aboutsummaryrefslogtreecommitdiffstats
path: root/backend/ValueDomain.v
blob: fcc70ac804a9d48e6a4b228cb650ab7f10482ae4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

Require Import FunInd.
Require Import Zwf Coqlib Maps Zbits Integers Floats Lattice.
Require Import Compopts AST.
Require Import Values Memory Globalenvs Builtins Events.
Require Import Registers RTL.
Require Import Lia.

(** The abstract domains for value analysis *)

Inductive block_class : Type :=
  | BCinvalid
  | BCglob (id: ident)
  | BCstack
  | BCother.

Definition block_class_eq: forall (x y: block_class), {x=y} + {x<>y}.
Proof. decide equality. apply peq. Defined.

Record block_classification : Type := BC {
  bc_img :> block -> block_class;
  bc_stack: forall b1 b2, bc_img b1 = BCstack -> bc_img b2 = BCstack -> b1 = b2;
  bc_glob: forall b1 b2 id, bc_img b1 = BCglob id -> bc_img b2 = BCglob id -> b1 = b2
}.

Definition bc_below (bc: block_classification) (bound: block) : Prop :=
  forall b, bc b <> BCinvalid -> Plt b bound.

Lemma bc_below_invalid:
  forall b bc bound, ~Plt b bound -> bc_below bc bound -> bc b = BCinvalid.
Proof.
  intros. destruct (block_class_eq (bc b) BCinvalid); auto.
  elim H. apply H0; auto.
Qed.

Global Hint Extern 2 (_ = _) => congruence : va.
Global Hint Extern 2 (_ <> _) => congruence : va.
Global Hint Extern 2 (_ < _) => extlia : va.
Global Hint Extern 2 (_ <= _) => extlia : va.
Global Hint Extern 2 (_ > _) => extlia : va.
Global Hint Extern 2 (_ >= _) => extlia : va.

Section MATCH.

Variable bc: block_classification.

(** * Abstracting the result of conditions (type [option bool]) *)

Inductive abool :=
  | Bnone               (**r always [None] (undefined) *)
  | Just (b: bool)      (**r always [Some b] (defined and known to be [b]) *)
  | Maybe (b: bool)     (**r either [None] or [Some b] (known to be [b] if defined) *)
  | Btop.               (**r unknown, all results are possible *)

Inductive cmatch: option bool -> abool -> Prop :=
  | cmatch_none: cmatch None Bnone
  | cmatch_just: forall b, cmatch (Some b) (Just b)
  | cmatch_maybe_none: forall b, cmatch None (Maybe b)
  | cmatch_maybe_some: forall b, cmatch (Some b) (Maybe b)
  | cmatch_top: forall ob, cmatch ob Btop.

Hint Constructors cmatch : va.

Definition club (x y: abool) : abool :=
  match x, y with
  | Bnone, Bnone => Bnone
  | Bnone, (Just b | Maybe b) => Maybe b
  | (Just b | Maybe b), Bnone => Maybe b
  | Just b1, Just b2 => if eqb b1 b2 then x else Btop
  | Maybe b1, Maybe b2 => if eqb b1 b2 then x else Btop
  | Maybe b1, Just b2 => if eqb b1 b2 then x else Btop
  | Just b1, Maybe b2 => if eqb b1 b2 then y else Btop
  | _, _ => Btop
  end.

Lemma cmatch_lub_l:
  forall ob x y, cmatch ob x -> cmatch ob (club x y).
Proof.
  intros. unfold club; inv H; destruct y; try constructor;
  destruct (eqb b b0) eqn:EQ; try constructor.
  replace b0 with b by (apply eqb_prop; auto). constructor.
Qed.

Lemma cmatch_lub_r:
  forall ob x y, cmatch ob y -> cmatch ob (club x y).
Proof.
  intros. unfold club; inv H; destruct x; try constructor;
  destruct (eqb b0 b) eqn:EQ; try constructor.
  replace b with b0 by (apply eqb_prop; auto). constructor.
  replace b with b0 by (apply eqb_prop; auto). constructor.
  replace b with b0 by (apply eqb_prop; auto). constructor.
Qed.

Definition cnot (x: abool) : abool :=
  match x with
  | Just b => Just (negb b)
  | Maybe b => Maybe (negb b)
  | _ => x
  end.

Lemma cnot_sound:
  forall ob x, cmatch ob x -> cmatch (option_map negb ob) (cnot x).
Proof.
  destruct 1; constructor.
Qed.

(** * Abstracting pointers *)

Inductive aptr : Type :=
  | Pbot                         (**r bottom (empty set of pointers) *)
  | Gl (id: ident) (ofs: ptrofs) (**r pointer into the block for global variable [id] at offset [ofs] *)
  | Glo (id: ident)              (**r pointer anywhere into the block for global [id] *)
  | Glob                         (**r pointer into any global variable *)
  | Stk (ofs: ptrofs)            (**r pointer into the current stack frame at offset [ofs] *)
  | Stack                        (**r pointer anywhere into the current stack frame *)
  | Nonstack                     (**r pointer anywhere but into the current stack frame *)
  | Ptop.                        (**r any valid pointer *)

Definition eq_aptr: forall (p1 p2: aptr), {p1=p2} + {p1<>p2}.
Proof.
  intros. generalize ident_eq, Ptrofs.eq_dec; intros. decide equality.
Defined.

Inductive pmatch (b: block) (ofs: ptrofs): aptr -> Prop :=
  | pmatch_gl: forall id,
      bc b = BCglob id ->
      pmatch b ofs (Gl id ofs)
  | pmatch_glo: forall id,
      bc b = BCglob id ->
      pmatch b ofs (Glo id)
  | pmatch_glob: forall id,
      bc b = BCglob id ->
      pmatch b ofs Glob
  | pmatch_stk:
      bc b = BCstack ->
      pmatch b ofs (Stk ofs)
  | pmatch_stack:
      bc b = BCstack ->
      pmatch b ofs Stack
  | pmatch_nonstack:
      bc b <> BCstack -> bc b <> BCinvalid ->
      pmatch b ofs Nonstack
  | pmatch_top:
      bc b <> BCinvalid ->
      pmatch b ofs Ptop.

Hint Constructors pmatch: va.

Inductive pge: aptr -> aptr -> Prop :=
  | pge_top: forall p, pge Ptop p
  | pge_bot: forall p, pge p Pbot
  | pge_refl: forall p, pge p p
  | pge_glo_gl: forall id ofs, pge (Glo id) (Gl id ofs)
  | pge_glob_gl: forall id ofs, pge Glob (Gl id ofs)
  | pge_glob_glo: forall id, pge Glob (Glo id)
  | pge_ns_gl: forall id ofs, pge Nonstack (Gl id ofs)
  | pge_ns_glo: forall id, pge Nonstack (Glo id)
  | pge_ns_glob: pge Nonstack Glob
  | pge_stack_stk: forall ofs, pge Stack (Stk ofs).

Hint Constructors pge: va.

Lemma pge_trans:
  forall p q, pge p q -> forall r, pge q r -> pge p r.
Proof.
  induction 1; intros r PM; inv PM; auto with va.
Qed.

Lemma pmatch_ge:
  forall b ofs p q, pge p q -> pmatch b ofs q -> pmatch b ofs p.
Proof.
  induction 1; intros PM; inv PM; eauto with va.
Qed.

Lemma pmatch_top': forall b ofs p, pmatch b ofs p -> pmatch b ofs Ptop.
Proof.
  intros. apply pmatch_ge with p; auto with va.
Qed.

Definition plub (p q: aptr) : aptr :=
  match p, q with
  | Pbot, _ => q
  | _, Pbot => p
  | Gl id1 ofs1, Gl id2 ofs2 =>
      if ident_eq id1 id2 then if Ptrofs.eq_dec ofs1 ofs2 then p else Glo id1 else Glob
  | Gl id1 ofs1, Glo id2 =>
      if ident_eq id1 id2 then q else Glob
  | Glo id1, Gl id2 ofs2 =>
      if ident_eq id1 id2 then p else Glob
  | Glo id1, Glo id2 =>
      if ident_eq id1 id2 then p else Glob
  | (Gl _ _ | Glo _ | Glob), Glob => Glob
  | Glob, (Gl _ _ | Glo _) => Glob
  | (Gl _ _ | Glo _ | Glob | Nonstack), Nonstack =>
      Nonstack
  | Nonstack, (Gl _ _ | Glo _ | Glob) =>
      Nonstack
  | Stk ofs1, Stk ofs2 =>
      if Ptrofs.eq_dec ofs1 ofs2 then p else Stack
  | (Stk _ | Stack), Stack =>
      Stack
  | Stack, Stk _ =>
      Stack
  | _, _ => Ptop
  end.

Lemma plub_comm:
  forall p q, plub p q = plub q p.
Proof.
  intros; unfold plub; destruct p; destruct q; auto.
  destruct (ident_eq id id0). subst id0.
  rewrite dec_eq_true.
  destruct (Ptrofs.eq_dec ofs ofs0). subst ofs0. rewrite dec_eq_true. auto.
  rewrite dec_eq_false by auto. auto.
  rewrite dec_eq_false by auto. auto.
  destruct (ident_eq id id0). subst id0.
  rewrite dec_eq_true; auto.
  rewrite dec_eq_false; auto.
  destruct (ident_eq id id0). subst id0.
  rewrite dec_eq_true; auto.
  rewrite dec_eq_false; auto.
  destruct (ident_eq id id0). subst id0.
  rewrite dec_eq_true; auto.
  rewrite dec_eq_false; auto.
  destruct (Ptrofs.eq_dec ofs ofs0). subst ofs0. rewrite dec_eq_true; auto.
  rewrite dec_eq_false; auto.
Qed.

Lemma pge_lub_l:
  forall p q, pge (plub p q) p.
Proof.
  unfold plub; destruct p, q; auto with va.
- destruct (ident_eq id id0).
  destruct (Ptrofs.eq_dec ofs ofs0); subst; constructor.
  constructor.
- destruct (ident_eq id id0); subst; constructor.
- destruct (ident_eq id id0); subst; constructor.
- destruct (ident_eq id id0); subst; constructor.
- destruct (Ptrofs.eq_dec ofs ofs0); subst; constructor.
Qed.

Lemma pge_lub_r:
  forall p q, pge (plub p q) q.
Proof.
  intros. rewrite plub_comm. apply pge_lub_l.
Qed.

Lemma pmatch_lub_l:
  forall b ofs p q, pmatch b ofs p -> pmatch b ofs (plub p q).
Proof.
  intros. eapply pmatch_ge; eauto. apply pge_lub_l.
Qed.

Lemma pmatch_lub_r:
  forall b ofs p q, pmatch b ofs q -> pmatch b ofs (plub p q).
Proof.
  intros. eapply pmatch_ge; eauto. apply pge_lub_r.
Qed.

Lemma plub_least:
  forall r p q, pge r p -> pge r q -> pge r (plub p q).
Proof.
  intros. inv H; inv H0; simpl; try constructor.
- destruct p; constructor.
- unfold plub; destruct q; repeat rewrite dec_eq_true; constructor.
- rewrite dec_eq_true; constructor.
- rewrite dec_eq_true; constructor.
- rewrite dec_eq_true. destruct (Ptrofs.eq_dec ofs ofs0); constructor.
- destruct (ident_eq id id0). destruct (Ptrofs.eq_dec ofs ofs0); constructor. constructor.
- destruct (ident_eq id id0); constructor.
- destruct (ident_eq id id0); constructor.
- destruct (ident_eq id id0); constructor.
- destruct (ident_eq id id0). destruct (Ptrofs.eq_dec ofs ofs0); constructor. constructor.
- destruct (ident_eq id id0); constructor.
- destruct (ident_eq id id0); constructor.
- destruct (ident_eq id id0); constructor.
- destruct (Ptrofs.eq_dec ofs ofs0); constructor.
Qed.

Definition pincl (p q: aptr) : bool :=
  match p, q with
  | Pbot, _ => true
  | Gl id1 ofs1, Gl id2 ofs2 => peq id1 id2 && Ptrofs.eq_dec ofs1 ofs2
  | Gl id1 ofs1, Glo id2 => peq id1 id2
  | Glo id1, Glo id2 => peq id1 id2
  | (Gl _ _ | Glo _ | Glob), Glob => true
  | (Gl _ _ | Glo _ | Glob | Nonstack), Nonstack => true
  | Stk ofs1, Stk ofs2 => Ptrofs.eq_dec ofs1 ofs2
  | Stk ofs1, Stack => true
  | Stack, Stack => true
  | _, Ptop => true
  | _, _ => false
  end.

Lemma pincl_ge: forall p q, pincl p q = true -> pge q p.
Proof.
  unfold pincl; destruct p, q; intros; try discriminate; auto with va;
  InvBooleans; subst; auto with va.
Qed.

Lemma pincl_ge_2: forall p q, pge p q -> pincl q p = true.
Proof.
  destruct 1; simpl; auto.
- destruct p; auto.
- destruct p; simpl; auto; rewrite ! proj_sumbool_is_true; auto.
- rewrite ! proj_sumbool_is_true; auto.
Qed.

Lemma pincl_sound:
  forall b ofs p q,
  pincl p q = true -> pmatch b ofs p -> pmatch b ofs q.
Proof.
  intros. eapply pmatch_ge; eauto. apply pincl_ge; auto.
Qed.

Definition padd (p: aptr) (n: ptrofs) : aptr :=
  match p with
  | Gl id ofs => Gl id (Ptrofs.add ofs n)
  | Stk ofs => Stk (Ptrofs.add ofs n)
  | _ => p
  end.

Lemma padd_sound:
  forall b ofs p delta,
  pmatch b ofs p ->
  pmatch b (Ptrofs.add ofs delta) (padd p delta).
Proof.
  intros. inv H; simpl padd; eauto with va.
Qed.

Definition psub (p: aptr) (n: ptrofs) : aptr :=
  match p with
  | Gl id ofs => Gl id (Ptrofs.sub ofs n)
  | Stk ofs => Stk (Ptrofs.sub ofs n)
  | _ => p
  end.

Lemma psub_sound:
  forall b ofs p delta,
  pmatch b ofs p ->
  pmatch b (Ptrofs.sub ofs delta) (psub p delta).
Proof.
  intros. inv H; simpl psub; eauto with va.
Qed.

Definition poffset (p: aptr) : aptr :=
  match p with
  | Gl id ofs => Glo id
  | Stk ofs => Stack
  | _ => p
  end.

Lemma poffset_sound:
  forall b ofs1 ofs2 p,
  pmatch b ofs1 p ->
  pmatch b ofs2 (poffset p).
Proof.
  intros. inv H; simpl poffset; eauto with va.
Qed.

Definition cmp_different_blocks (c: comparison) : abool :=
  match c with
  | Ceq => Maybe false
  | Cne => Maybe true
  | _   => Bnone
  end.

Lemma cmp_different_blocks_none:
  forall c, cmatch None (cmp_different_blocks c).
Proof.
  intros; destruct c; constructor.
Qed.

Lemma cmp_different_blocks_sound:
  forall c, cmatch (Val.cmp_different_blocks c) (cmp_different_blocks c).
Proof.
  intros; destruct c; constructor.
Qed.

Definition pcmp (c: comparison) (p1 p2: aptr) : abool :=
  match p1, p2 with
  | Pbot, _ | _, Pbot => Bnone
  | Gl id1 ofs1, Gl id2 ofs2 =>
      if peq id1 id2 then Maybe (Ptrofs.cmpu c ofs1 ofs2)
      else cmp_different_blocks c
  | Gl id1 ofs1, Glo id2 =>
      if peq id1 id2 then Btop else cmp_different_blocks c
  | Glo id1, Gl id2 ofs2 =>
      if peq id1 id2 then Btop else cmp_different_blocks c
  | Glo id1, Glo id2 =>
      if peq id1 id2 then Btop else cmp_different_blocks c
  | Stk ofs1, Stk ofs2 => Maybe (Ptrofs.cmpu c ofs1 ofs2)
  | (Gl _ _ | Glo _ | Glob | Nonstack), (Stk _ | Stack) => cmp_different_blocks c
  | (Stk _ | Stack), (Gl _ _ | Glo _ | Glob | Nonstack) => cmp_different_blocks c
  | _, _ => Btop
  end.

Lemma pcmp_sound:
  forall valid c b1 ofs1 p1 b2 ofs2 p2,
  pmatch b1 ofs1 p1 -> pmatch b2 ofs2 p2 ->
  cmatch (Val.cmpu_bool valid c (Vptr b1 ofs1) (Vptr b2 ofs2)) (pcmp c p1 p2).
Proof.
  intros.
  assert (DIFF: b1 <> b2 ->
            cmatch (Val.cmpu_bool valid c (Vptr b1 ofs1) (Vptr b2 ofs2))
                   (cmp_different_blocks c)).
  {
    intros. simpl. rewrite dec_eq_false by assumption.
    destruct Archi.ptr64.
    apply cmp_different_blocks_none.
    destruct (valid b1 (Ptrofs.unsigned ofs1) && valid b2 (Ptrofs.unsigned ofs2)); simpl.
    apply cmp_different_blocks_sound.
    apply cmp_different_blocks_none.
  }
  assert (SAME: b1 = b2 ->
            cmatch (Val.cmpu_bool valid c (Vptr b1 ofs1) (Vptr b2 ofs2))
                   (Maybe (Ptrofs.cmpu c ofs1 ofs2))).
  {
    intros. subst b2. simpl. destruct Archi.ptr64.
    constructor.
    rewrite dec_eq_true.
    destruct ((valid b1 (Ptrofs.unsigned ofs1) || valid b1 (Ptrofs.unsigned ofs1 - 1)) &&
         (valid b1 (Ptrofs.unsigned ofs2) || valid b1 (Ptrofs.unsigned ofs2 - 1))); simpl.
    constructor.
    constructor.
  }
  unfold pcmp; inv H; inv H0; (apply cmatch_top || (apply DIFF; congruence) || idtac).
  - destruct (peq id id0). subst id0. apply SAME. eapply bc_glob; eauto.
    auto with va.
  - destruct (peq id id0); auto with va.
  - destruct (peq id id0); auto with va.
  - destruct (peq id id0); auto with va.
  - apply SAME. eapply bc_stack; eauto.
Qed.

