; econstructor; split; eauto. simpl; auto.
  intros (A & B).
  econstructor; split. eapply exec_Icall; eauto.
  econstructor; eauto.
  econstructor; eauto.
  change (Mem.valid_block m sp0). eapply Mem.valid_block_inject_1; eauto.
  change (Mem.valid_block tm tsp). eapply Mem.valid_block_inject_2; eauto.
  apply regs_inject; auto.

- (* tailcall *)
  exploit find_function_inject.
  eapply match_stacks_preserves_globals; eauto. eauto.
  destruct ros as [r|id]. eauto. apply KEPT. red. econstructor; econstructor; split; eauto. simpl; auto.
  intros (A & B).
  exploit Mem.free_parallel_inject; eauto. rewrite ! Z.add_0_r. intros (tm' & C & D).
  econstructor; split.
  eapply exec_Itailcall; eauto.
  econstructor; eauto.
  apply match_stacks_bound with stk tsp; auto.
  apply Plt_Ple.
  change (Mem.valid_block m' stk). eapply Mem.valid_block_inject_1; eauto.
  apply Plt_Ple.
  change (Mem.valid_block tm' tsp). eapply Mem.valid_block_inject_2; eauto.
  apply regs_inject; auto.

- (* builtin *)
  exploit eval_builtin_args_inject; eauto.
  eapply match_stacks_preserves_globals; eauto.
  intros. apply KEPT. red. econstructor; econstructor; eauto.
  intros (vargs' & P & Q).
  exploit external_call_inject; eauto.
  eapply match_stacks_preserves_globals; eauto.
  intros (j' & tv & tm' & A & B & C & D & E & F & G).
  econstructor; split.
  eapply exec_Ibuiltin; eauto.
  eapply match_states_regular with (j := j'); eauto.
  apply match_stacks_incr with j; auto.
  intros. exploit G; eauto. intros [U V].
  assert (Mem.valid_block m sp0) by (eapply Mem.valid_block_inject_1; eauto).
  assert (Mem.valid_block tm tsp) by (eapply Mem.valid_block_inject_2; eauto).
  unfold Mem.valid_block in *; extlia.
  apply set_res_inject; auto. apply regset_inject_incr with j; auto.

- (* cond *)
  assert (C: eval_condition cond trs##args tm = Some b).
  { eapply eval_condition_inject; eauto. apply regs_inject; auto. }
  econstructor; split.
  eapply exec_Icond with (pc' := if b then ifso else ifnot); eauto.
  econstructor; eauto.

- (* jumptbl *)
  generalize (REGINJ arg); rewrite H0; intros INJ; inv INJ.
  econstructor; split.
  eapply exec_Ijumptable; eauto.
  econstructor; eauto.

- (* return *)
  exploit Mem.free_parallel_inject; eauto. rewrite ! Z.add_0_r. intros (tm' & C & D).
  econstructor; split.
  eapply exec_Ireturn; eauto.
  econstructor; eauto.
  apply match_stacks_bound with stk tsp; auto.
  apply Plt_Ple.
  change (Mem.valid_block m' stk). eapply Mem.valid_block_inject_1; eauto.
  apply Plt_Ple.
  change (Mem.valid_block tm' tsp). eapply Mem.valid_block_inject_2; eauto.
  destruct or; simpl; auto.

- (* internal function *)
  exploit Mem.alloc_parallel_inject. eauto. eauto. apply Z.le_refl. apply Z.le_refl.
  intros (j' & tm' & tstk & C & D & E & F & G).
  assert (STK: stk = Mem.nextblock m) by (eapply Mem.alloc_result; eauto).
  assert (TSTK: tstk = Mem.nextblock tm) by (eapply Mem.alloc_result; eauto).
  assert (STACKS': match_stacks j' s ts stk tstk).
  { rewrite STK, TSTK.
    apply match_stacks_incr with j; auto.
    intros. destruct (eq_block b1 stk).
    subst b1. rewrite F in H1; inv H1. split; apply Ple_refl.
    rewrite G in H1 by auto. congruence. }
  econstructor; split.
  eapply exec_function_internal; eauto.
  eapply match_states_regular with (j := j'); eauto.
  apply init_regs_inject; auto. apply val_inject_list_incr with j; auto.