Lemma pcmp_sound_64:
  forall valid c b1 ofs1 p1 b2 ofs2 p2,
  pmatch b1 ofs1 p1 -> pmatch b2 ofs2 p2 ->
  cmatch (Val.cmplu_bool valid c (Vptr b1 ofs1) (Vptr b2 ofs2)) (pcmp c p1 p2).
Proof.
  intros.
  assert (DIFF: b1 <> b2 ->
            cmatch (Val.cmplu_bool valid c (Vptr b1 ofs1) (Vptr b2 ofs2))
                   (cmp_different_blocks c)).
  {
    intros. simpl. rewrite dec_eq_false by assumption.
    destruct Archi.ptr64; simpl.
    destruct (valid b1 (Ptrofs.unsigned ofs1) && valid b2 (Ptrofs.unsigned ofs2)); simpl.
    apply cmp_different_blocks_sound.
    apply cmp_different_blocks_none.
    apply cmp_different_blocks_none.
  }
  assert (SAME: b1 = b2 ->
            cmatch (Val.cmplu_bool valid c (Vptr b1 ofs1) (Vptr b2 ofs2))
                   (Maybe (Ptrofs.cmpu c ofs1 ofs2))).
  {
    intros. subst b2. simpl. destruct Archi.ptr64.
    rewrite dec_eq_true.
    destruct ((valid b1 (Ptrofs.unsigned ofs1) || valid b1 (Ptrofs.unsigned ofs1 - 1)) &&
         (valid b1 (Ptrofs.unsigned ofs2) || valid b1 (Ptrofs.unsigned ofs2 - 1))); simpl.
    constructor.
    constructor.
    constructor.
  }
  unfold pcmp; inv H; inv H0; (apply cmatch_top || (apply DIFF; congruence) || idtac).
  - destruct (peq id id0). subst id0. apply SAME. eapply bc_glob; eauto.
    auto with va.
  - destruct (peq id id0); auto with va.
  - destruct (peq id id0); auto with va.
  - destruct (peq id id0); auto with va.
  - apply SAME. eapply bc_stack; eauto.
Qed.

Lemma pcmp_none:
  forall c p1 p2, cmatch None (pcmp c p1 p2).
Proof.
  intros.
  unfold pcmp; destruct p1; try constructor; destruct p2;
  try (destruct (peq id id0));  try constructor; try (apply cmp_different_blocks_none).
Qed.

Definition pdisjoint (p1: aptr) (sz1: Z) (p2: aptr) (sz2: Z) : bool :=
  match p1, p2 with
  | Pbot, _ => true
  | _, Pbot => true
  | Gl id1 ofs1, Gl id2 ofs2 =>
      if peq id1 id2
      then zle (Ptrofs.unsigned ofs1 + sz1) (Ptrofs.unsigned ofs2)
           || zle (Ptrofs.unsigned ofs2 + sz2) (Ptrofs.unsigned ofs1)
      else true
  | Gl id1 ofs1, Glo id2 => negb(peq id1 id2)
  | Glo id1, Gl id2 ofs2 => negb(peq id1 id2)
  | Glo id1, Glo id2 => negb(peq id1 id2)
  | Stk ofs1, Stk ofs2 =>
      zle (Ptrofs.unsigned ofs1 + sz1) (Ptrofs.unsigned ofs2)
      || zle (Ptrofs.unsigned ofs2 + sz2) (Ptrofs.unsigned ofs1)
  | (Gl _ _ | Glo _ | Glob | Nonstack), (Stk _ | Stack) => true
  | (Stk _ | Stack), (Gl _ _ | Glo _ | Glob | Nonstack) => true
  | _, _ => false
  end.

Lemma pdisjoint_sound:
  forall sz1 b1 ofs1 p1 sz2 b2 ofs2 p2,
  pdisjoint p1 sz1 p2 sz2 = true ->
  pmatch b1 ofs1 p1 -> pmatch b2 ofs2 p2 ->
  b1 <> b2 \/ Ptrofs.unsigned ofs1 + sz1 <= Ptrofs.unsigned ofs2 \/ Ptrofs.unsigned ofs2 + sz2 <= Ptrofs.unsigned ofs1.
Proof.
  intros. inv H0; inv H1; simpl in H; try discriminate; try (left; congruence).
- destruct (peq id id0). subst id0. destruct (orb_true_elim _ _ H); InvBooleans; auto.
  left; congruence.
- destruct (peq id id0); try discriminate. left; congruence.
- destruct (peq id id0); try discriminate. left; congruence.
- destruct (peq id id0); try discriminate. left; congruence.
- destruct (orb_true_elim _ _ H); InvBooleans; auto.
Qed.

(** * Abstracting values *)

Inductive aval : Type :=
  | Vbot                     (**r bottom (empty set of values) *)
  | I (n: int)               (**r exactly [Vint n] *)
  | Uns (p: aptr) (n: Z)     (**r a [n]-bit unsigned integer, or [Vundef] *)
  | Sgn (p: aptr) (n: Z)     (**r a [n]-bit signed integer, or [Vundef] *)
  | L (n: int64)             (**r exactly [Vlong n] *)
  | F (f: float)             (**r exactly [Vfloat f] *)
  | FS (f: float32)          (**r exactly [Vsingle f] *)
  | Ptr (p: aptr)            (**r a pointer from the set [p], or [Vundef] *)
  | Ifptr (p: aptr).         (**r a pointer from the set [p], or a number, or [Vundef] *)

(** The "top" of the value domain is defined as any pointer, or any
    number, or [Vundef]. *)

Definition Vtop := Ifptr Ptop.

(** The [p] parameter (an abstract pointer) to [Uns] and [Sgn] helps keeping
  track of pointers that leak through arithmetic operations such as shifts.
  See the section "Tracking leakage of pointers" below.
  In strict analysis mode, [p] is always [Pbot]. *)

Definition eq_aval: forall (v1 v2: aval), {v1=v2} + {v1<>v2}.
Proof.
  intros. generalize zeq Int.eq_dec Int64.eq_dec Float.eq_dec Float32.eq_dec eq_aptr; intros.
  decide equality.
Defined.

Definition is_uns (n: Z) (i: int) : Prop :=
  forall m, 0 <= m < Int.zwordsize -> m >= n -> Int.testbit i m = false.
Definition is_sgn (n: Z) (i: int) : Prop :=
  forall m, 0 <= m < Int.zwordsize -> m >= n - 1 -> Int.testbit i m = Int.testbit i (Int.zwordsize - 1).

Inductive vmatch : val -> aval -> Prop :=
  | vmatch_i: forall i, vmatch (Vint i) (I i)
  | vmatch_Uns: forall p i n, 0 <= n -> is_uns n i -> vmatch (Vint i) (Uns p n)
  | vmatch_Uns_undef: forall p n, vmatch Vundef (Uns p n)
  | vmatch_Sgn: forall p i n, 0 < n -> is_sgn n i -> vmatch (Vint i) (Sgn p n)
  | vmatch_Sgn_undef: forall p n, vmatch Vundef (Sgn p n)
  | vmatch_l: forall i, vmatch (Vlong i) (L i)
  | vmatch_f: forall f, vmatch (Vfloat f) (F f)
  | vmatch_s: forall f, vmatch (Vsingle f) (FS f)
  | vmatch_ptr: forall b ofs p, pmatch b ofs p -> vmatch (Vptr b ofs) (Ptr p)
  | vmatch_ptr_undef: forall p, vmatch Vundef (Ptr p)
  | vmatch_ifptr_undef: forall p, vmatch Vundef (Ifptr p)
  | vmatch_ifptr_i: forall i p, vmatch (Vint i) (Ifptr p)
  | vmatch_ifptr_l: forall i p, vmatch (Vlong i) (Ifptr p)
  | vmatch_ifptr_f: forall f p, vmatch (Vfloat f) (Ifptr p)
  | vmatch_ifptr_s: forall f p, vmatch (Vsingle f) (Ifptr p)
  | vmatch_ifptr_p: forall b ofs p, pmatch b ofs p -> vmatch (Vptr b ofs) (Ifptr p).

Lemma vmatch_ifptr:
  forall v p,
  (forall b ofs, v = Vptr b ofs -> pmatch b ofs p) ->
  vmatch v (Ifptr p).
Proof.
  intros. destruct v; constructor; auto.
Qed.

Lemma vmatch_top: forall v x, vmatch v x -> vmatch v Vtop.
Proof.
  intros. apply vmatch_ifptr. intros. subst v. inv H; eapply pmatch_top'; eauto.
Qed.

Hint Extern 1 (vmatch _ _) => constructor : va.

(* Some properties about [is_uns] and [is_sgn]. *)

Lemma is_uns_mon: forall n1 n2 i, is_uns n1 i -> n1 <= n2 -> is_uns n2 i.
Proof.
  intros; red; intros. apply H; lia.
Qed.

Lemma is_sgn_mon: forall n1 n2 i, is_sgn n1 i -> n1 <= n2 -> is_sgn n2 i.
Proof.
  intros; red; intros. apply H; lia.
Qed.

Lemma is_uns_sgn: forall n1 n2 i, is_uns n1 i -> n1 < n2 -> is_sgn n2 i.
Proof.
  intros; red; intros. rewrite ! H by lia. auto.
Qed.

Definition usize := Int.size.

Definition ssize (i: int) := Int.size (if Int.lt i Int.zero then Int.not i else i) + 1.

Lemma is_uns_usize:
  forall i, is_uns (usize i) i.
Proof.
  unfold usize; intros; red; intros.
  apply Int.bits_size_2. lia.
Qed.

Lemma is_sgn_ssize:
  forall i, is_sgn (ssize i) i.
Proof.
  unfold ssize; intros; red; intros.
  destruct (Int.lt i Int.zero) eqn:LT.
- rewrite <- (negb_involutive (Int.testbit i m)).
  rewrite <- (negb_involutive (Int.testbit i (Int.zwordsize - 1))).
  f_equal.
  generalize (Int.size_range (Int.not i)); intros RANGE.
  rewrite <- ! Int.bits_not by lia.
  rewrite ! Int.bits_size_2 by lia.
  auto.
- rewrite ! Int.bits_size_2 by lia.
  auto.
Qed.

Lemma is_uns_zero_ext:
  forall n i, is_uns n i <-> Int.zero_ext n i = i.
Proof.
  intros; split; intros.
  Int.bit_solve. destruct (zlt i0 n); auto. symmetry; apply H; auto. lia.
  rewrite <- H. red; intros. rewrite Int.bits_zero_ext by lia. rewrite zlt_false by lia. auto.
Qed.

Lemma is_sgn_sign_ext:
  forall n i, 0 < n -> (is_sgn n i <-> Int.sign_ext n i = i).
Proof.
  intros; split; intros.
  Int.bit_solve. destruct (zlt i0 n); auto.
  transitivity (Int.testbit i (Int.zwordsize - 1)).
  apply H0; lia. symmetry; apply H0; lia.
  rewrite <- H0. red; intros. rewrite ! Int.bits_sign_ext by lia.
  f_equal. transitivity (n-1). destruct (zlt m n); lia.
  destruct (zlt (Int.zwordsize - 1) n); lia.
Qed.

Lemma is_zero_ext_uns:
  forall i n m,
  is_uns m i \/ n <= m -> is_uns m (Int.zero_ext n i).
Proof.
  intros. red; intros. rewrite Int.bits_zero_ext by lia.
  destruct (zlt m0 n); auto. destruct H. apply H; lia. extlia.
Qed.

Lemma is_zero_ext_sgn:
  forall i n m,
  n < m ->
  is_sgn m (Int.zero_ext n i).
Proof.
  intros. red; intros. rewrite ! Int.bits_zero_ext by lia.
  transitivity false. apply zlt_false; lia.
  symmetry; apply zlt_false; lia.
Qed.

Lemma is_sign_ext_uns:
  forall i n m,
  0 <= m < n ->
  is_uns m i ->
  is_uns m (Int.sign_ext n i).
Proof.
  intros; red; intros. rewrite Int.bits_sign_ext by lia.
  apply H0. destruct (zlt m0 n); lia. destruct (zlt m0 n); lia.
Qed.

Lemma is_sign_ext_sgn:
  forall i n m,
  0 < n -> 0 < m ->
  is_sgn m i \/ n <= m -> is_sgn m (Int.sign_ext n i).
Proof.
  intros. apply is_sgn_sign_ext; auto.
  destruct (zlt m n). destruct H1. apply is_sgn_sign_ext in H1; auto.
  rewrite <- H1. rewrite (Int.sign_ext_widen i) by lia. apply Int.sign_ext_idem; auto.
  extlia.
  apply Int.sign_ext_widen; lia.
Qed.

Hint Resolve is_uns_mon is_sgn_mon is_uns_sgn is_uns_usize is_sgn_ssize : va.

Lemma is_uns_1:
  forall n, is_uns 1 n -> n = Int.zero \/ n = Int.one.
Proof.
  intros. destruct (Int.testbit n 0) eqn:B0; [right|left]; apply Int.same_bits_eq; intros.
  rewrite Int.bits_one. destruct (zeq i 0). subst i; auto. apply H; lia.
  rewrite Int.bits_zero. destruct (zeq i 0). subst i; auto. apply H; lia.
Qed.

(** Tracking leakage of pointers through arithmetic operations.

In the CompCert semantics, arithmetic operations (e.g. "xor") applied
to pointer values are undefined or produce the [Vundef] result.
So, in strict mode, we can abstract the result values of such operations
as [Ifptr Pbot], namely: [Vundef], or any number, but not a pointer.

In real code, such arithmetic over pointers occurs, so we need to be
more prudent.  The policy we take, inspired by that of GCC, is that
"undefined" arithmetic operations involving pointer arguments can
produce a pointer, but not any pointer: rather, a pointer to the same
block, but possibly with a different offset.  Hence, if the operation
has a pointer to abstract region [p] as argument, the result value
can be a pointer to abstract region [poffset p].  In other words,
the result value is abstracted as [Ifptr (poffset p)].

We encapsulate this reasoning in the following [ntop1] and [ntop2] functions
("numerical top"). *)

Definition provenance (x: aval) : aptr :=
  if va_strict tt then Pbot else
    match x with
    | Ptr p | Ifptr p | Uns p _ | Sgn p _ => poffset p
    | _ => Pbot
    end.

Definition ntop : aval := Ifptr Pbot.

Definition ntop1 (x: aval) : aval := Ifptr (provenance x).

Definition ntop2 (x y: aval) : aval := Ifptr (plub (provenance x) (provenance y)).

(** Smart constructors for [Uns] and [Sgn]. *)

Definition uns (p: aptr) (n: Z) : aval :=
  if zle n 1 then Uns p 1
  else if zle n 7 then Uns p 7
  else if zle n 8 then Uns p 8
  else if zle n 15 then Uns p 15
  else if zle n 16 then Uns p 16
  else Ifptr p.

Definition sgn (p: aptr) (n: Z) : aval :=
  if zle n 8 then Sgn p 8 else if zle n 16 then Sgn p 16 else Ifptr p.

Lemma vmatch_uns':
  forall p i n, is_uns (Z.max 0 n) i -> vmatch (Vint i) (uns p n).
Proof.
  intros.
  assert (A: forall n', n' >= 0 -> n' >= n -> is_uns n' i) by (eauto with va).
  unfold uns.
  destruct (zle n 1). auto with va.
  destruct (zle n 7). auto with va.
  destruct (zle n 8). auto with va.
  destruct (zle n 15). auto with va.
  destruct (zle n 16). auto with va.
  auto with va.
Qed.

Lemma vmatch_uns:
  forall p i n, is_uns n i -> vmatch (Vint i) (uns p n).
Proof.
  intros. apply vmatch_uns'. eauto with va.
Qed.

Lemma vmatch_uns_undef: forall p n, vmatch Vundef (uns p n).
Proof.
  intros. unfold uns.
  destruct (zle n 1). auto with va.
  destruct (zle n 7). auto with va.
  destruct (zle n 8). auto with va.
  destruct (zle n 15). auto with va.
  destruct (zle n 16); auto with va.
Qed.

Lemma vmatch_sgn':
  forall p i n, is_sgn (Z.max 1 n) i -> vmatch (Vint i) (sgn p n).
Proof.
  intros.
  assert (A: forall n', n' >= 1 -> n' >= n -> is_sgn n' i) by (eauto with va).
  unfold sgn.
  destruct (zle n 8). auto with va.
  destruct (zle n 16); auto with va.
Qed.

Lemma vmatch_sgn:
  forall p i n, is_sgn n i -> vmatch (Vint i) (sgn p n).
Proof.
  intros. apply vmatch_sgn'. eauto with va.
Qed.

Lemma vmatch_sgn_undef: forall p n, vmatch Vundef (sgn p n).
Proof.
  intros. unfold sgn.
  destruct (zle n 8). auto with va.
  destruct (zle n 16); auto with va.
Qed.

Hint Resolve vmatch_uns vmatch_uns_undef vmatch_sgn vmatch_sgn_undef : va.

Lemma vmatch_Uns_1:
  forall p v, vmatch v (Uns p 1) -> v = Vundef \/ v = Vint Int.zero \/ v = Vint Int.one.
Proof.
  intros. inv H; auto. right. exploit is_uns_1; eauto. intuition congruence.
Qed.

(** Ordering *)

Inductive vge: aval -> aval -> Prop :=
  | vge_bot: forall v, vge v Vbot
  | vge_i: forall i, vge (I i) (I i)
  | vge_l: forall i, vge (L i) (L i)
  | vge_f: forall f, vge (F f) (F f)
  | vge_s: forall f, vge (FS f) (FS f)
  | vge_uns_i: forall p n i, 0 <= n -> is_uns n i -> vge (Uns p n) (I i)
  | vge_uns_uns: forall p1 n1 p2 n2, n1 >= n2 -> pge p1 p2 -> vge (Uns p1 n1) (Uns p2 n2)
  | vge_sgn_i: forall p n i, 0 < n -> is_sgn n i -> vge (Sgn p n) (I i)
  | vge_sgn_sgn: forall p1 n1 p2 n2, n1 >= n2 -> pge p1 p2 -> vge (Sgn p1 n1) (Sgn p2 n2)
  | vge_sgn_uns: forall p1 n1 p2 n2, n1 > n2 -> pge p1 p2 -> vge (Sgn p1 n1) (Uns p2 n2)
  | vge_p_p: forall p q, pge p q -> vge (Ptr p) (Ptr q)
  | vge_ip_p: forall p q, pge p q -> vge (Ifptr p) (Ptr q)
  | vge_ip_ip: forall p q, pge p q -> vge (Ifptr p) (Ifptr q)
  | vge_ip_i: forall p i, vge (Ifptr p) (I i)
  | vge_ip_l: forall p i, vge (Ifptr p) (L i)
  | vge_ip_f: forall p f, vge (Ifptr p) (F f)
  | vge_ip_s: forall p f, vge (Ifptr p) (FS f)
  | vge_ip_uns: forall p q n, pge p q -> vge (Ifptr p) (Uns q n)
  | vge_ip_sgn: forall p q n, pge p q -> vge (Ifptr p) (Sgn q n).

Hint Constructors vge : va.

Lemma vge_top: forall v, vge Vtop v.
Proof.
  destruct v; constructor; constructor.
Qed.

Hint Resolve vge_top : va.

Lemma vge_refl: forall v, vge v v.
Proof.
  destruct v; auto with va.
Qed.

Lemma vge_trans: forall u v, vge u v -> forall w, vge v w -> vge u w.
Proof.
  induction 1; intros w V; inv V; eauto using pge_trans with va.
Qed.

Lemma vmatch_ge:
  forall v x y, vge x y -> vmatch v y -> vmatch v x.
Proof.
  induction 1; intros V; inv V; eauto using pmatch_ge with va.
Qed.

(** Least upper bound *)

Definition vlub (v w: aval) : aval :=
  match v, w with
  | Vbot, _ => w
  | _, Vbot => v
  | I i1, I i2 =>
      if Int.eq i1 i2 then v else
      if Int.lt i1 Int.zero || Int.lt i2 Int.zero
      then sgn Pbot (Z.max (ssize i1) (ssize i2))
      else uns Pbot (Z.max (usize i1) (usize i2))
  | I i, Uns p n | Uns p n, I i =>
      if Int.lt i Int.zero
      then sgn p (Z.max (ssize i) (n + 1))
      else uns p (Z.max (usize i) n)
  | I i, Sgn p n | Sgn p n, I i =>
      sgn p (Z.max (ssize i) n)
  | I i, (Ptr p | Ifptr p) | (Ptr p | Ifptr p), I i =>
      if va_strict tt || Int.eq i Int.zero then Ifptr p else Vtop
  | Uns p1 n1, Uns p2 n2 => Uns (plub p1 p2) (Z.max n1 n2)
  | Uns p1 n1, Sgn p2 n2 => sgn (plub p1 p2) (Z.max (n1 + 1) n2)
  | Sgn p1 n1, Uns p2 n2 => sgn (plub p1 p2) (Z.max n1 (n2 + 1))
  | Sgn p1 n1, Sgn p2 n2 => sgn (plub p1 p2) (Z.max n1 n2)
  | F f1, F f2 =>
      if Float.eq_dec f1 f2 then v else ntop
  | FS f1, FS f2 =>
      if Float32.eq_dec f1 f2 then v else ntop
  | L i1, L i2 =>
      if Int64.eq i1 i2 then v else ntop
  | Ptr p1, Ptr p2 => Ptr(plub p1 p2)
  | Ptr p1, Ifptr p2 => Ifptr(plub p1 p2)
  | Ifptr p1, Ptr p2 => Ifptr(plub p1 p2)
  | Ifptr p1, Ifptr p2 => Ifptr(plub p1 p2)
  | (Ptr p1 | Ifptr p1), (Uns p2 _ | Sgn p2 _) => Ifptr(plub p1 p2)
  | (Uns p1 _ | Sgn p1 _), (Ptr p2 | Ifptr p2) => Ifptr(plub p1 p2)
  | _, (Ptr p | Ifptr p) | (Ptr p | Ifptr p), _ => if va_strict tt then Ifptr p else Vtop
  | _, _ => Vtop
  end.

Lemma vlub_comm:
  forall v w, vlub v w = vlub w v.
Proof.
  intros. unfold vlub; destruct v; destruct w; auto.
- rewrite Int.eq_sym. predSpec Int.eq Int.eq_spec n0 n.
  congruence.
  rewrite orb_comm.
  destruct (Int.lt n0 Int.zero || Int.lt n Int.zero); f_equal; apply Z.max_comm.
- f_equal. apply plub_comm. apply Z.max_comm.
- f_equal. apply plub_comm. apply Z.max_comm.
- f_equal; apply plub_comm.
- f_equal; apply plub_comm.
- f_equal. apply plub_comm. apply Z.max_comm.
- f_equal. apply plub_comm. apply Z.max_comm.
- f_equal; apply plub_comm.
- f_equal; apply plub_comm.
- rewrite Int64.eq_sym. predSpec Int64.eq Int64.eq_spec n0 n; congruence.
- rewrite dec_eq_sym. destruct (Float.eq_dec f0 f). congruence. auto.
- rewrite dec_eq_sym. destruct (Float32.eq_dec f0 f). congruence. auto.
- f_equal; apply plub_comm.
- f_equal; apply plub_comm.
- f_equal; apply plub_comm.
- f_equal; apply plub_comm.
- f_equal; apply plub_comm.
- f_equal; apply plub_comm.
- f_equal; apply plub_comm.
- f_equal; apply plub_comm.
Qed.

Lemma vge_uns_uns': forall p n, vge (uns p n) (Uns p n).
Proof.
  unfold uns; intros.
  destruct (zle n 1). auto with va.
  destruct (zle n 7). auto with va.
  destruct (zle n 8). auto with va.
  destruct (zle n 15). auto with va.
  destruct (zle n 16); auto with va.
Qed.

Lemma vge_uns_i': forall p n i, 0 <= n -> is_uns n i -> vge (uns p n) (I i).
Proof.
  intros. apply vge_trans with (Uns p n). apply vge_uns_uns'. auto with va.
Qed.

Lemma vge_sgn_sgn': forall p n, vge (sgn p n) (Sgn p n).
Proof.
  unfold sgn; intros.
  destruct (zle n 8). auto with va.
  destruct (zle n 16); auto with va.
Qed.

Lemma vge_sgn_i': forall p n i, 0 < n -> is_sgn n i -> vge (sgn p n) (I i).
Proof.
  intros. apply vge_trans with (Sgn p n). apply vge_sgn_sgn'. auto with va.
Qed.

Hint Resolve vge_uns_uns' vge_uns_i' vge_sgn_sgn' vge_sgn_i' : va.

Lemma usize_pos: forall n, 0 <= usize n.
Proof.
  unfold usize; intros. generalize (Int.size_range n); lia.
Qed.

Lemma ssize_pos: forall n, 0 < ssize n.
Proof.
  unfold ssize; intros.
  generalize (Int.size_range (if Int.lt n Int.zero then Int.not n else n)); lia.
Qed.

Lemma vge_lub_l:
  forall x y, vge (vlub x y) x.
Proof.
  assert (IFSTRICT: forall (cond: bool) x1 x2 y, vge x1 y -> vge x2 y -> vge (if cond then x1 else x2) y).
  { destruct cond; auto with va. }
  unfold vlub; destruct x, y; eauto using pge_lub_l with va.
- predSpec Int.eq Int.eq_spec n n0. auto with va.
  destruct (Int.lt n Int.zero || Int.lt n0 Int.zero).
  apply vge_sgn_i'. generalize (ssize_pos n); extlia. eauto with va.
  apply vge_uns_i'. generalize (usize_pos n); extlia. eauto with va.
- destruct (Int.lt n Int.zero).
  apply vge_sgn_i'. generalize (ssize_pos n); extlia. eauto with va.
  apply vge_uns_i'. generalize (usize_pos n); extlia. eauto with va.
- apply vge_sgn_i'. generalize (ssize_pos n); extlia. eauto with va.
- destruct (Int.lt n0 Int.zero).
  eapply vge_trans. apply vge_sgn_sgn'.
  apply vge_trans with (Sgn p (n + 1)); eauto with va.
  eapply vge_trans. apply vge_uns_uns'. eauto with va.
- eapply vge_trans. apply vge_sgn_sgn'.
  apply vge_trans with (Sgn p (n + 1)); eauto using pge_lub_l with va.
- eapply vge_trans. apply vge_sgn_sgn'. eauto with va.
- eapply vge_trans. apply vge_sgn_sgn'. eauto using pge_lub_l with va.
- eapply vge_trans. apply vge_sgn_sgn'. eauto using pge_lub_l with va.
- destruct (Int64.eq n n0); constructor.
- destruct (Float.eq_dec f f0); constructor.
- destruct (Float32.eq_dec f f0); constructor.
Qed.

Lemma vge_lub_r:
  forall x y, vge (vlub x y) y.
Proof.
  intros. rewrite vlub_comm. apply vge_lub_l.
Qed.

Lemma vmatch_lub_l:
  forall v x y, vmatch v x -> vmatch v (vlub x y).
Proof.
  intros. eapply vmatch_ge; eauto. apply vge_lub_l.
Qed.

Lemma vmatch_lub_r:
  forall v x y, vmatch v y -> vmatch v (vlub x y).
Proof.
  intros. rewrite vlub_comm. apply vmatch_lub_l; auto.
Qed.

(** In the CompCert semantics, a memory load or store succeeds only
  if the address is a pointer value.  Hence, in strict mode,
  [aptr_of_aval x] returns [Pbot] (no pointer value) if [x]
  denotes a number or [Vundef].  However, in real code, memory
  addresses are sometimes synthesized from integers, e.g. an absolute
  address for a hardware device.  It is a reasonable assumption
  that these absolute addresses do not point within the stack block,
  however.  Therefore, in relaxed mode, [aptr_of_aval x] returns
  [Nonstack] (any pointer outside the stack) when [x] denotes a number. *)

Definition aptr_of_aval (v: aval) : aptr :=
  match v with
  | Ptr p => p
  | Ifptr p => p
  | _ => if va_strict tt then Pbot else Nonstack
  end.

Lemma match_aptr_of_aval:
  forall b ofs av,
  vmatch (Vptr b ofs) av -> pmatch b ofs (aptr_of_aval av).
Proof.
  unfold aptr_of_aval; intros. inv H; auto.
Qed.

Definition vplub (v: aval) (p: aptr) : aptr :=
  match v with
  | Ptr q => plub q p
  | Ifptr q => plub q p
  | _ => p
  end.

Lemma vmatch_vplub_l:
  forall v x p, vmatch v x -> vmatch v (Ifptr (vplub x p)).
Proof.
  intros. unfold vplub; inv H; auto with va; constructor; eapply pmatch_lub_l; eauto.
Qed.

Lemma pmatch_vplub:
  forall b ofs x p, pmatch b ofs p -> pmatch b ofs (vplub x p).
Proof.
  intros.
  assert (DFL: pmatch b ofs (if va_strict tt then p else Ptop)).
  { destruct (va_strict tt); auto. eapply pmatch_top'; eauto. }
  unfold vplub; destruct x; auto; apply pmatch_lub_r; auto.
Qed.

Lemma vmatch_vplub_r:
  forall v x p, vmatch v (Ifptr p) -> vmatch v (Ifptr (vplub x p)).
Proof.
  intros. apply vmatch_ifptr; intros; subst v. inv H. apply pmatch_vplub; auto.
Qed.

(** Inclusion *)

Definition vpincl (v: aval) (p: aptr) : bool :=
  match v with
  | Ptr q | Ifptr q | Uns q _ | Sgn q _ => pincl q p
  | _ => true
  end.

Lemma vpincl_ge:
  forall x p, vpincl x p = true -> vge (Ifptr p) x.
Proof.
  unfold vpincl; intros. destruct x; constructor; apply pincl_ge; auto.
Qed.

Lemma vpincl_sound:
  forall v x p, vpincl x p = true -> vmatch v x -> vmatch v (Ifptr p).
Proof.
  intros. apply vmatch_ge with x; auto. apply vpincl_ge; auto.
Qed.

Definition vincl (v w: aval) : bool :=
  match v, w with
  | Vbot, _ => true
  | I i, I j => Int.eq_dec i j
  | I i, Uns p n => Int.eq_dec (Int.zero_ext n i) i && zle 0 n
  | I i, Sgn p n => Int.eq_dec (Int.sign_ext n i) i && zlt 0 n
  | Uns p n, Uns q m => zle n m && pincl p q
  | Uns p n, Sgn q m => zlt n m && pincl p q
  | Sgn p n, Sgn q m => zle n m && pincl p q
  | L i, L j => Int64.eq_dec i j
  | F i, F j => Float.eq_dec i j
  | FS i, FS j => Float32.eq_dec i j
  | Ptr p, Ptr q => pincl p q
  | (Ptr p | Ifptr p | Uns p _ | Sgn p _), Ifptr q => pincl p q
  | _, Ifptr _ => true
  | _, _ => false
  end.

Lemma vincl_ge: forall v w, vincl v w = true -> vge w v.
Proof.
  unfold vincl; destruct v; destruct w;
  intros; try discriminate; try InvBooleans; try subst; auto using pincl_ge with va.
- constructor; auto. rewrite is_uns_zero_ext; auto.
- constructor; auto. rewrite is_sgn_sign_ext; auto.
Qed.

(** Loading constants *)

Definition genv_match (ge: genv) : Prop :=
  (forall id b, Genv.find_symbol ge id = Some b <-> bc b = BCglob id)
/\(forall b, Plt b (Genv.genv_next ge) -> bc b <> BCinvalid /\ bc b <> BCstack).

Lemma symbol_address_sound:
  forall ge id ofs,
  genv_match ge ->
  vmatch (Genv.symbol_address ge id ofs) (Ptr (Gl id ofs)).
Proof.
  intros. unfold Genv.symbol_address. destruct (Genv.find_symbol ge id) as [b|] eqn:F.
  constructor. constructor. apply H; auto.
  constructor.
Qed.

Lemma vmatch_ptr_gl:
  forall ge v id ofs,
  genv_match ge ->
  vmatch v (Ptr (Gl id ofs)) ->
  Val.lessdef v (Genv.symbol_address ge id ofs).
Proof.
  intros. unfold Genv.symbol_address. inv H0.
- inv H3. replace (Genv.find_symbol ge id) with (Some b). constructor.
  symmetry. apply H; auto.
- constructor.
Qed.

Lemma vmatch_ptr_stk:
  forall v ofs sp,
  vmatch v (Ptr(Stk ofs)) ->
  bc sp = BCstack ->
  Val.lessdef v (Vptr sp ofs).
Proof.
  intros. inv H.
- inv H3. replace b with sp by (eapply bc_stack; eauto). constructor.
- constructor.
Qed.

(** Generic operations that just do constant propagation. *)

Definition unop_int (sem: int -> int) (x: aval) :=
  match x with I n => I (sem n) | _ => ntop1 x end.

Lemma unop_int_sound:
  forall sem v x,
  vmatch v x ->
  vmatch (match v with Vint i => Vint(sem i) | _ => Vundef end) (unop_int sem x).
Proof.
  intros. unfold unop_int; inv H; auto with va.
Qed.

Definition binop_int (sem: int -> int -> int) (x y: aval) :=
  match x, y with I n, I m => I (sem n m) | _, _ => ntop2 x y end.

Lemma binop_int_sound:
  forall sem v x w y,
  vmatch v x -> vmatch w y ->
  vmatch (match v, w with Vint i, Vint j => Vint(sem i j) | _, _ => Vundef end) (binop_int sem x y).
Proof.
  intros. unfold binop_int; inv H; auto with va; inv H0; auto with va.
Qed.

Definition unop_long (sem: int64 -> int64) (x: aval) :=
  match x with L n => L (sem n) | _ => ntop1 x end.

Lemma unop_long_sound:
  forall sem v x,
  vmatch v x ->
  vmatch (match v with Vlong i => Vlong(sem i) | _ => Vundef end) (unop_long sem x).
Proof.
  intros. unfold unop_long; inv H; auto with va.
Qed.

Definition binop_long (sem: int64 -> int64 -> int64) (x y: aval) :=
  match x, y with L n, L m => L (sem n m) | _, _ => ntop2 x y end.

Lemma binop_long_sound:
  forall sem v x w y,
  vmatch v x -> vmatch w y ->
  vmatch (match v, w with Vlong i, Vlong j => Vlong(sem i j) | _, _ => Vundef end) (binop_long sem x y).
Proof.
  intros. unfold binop_long; inv H; auto with va; inv H0; auto with va.
Qed.

Definition unop_float (sem: float -> float) (x: aval) :=
  match x with F n => F (sem n) | _ => ntop1 x end.

Lemma unop_float_sound:
  forall sem v x,
  vmatch v x ->
  vmatch (match v with Vfloat i => Vfloat(sem i) | _ => Vundef end) (unop_float sem x).
Proof.
  intros. unfold unop_float; inv H; auto with va.
Qed.

Definition binop_float (sem: float -> float -> float) (x y: aval) :=
  match x, y with F n, F m => F (sem n m) | _, _ => ntop2 x y end.

Lemma binop_float_sound:
  forall sem v x w y,
  vmatch v x -> vmatch w y ->
  vmatch (match v, w with Vfloat i, Vfloat j => Vfloat(sem i j) | _, _ => Vundef end) (binop_float sem x y).
Proof.
  intros. unfold binop_float; inv H; auto with va; inv H0; auto with va.
Qed.

Definition unop_single (sem: float32 -> float32) (x: aval) :=
  match x with FS n => FS (sem n) | _ => ntop1 x end.

Lemma unop_single_sound:
  forall sem v x,
  vmatch v x ->
  vmatch (match v with Vsingle i => Vsingle(sem i) | _ => Vundef end) (unop_single sem x).
Proof.
  intros. unfold unop_single; inv H; auto with va.
Qed.

Definition binop_single (sem: float32 -> float32 -> float32) (x y: aval) :=
  match x, y with FS n, FS m => FS (sem n m) | _, _ => ntop2 x y end.

Lemma binop_single_sound:
  forall sem v x w y,
  vmatch v x -> vmatch w y ->
  vmatch (match v, w with Vsingle i, Vsingle j => Vsingle(sem i j) | _, _ => Vundef end) (binop_single sem x y).
Proof.
  intros. unfold binop_single; inv H; auto with va; inv H0; auto with va.
Qed.

(** Logical operations *)

Definition shl (v w: aval) :=
  match w with
  | I amount =>
      if Int.ltu amount Int.iwordsize then
        match v with
        | I i => I (Int.shl i amount)
        | Uns p n => uns p (n + Int.unsigned amount)
        | Sgn p n => sgn p (n + Int.unsigned amount)
        | _ => ntop1 v
        end
      else ntop1 v
  | _ => ntop1 v
  end.