- (* external function *)
  exploit external_call_inject; eauto.
  eapply match_stacks_preserves_globals; eauto.
  intros (j' & tres & tm' & A & B & C & D & E & F & G).
  econstructor; split.
  eapply exec_function_external; eauto.
  eapply match_states_return with (j := j'); eauto.
  apply match_stacks_bound with (Mem.nextblock m) (Mem.nextblock tm).
  apply match_stacks_incr with j; auto.
  intros. exploit G; eauto. intros [P Q].
  unfold Mem.valid_block in *; extlia.
  eapply external_call_nextblock; eauto.
  eapply external_call_nextblock; eauto.

- (* return *)
  inv STACKS. econstructor; split.
  eapply exec_return.
  econstructor; eauto. apply set_reg_inject; auto.
Qed.

(** Relating initial memory states *)

(*
Remark genv_find_def_exists:
  forall (F V: Type) (p: AST.program F V) b,
  Plt b (Genv.genv_next (Genv.globalenv p)) ->
  exists gd, Genv.find_def (Genv.globalenv p) b = Some gd.
Proof.
  intros until b.
  set (P := fun (g: Genv.t F V) =>
        Plt b (Genv.genv_next g) -> exists gd, (Genv.genv_defs g)!b = Some gd).
  assert (forall l g, P g -> P (Genv.add_globals g l)).
  { induction l as [ | [id1 g1] l]; simpl; intros.
  - auto.
  - apply IHl. unfold Genv.add_global, P; simpl. intros LT. apply Plt_succ_inv in LT. destruct LT.
  + rewrite PTree.gso. apply H; auto. apply Plt_ne; auto.
  + rewrite H0. rewrite PTree.gss. exists g1; auto. }
  apply H. red; simpl; intros. exfalso; extlia.
Qed.
*)

Lemma init_meminj_invert_strong:
  forall b b' delta,
  init_meminj b = Some(b', delta) ->
  delta = 0 /\
  exists id gd,
     Genv.find_symbol ge id = Some b
  /\ Genv.find_symbol tge id = Some b'
  /\ Genv.find_def ge b = Some gd
  /\ Genv.find_def tge b' = Some gd
  /\ (forall i, ref_def gd i -> kept i).
Proof.
  intros. exploit init_meminj_invert; eauto. intros (A & id & B & C).
  assert (exists gd, (prog_defmap p)!id = Some gd).
  { apply prog_defmap_dom. eapply Genv.find_symbol_inversion; eauto. }
  destruct H0 as [gd DM]. rewrite Genv.find_def_symbol in DM.
  destruct DM as (b'' & P & Q). fold ge in P. rewrite P in B; inv B.
  fold ge in Q. exploit defs_inject. apply init_meminj_preserves_globals.
  eauto. eauto. intros (X & _ & Y).
  split. auto. exists id, gd; auto.
Qed.

Section INIT_MEM.

Variables m tm: mem.
Hypothesis IM: Genv.init_mem p = Some m.
Hypothesis TIM: Genv.init_mem tp = Some tm.

Lemma bytes_of_init_inject:
  forall il,
  (forall id, ref_init il id -> kept id) ->
  list_forall2 (memval_inject init_meminj) (Genv.bytes_of_init_data_list ge il) (Genv.bytes_of_init_data_list tge il).
Proof.
  induction il as [ | i1 il]; simpl; intros.
- constructor.
- apply list_forall2_app.
+ destruct i1; simpl; try (apply inj_bytes_inject).
  induction (Z.to_nat z); simpl; constructor. constructor. auto.
  destruct (Genv.find_symbol ge i) as [b|] eqn:FS.
  assert (kept i). { apply H. red. exists i0; auto with coqlib. }
  exploit symbols_inject_2. apply init_meminj_preserves_globals. eauto. eauto.
  intros (b' & A & B). rewrite A. apply inj_value_inject.
  econstructor; eauto. symmetry; apply Ptrofs.add_zero.
  destruct (Genv.find_symbol tge i) as [b'|] eqn:FS'.
  exploit symbols_inject_3. apply init_meminj_preserves_globals. eauto.
  intros (b & A & B). congruence.
  apply repeat_Undef_inject_self.
+ apply IHil. intros id [ofs IN]. apply H. exists ofs; auto with coqlib.
Qed.