Lemma shl_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.shl v w) (shl x y).
Proof.
  intros.
  assert (DEFAULT: vmatch (Val.shl v w) (ntop1 x)).
  {
    destruct v; destruct w; simpl; try constructor.
    destruct (Int.ltu i0 Int.iwordsize); constructor.
  }
  destruct y; auto. simpl. inv H0. unfold Val.shl.
  destruct (Int.ltu n Int.iwordsize) eqn:LTU; auto.
  exploit Int.ltu_inv; eauto. intros RANGE.
  inv H; auto with va.
- apply vmatch_uns'. red; intros. rewrite Int.bits_shl by lia.
  destruct (zlt m (Int.unsigned n)). auto. apply H1; extlia.
- apply vmatch_sgn'. red; intros. zify.
  rewrite ! Int.bits_shl by lia.
  rewrite ! zlt_false by lia.
  rewrite H1 by lia. symmetry. rewrite H1 by lia. auto.
- destruct v; constructor.
Qed.

Definition shru (v w: aval) :=
  match w with
  | I amount =>
      if Int.ltu amount Int.iwordsize then
        match v with
        | I i => I (Int.shru i amount)
        | Uns p n => uns p (n - Int.unsigned amount)
        | _ => uns (provenance v) (Int.zwordsize - Int.unsigned amount)
        end
      else ntop1 v
  | _ => ntop1 v
  end.

Lemma shru_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.shru v w) (shru x y).
Proof.
  intros.
  assert (DEFAULT: vmatch (Val.shru v w) (ntop1 x)).
  {
    destruct v; destruct w; simpl; try constructor.
    destruct (Int.ltu i0 Int.iwordsize); constructor.
  }
  destruct y; auto. inv H0. unfold shru, Val.shru.
  destruct (Int.ltu n Int.iwordsize) eqn:LTU; auto.
  exploit Int.ltu_inv; eauto. intros RANGE. change (Int.unsigned Int.iwordsize) with Int.zwordsize in RANGE.
  assert (DEFAULT2: forall i, vmatch (Vint (Int.shru i n)) (uns (provenance x) (Int.zwordsize - Int.unsigned n))).
  {
    intros. apply vmatch_uns. red; intros.
    rewrite Int.bits_shru by lia. apply zlt_false. lia.
  }
  inv H; auto with va.
- apply vmatch_uns'. red; intros. zify.
  rewrite Int.bits_shru by lia.
  destruct (zlt (m + Int.unsigned n) Int.zwordsize); auto.
  apply H1; lia.
- destruct v; constructor.
Qed.

Definition shr (v w: aval) :=
  match w with
  | I amount =>
      if Int.ltu amount Int.iwordsize then
        match v with
        | I i => I (Int.shr i amount)
        | Uns p n => sgn p (n + 1 - Int.unsigned amount)
        | Sgn p n => sgn p (n - Int.unsigned amount)
        | _ => sgn (provenance v) (Int.zwordsize - Int.unsigned amount)
        end
      else ntop1 v
  | _ => ntop1 v
  end.

Lemma shr_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.shr v w) (shr x y).
Proof.
  intros.
  assert (DEFAULT: vmatch (Val.shr v w) (ntop1 x)).
  {
    destruct v; destruct w; simpl; try constructor.
    destruct (Int.ltu i0 Int.iwordsize); constructor.
  }
  destruct y; auto. inv H0. unfold shr, Val.shr.
  destruct (Int.ltu n Int.iwordsize) eqn:LTU; auto.
  exploit Int.ltu_inv; eauto. intros RANGE. change (Int.unsigned Int.iwordsize) with Int.zwordsize in RANGE.
  assert (DEFAULT2: forall i, vmatch (Vint (Int.shr i n)) (sgn (provenance x) (Int.zwordsize - Int.unsigned n))).
  {
    intros. apply vmatch_sgn. red; intros.
    rewrite ! Int.bits_shr by lia. f_equal.
    destruct (zlt (m + Int.unsigned n) Int.zwordsize);
    destruct (zlt (Int.zwordsize - 1 + Int.unsigned n) Int.zwordsize);
    lia.
  }
  assert (SGN: forall q i p, is_sgn p i -> 0 < p -> vmatch (Vint (Int.shr i n)) (sgn q (p - Int.unsigned n))).
  {
    intros. apply vmatch_sgn'. red; intros. zify.
    rewrite ! Int.bits_shr by lia.
    transitivity (Int.testbit i (Int.zwordsize - 1)).
    destruct (zlt (m + Int.unsigned n) Int.zwordsize).
    apply H0; lia.
    auto.
    symmetry.
    destruct (zlt (Int.zwordsize - 1 + Int.unsigned n) Int.zwordsize).
    apply H0; lia.
    auto.
  }
  inv H; eauto with va.
- destruct v; constructor.
Qed.

Definition and (v w: aval) :=
  match v, w with
  | I i1, I i2 => I (Int.and i1 i2)
  | I i, Uns p n | Uns p n, I i => uns p (Z.min n (usize i))
  | I i, x | x, I i => uns (provenance x) (usize i)
  | Uns p1 n1, Uns p2 n2 => uns (plub p1 p2) (Z.min n1 n2)
  | Uns p n, _ => uns (plub p (provenance w)) n
  | _, Uns p n => uns (plub (provenance v) p) n
  | Sgn p1 n1, Sgn p2 n2 => sgn (plub p1 p2) (Z.max n1 n2)
  | _, _ => ntop2 v w
  end.

Lemma and_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.and v w) (and x y).
Proof.
  assert (UNS_l: forall i j n, is_uns n i -> is_uns n (Int.and i j)).
  {
    intros; red; intros. rewrite Int.bits_and by auto. rewrite (H m) by auto.
    apply andb_false_l.
  }
  assert (UNS_r: forall i j n, is_uns n i -> is_uns n (Int.and j i)).
  {
    intros. rewrite Int.and_commut. eauto.
  }
  assert (UNS: forall i j n m, is_uns n i -> is_uns m j -> is_uns (Z.min n m) (Int.and i j)).
  {
    intros. apply Z.min_case; auto.
  }
  assert (SGN: forall i j n m, is_sgn n i -> is_sgn m j -> is_sgn (Z.max n m) (Int.and i j)).
  {
    intros; red; intros. rewrite ! Int.bits_and by auto with va.
    rewrite H by auto with va. rewrite H0 by auto with va. auto.
  }
  intros. unfold and, Val.and; inv H; eauto with va; inv H0; eauto with va.
Qed.

Definition or (v w: aval) :=
  match v, w with
  | I i1, I i2 => I (Int.or i1 i2)
  | I i, Uns p n | Uns p n, I i => uns p (Z.max n (usize i))
  | Uns p1 n1, Uns p2 n2 => uns (plub p1 p2) (Z.max n1 n2)
  | Sgn p1 n1, Sgn p2 n2 => sgn (plub p1 p2) (Z.max n1 n2)
  | _, _ => ntop2 v w
  end.

Lemma or_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.or v w) (or x y).
Proof.
  assert (UNS: forall i j n m, is_uns n i -> is_uns m j -> is_uns (Z.max n m) (Int.or i j)).
  {
    intros; red; intros. rewrite Int.bits_or by auto.
    rewrite H by extlia. rewrite H0 by extlia. auto.
  }
  assert (SGN: forall i j n m, is_sgn n i -> is_sgn m j -> is_sgn (Z.max n m) (Int.or i j)).
  {
    intros; red; intros. rewrite ! Int.bits_or by extlia.
    rewrite H by extlia. rewrite H0 by extlia. auto.
  }
  intros. unfold or, Val.or; inv H; eauto with va; inv H0; eauto with va.
Qed.

Definition xor (v w: aval) :=
  match v, w with
  | I i1, I i2 => I (Int.xor i1 i2)
  | I i, Uns p n | Uns p n, I i => uns p (Z.max n (usize i))
  | Uns p1 n1, Uns p2 n2 => uns (plub p1 p2) (Z.max n1 n2)
  | Sgn p1 n1, Sgn p2 n2 => sgn (plub p1 p2) (Z.max n1 n2)
  | _, _ => ntop2 v w
  end.

Lemma xor_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.xor v w) (xor x y).
Proof.
  assert (UNS: forall i j n m, is_uns n i -> is_uns m j -> is_uns (Z.max n m) (Int.xor i j)).
  {
    intros; red; intros. rewrite Int.bits_xor by auto.
    rewrite H by extlia. rewrite H0 by extlia. auto.
  }
  assert (SGN: forall i j n m, is_sgn n i -> is_sgn m j -> is_sgn (Z.max n m) (Int.xor i j)).
  {
    intros; red; intros. rewrite ! Int.bits_xor by extlia.
    rewrite H by extlia. rewrite H0 by extlia. auto.
  }
  intros. unfold xor, Val.xor; inv H; eauto with va; inv H0; eauto with va.
Qed.

Definition notint (v: aval) :=
  match v with
  | I i => I (Int.not i)
  | Uns p n => sgn p (n + 1)
  | Sgn p n => Sgn p n
  | _ => ntop1 v
  end.

Lemma notint_sound:
  forall v x, vmatch v x -> vmatch (Val.notint v) (notint x).
Proof.
  assert (SGN: forall n i, is_sgn n i -> is_sgn n (Int.not i)).
  {
    intros; red; intros. rewrite ! Int.bits_not by lia.
    f_equal. apply H; auto.
  }
  intros. unfold Val.notint, notint; inv H; eauto with va.
Qed.

Definition rol (x y: aval) :=
  match y, x with
  | I j, I i => I(Int.rol i j)
  | I j, Uns p n => uns p (n + Int.unsigned j)
  | I j, Sgn p n => if zlt n Int.zwordsize then sgn p (n + Int.unsigned j) else ntop1 x
  | _, _ => ntop1 x
  end.

Lemma rol_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.rol v w) (rol x y).
Proof.
  intros.
  assert (DEFAULT: forall p, vmatch (Val.rol v w) (Ifptr p)).
  {
    destruct v; destruct w; simpl; constructor.
  }
  unfold rol; destruct y; try apply DEFAULT; auto. inv H0. unfold Val.rol.
  inv H; auto with va.
- apply vmatch_uns. red; intros. rewrite Int.bits_rol by auto.
  generalize (Int.unsigned_range n); intros.
  rewrite Z.mod_small by lia.
  apply H1. lia. lia.
- destruct (zlt n0 Int.zwordsize); auto with va.
  apply vmatch_sgn. red; intros. rewrite ! Int.bits_rol by lia.
  generalize (Int.unsigned_range n); intros.
  rewrite ! Z.mod_small by lia.
  rewrite H1 by lia. symmetry. rewrite H1 by lia. auto.
- destruct (zlt n0 Int.zwordsize); auto with va.
Qed.

Definition ror (x y: aval) :=
  match y, x with
  | I j, I i => I(Int.ror i j)
  | _, _ => ntop1 x
  end.

Lemma ror_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.ror v w) (ror x y).
Proof.
  intros.
  assert (DEFAULT: forall p, vmatch (Val.ror v w) (Ifptr p)).
  {
    destruct v; destruct w; simpl; constructor.
  }
  unfold ror; destruct y; try apply DEFAULT; auto. inv H0. unfold Val.ror.
  inv H; auto with va.
Qed.

Definition rolm (x: aval) (amount mask: int) :=
  and (rol x (I amount)) (I mask).

Lemma rolm_sound:
  forall v x amount mask,
  vmatch v x -> vmatch (Val.rolm v amount mask) (rolm x amount mask).
Proof.
  intros.
  replace (Val.rolm v amount mask) with (Val.and (Val.rol v (Vint amount)) (Vint mask)).
  apply and_sound. apply rol_sound. auto. constructor. constructor.
  destruct v; auto.
Qed.

(** Integer arithmetic operations *)

Definition neg := unop_int Int.neg.

Lemma neg_sound:
  forall v x, vmatch v x -> vmatch (Val.neg v) (neg x).
Proof (unop_int_sound Int.neg).

Definition add (x y: aval) :=
  match x, y with
  | I i, I j => I (Int.add i j)
  | Ptr p, I i | I i, Ptr p => Ptr (if Archi.ptr64 then poffset p else padd p (Ptrofs.of_int i))
  | Ptr p, _   | _, Ptr p   => Ptr (poffset p)
  | Ifptr p, I i | I i, Ifptr p => Ifptr (if Archi.ptr64 then poffset p else padd p (Ptrofs.of_int i))
  | Ifptr p, Ifptr q => Ifptr (plub (poffset p) (poffset q))
  | Ifptr p, _ | _, Ifptr p => Ifptr (poffset p)
  | _, _ => ntop2 x y
  end.

Lemma add_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.add v w) (add x y).
Proof.
  intros. unfold Val.add, add. destruct Archi.ptr64.
- inv H; inv H0; constructor.
- inv H; inv H0; constructor;
  ((apply padd_sound; assumption) || (eapply poffset_sound; eassumption) || idtac).
  apply pmatch_lub_r. eapply poffset_sound; eauto.
  apply pmatch_lub_l. eapply poffset_sound; eauto.
Qed.

Definition sub (v w: aval) :=
  match v, w with
  | I i1, I i2 => I (Int.sub i1 i2)
  | Ptr p, I i => if Archi.ptr64 then Ifptr (poffset p) else Ptr (psub p (Ptrofs.of_int i))
  | Ptr p, _   => Ifptr (poffset p)
  | Ifptr p, I i => if Archi.ptr64 then Ifptr (plub (poffset p) (provenance w)) else Ifptr (psub p (Ptrofs.of_int i))
  | Ifptr p, _ => Ifptr (plub (poffset p) (provenance w))
  | _, _ => ntop2 v w
  end.

Lemma sub_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.sub v w) (sub x y).
Proof.
  intros. unfold Val.sub, sub. destruct Archi.ptr64.
- inv H; inv H0; eauto with va.
- inv H; inv H0; try (destruct (eq_block b b0)); eauto using psub_sound, poffset_sound, pmatch_lub_l with va.
Qed.

Definition mul := binop_int Int.mul.

Lemma mul_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.mul v w) (mul x y).
Proof (binop_int_sound Int.mul).

Definition mulhs := binop_int Int.mulhs.

Lemma mulhs_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.mulhs v w) (mulhs x y).
Proof (binop_int_sound Int.mulhs).

Definition mulhu := binop_int Int.mulhu.

Lemma mulhu_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.mulhu v w) (mulhu x y).
Proof (binop_int_sound Int.mulhu).

Definition divs (v w: aval) :=
  match w, v with
  | I i2, I i1 =>
      if Int.eq i2 Int.zero
      || Int.eq i1 (Int.repr Int.min_signed) && Int.eq i2 Int.mone
      then if va_strict tt then Vbot else ntop
      else I (Int.divs i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma divs_sound:
  forall v w u x y, vmatch v x -> vmatch w y -> Val.divs v w = Some u -> vmatch u (divs x y).
Proof.
  intros. destruct v; destruct w; try discriminate; simpl in H1.
  destruct (Int.eq i0 Int.zero
         || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone) eqn:E; inv H1.
  inv H; inv H0; auto with va. simpl. rewrite E. constructor.
Qed.

Definition divu (v w: aval) :=
  match w, v with
  | I i2, I i1 =>
      if Int.eq i2 Int.zero
       then if va_strict tt then Vbot else ntop
      else I (Int.divu i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma divu_sound:
  forall v w u x y, vmatch v x -> vmatch w y -> Val.divu v w = Some u -> vmatch u (divu x y).
Proof.
  intros. destruct v; destruct w; try discriminate; simpl in H1.
  destruct (Int.eq i0 Int.zero) eqn:E; inv H1.
  inv H; inv H0; auto with va. simpl. rewrite E. constructor.
Qed.

Definition mods (v w: aval) :=
  match w, v with
  | I i2, I i1 =>
      if Int.eq i2 Int.zero
      || Int.eq i1 (Int.repr Int.min_signed) && Int.eq i2 Int.mone
      then if va_strict tt then Vbot else ntop
      else I (Int.mods i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma mods_sound:
  forall v w u x y, vmatch v x -> vmatch w y -> Val.mods v w = Some u -> vmatch u (mods x y).
Proof.
  intros. destruct v; destruct w; try discriminate; simpl in H1.
  destruct (Int.eq i0 Int.zero
         || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone) eqn:E; inv H1.
  inv H; inv H0; auto with va. simpl. rewrite E. constructor.
Qed.

Definition modu (v w: aval) :=
  match w, v with
  | I i2, I i1 =>
      if Int.eq i2 Int.zero
      then if va_strict tt then Vbot else ntop
      else I (Int.modu i1 i2)
  | I i2, _ => uns (provenance v) (usize i2)
  | _, _ => ntop2 v w
  end.

Lemma modu_sound:
  forall v w u x y, vmatch v x -> vmatch w y -> Val.modu v w = Some u -> vmatch u (modu x y).
Proof.
  assert (UNS: forall i j, j <> Int.zero -> is_uns (usize j) (Int.modu i j)).
  {
    intros. apply is_uns_mon with (usize (Int.modu i j)); auto with va.
    unfold usize, Int.size. apply Zsize_monotone.
    generalize (Int.unsigned_range_2 j); intros RANGE.
    assert (Int.unsigned j <> 0).
    { red; intros; elim H. rewrite <- (Int.repr_unsigned j). rewrite H0. auto. }
    exploit (Z_mod_lt (Int.unsigned i) (Int.unsigned j)). lia. intros MOD.
    unfold Int.modu. rewrite Int.unsigned_repr. lia. lia.
  }
  intros. destruct v; destruct w; try discriminate; simpl in H1.
  destruct (Int.eq i0 Int.zero) eqn:Z; inv H1.
  assert (i0 <> Int.zero) by (generalize (Int.eq_spec i0 Int.zero); rewrite Z; auto).
  unfold modu. inv H; inv H0; auto with va. rewrite Z. constructor.
Qed.

Definition shrx (v w: aval) :=
  match v, w with
  | I i, I j => if Int.ltu j (Int.repr 31) then I(Int.shrx i j) else ntop
  | _, _ => ntop1 v
  end.

Lemma shrx_sound:
  forall v w u x y, vmatch v x -> vmatch w y -> Val.shrx v w = Some u -> vmatch u (shrx x y).
Proof.
  intros.
  destruct v; destruct w; try discriminate; simpl in H1.
  destruct (Int.ltu i0 (Int.repr 31)) eqn:LTU; inv H1.
  unfold shrx; inv H; auto with va; inv H0; auto with va.
  rewrite LTU; auto with va.
Qed.

(** 64-bit integer operations *)

Definition shift_long (sem: int64 -> int -> int64) (v w: aval) :=
  match w with
  | I amount =>
      if Int.ltu amount Int64.iwordsize' then
        match v with
        | L i => L (sem i amount)
        | _ => ntop1 v
        end
      else ntop1 v
  | _ => ntop1 v
  end.

Lemma shift_long_sound:
  forall sem v w x y,
  vmatch v x -> vmatch w y ->
  vmatch (match v, w with
          | Vlong i, Vint j => if Int.ltu j Int64.iwordsize'
                               then Vlong (sem i j) else Vundef
          | _, _ => Vundef end)
         (shift_long sem x y).
Proof.
  intros.
  assert (DEFAULT:
    vmatch (match v, w with
            | Vlong i, Vint j => if Int.ltu j Int64.iwordsize'
                                 then Vlong (sem i j) else Vundef
            | _, _ => Vundef end)
           (ntop1 x)).
  { destruct v; try constructor; destruct w; try constructor.
    destruct (Int.ltu i0 Int64.iwordsize'); constructor. }
  unfold shift_long. destruct y; auto.
  destruct (Int.ltu n Int64.iwordsize') eqn:LT; auto.
  destruct x; auto.
  inv H; inv H0. rewrite LT. constructor.
Qed.

Definition shll := shift_long Int64.shl'.

Lemma shll_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.shll v w) (shll x y).
Proof (shift_long_sound Int64.shl').

Definition shrl := shift_long Int64.shr'.

Lemma shrl_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.shrl v w) (shrl x y).
Proof (shift_long_sound Int64.shr').

Definition shrlu := shift_long Int64.shru'.

Lemma shrlu_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.shrlu v w) (shrlu x y).
Proof (shift_long_sound Int64.shru').

Definition andl := binop_long Int64.and.

Lemma andl_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.andl v w) (andl x y).
Proof (binop_long_sound Int64.and).

Definition orl := binop_long Int64.or.

Lemma orl_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.orl v w) (orl x y).
Proof (binop_long_sound Int64.or).

Definition xorl := binop_long Int64.xor.

Lemma xorl_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.xorl v w) (xorl x y).
Proof (binop_long_sound Int64.xor).

Definition notl := unop_long Int64.not.

Lemma notl_sound:
  forall v x, vmatch v x -> vmatch (Val.notl v) (notl x).
Proof (unop_long_sound Int64.not).

Definition rotate_long (sem: int64 -> int64 -> int64) (v w: aval) :=
  match v, w with
  | L i, I amount => L (sem i (Int64.repr (Int.unsigned amount)))
  | _, _ => ntop1 v
  end.

Lemma rotate_long_sound:
  forall sem v w x y,
  vmatch v x -> vmatch w y ->
  vmatch (match v, w with
          | Vlong i, Vint j => Vlong (sem i (Int64.repr (Int.unsigned j)))
          | _, _ => Vundef end)
         (rotate_long sem x y).
Proof.
  intros.
  assert (DEFAULT:
    vmatch (match v, w with
            | Vlong i, Vint j => Vlong (sem i (Int64.repr (Int.unsigned j)))
            | _, _ => Vundef end)
           (ntop1 x)).
  { destruct v; try constructor. destruct w; constructor. }
  unfold rotate_long. destruct x; auto. destruct y; auto. inv H; inv H0. constructor.
Qed.

Definition roll := rotate_long Int64.rol.

Lemma roll_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.roll v w) (roll x y).
Proof (rotate_long_sound Int64.rol).

Definition rorl := rotate_long Int64.ror.

Lemma rorl_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.rorl v w) (rorl x y).
Proof (rotate_long_sound Int64.ror).

Definition negl := unop_long Int64.neg.

Lemma negl_sound:
  forall v x, vmatch v x -> vmatch (Val.negl v) (negl x).
Proof (unop_long_sound Int64.neg).

Definition addl (x y: aval) :=
  match x, y with
  | L i, L j => L (Int64.add i j)
  | Ptr p, L i | L i, Ptr p => Ptr (if Archi.ptr64 then padd p (Ptrofs.of_int64 i) else poffset p)
  | Ptr p, _   | _, Ptr p   => Ptr (poffset p)
  | Ifptr p, L i | L i, Ifptr p => Ifptr (if Archi.ptr64 then padd p (Ptrofs.of_int64 i) else poffset p)
  | Ifptr p, Ifptr q => Ifptr (plub (poffset p) (poffset q))
  | Ifptr p, _ | _, Ifptr p => Ifptr (poffset p)
  | _, _ => ntop2 x y
  end.

Lemma addl_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.addl v w) (addl x y).
Proof.
  intros. unfold Val.addl, addl. destruct Archi.ptr64.
- inv H; inv H0; constructor;
  ((apply padd_sound; assumption) || (eapply poffset_sound; eassumption) || idtac).
  apply pmatch_lub_r. eapply poffset_sound; eauto.
  apply pmatch_lub_l. eapply poffset_sound; eauto.
- inv H; inv H0; constructor.
Qed.

Definition subl (v w: aval) :=
  match v, w with
  | L i1, L i2 => L (Int64.sub i1 i2)
  | Ptr p, L i => if Archi.ptr64 then Ptr (psub p (Ptrofs.of_int64 i)) else Ifptr (poffset p)
  | Ptr p, _   => Ifptr (poffset p)
  | Ifptr p, L i => if Archi.ptr64 then Ifptr (psub p (Ptrofs.of_int64 i)) else Ifptr (plub (poffset p) (provenance w))
  | Ifptr p, _ => Ifptr (plub (poffset p) (provenance w))
  | _, _ => ntop2 v w
  end.

Lemma subl_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.subl v w) (subl x y).
Proof.
  intros. unfold Val.subl, subl. destruct Archi.ptr64.
- inv H; inv H0; try (destruct (eq_block b b0)); eauto using psub_sound, poffset_sound, pmatch_lub_l with va.
- inv H; inv H0; eauto with va.
Qed.

Definition mull := binop_long Int64.mul.

Lemma mull_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.mull v w) (mull x y).
Proof (binop_long_sound Int64.mul).

Definition mullhs := binop_long Int64.mulhs.

Lemma mullhs_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.mullhs v w) (mullhs x y).
Proof (binop_long_sound Int64.mulhs).

Definition mullhu := binop_long Int64.mulhu.

Lemma mullhu_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.mullhu v w) (mullhu x y).
Proof (binop_long_sound Int64.mulhu).

Definition divls (v w: aval) :=
  match w, v with
  | L i2, L i1 =>
      if Int64.eq i2 Int64.zero
      || Int64.eq i1 (Int64.repr Int64.min_signed) && Int64.eq i2 Int64.mone
      then if va_strict tt then Vbot else ntop
      else L (Int64.divs i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma divls_sound:
  forall v w u x y, vmatch v x -> vmatch w y -> Val.divls v w = Some u -> vmatch u (divls x y).
Proof.
  intros. destruct v; destruct w; try discriminate; simpl in H1.
  destruct (Int64.eq i0 Int64.zero
         || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone) eqn:E; inv H1.
  inv H; inv H0; auto with va. simpl. rewrite E. constructor.
Qed.

Definition divlu (v w: aval) :=
  match w, v with
  | L i2, L i1 =>
      if Int64.eq i2 Int64.zero
       then if va_strict tt then Vbot else ntop
      else L (Int64.divu i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma divlu_sound:
  forall v w u x y, vmatch v x -> vmatch w y -> Val.divlu v w = Some u -> vmatch u (divlu x y).
Proof.
  intros. destruct v; destruct w; try discriminate; simpl in H1.
  destruct (Int64.eq i0 Int64.zero) eqn:E; inv H1.
  inv H; inv H0; auto with va. simpl. rewrite E. constructor.
Qed.

Definition modls (v w: aval) :=
  match w, v with
  | L i2, L i1 =>
      if Int64.eq i2 Int64.zero
      || Int64.eq i1 (Int64.repr Int64.min_signed) && Int64.eq i2 Int64.mone
      then if va_strict tt then Vbot else ntop
      else L (Int64.mods i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma modls_sound:
  forall v w u x y, vmatch v x -> vmatch w y -> Val.modls v w = Some u -> vmatch u (modls x y).
Proof.
  intros. destruct v; destruct w; try discriminate; simpl in H1.
  destruct (Int64.eq i0 Int64.zero
         || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone) eqn:E; inv H1.
  inv H; inv H0; auto with va. simpl. rewrite E. constructor.
Qed.

Definition modlu (v w: aval) :=
  match w, v with
  | L i2, L i1 =>
      if Int64.eq i2 Int64.zero
      then if va_strict tt then Vbot else ntop
      else L (Int64.modu i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma modlu_sound:
  forall v w u x y, vmatch v x -> vmatch w y -> Val.modlu v w = Some u -> vmatch u (modlu x y).
Proof.
  intros. destruct v; destruct w; try discriminate; simpl in H1.
  destruct (Int64.eq i0 Int64.zero) eqn:E; inv H1.
  inv H; inv H0; auto with va. simpl. rewrite E. constructor.
Qed.

Definition shrxl (v w: aval) :=
  match v, w with
  | L i, I j => if Int.ltu j (Int.repr 63) then L(Int64.shrx' i j) else ntop
  | _, _ => ntop1 v
  end.

Lemma shrxl_sound:
  forall v w u x y, vmatch v x -> vmatch w y -> Val.shrxl v w = Some u -> vmatch u (shrxl x y).
Proof.
  intros.
  destruct v; destruct w; try discriminate; simpl in H1.
  destruct (Int.ltu i0 (Int.repr 63)) eqn:LTU; inv H1.
  unfold shrxl; inv H; auto with va; inv H0; auto with va.
  rewrite LTU; auto with va.
Qed.

Definition rolml (x: aval) (amount: int) (mask: int64) :=
  andl (roll x (I amount)) (L mask).

Lemma rolml_sound:
  forall v x amount mask,
  vmatch v x -> vmatch (Val.rolml v amount mask) (rolml x amount mask).
Proof.
  intros.
  replace (Val.rolml v amount mask) with (Val.andl (Val.roll v (Vint amount)) (Vlong mask)).
  apply andl_sound. apply roll_sound. auto. constructor. constructor.
  destruct v; auto.
Qed.

(** Pointer operations *)

Definition offset_ptr (v: aval) (n: ptrofs) :=
  match v with
  | Ptr p => Ptr (padd p n)
  | Ifptr p => Ifptr (padd p n)
  | _ => ntop1 v
  end.

Lemma offset_ptr_sound:
  forall v x n, vmatch v x -> vmatch (Val.offset_ptr v n) (offset_ptr x n).
Proof.
  intros. unfold Val.offset_ptr, offset_ptr.
  inv H; constructor; apply padd_sound; assumption.
Qed.

(** Floating-point arithmetic operations *)

Definition negf := unop_float Float.neg.

Lemma negf_sound:
  forall v x, vmatch v x -> vmatch (Val.negf v) (negf x).
Proof (unop_float_sound Float.neg).

Definition absf := unop_float Float.abs.

Lemma absf_sound:
  forall v x, vmatch v x -> vmatch (Val.absf v) (absf x).
Proof (unop_float_sound Float.abs).

Definition addf := binop_float Float.add.

Lemma addf_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.addf v w) (addf x y).
Proof (binop_float_sound Float.add).

Definition subf := binop_float Float.sub.

Lemma subf_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.subf v w) (subf x y).
Proof (binop_float_sound Float.sub).

Definition mulf := binop_float Float.mul.

Lemma mulf_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.mulf v w) (mulf x y).
Proof (binop_float_sound Float.mul).

Definition divf := binop_float Float.div.

Lemma divf_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.divf v w) (divf x y).
Proof (binop_float_sound Float.div).

Definition negfs := unop_single Float32.neg.

Lemma negfs_sound:
  forall v x, vmatch v x -> vmatch (Val.negfs v) (negfs x).
Proof (unop_single_sound Float32.neg).

Definition absfs := unop_single Float32.abs.

Lemma absfs_sound:
  forall v x, vmatch v x -> vmatch (Val.absfs v) (absfs x).
Proof (unop_single_sound Float32.abs).

Definition addfs := binop_single Float32.add.

Lemma addfs_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.addfs v w) (addfs x y).
Proof (binop_single_sound Float32.add).

Definition subfs := binop_single Float32.sub.

Lemma subfs_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.subfs v w) (subfs x y).
Proof (binop_single_sound Float32.sub).

Definition mulfs := binop_single Float32.mul.

Lemma mulfs_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.mulfs v w) (mulfs x y).
Proof (binop_single_sound Float32.mul).

Definition divfs := binop_single Float32.div.

Lemma divfs_sound:
  forall v x w y, vmatch v x -> vmatch w y -> vmatch (Val.divfs v w) (divfs x y).
Proof (binop_single_sound Float32.div).
(** Conversions *)

Definition zero_ext (nbits: Z) (v: aval) :=
  match v with
  | I i => I (Int.zero_ext nbits i)
  | Uns p n => uns p (Z.min n nbits)
  | _ => uns (provenance v) nbits
  end.

Lemma zero_ext_sound:
  forall nbits v x, vmatch v x -> vmatch (Val.zero_ext nbits v) (zero_ext nbits x).
Proof.
  assert (DFL: forall nbits i, is_uns nbits (Int.zero_ext nbits i)).
  {
    intros; red; intros. rewrite Int.bits_zero_ext by lia. apply zlt_false; auto.
  }
  intros. inv H; simpl; auto with va. apply vmatch_uns.
  red; intros. zify.
  rewrite Int.bits_zero_ext by lia.
  destruct (zlt m nbits); auto. apply H1; lia.
Qed.

Definition sign_ext (nbits: Z) (v: aval) :=
  if zle nbits 0 then Uns (provenance v) 0 else
  match v with
  | I i => I (Int.sign_ext nbits i)
  | Uns p n => if zlt n nbits then Uns p n else sgn p nbits
  | Sgn p n => sgn p (Z.min n nbits)
  | _ => sgn (provenance v) nbits
  end.

Lemma sign_ext_sound:
  forall nbits v x, vmatch v x -> vmatch (Val.sign_ext nbits v) (sign_ext nbits x).
Proof.
  assert (DFL: forall p nbits i, 0 < nbits -> vmatch (Vint (Int.sign_ext nbits i)) (sgn p nbits)).
  {
    intros. apply vmatch_sgn. apply is_sign_ext_sgn; auto with va.
  }
  intros. unfold sign_ext. destruct (zle nbits 0).
- destruct v; simpl; auto with va. constructor. lia. 
  rewrite Int.sign_ext_below by auto. red; intros; apply Int.bits_zero.
- inv H; simpl; auto with va.
+ destruct (zlt n nbits); eauto with va.
  constructor; auto. eapply is_sign_ext_uns; eauto with va.
+ destruct (zlt n nbits); auto with va.
+ apply vmatch_sgn. apply is_sign_ext_sgn; auto with va.
  apply Z.min_case; auto with va.
Qed.

Definition zero_ext_l (s: Z) := unop_long (Int64.zero_ext s).

Lemma zero_ext_l_sound:
  forall s v x, vmatch v x -> vmatch (Val.zero_ext_l s v) (zero_ext_l s x).
Proof.
  intros s. exact (unop_long_sound (Int64.zero_ext s)).
Qed.

Definition sign_ext_l (s: Z) := unop_long (Int64.sign_ext s).

Lemma sign_ext_l_sound:
  forall s v x, vmatch v x -> vmatch (Val.sign_ext_l s v) (sign_ext_l s x).
Proof.
  intros s. exact (unop_long_sound (Int64.sign_ext s)).
Qed.

Definition longofint (v: aval) :=
  match v with
  | I i => L (Int64.repr (Int.signed i))
  | _ => ntop1 v
  end.

Lemma longofint_sound:
  forall v x, vmatch v x -> vmatch (Val.longofint v) (longofint x).
Proof.
  unfold Val.longofint, longofint; intros; inv H; auto with va.
Qed.

Definition longofintu (v: aval) :=
  match v with
  | I i => L (Int64.repr (Int.unsigned i))
  | _ => ntop1 v
  end.

Lemma longofintu_sound:
  forall v x, vmatch v x -> vmatch (Val.longofintu v) (longofintu x).
Proof.
  unfold Val.longofintu, longofintu; intros; inv H; auto with va.
Qed.

Definition singleoffloat (v: aval) :=
  match v with
  | F f => FS (Float.to_single f)
  | _   => ntop1 v
  end.

Lemma singleoffloat_sound:
  forall v x, vmatch v x -> vmatch (Val.singleoffloat v) (singleoffloat x).
Proof.
  intros.
  assert (DEFAULT: vmatch (Val.singleoffloat v) (ntop1 x)).
  { destruct v; constructor. }
  destruct x; auto. inv H. constructor.
Qed.

Definition floatofsingle (v: aval) :=
  match v with
  | FS f => F (Float.of_single f)
  | _   => ntop1 v
  end.

Lemma floatofsingle_sound:
  forall v x, vmatch v x -> vmatch (Val.floatofsingle v) (floatofsingle x).
Proof.
  intros.
  assert (DEFAULT: vmatch (Val.floatofsingle v) (ntop1 x)).
  { destruct v; constructor. }
  destruct x; auto. inv H. constructor.
Qed.

Definition intoffloat (x: aval) :=
  match x with
  | F f =>
      match Float.to_int f with
      | Some i => I i
      | None => if va_strict tt then Vbot else ntop
      end
  | _ => ntop1 x
  end.

Lemma intoffloat_sound:
  forall v x w, vmatch v x -> Val.intoffloat v = Some w -> vmatch w (intoffloat x).
Proof.
  unfold Val.intoffloat; intros. destruct v; try discriminate.
  destruct (Float.to_int f) as [i|] eqn:E; simpl in H0; inv H0.
  inv H; simpl; auto with va. rewrite E; constructor.
Qed.

Definition intuoffloat (x: aval) :=
  match x with
  | F f =>
      match Float.to_intu f with
      | Some i => I i
      | None => if va_strict tt then Vbot else ntop
      end
  | _ => ntop1 x
  end.