Lemma Mem_getN_forall2:
  forall (P: memval -> memval -> Prop) c1 c2 i n p,
  list_forall2 P (Mem.getN n p c1) (Mem.getN n p c2) ->
  p <= i -> i < p + Z.of_nat n ->
  P (ZMap.get i c1) (ZMap.get i c2).
Proof.
  induction n; simpl Mem.getN; intros.
- simpl in H1. extlia.
- inv H. rewrite Nat2Z.inj_succ in H1. destruct (zeq i p0).
+ congruence.
+ apply IHn with (p0 + 1); auto. lia. lia.
Qed.

Lemma init_mem_inj_1:
  Mem.mem_inj init_meminj m tm.
Proof.
  intros; constructor; intros.
- exploit init_meminj_invert_strong; eauto. intros (A & id & gd & B & C & D & E & F).
  exploit (Genv.init_mem_characterization_gen p); eauto.
  exploit (Genv.init_mem_characterization_gen tp); eauto.
  destruct gd as [f|v].
+ intros (P2 & Q2) (P1 & Q1).
  apply Q1 in H0. destruct H0. subst.
  apply Mem.perm_cur. auto.
+ intros (P2 & Q2 & R2 & S2) (P1 & Q1 & R1 & S1).
  apply Q1 in H0. destruct H0. subst.
  apply Mem.perm_cur. eapply Mem.perm_implies; eauto.
  apply P2. lia.
- exploit init_meminj_invert; eauto. intros (A & id & B & C).
  subst delta. apply Z.divide_0_r.
- exploit init_meminj_invert_strong; eauto. intros (A & id & gd & B & C & D & E & F).
  exploit (Genv.init_mem_characterization_gen p); eauto.
  exploit (Genv.init_mem_characterization_gen tp); eauto.
  destruct gd as [f|v].
+ intros (P2 & Q2) (P1 & Q1).
  apply Q1 in H0. destruct H0; discriminate.
+ intros (P2 & Q2 & R2 & S2) (P1 & Q1 & R1 & S1).
  apply Q1 in H0. destruct H0.
  assert (NO: gvar_volatile v = false).
  { unfold Genv.perm_globvar in H1. destruct (gvar_volatile v); auto. inv H1. }
Local Transparent Mem.loadbytes.
  generalize (S1 NO). unfold Mem.loadbytes. destruct Mem.range_perm_dec; intros E1; inv E1.
  generalize (S2 NO). unfold Mem.loadbytes. destruct Mem.range_perm_dec; intros E2; inv E2.
  rewrite Z.add_0_r.
  apply Mem_getN_forall2 with (p := 0) (n := Z.to_nat (init_data_list_size (gvar_init v))).
  rewrite H3, H4. apply bytes_of_init_inject. auto.
  lia.
  rewrite Z2Nat.id by (apply Z.ge_le; apply init_data_list_size_pos). lia.
Qed.

Lemma init_mem_inj_2:
  Mem.inject init_meminj m tm.
Proof.
  constructor; intros.
- apply init_mem_inj_1.
- destruct (init_meminj b) as [[b' delta]|] eqn:INJ; auto.
  elim H. exploit init_meminj_invert; eauto. intros (A & id & B & C).
  eapply Genv.find_symbol_not_fresh; eauto.
- exploit init_meminj_invert; eauto. intros (A & id & B & C).
  eapply Genv.find_symbol_not_fresh; eauto.
- red; intros.
  exploit init_meminj_invert. eexact H0. intros (A1 & id1 & B1 & C1).
  exploit init_meminj_invert. eexact H1. intros (A2 & id2 & B2 & C2).
  destruct (ident_eq id1 id2). congruence. left; eapply Genv.global_addresses_distinct; eauto.
- exploit init_meminj_invert; eauto. intros (A & id & B & C). subst delta.
  split. lia. generalize (Ptrofs.unsigned_range_2 ofs). lia.
- exploit init_meminj_invert_strong; eauto. intros (A & id & gd & B & C & D & E & F).
  exploit (Genv.init_mem_characterization_gen p); eauto.
  exploit (Genv.init_mem_characterization_gen tp); eauto.
  destruct gd as [f|v].
+ intros (P2 & Q2) (P1 & Q1).
  apply Q2 in H0. destruct H0. subst. replace ofs with 0 by lia.
  left; apply Mem.perm_cur; auto.
+ intros (P2 & Q2 & R2 & S2) (P1 & Q1 & R1 & S1).
  apply Q2 in H0. destruct H0. subst.
  left. apply Mem.perm_cur. eapply Mem.perm_implies; eauto.
  apply P1. lia.
Qed.