Lemma intuoffloat_sound:
  forall v x w, vmatch v x -> Val.intuoffloat v = Some w -> vmatch w (intuoffloat x).
Proof.
  unfold Val.intuoffloat; intros. destruct v; try discriminate.
  destruct (Float.to_intu f) as [i|] eqn:E; simpl in H0; inv H0.
  inv H; simpl; auto with va. rewrite E; constructor.
Qed.

Definition floatofint (x: aval) :=
  match x with
  | I i => F(Float.of_int i)
  | _   => ntop1 x
  end.

Lemma floatofint_sound:
  forall v x w, vmatch v x -> Val.floatofint v = Some w -> vmatch w (floatofint x).
Proof.
  unfold Val.floatofint; intros. destruct v; inv H0.
  inv H; simpl; auto with va.
Qed.

Definition floatofintu (x: aval) :=
  match x with
  | I i => F(Float.of_intu i)
  | _   => ntop1 x
  end.

Lemma floatofintu_sound:
  forall v x w, vmatch v x -> Val.floatofintu v = Some w -> vmatch w (floatofintu x).
Proof.
  unfold Val.floatofintu; intros. destruct v; inv H0.
  inv H; simpl; auto with va.
Qed.

Definition intofsingle (x: aval) :=
  match x with
  | FS f =>
      match Float32.to_int f with
      | Some i => I i
      | None => if va_strict tt then Vbot else ntop
      end
  | _ => ntop1 x
  end.

Lemma intofsingle_sound:
  forall v x w, vmatch v x -> Val.intofsingle v = Some w -> vmatch w (intofsingle x).
Proof.
  unfold Val.intofsingle; intros. destruct v; try discriminate.
  destruct (Float32.to_int f) as [i|] eqn:E; simpl in H0; inv H0.
  inv H; simpl; auto with va. rewrite E; constructor.
Qed.

Definition intofsingle_ne (x: aval) :=
  match x with
  | FS f =>
      match Float32.to_int_ne f with
      | Some i => I i
      | None => if va_strict tt then Vbot else ntop
      end
  | _ => ntop1 x
  end.

Lemma intofsingle_ne_sound:
  forall v x w, vmatch v x -> Val.intofsingle_ne v = Some w -> vmatch w (intofsingle_ne x).
Proof.
  unfold Val.intofsingle_ne; intros. destruct v; try discriminate.
  destruct (Float32.to_int_ne f) as [i|] eqn:E; simpl in H0; inv H0.
  inv H; simpl; auto with va. rewrite E; constructor.
Qed.

Definition intuofsingle (x: aval) :=
  match x with
  | FS f =>
      match Float32.to_intu f with
      | Some i => I i
      | None => if va_strict tt then Vbot else ntop
      end
  | _ => ntop1 x
  end.

Lemma intuofsingle_sound:
  forall v x w, vmatch v x -> Val.intuofsingle v = Some w -> vmatch w (intuofsingle x).
Proof.
  unfold Val.intuofsingle; intros. destruct v; try discriminate.
  destruct (Float32.to_intu f) as [i|] eqn:E; simpl in H0; inv H0.
  inv H; simpl; auto with va. rewrite E; constructor.
Qed.

Definition intuofsingle_ne (x: aval) :=
  match x with
  | FS f =>
      match Float32.to_intu_ne f with
      | Some i => I i
      | None => if va_strict tt then Vbot else ntop
      end
  | _ => ntop1 x
  end.

Lemma intuofsingle_ne_sound:
  forall v x w, vmatch v x -> Val.intuofsingle_ne v = Some w -> vmatch w (intuofsingle_ne x).
Proof.
  unfold Val.intuofsingle_ne; intros. destruct v; try discriminate.
  destruct (Float32.to_intu_ne f) as [i|] eqn:E; simpl in H0; inv H0.
  inv H; simpl; auto with va. rewrite E; constructor.
Qed.

Definition singleofint (x: aval) :=
  match x with
  | I i => FS(Float32.of_int i)
  | _   => ntop1 x
  end.

Lemma singleofint_sound:
  forall v x w, vmatch v x -> Val.singleofint v = Some w -> vmatch w (singleofint x).
Proof.
  unfold Val.singleofint; intros. destruct v; inv H0.
  inv H; simpl; auto with va.
Qed.

Definition singleofintu (x: aval) :=
  match x with
  | I i => FS(Float32.of_intu i)
  | _   => ntop1 x
  end.

Lemma singleofintu_sound:
  forall v x w, vmatch v x -> Val.singleofintu v = Some w -> vmatch w (singleofintu x).
Proof.
  unfold Val.singleofintu; intros. destruct v; inv H0.
  inv H; simpl; auto with va.
Qed.

Definition longoffloat (x: aval) :=
  match x with
  | F f =>
      match Float.to_long f with
      | Some i => L i
      | None => if va_strict tt then Vbot else ntop
      end
  | _ => ntop1 x
  end.

Lemma longoffloat_sound:
  forall v x w, vmatch v x -> Val.longoffloat v = Some w -> vmatch w (longoffloat x).
Proof.
  unfold Val.longoffloat; intros. destruct v; try discriminate.
  destruct (Float.to_long f) as [i|] eqn:E; simpl in H0; inv H0.
  inv H; simpl; auto with va. rewrite E; constructor.
Qed.

Definition longuoffloat (x: aval) :=
  match x with
  | F f =>
      match Float.to_longu f with
      | Some i => L i
      | None => if va_strict tt then Vbot else ntop
      end
  | _ => ntop1 x
  end.

Lemma longuoffloat_sound:
  forall v x w, vmatch v x -> Val.longuoffloat v = Some w -> vmatch w (longuoffloat x).
Proof.
  unfold Val.longuoffloat; intros. destruct v; try discriminate.
  destruct (Float.to_longu f) as [i|] eqn:E; simpl in H0; inv H0.
  inv H; simpl; auto with va. rewrite E; constructor.
Qed.

Definition longoffloat_ne (x: aval) :=
  match x with
  | F f =>
      match Float.to_long_ne f with
      | Some i => L i
      | None => if va_strict tt then Vbot else ntop
      end
  | _ => ntop1 x
  end.

Lemma longoffloat_ne_sound:
  forall v x w, vmatch v x -> Val.longoffloat_ne v = Some w -> vmatch w (longoffloat_ne x).
Proof.
  unfold Val.longoffloat_ne; intros. destruct v; try discriminate.
  destruct (Float.to_long_ne f) as [i|] eqn:E; simpl in H0; inv H0.
  inv H; simpl; auto with va. rewrite E; constructor.
Qed.

Definition longuoffloat_ne (x: aval) :=
  match x with
  | F f =>
      match Float.to_longu_ne f with
      | Some i => L i
      | None => if va_strict tt then Vbot else ntop
      end
  | _ => ntop1 x
  end.

Lemma longuoffloat_ne_sound:
  forall v x w, vmatch v x -> Val.longuoffloat_ne v = Some w -> vmatch w (longuoffloat_ne x).
Proof.
  unfold Val.longuoffloat_ne; intros. destruct v; try discriminate.
  destruct (Float.to_longu_ne f) as [i|] eqn:E; simpl in H0; inv H0.
  inv H; simpl; auto with va. rewrite E; constructor.
Qed.

Definition floatoflong (x: aval) :=
  match x with
  | L i => F(Float.of_long i)
  | _   => ntop1 x
  end.

Lemma floatoflong_sound:
  forall v x w, vmatch v x -> Val.floatoflong v = Some w -> vmatch w (floatoflong x).
Proof.
  unfold Val.floatoflong; intros. destruct v; inv H0.
  inv H; simpl; auto with va.
Qed.

Definition floatoflongu (x: aval) :=
  match x with
  | L i => F(Float.of_longu i)
  | _   => ntop1 x
  end.

Lemma floatoflongu_sound:
  forall v x w, vmatch v x -> Val.floatoflongu v = Some w -> vmatch w (floatoflongu x).
Proof.
  unfold Val.floatoflongu; intros. destruct v; inv H0.
  inv H; simpl; auto with va.
Qed.

Definition longofsingle (x: aval) :=
  match x with
  | FS f =>
      match Float32.to_long f with
      | Some i => L i
      | None => if va_strict tt then Vbot else ntop
      end
  | _ => ntop1 x
  end.

Lemma longofsingle_sound:
  forall v x w, vmatch v x -> Val.longofsingle v = Some w -> vmatch w (longofsingle x).
Proof.
  unfold Val.longofsingle; intros. destruct v; try discriminate.
  destruct (Float32.to_long f) as [i|] eqn:E; simpl in H0; inv H0.
  inv H; simpl; auto with va. rewrite E; constructor.
Qed.

Definition longuofsingle (x: aval) :=
  match x with
  | FS f =>
      match Float32.to_longu f with
      | Some i => L i
      | None => if va_strict tt then Vbot else ntop
      end
  | _ => ntop1 x
  end.

Lemma longuofsingle_sound:
  forall v x w, vmatch v x -> Val.longuofsingle v = Some w -> vmatch w (longuofsingle x).
Proof.
  unfold Val.longuofsingle; intros. destruct v; try discriminate.
  destruct (Float32.to_longu f) as [i|] eqn:E; simpl in H0; inv H0.
  inv H; simpl; auto with va. rewrite E; constructor.
Qed.

Definition singleoflong (x: aval) :=
  match x with
  | L i => FS(Float32.of_long i)
  | _   => ntop1 x
  end.

Lemma singleoflong_sound:
  forall v x w, vmatch v x -> Val.singleoflong v = Some w -> vmatch w (singleoflong x).
Proof.
  unfold Val.singleoflong; intros. destruct v; inv H0.
  inv H; simpl; auto with va.
Qed.

Definition singleoflongu (x: aval) :=
  match x with
  | L i => FS(Float32.of_longu i)
  | _   => ntop1 x
  end.

Lemma singleoflongu_sound:
  forall v x w, vmatch v x -> Val.singleoflongu v = Some w -> vmatch w (singleoflongu x).
Proof.
  unfold Val.singleoflongu; intros. destruct v; inv H0.
  inv H; simpl; auto with va.
Qed.

Definition floatofwords (x y: aval) :=
  match x, y with
  | I i, I j => F(Float.from_words i j)
  | _, _     => ntop2 x y
  end.

Lemma floatofwords_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.floatofwords v w) (floatofwords x y).
Proof.
  intros. unfold floatofwords; inv H; simpl; auto with va; inv H0; auto with va.
Qed.

Definition longofwords (x y: aval) :=
  match y, x with
  | I j, I i => L(Int64.ofwords i j)
  | _, _     => ntop2 x y
  end.

Lemma longofwords_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.longofwords v w) (longofwords x y).
Proof.
  intros. unfold longofwords; inv H0; inv H; simpl; auto with va.
Qed.

Definition loword (x: aval) :=
  match x with
  | L i => I(Int64.loword i)
  | _   => ntop1 x
  end.

Lemma loword_sound: forall v x, vmatch v x -> vmatch (Val.loword v) (loword x).
Proof.
  destruct 1; simpl; auto with va.
Qed.

Definition hiword (x: aval) :=
  match x with
  | L i => I(Int64.hiword i)
  | _   => ntop1 x
  end.

Lemma hiword_sound: forall v x, vmatch v x -> vmatch (Val.hiword v) (hiword x).
Proof.
  destruct 1; simpl; auto with va.
Qed.


(* Extensions for KVX and Risc-V *)

Definition intoffloat_total (x: aval) :=
  match x with
  | F f =>
      match Float.to_int f with
      | Some i => I i
      | None => ntop
      end
  | _ => ntop1 x
  end.

Definition intuoffloat_total (x: aval) :=
  match x with
  | F f =>
      match Float.to_intu f with
      | Some i => I i
      | None => ntop
      end
  | _ => ntop1 x
  end.

Definition intofsingle_total (x: aval) :=
  match x with
  | FS f =>
      match Float32.to_int f with
      | Some i => I i
      | None => ntop
      end
  | _ => ntop1 x
  end.

Definition intuofsingle_total (x: aval) :=
  match x with
  | FS f =>
      match Float32.to_intu f with
      | Some i => I i
      | None => ntop
      end
  | _ => ntop1 x
  end.

Definition longoffloat_total (x: aval) :=
  match x with
  | F f =>
      match Float.to_long f with
      | Some i => L i
      | None => ntop
      end
  | _ => ntop1 x
  end.

Definition longuoffloat_total (x: aval) :=
  match x with
  | F f =>
      match Float.to_longu f with
      | Some i => L i
      | None => ntop
      end
  | _ => ntop1 x
  end.

Definition longofsingle_total (x: aval) :=
  match x with
  | FS f =>
      match Float32.to_long f with
      | Some i => L i
      | None => ntop
      end
  | _ => ntop1 x
  end.

Definition longuofsingle_total (x: aval) :=
  match x with
  | FS f =>
      match Float32.to_longu f with
      | Some i => L i
      | None => ntop
      end
  | _ => ntop1 x
  end.

Definition intofsingle_ne_total (x: aval) :=
  match x with
  | FS f =>
      match Float32.to_int_ne f with
      | Some i => I i
      | None => ntop
      end
  | _ => ntop1 x
  end.

Definition intuofsingle_ne_total (x: aval) :=
  match x with
  | FS f =>
      match Float32.to_intu_ne f with
      | Some i => I i
      | None => ntop
      end
  | _ => ntop1 x
  end.

Definition longoffloat_ne_total (x: aval) :=
  match x with
  | F f =>
      match Float.to_long_ne f with
      | Some i => L i
      | None => ntop
      end
  | _ => ntop1 x
  end.

Definition longuoffloat_ne_total (x: aval) :=
  match x with
  | F f =>
      match Float.to_longu_ne f with
      | Some i => L i
      | None => ntop
      end
  | _ => ntop1 x
  end.

Lemma intoffloat_total_sound:
  forall v x
         (MATCH : vmatch v x),
    vmatch (Val.maketotal (Val.intoffloat v)) (intoffloat_total x).
Proof.
  unfold Val.intoffloat, intoffloat_total. intros.
  inv MATCH; simpl in *; try constructor.
  all: destruct (Float.to_int f) as [i|] eqn:E; simpl; [auto with va | constructor].
Qed.

Lemma intuoffloat_total_sound:
  forall v x
         (MATCH : vmatch v x),
    vmatch (Val.maketotal (Val.intuoffloat v)) (intuoffloat_total x).
Proof.
  unfold Val.intoffloat, intoffloat_total. intros.
  inv MATCH; simpl in *; try constructor.
  all: destruct (Float.to_intu f) as [i|] eqn:E; simpl; [auto with va | constructor].
Qed.

Lemma intofsingle_total_sound:
  forall v x
         (MATCH : vmatch v x),
    vmatch (Val.maketotal (Val.intofsingle v)) (intofsingle_total x).
Proof.
  unfold Val.intofsingle, intofsingle_total. intros.
  inv MATCH; simpl in *; try constructor.
  all: destruct (Float32.to_int f) as [i|] eqn:E; simpl; [auto with va | constructor].
Qed.

Lemma intuofsingle_total_sound:
  forall v x
         (MATCH : vmatch v x),
    vmatch (Val.maketotal (Val.intuofsingle v)) (intuofsingle_total x).
Proof.
  unfold Val.intofsingle, intofsingle_total. intros.
  inv MATCH; simpl in *; try constructor.
  all: destruct (Float32.to_intu f) as [i|] eqn:E; simpl; [auto with va | constructor].
Qed.

Lemma intofsingle_ne_total_sound:
  forall v x
         (MATCH : vmatch v x),
    vmatch (Val.maketotal (Val.intofsingle_ne v)) (intofsingle_ne_total x).
Proof.
  unfold Val.intofsingle_ne, intofsingle_ne_total. intros.
  inv MATCH; simpl in *; try constructor.
  all: destruct (Float32.to_int_ne f) as [i|] eqn:E; simpl; [auto with va | constructor].
Qed.

Lemma intuofsingle_ne_total_sound:
  forall v x
         (MATCH : vmatch v x),
    vmatch (Val.maketotal (Val.intuofsingle_ne v)) (intuofsingle_ne_total x).
Proof.
  unfold Val.intofsingle, intofsingle_total. intros.
  inv MATCH; simpl in *; try constructor.
  all: destruct (Float32.to_intu_ne f) as [i|] eqn:E; simpl; [auto with va | constructor].
Qed.

Lemma singleofint_total_sound:
  forall v x, vmatch v x ->
              vmatch (Val.maketotal (Val.singleofint v)) (singleofint x).
Proof.
  unfold Val.singleofint, singleofint; intros.
  inv H; simpl.
  all: auto with va.
  all: unfold ntop1, provenance.
  all: try constructor.
Qed.

Lemma singleofintu_total_sound:
  forall v x, vmatch v x ->
              vmatch (Val.maketotal (Val.singleofintu v)) (singleofintu x).
Proof.
  unfold Val.singleofintu, singleofintu; intros.
  inv H; simpl.
  all: auto with va.
  all: unfold ntop1, provenance.
  all: try constructor.
Qed.

Lemma longoffloat_total_sound:
  forall v x
         (MATCH : vmatch v x),
    vmatch (Val.maketotal (Val.longoffloat v)) (longoffloat_total x).
Proof.
  unfold Val.longoffloat, longoffloat_total. intros.
  inv MATCH; simpl in *; try constructor.
  all: destruct (Float.to_long f) as [i|] eqn:E; simpl; [auto with va | constructor].
Qed.

Lemma longuoffloat_total_sound:
  forall v x
         (MATCH : vmatch v x),
    vmatch (Val.maketotal (Val.longuoffloat v)) (longuoffloat_total x).
Proof.
  unfold Val.longoffloat, longoffloat_total. intros.
  inv MATCH; simpl in *; try constructor.
  all: destruct (Float.to_longu f) as [i|] eqn:E; simpl; [auto with va | constructor].
Qed.

Lemma longoffloat_ne_total_sound:
  forall v x
         (MATCH : vmatch v x),
    vmatch (Val.maketotal (Val.longoffloat_ne v)) (longoffloat_ne_total x).
Proof.
  unfold Val.longoffloat_ne, longoffloat_ne_total. intros.
  inv MATCH; simpl in *; try constructor.
  all: destruct (Float.to_long_ne f) as [i|] eqn:E; simpl; [auto with va | constructor].
Qed.

Lemma longuoffloat_ne_total_sound:
  forall v x
         (MATCH : vmatch v x),
    vmatch (Val.maketotal (Val.longuoffloat_ne v)) (longuoffloat_ne_total x).
Proof.
  unfold Val.longoffloat_ne, longoffloat_ne_total. intros.
  inv MATCH; simpl in *; try constructor.
  all: destruct (Float.to_longu_ne f) as [i|] eqn:E; simpl; [auto with va | constructor].
Qed.

Lemma longofsingle_total_sound:
  forall v x
         (MATCH : vmatch v x),
    vmatch (Val.maketotal (Val.longofsingle v)) (longofsingle_total x).
Proof.
  unfold Val.longofsingle, longofsingle_total. intros.
  inv MATCH; simpl in *; try constructor.
  all: destruct (Float32.to_long f) as [i|] eqn:E; simpl; [auto with va | constructor].
Qed.

Lemma longuofsingle_total_sound:
  forall v x
         (MATCH : vmatch v x),
    vmatch (Val.maketotal (Val.longuofsingle v)) (longuofsingle_total x).
Proof.
  unfold Val.longofsingle, longofsingle_total. intros.
  inv MATCH; simpl in *; try constructor.
  all: destruct (Float32.to_longu f) as [i|] eqn:E; simpl; [auto with va | constructor].
Qed.

Lemma singleoflong_total_sound:
  forall v x, vmatch v x ->
              vmatch (Val.maketotal (Val.singleoflong v)) (singleoflong x).
Proof.
  unfold Val.singleoflong, singleoflong; intros.
  inv H; simpl.
  all: auto with va.
  all: unfold ntop1, provenance.
  all: try constructor.
Qed.

Lemma singleoflongu_total_sound:
  forall v x, vmatch v x ->
              vmatch (Val.maketotal (Val.singleoflongu v)) (singleoflongu x).
Proof.
  unfold Val.singleoflongu, singleoflongu; intros.
  inv H; simpl.
  all: auto with va.
  all: unfold ntop1, provenance.
  all: try constructor.
Qed.

Lemma floatoflong_total_sound:
  forall v x, vmatch v x ->
              vmatch (Val.maketotal (Val.floatoflong v)) (floatoflong x).
Proof.
  unfold Val.floatoflong, floatoflong; intros.
  inv H; simpl.
  all: auto with va.
  all: unfold ntop1, provenance.
  all: try constructor.
Qed.

Lemma floatoflongu_total_sound:
  forall v x, vmatch v x ->
              vmatch (Val.maketotal (Val.floatoflongu v)) (floatoflongu x).
Proof.
  unfold Val.floatoflongu, floatoflongu; intros.
  inv H; simpl.
  all: auto with va.
  all: unfold ntop1, provenance.
  all: try constructor.
Qed.

Lemma floatofint_total_sound:
  forall v x, vmatch v x ->
              vmatch (Val.maketotal (Val.floatofint v)) (floatofint x).
Proof.
  unfold Val.floatofint, floatofint; intros.
  inv H; simpl.
  all: auto with va.
  all: unfold ntop1, provenance.
  all: try constructor.
Qed.

Lemma floatofintu_total_sound:
  forall v x, vmatch v x ->
              vmatch (Val.maketotal (Val.floatofintu v)) (floatofintu x).
Proof.
  unfold Val.floatofintu, floatofintu; intros.
  inv H; simpl.
  all: auto with va.
  all: unfold ntop1, provenance.
  all: try constructor.
Qed.


Definition divs_total (v w: aval) := 
  match w, v with
  | I i2, I i1 =>
      if Int.eq i2 Int.zero
      || Int.eq i1 (Int.repr Int.min_signed) && Int.eq i2 Int.mone
      then ntop
      else I (Int.divs i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma divs_total_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.maketotal (Val.divs v w)) (divs_total x y).
Proof.
  intros until y.
  intros HX HY.
  inv HX; inv HY; cbn in *.
  { destruct (_ || _) eqn:E; cbn; unfold ntop; auto with va.
  }
  all: unfold ntop2; auto with va.
  all: destruct (_ || _) eqn:E; unfold ntop2; cbn; auto with va.
Qed.

Definition divu_total (v w: aval) :=
  match w, v with
  | I i2, I i1 =>
      if Int.eq i2 Int.zero
       then ntop
      else I (Int.divu i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma divu_total_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.maketotal (Val.divu v w)) (divu_total x y).
Proof.
  intros until y.
  intros HX HY.
  inv HX; inv HY; cbn in *.
  { destruct Int.eq eqn:E; cbn; unfold ntop; auto with va.
  }
  all: unfold ntop2; auto with va.
  all: destruct Int.eq eqn:E; unfold ntop2; cbn; auto with va.
Qed.

Definition mods_total (v w: aval) :=
  match w, v with
  | I i2, I i1 =>
      if Int.eq i2 Int.zero
      || Int.eq i1 (Int.repr Int.min_signed) && Int.eq i2 Int.mone
      then ntop
      else I (Int.mods i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma mods_total_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.maketotal (Val.mods v w)) (mods_total x y).
Proof.
  intros until y.
  intros HX HY.
  inv HX; inv HY; cbn in *.
  { destruct (_ || _) eqn:E; cbn; unfold ntop; auto with va.
  }
  all: unfold ntop2; auto with va.
  all: destruct (_ || _) eqn:E; unfold ntop2; cbn; auto with va.
Qed.

Definition modu_total (v w: aval) :=
  match w, v with
  | I i2, I i1 =>
      if Int.eq i2 Int.zero
      then ntop
      else I (Int.modu i1 i2)
  | I i2, _ => uns (provenance v) (usize i2)
  | _, _ => ntop2 v w
  end.

Lemma modu_total_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.maketotal (Val.modu v w)) (modu_total x y).
Proof.
  assert (UNS: forall i j, j <> Int.zero -> is_uns (usize j) (Int.modu i j)).
  {
    intros. apply is_uns_mon with (usize (Int.modu i j)).
    { apply is_uns_usize.
    }
    unfold usize, Int.size.
    apply Zsize_monotone.
    generalize (Int.unsigned_range_2 j); intros RANGE.
    assert (Int.unsigned j <> 0).
    { red; intros; elim H. rewrite <- (Int.repr_unsigned j). rewrite H0. auto. }
    exploit (Z_mod_lt (Int.unsigned i) (Int.unsigned j)). lia. intros MOD.
    unfold Int.modu. rewrite Int.unsigned_repr. lia. lia.
  }
  intros until y.
  intros HX HY.
  inv HX; inv HY; cbn in *.
  { destruct Int.eq eqn:E; unfold ntop; cbn; auto with va.
  }
  all: try discriminate.
  all: unfold ntop2; auto with va.
  all: try (destruct Int.eq eqn:E; cbn; unfold ntop2; auto with va; fail).
  all: try apply vmatch_uns_undef.
  
  all:
    generalize (Int.eq_spec i0 Int.zero);
    destruct (Int.eq i0 Int.zero);
    cbn;
    intro.
  all: try apply vmatch_uns_undef.
  all: apply vmatch_uns; auto.
Qed.


Lemma shrx_total_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.maketotal (Val.shrx v w)) (shrx x y).
Proof.
  intros until y. intros HX HY.
  inv HX; inv HY; cbn.
  all: unfold ntop1; auto with va.
  all: destruct Int.ltu eqn:LTU; cbn; unfold ntop; auto with va.
Qed.


Definition divls_total (v w: aval) :=
  match w, v with
  | L i2, L i1 =>
      if Int64.eq i2 Int64.zero
      || Int64.eq i1 (Int64.repr Int64.min_signed) && Int64.eq i2 Int64.mone
      then ntop
      else L (Int64.divs i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma divls_total_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.maketotal (Val.divls v w)) (divls_total x y).
Proof.
  intros until y.
  intros HX HY.
  inv HX; inv HY; cbn in *.
  all: unfold ntop2; auto with va.
  all: destruct (_ || _) eqn:E; unfold ntop2, ntop; cbn; auto with va.
Qed.

Definition divlu_total (v w: aval) :=
  match w, v with
  | L i2, L i1 =>
      if Int64.eq i2 Int64.zero
       then ntop
      else L (Int64.divu i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma divlu_total_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.maketotal (Val.divlu v w)) (divlu_total x y).
Proof.
  intros until y.
  intros HX HY.
  inv HX; inv HY; cbn in *.
  all: unfold ntop2; auto with va.
  all: destruct Int64.eq eqn:E; unfold ntop2, ntop; cbn; auto with va.
Qed.


Definition modls_total (v w: aval) :=
  match w, v with
  | L i2, L i1 =>
      if Int64.eq i2 Int64.zero
      || Int64.eq i1 (Int64.repr Int64.min_signed) && Int64.eq i2 Int64.mone
      then ntop
      else L (Int64.mods i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma modls_total_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.maketotal (Val.modls v w)) (modls_total x y).
Proof.
  intros until y.
  intros HX HY.
  inv HX; inv HY; cbn in *.
  all: unfold ntop2; auto with va.
  all: destruct (_ || _) eqn:E; unfold ntop2, ntop; cbn; auto with va.
Qed.


Definition modlu_total (v w: aval) :=
  match w, v with
  | L i2, L i1 =>
      if Int64.eq i2 Int64.zero
      then ntop
      else L (Int64.modu i1 i2)
  | _, _ => ntop2 v w
  end.

Lemma modlu_total_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.maketotal (Val.modlu v w)) (modlu_total x y).
Proof.
  intros until y.
  intros HX HY.
  inv HX; inv HY; cbn in *.
  all: unfold ntop2; auto with va.
  all: destruct Int64.eq eqn:E; cbn; unfold ntop2, ntop; auto with va.
Qed.

Lemma shrxl_total_sound:
  forall v w x y, vmatch v x -> vmatch w y -> vmatch (Val.maketotal (Val.shrxl v w)) (shrxl x y).
Proof.
  intros until y. intros HX HY.
  inv HX; inv HY; cbn.
  all: unfold ntop1; auto with va.
  all: destruct Int.ltu eqn:LTU; cbn; unfold ntop; auto with va.
Qed.

(** Comparisons and variation intervals *)

Definition cmp_intv (c: comparison) (i: Z * Z) (n: Z) : abool :=
  let (lo, hi) := i in
  match c with
  | Ceq => if zlt n lo || zlt hi n then Maybe false else Btop
  | Cne => Btop
  | Clt => if zlt hi n then Maybe true else if zle n lo then Maybe false else Btop
  | Cle => if zle hi n then Maybe true else if zlt n lo then Maybe false else Btop
  | Cgt => if zlt n lo then Maybe true else if zle hi n then Maybe false else Btop
  | Cge => if zle n lo then Maybe true else if zlt hi n then Maybe false else Btop
  end.

Definition zcmp (c: comparison) (n1 n2: Z) : bool :=
  match c with
  | Ceq => zeq n1 n2
  | Cne => negb (zeq n1 n2)
  | Clt => zlt n1 n2
  | Cle => zle n1 n2
  | Cgt => zlt n2 n1
  | Cge => zle n2 n1
  end.

Lemma zcmp_intv_sound:
  forall c i x n,
  fst i <= x <= snd i ->
  cmatch (Some (zcmp c x n)) (cmp_intv c i n).
Proof.
  intros c [lo hi] x n; simpl; intros R.
  destruct c; unfold zcmp, proj_sumbool.
- (* eq *)
  destruct (zlt n lo). rewrite zeq_false by lia. constructor.
  destruct (zlt hi n). rewrite zeq_false by lia. constructor.
  constructor.
- (* ne *)
  constructor.
- (* lt *)
  destruct (zlt hi n). rewrite zlt_true by lia. constructor.
  destruct (zle n lo). rewrite zlt_false by lia. constructor.
  constructor.
- (* le *)
  destruct (zle hi n). rewrite zle_true by lia. constructor.
  destruct (zlt n lo). rewrite zle_false by lia. constructor.
  constructor.
- (* gt *)
  destruct (zlt n lo). rewrite zlt_true by lia. constructor.
  destruct (zle hi n). rewrite zlt_false by lia. constructor.
  constructor.
- (* ge *)
  destruct (zle n lo). rewrite zle_true by lia. constructor.
  destruct (zlt hi n). rewrite zle_false by lia. constructor.
  constructor.
Qed.

Lemma cmp_intv_None:
  forall c i n, cmatch None (cmp_intv c i n).
Proof.
  unfold cmp_intv; intros. destruct i as [lo hi].
  destruct c.
- (* eq *)
  destruct (zlt n lo). constructor. destruct (zlt hi n); constructor.
- (* ne *)
  constructor.
- (* lt *)
  destruct (zlt hi n). constructor. destruct (zle n lo); constructor.
- (* le *)
  destruct (zle hi n). constructor. destruct (zlt n lo); constructor.
- (* gt *)
  destruct (zlt n lo). constructor. destruct (zle hi n); constructor.
- (* ge *)
  destruct (zle n lo). constructor. destruct (zlt hi n); constructor.
Qed.

Definition uintv (v: aval) : Z * Z :=
  match v with
  | I n => (Int.unsigned n, Int.unsigned n)
  | Uns _ n => if zlt n Int.zwordsize then (0, two_p n - 1) else (0, Int.max_unsigned)
  | _ => (0, Int.max_unsigned)
  end.

Lemma uintv_sound:
  forall n v, vmatch (Vint n) v -> fst (uintv v) <= Int.unsigned n <= snd (uintv v).
Proof.
  intros. inv H; simpl; try (apply Int.unsigned_range_2).
- lia.
- destruct (zlt n0 Int.zwordsize); simpl.
+ rewrite is_uns_zero_ext in H2. rewrite <- H2. rewrite Int.zero_ext_mod by lia.
  exploit (Z_mod_lt (Int.unsigned n) (two_p n0)). apply two_p_gt_ZERO; auto. lia.
+ apply Int.unsigned_range_2.
Qed.

Lemma cmpu_intv_sound:
  forall valid c n1 v1 n2,
  vmatch (Vint n1) v1 ->
  cmatch (Val.cmpu_bool valid c (Vint n1) (Vint n2)) (cmp_intv c (uintv v1) (Int.unsigned n2)).
Proof.
  intros. simpl. replace (Int.cmpu c n1 n2) with (zcmp c (Int.unsigned n1) (Int.unsigned n2)).
  apply zcmp_intv_sound; apply uintv_sound; auto.
  destruct c; simpl; auto.
  unfold Int.ltu. destruct (zle (Int.unsigned n1) (Int.unsigned n2)); [rewrite zlt_false|rewrite zlt_true]; auto; lia.
  unfold Int.ltu. destruct (zle (Int.unsigned n2) (Int.unsigned n1)); [rewrite zlt_false|rewrite zlt_true]; auto; lia.
Qed.

Lemma cmpu_intv_sound_2:
  forall valid c n1 v1 n2,
  vmatch (Vint n1) v1 ->
  cmatch (Val.cmpu_bool valid c (Vint n2) (Vint n1)) (cmp_intv (swap_comparison c) (uintv v1) (Int.unsigned n2)).
Proof.
  intros. rewrite <- Val.swap_cmpu_bool. apply cmpu_intv_sound; auto.
Qed.

Definition sintv (v: aval) : Z * Z :=
  match v with
  | I n => (Int.signed n, Int.signed n)
  | Uns _ n =>
      if zlt n Int.zwordsize then (0, two_p n - 1) else (Int.min_signed, Int.max_signed)
  | Sgn _ n =>
      if zlt n Int.zwordsize
      then (let x := two_p (n-1) in (-x, x-1))
      else (Int.min_signed, Int.max_signed)
  | _ => (Int.min_signed, Int.max_signed)
  end.

Lemma sintv_sound:
  forall n v, vmatch (Vint n) v -> fst (sintv v) <= Int.signed n <= snd (sintv v).
Proof.
  intros. inv H; simpl; try (apply Int.signed_range).
- lia.
- destruct (zlt n0 Int.zwordsize); simpl.
+ rewrite is_uns_zero_ext in H2. rewrite <- H2.
  assert (Int.unsigned (Int.zero_ext n0 n) = Int.unsigned n mod two_p n0) by (apply Int.zero_ext_mod; lia).
  exploit (Z_mod_lt (Int.unsigned n) (two_p n0)). apply two_p_gt_ZERO; auto. intros.
  replace (Int.signed (Int.zero_ext n0 n)) with (Int.unsigned (Int.zero_ext n0 n)).
  rewrite H. lia.
  unfold Int.signed. rewrite zlt_true. auto.
  assert (two_p n0 <= Int.half_modulus).
  { change Int.half_modulus with (two_p (Int.zwordsize - 1)).
    apply two_p_monotone. lia. }
  lia.
+ apply Int.signed_range.
- destruct (zlt n0 (Int.zwordsize)); simpl.
+ rewrite is_sgn_sign_ext in H2 by auto. rewrite <- H2.
  exploit (Int.sign_ext_range n0 n). lia. lia.
+ apply Int.signed_range.
Qed.

Lemma cmp_intv_sound:
  forall c n1 v1 n2,
  vmatch (Vint n1) v1 ->
  cmatch (Val.cmp_bool c (Vint n1) (Vint n2)) (cmp_intv c (sintv v1) (Int.signed n2)).
Proof.
  intros. simpl. replace (Int.cmp c n1 n2) with (zcmp c (Int.signed n1) (Int.signed n2)).
  apply zcmp_intv_sound; apply sintv_sound; auto.
  destruct c; simpl; rewrite ? Int.eq_signed; auto.
  unfold Int.lt. destruct (zle (Int.signed n1) (Int.signed n2)); [rewrite zlt_false|rewrite zlt_true]; auto; lia.
  unfold Int.lt. destruct (zle (Int.signed n2) (Int.signed n1)); [rewrite zlt_false|rewrite zlt_true]; auto; lia.
Qed.

Lemma cmp_intv_sound_2:
  forall c n1 v1 n2,
  vmatch (Vint n1) v1 ->
  cmatch (Val.cmp_bool c (Vint n2) (Vint n1)) (cmp_intv (swap_comparison c) (sintv v1) (Int.signed n2)).
Proof.
  intros. rewrite <- Val.swap_cmp_bool. apply cmp_intv_sound; auto.
Qed.