End INIT_MEM.

Lemma init_mem_exists:
  forall m, Genv.init_mem p = Some m ->
  exists tm, Genv.init_mem tp = Some tm.
Proof.
  intros. apply Genv.init_mem_exists.
  intros.
  assert (P: (prog_defmap tp)!id = Some (Gvar v)).
  { eapply prog_defmap_norepet; eauto. eapply match_prog_unique; eauto. }
  rewrite (match_prog_def _ _ _ TRANSF) in P. destruct (IS.mem id used) eqn:U; try discriminate.
  exploit Genv.init_mem_inversion; eauto. apply in_prog_defmap; eauto. intros [AL FV].
  split. auto.
  intros. exploit FV; eauto. intros (b & FS).
  apply transform_find_symbol_1 with b; auto.
  apply kept_closed with id (Gvar v).
  apply IS.mem_2; auto. auto. red. red. exists o; auto.
Qed.

Theorem init_mem_inject:
  forall m,
  Genv.init_mem p = Some m ->
  exists f tm, Genv.init_mem tp = Some tm /\ Mem.inject f m tm /\ meminj_preserves_globals f.
Proof.
  intros.
  exploit init_mem_exists; eauto. intros [tm INIT].
  exists init_meminj, tm.
  split. auto.
  split. eapply init_mem_inj_2; eauto.
  apply init_meminj_preserves_globals.
Qed.

Lemma transf_initial_states:
  forall S1, initial_state p S1 -> exists S2, initial_state tp S2 /\ match_states S1 S2.
Proof.
  intros. inv H. exploit init_mem_inject; eauto. intros (j & tm & A & B & C).
  exploit symbols_inject_2. eauto. eapply kept_main. eexact H1. intros (tb & P & Q).
  rewrite Genv.find_funct_ptr_iff in H2.
  exploit defs_inject. eauto. eexact Q. exact H2.
  intros (R & S & T).
  rewrite <- Genv.find_funct_ptr_iff in R.
  exists (Callstate nil f nil tm); split.
  econstructor; eauto.
  fold tge. erewrite match_prog_main by eauto. auto.
  econstructor; eauto.
  constructor. auto.
  erewrite <- Genv.init_mem_genv_next by eauto. apply Ple_refl.
  erewrite <- Genv.init_mem_genv_next by eauto. apply Ple_refl.
Qed.

Lemma transf_final_states:
  forall S1 S2 r,
  match_states S1 S2 -> final_state S1 r -> final_state S2 r.
Proof.
  intros. inv H0. inv H. inv STACKS. inv RESINJ. constructor.
Qed.

Lemma transf_program_correct_1:
  forward_simulation (semantics p) (semantics tp).
Proof.
  intros.
  eapply forward_simulation_step.
  exploit globals_symbols_inject. apply init_meminj_preserves_globals. intros [A B]. exact A.
  eexact transf_initial_states.
  eexact transf_final_states.
  eexact step_simulation.
Qed.

End SOUNDNESS.

Theorem transf_program_correct:
  forall p tp, match_prog p tp -> forward_simulation (semantics p) (semantics tp).
Proof.
  intros p tp (used & A & B).  apply transf_program_correct_1 with used; auto.
Qed.

(** * Commutation with linking *)

Remark link_def_either:
  forall (gd1 gd2 gd: globdef fundef unit),
  link_def gd1 gd2 = Some gd -> gd = gd1 \/ gd = gd2.
Proof with (try discriminate).
  intros until gd.
Local Transparent Linker_def Linker_fundef Linker_varinit Linker_vardef Linker_unit.
  destruct gd1 as [f1|v1], gd2 as [f2|v2]...
(* Two fundefs *)
  destruct f1 as [f1|ef1], f2 as [f2|ef2]; simpl...
  destruct ef2; intuition congruence.
  destruct ef1; intuition congruence.
  destruct (external_function_eq ef1 ef2); intuition congruence.
(* Two vardefs *)
  simpl. unfold link_vardef. destruct v1 as [info1 init1 ro1 vo1], v2 as [info2 init2 ro2 vo2]; simpl.
  destruct (link_varinit init1 init2) as [init|] eqn:LI...
  destruct (eqb ro1 ro2) eqn:RO...
  destruct (eqb vo1 vo2) eqn:VO...
  simpl.
  destruct info1, info2.
  assert (EITHER: init = init1 \/ init = init2).
  { revert LI. unfold link_varinit.
    destruct (classify_init init1), (classify_init init2); intro EQ; inv EQ; auto.
    destruct (zeq sz (Z.max sz0 0 + 0)); inv H0; auto.
    destruct (zeq sz (init_data_list_size il)); inv H0; auto.
    destruct (zeq sz (init_data_list_size il)); inv H0; auto. }
  apply eqb_prop in RO. apply eqb_prop in VO.
  intro EQ; inv EQ. destruct EITHER; subst init; auto.
Qed.

Remark used_not_defined:
  forall p used id,
  valid_used_set p used ->
  (prog_defmap p)!id = None ->
  IS.mem id used = false \/ id = prog_main p.
Proof.
  intros. destruct (IS.mem id used) eqn:M; auto.
  exploit used_defined; eauto using IS.mem_2. intros [A|A]; auto.
  apply prog_defmap_dom in A. destruct A as [g E]; congruence.
Qed.

Remark used_not_defined_2:
  forall p used id,
  valid_used_set p used ->
  id <> prog_main p ->
  (prog_defmap p)!id = None ->
  ~IS.In id used.
Proof.
  intros. exploit used_not_defined; eauto. intros [A|A].
  red; intros; apply IS.mem_1 in H2; congruence.
  congruence.
Qed.

Lemma link_valid_used_set:
  forall p1 p2 p used1 used2,
  link p1 p2 = Some p ->
  valid_used_set p1 used1 ->
  valid_used_set p2 used2 ->
  valid_used_set p (IS.union used1 used2).
Proof.
  intros until used2; intros L V1 V2.
  destruct (link_prog_inv _ _ _ L) as (X & Y & Z).
  rewrite Z; clear Z; constructor.
- intros. rewrite ISF.union_iff in H. rewrite ISF.union_iff.
  rewrite prog_defmap_elements, PTree.gcombine in H0.
  destruct (prog_defmap p1)!id as [gd1|] eqn:GD1;
  destruct (prog_defmap p2)!id as [gd2|] eqn:GD2;
  simpl in H0; try discriminate.
+ (* common definition *)
  exploit Y; eauto. intros (PUB1 & PUB2 & _).
  exploit link_def_either; eauto. intros [EQ|EQ]; subst gd.
* left. eapply used_closed. eexact V1. eapply used_public. eexact V1. eauto. eauto. auto.
* right. eapply used_closed. eexact V2. eapply used_public. eexact V2. eauto. eauto. auto.
+ (* left definition *)
  inv H0. destruct (ISP.In_dec id used1).
* left; eapply used_closed; eauto.
* assert (IS.In id used2) by tauto.
  exploit used_defined. eexact V2. eauto. intros [A|A].
  exploit prog_defmap_dom; eauto. intros [g E]; congruence.
  elim n. rewrite A, <- X. eapply used_main; eauto.
+ (* right definition *)
  inv H0. destruct (ISP.In_dec id used2).
* right; eapply used_closed; eauto.
* assert (IS.In id used1) by tauto.
  exploit used_defined. eexact V1. eauto. intros [A|A].
  exploit prog_defmap_dom; eauto. intros [g E]; congruence.
  elim n. rewrite A, X. eapply used_main; eauto.
+ (* no definition *)
  auto.
- simpl. rewrite ISF.union_iff; left; eapply used_main; eauto.
- simpl. intros id. rewrite in_app_iff, ISF.union_iff.
  intros [A|A]; [left|right]; eapply used_public; eauto.
- intros. rewrite ISF.union_iff in H.
  destruct (ident_eq id (prog_main p1)).
+ right; assumption.
+ assert (E: exists g, link_prog_merge (prog_defmap p1)!id (prog_defmap p2)!id = Some g).
  { destruct (prog_defmap p1)!id as [gd1|] eqn:GD1;
    destruct (prog_defmap p2)!id as [gd2|] eqn:GD2; simpl.
  * apply Y with id; auto.
  * exists gd1; auto.
  * exists gd2; auto.
  * eapply used_not_defined_2 in GD1; [ | eauto | congruence ].
    eapply used_not_defined_2 in GD2; [ | eauto | congruence ].
    tauto.
  }
  destruct E as [g LD].
  left. unfold prog_defs_names; simpl.
  change id with (fst (id, g)). apply in_map. apply PTree.elements_correct.
  rewrite PTree.gcombine; auto.
Qed.

Theorem link_match_program:
  forall p1 p2 tp1 tp2 p,
  link p1 p2 = Some p ->
  match_prog p1 tp1 -> match_prog p2 tp2 ->
  exists tp, link tp1 tp2 = Some tp /\ match_prog p tp.
Proof.
  intros. destruct H0 as (used1 & A1 & B1). destruct H1 as (used2 & A2 & B2).
  destruct (link_prog_inv _ _ _ H) as (U & V & W).
  econstructor; split.
- apply link_prog_succeeds.
+ rewrite (match_prog_main _ _ _ B1), (match_prog_main _ _ _ B2). auto.
+ intros.
  rewrite (match_prog_def _ _ _ B1) in H0.
  rewrite (match_prog_def _ _ _ B2) in H1.
  destruct (IS.mem id used1) eqn:U1; try discriminate.
  destruct (IS.mem id used2) eqn:U2; try discriminate.
  edestruct V as (X & Y & gd & Z); eauto.
  split. rewrite (match_prog_public _ _ _ B1); auto.
  split. rewrite (match_prog_public _ _ _ B2); auto.
  congruence.
- exists (IS.union used1 used2); split.
+ eapply link_valid_used_set; eauto.
+ rewrite W. constructor; simpl; intros.
* eapply match_prog_main; eauto.
* rewrite (match_prog_public _ _ _ B1), (match_prog_public _ _ _ B2). auto.
* rewrite ! prog_defmap_elements, !PTree.gcombine by auto.
  rewrite (match_prog_def _ _ _ B1 id), (match_prog_def _ _ _ B2 id).
  rewrite ISF.union_b.
{
  destruct (prog_defmap p1)!id as [gd1|] eqn:GD1;
  destruct (prog_defmap p2)!id as [gd2|] eqn:GD2.
- (* both defined *)
  exploit V; eauto. intros (PUB1 & PUB2 & _).
  assert (EQ1: IS.mem id used1 = true) by (apply IS.mem_1; eapply used_public; eauto).
  assert (EQ2: IS.mem id used2 = true) by (apply IS.mem_1; eapply used_public; eauto).
  rewrite EQ1, EQ2; auto.
- (* left defined *)
  exploit used_not_defined; eauto. intros [A|A].
  rewrite A, orb_false_r. destruct (IS.mem id used1); auto.
  replace (IS.mem id used1) with true. destruct (IS.mem id used2); auto.
  symmetry. apply IS.mem_1. rewrite A, <- U. eapply used_main; eauto.
- (* right defined *)
  exploit used_not_defined. eexact A1. eauto. intros [A|A].
  rewrite A, orb_false_l. destruct (IS.mem id used2); auto.
  replace (IS.mem id used2) with true. destruct (IS.mem id used1); auto.
  symmetry. apply IS.mem_1. rewrite A, U. eapply used_main; eauto.
- (* none defined *)
  destruct (IS.mem id used1), (IS.mem id used2); auto.
}
* intros. apply PTree.elements_keys_norepet.
Qed.

Global Instance TransfSelectionLink : TransfLink match_prog := link_match_program.