(** Comparisons *)

Definition cmpu_bool (c: comparison) (v w: aval) : abool :=
  match v, w with
  | I i1, I i2 => Just (Int.cmpu c i1 i2)
  | Ptr _, I i => if Int.eq i Int.zero then cmp_different_blocks c else Btop
  | I i, Ptr _ => if Int.eq i Int.zero then cmp_different_blocks c else Btop
  | Ptr p1, Ptr p2 => pcmp c p1 p2
  | _, I i => club (cmp_intv c (uintv v) (Int.unsigned i)) (cmp_different_blocks c)
  | I i, _ => club (cmp_intv (swap_comparison c) (uintv w) (Int.unsigned i)) (cmp_different_blocks c)
  | _, _ => Btop
  end.

Lemma cmpu_bool_sound:
  forall valid c v w x y, vmatch v x -> vmatch w y -> cmatch (Val.cmpu_bool valid c v w) (cmpu_bool c x y).
Proof.
  intros.
  assert (IP: forall i b ofs,
    cmatch (Val.cmpu_bool valid c (Vint i) (Vptr b ofs)) (cmp_different_blocks c)).
  {
    intros. simpl. destruct Archi.ptr64.
    apply cmp_different_blocks_none.
    destruct (Int.eq i Int.zero && (valid b (Ptrofs.unsigned ofs) || valid b (Ptrofs.unsigned ofs - 1))).
    apply cmp_different_blocks_sound. apply cmp_different_blocks_none.
  }
  assert (PI: forall i b ofs,
    cmatch (Val.cmpu_bool valid c (Vptr b ofs) (Vint i)) (cmp_different_blocks c)).
  {
    intros. simpl. destruct Archi.ptr64.
    apply cmp_different_blocks_none.
    destruct (Int.eq i Int.zero && (valid b (Ptrofs.unsigned ofs) || valid b (Ptrofs.unsigned ofs - 1))).
    apply cmp_different_blocks_sound. apply cmp_different_blocks_none.
  }
  unfold cmpu_bool; inversion H; subst; inversion H0; subst;
  auto using cmatch_top, cmp_different_blocks_none, pcmp_none,
             cmatch_lub_l, cmatch_lub_r, pcmp_sound,
             cmpu_intv_sound, cmpu_intv_sound_2, cmp_intv_None.
- constructor.
- destruct (Int.eq i Int.zero); auto using cmatch_top.
- simpl; destruct (Int.eq i Int.zero); auto using cmatch_top, cmp_different_blocks_none.
- destruct (Int.eq i Int.zero); auto using cmatch_top.
- simpl; destruct (Int.eq i Int.zero); auto using cmatch_top, cmp_different_blocks_none.
Qed.

Definition cmp_bool (c: comparison) (v w: aval) : abool :=
  match v, w with
  | I i1, I i2 => Just (Int.cmp c i1 i2)
  | _, I i => cmp_intv c (sintv v) (Int.signed i)
  | I i, _ => cmp_intv (swap_comparison c) (sintv w) (Int.signed i)
  | _, _ => Btop
  end.

Lemma cmp_bool_sound:
  forall c v w x y, vmatch v x -> vmatch w y -> cmatch (Val.cmp_bool c v w) (cmp_bool c x y).
Proof.
  intros.
  unfold cmp_bool; inversion H; subst; inversion H0; subst;
  auto using cmatch_top, cmp_intv_sound, cmp_intv_sound_2, cmp_intv_None.
- constructor.
Qed.

Definition cmplu_bool (c: comparison) (v w: aval) : abool :=
  match v, w with
  | L i1, L i2 => Just (Int64.cmpu c i1 i2)
  | Ptr _, L i => if Int64.eq i Int64.zero then cmp_different_blocks c else Btop
  | L i, Ptr _ => if Int64.eq i Int64.zero then cmp_different_blocks c else Btop
  | Ptr p1, Ptr p2 => pcmp c p1 p2
  | _, _ => Btop
  end.

Lemma cmplu_bool_sound:
  forall valid c v w x y, vmatch v x -> vmatch w y -> cmatch (Val.cmplu_bool valid c v w) (cmplu_bool c x y).
Proof.
  intros.
  assert (IP: forall i b ofs,
    cmatch (Val.cmplu_bool valid c (Vlong i) (Vptr b ofs)) (cmp_different_blocks c)).
  {
    intros. simpl. destruct Archi.ptr64; simpl.
    destruct (Int64.eq i Int64.zero && (valid b (Ptrofs.unsigned ofs) || valid b (Ptrofs.unsigned ofs - 1))).
    apply cmp_different_blocks_sound. apply cmp_different_blocks_none.
    apply cmp_different_blocks_none.
  }
  assert (PI: forall i b ofs,
    cmatch (Val.cmplu_bool valid c (Vptr b ofs) (Vlong i)) (cmp_different_blocks c)).
  {
    intros. simpl. destruct Archi.ptr64; simpl.
    destruct (Int64.eq i Int64.zero && (valid b (Ptrofs.unsigned ofs) || valid b (Ptrofs.unsigned ofs - 1))).
    apply cmp_different_blocks_sound. apply cmp_different_blocks_none.
    apply cmp_different_blocks_none.
  }
  unfold cmplu_bool; inversion H; subst; inversion H0; subst;
  auto using cmatch_top, cmp_different_blocks_none, pcmp_none,
             cmatch_lub_l, cmatch_lub_r, pcmp_sound_64.
- constructor.
- destruct (Int64.eq i Int64.zero); auto using cmatch_top.
- simpl; destruct (Int64.eq i Int64.zero); auto using cmatch_top, cmp_different_blocks_none.
- destruct (Int64.eq i Int64.zero); auto using cmatch_top.
- simpl; destruct (Int64.eq i Int64.zero); auto using cmatch_top, cmp_different_blocks_none.
Qed.

Definition cmpl_bool (c: comparison) (v w: aval) : abool :=
  match v, w with
  | L i1, L i2 => Just (Int64.cmp c i1 i2)
  | _, _ => Btop
  end.

Lemma cmpl_bool_sound:
  forall c v w x y, vmatch v x -> vmatch w y -> cmatch (Val.cmpl_bool c v w) (cmpl_bool c x y).
Proof.
  intros.
  unfold cmpl_bool; inversion H; subst; inversion H0; subst;
  auto using cmatch_top.
- constructor.
Qed.

Definition cmpf_bool (c: comparison) (v w: aval) : abool :=
  match v, w with
  | F f1, F f2 => Just (Float.cmp c f1 f2)
  | _, _ => Btop
  end.

Lemma cmpf_bool_sound:
  forall c v w x y, vmatch v x -> vmatch w y -> cmatch (Val.cmpf_bool c v w) (cmpf_bool c x y).
Proof.
  intros. inv H; try constructor; inv H0; constructor.
Qed.

Definition cmpfs_bool (c: comparison) (v w: aval) : abool :=
  match v, w with
  | FS f1, FS f2 => Just (Float32.cmp c f1 f2)
  | _, _ => Btop
  end.

Lemma cmpfs_bool_sound:
  forall c v w x y, vmatch v x -> vmatch w y -> cmatch (Val.cmpfs_bool c v w) (cmpfs_bool c x y).
Proof.
  intros. inv H; try constructor; inv H0; constructor.
Qed.

Definition maskzero (x: aval) (mask: int) : abool :=
  match x with
  | I i => Just (Int.eq (Int.and i mask) Int.zero)
  | Uns p n => if Int.eq (Int.zero_ext n mask) Int.zero then Maybe true else Btop
  | _ => Btop
  end.

Lemma maskzero_sound:
  forall mask v x,
  vmatch v x ->
  cmatch (Val.maskzero_bool v mask) (maskzero x mask).
Proof.
  intros. inv H; simpl; auto with va.
  predSpec Int.eq Int.eq_spec (Int.zero_ext n mask) Int.zero; auto with va.
  replace (Int.and i mask) with Int.zero.
  rewrite Int.eq_true. constructor.
  rewrite is_uns_zero_ext in H1. rewrite Int.zero_ext_and in * by auto.
  rewrite <- H1. rewrite Int.and_assoc. rewrite Int.and_commut in H. rewrite H.
  rewrite Int.and_zero; auto.
  destruct (Int.eq (Int.zero_ext n mask) Int.zero); constructor.
Qed.

Definition of_optbool (ab: abool) : aval :=
  match ab with
  | Just b => I (if b then Int.one else Int.zero)
  | _ => Uns Pbot 1
  end.

Lemma of_optbool_sound:
  forall ob ab, cmatch ob ab -> vmatch (Val.of_optbool ob) (of_optbool ab).
Proof.
  intros.
  assert (DEFAULT: vmatch (Val.of_optbool ob) (Uns Pbot 1)).
  {
    destruct ob; simpl; auto with va.
    destruct b; constructor; try lia.
    change 1 with (usize Int.one). apply is_uns_usize.
    red; intros. apply Int.bits_zero.
  }
  inv H; auto. simpl. destruct b; constructor.
Qed.

Definition resolve_branch (ab: abool) : option bool :=
  match ab with
  | Just b => Some b
  | Maybe b => Some b
  | _ => None
  end.

Lemma resolve_branch_sound:
  forall b ab b',
  cmatch (Some b) ab -> resolve_branch ab = Some b' -> b' = b.
Proof.
  intros. inv H; simpl in H0; congruence.
Qed.

(** Select either returns one of its arguments, or Vundef. *)

Definition add_undef (x: aval) :=
  match x with
  | Vbot => ntop
  | I i =>
      if Int.lt i Int.zero
      then sgn Pbot (ssize i)
      else uns Pbot (usize i)
  | L _ | F _ | FS _ => ntop
  | _ => x
  end.

Lemma add_undef_sound:
  forall v x, vmatch v x -> vmatch v (add_undef x).
Proof.
  destruct 1; simpl; auto with va.
  destruct (Int.lt i Int.zero).
  apply vmatch_sgn; apply is_sgn_ssize.
  apply vmatch_uns; apply is_uns_usize.
Qed.

Lemma add_undef_undef:
  forall x, vmatch Vundef (add_undef x).
Proof.
  destruct x; simpl; auto with va.
  destruct (Int.lt n Int.zero); auto with va.
Qed.

Lemma add_undef_normalize:
  forall v x ty, vmatch v x -> vmatch (Val.normalize v ty) (add_undef x).
Proof.
  intros. destruct (Val.lessdef_normalize v ty);
  auto using add_undef_sound, add_undef_undef.
Qed.

Definition select (ab: abool) (x y: aval) :=
  match ab with
  | Bnone => ntop
  | Just b | Maybe b => add_undef (if b then x else y)
  | Btop => add_undef (vlub x y)
  end.

Lemma select_sound:
  forall ob v w ab x y ty,
  cmatch ob ab -> vmatch v x -> vmatch w y ->
  vmatch (Val.select ob v w ty) (select ab x y).
Proof.
  unfold Val.select, select; intros. inv H.
- auto with va.
- apply add_undef_normalize; destruct b; auto.
- apply add_undef_undef.
- apply add_undef_normalize; destruct b; auto.
- destruct ob as [b|]. 
+ apply add_undef_normalize. destruct b; [apply vmatch_lub_l|apply vmatch_lub_r]; auto.
+ apply add_undef_undef.
Qed.

(** Normalization at load time *)

Definition vnormalize (chunk: memory_chunk) (v: aval) :=
  match chunk, v with
  | _, Vbot => Vbot
  | Mint8signed, I i => I (Int.sign_ext 8 i)
  | Mint8signed, Uns p n => if zlt n 8 then Uns (provenance v) n else Sgn (provenance v) 8
  | Mint8signed, Sgn p n => Sgn (provenance v) (Z.min n 8)
  | Mint8signed, _ => Sgn (provenance v) 8
  | Mint8unsigned, I i => I (Int.zero_ext 8 i)
  | Mint8unsigned, Uns p n => Uns (provenance v) (Z.min n 8)
  | Mint8unsigned, _ => Uns (provenance v) 8
  | Mint16signed, I i => I (Int.sign_ext 16 i)
  | Mint16signed, Uns p n => if zlt n 16 then Uns (provenance v) n else Sgn (provenance v) 16
  | Mint16signed, Sgn p n => Sgn (provenance v) (Z.min n 16)
  | Mint16signed, _ => Sgn (provenance v) 16
  | Mint16unsigned, I i => I (Int.zero_ext 16 i)
  | Mint16unsigned, Uns p n => Uns (provenance v) (Z.min n 16)
  | Mint16unsigned, _ => Uns (provenance v) 16
  | Mint32, (I _ | Uns _ _ | Sgn _ _ | Ifptr _) => v
  | Mint32, Ptr p => if Archi.ptr64 then Ifptr p else v
  | Mint64, (L _ | Ifptr _) => v
  | Mint64, (Uns p _ | Sgn p _) => Ifptr p
  | Mint64, Ptr p => if Archi.ptr64 then v else Ifptr p
  | Mfloat32, FS f => v
  | Mfloat64, F f => v
  | Many32, (I _ | Uns _ _ | Sgn _ _ | FS _ | Ifptr _) => v
  | Many32, Ptr p => if Archi.ptr64 then Ifptr p else v
  | Many64, _ => v
  | _, _ => Ifptr (provenance v)
  end.

Lemma vnormalize_sound:
  forall chunk v x, vmatch v x -> vmatch (Val.load_result chunk v) (vnormalize chunk x).
Proof.
  unfold Val.load_result, vnormalize; generalize Archi.ptr64; intros ptr64;
  induction 1; destruct chunk; auto with va.
- destruct (zlt n 8); constructor; auto with va.
  apply is_sign_ext_uns; auto.
  apply is_sign_ext_sgn; auto with va.
- constructor. extlia. apply is_zero_ext_uns. apply Z.min_case; auto with va.
- destruct (zlt n 16); constructor; auto with va.
  apply is_sign_ext_uns; auto.
  apply is_sign_ext_sgn; auto with va.
- constructor. extlia. apply is_zero_ext_uns. apply Z.min_case; auto with va.
- destruct (zlt n 8); auto with va.
- destruct (zlt n 16); auto with va.
- constructor. extlia. apply is_sign_ext_sgn; auto with va. apply Z.min_case; auto with va.
- constructor. lia. apply is_zero_ext_uns; auto with va.
- constructor. extlia. apply is_sign_ext_sgn; auto with va. apply Z.min_case; auto with va.
- constructor. lia. apply is_zero_ext_uns; auto with va.
- destruct ptr64; auto with va.
- destruct ptr64; auto with va.
- destruct ptr64; auto with va.
- destruct ptr64; auto with va.
- destruct ptr64; auto with va.
- destruct ptr64; auto with va.
- constructor. lia. apply is_sign_ext_sgn; auto with va.
- constructor. lia. apply is_zero_ext_uns; auto with va.
- constructor. lia. apply is_sign_ext_sgn; auto with va.
- constructor. lia. apply is_zero_ext_uns; auto with va.
- destruct ptr64; auto with va.
- destruct ptr64; auto with va.
- destruct ptr64; auto with va.
Qed.

Lemma vnormalize_cast:
  forall chunk m b ofs v p,
  Mem.load chunk m b ofs = Some v ->
  vmatch v (Ifptr p) ->
  vmatch v (vnormalize chunk (Ifptr p)).
Proof.
  intros. exploit Mem.load_cast; eauto. exploit Mem.load_type; eauto.
  destruct chunk; simpl; intros.
- (* int8signed *)
  rewrite H2. destruct v; simpl; constructor. lia. apply is_sign_ext_sgn; auto with va.
- (* int8unsigned *)
  rewrite H2. destruct v; simpl; constructor. lia. apply is_zero_ext_uns; auto with va.
- (* int16signed *)
  rewrite H2. destruct v; simpl; constructor. lia. apply is_sign_ext_sgn; auto with va.
- (* int16unsigned *)
  rewrite H2. destruct v; simpl; constructor. lia. apply is_zero_ext_uns; auto with va.
- (* int32 *)
  auto.
- (* int64 *)
  auto.
- (* float32 *)
  destruct v; try contradiction; constructor.
- (* float64 *)
  destruct v; try contradiction; constructor.
- (* any32 *)
  destruct Archi.ptr64; auto.
- (* any64 *)
  auto.
Qed.

Remark poffset_monotone:
  forall p q, pge p q -> pge (poffset p) (poffset q).
Proof.
  destruct 1; simpl; auto with va.
Qed.

Remark provenance_monotone:
  forall x y, vge x y -> pge (provenance x) (provenance y).
Proof.
  unfold provenance; intros. destruct (va_strict tt). constructor.
  inv H; auto using poffset_monotone with va.
Qed.

Lemma vnormalize_monotone:
  forall chunk x y,
  vge x y -> vge (vnormalize chunk x) (vnormalize chunk y).
Proof with (auto using provenance_monotone with va).
  intros chunk x y V; unfold vnormalize; generalize Archi.ptr64; intro ptr64; inversion V; subst; destruct chunk eqn:C; simpl...
- destruct (zlt n 8); constructor...
  apply is_sign_ext_uns...
  apply is_sign_ext_sgn...
- constructor... apply is_zero_ext_uns... apply Z.min_case...
- destruct (zlt n 16); constructor...
  apply is_sign_ext_uns...
  apply is_sign_ext_sgn...
- constructor... apply is_zero_ext_uns... apply Z.min_case...
- unfold provenance; destruct (va_strict tt)...
- destruct (zlt n1 8). rewrite zlt_true by lia...
  destruct (zlt n2 8)...
- destruct (zlt n1 16). rewrite zlt_true by lia...
  destruct (zlt n2 16)...
- constructor... apply is_sign_ext_sgn... apply Z.min_case...
- constructor... apply is_zero_ext_uns...
- constructor... apply is_sign_ext_sgn... apply Z.min_case...
- constructor... apply is_zero_ext_uns...
- unfold provenance; destruct (va_strict tt)...
- destruct (zlt n2 8); constructor...
- destruct (zlt n2 16); constructor...
- destruct ptr64...
- destruct ptr64...
- destruct ptr64...
- destruct ptr64...
- destruct ptr64...
- destruct ptr64...
- constructor... apply is_sign_ext_sgn...
- constructor... apply is_zero_ext_uns...
- constructor... apply is_sign_ext_sgn...
- constructor... apply is_zero_ext_uns...
- unfold provenance; destruct (va_strict tt)...
- unfold provenance; destruct (va_strict tt)...
- unfold provenance; destruct (va_strict tt)...
- unfold provenance; destruct (va_strict tt)...
- unfold provenance; destruct (va_strict tt)...
- unfold provenance; destruct (va_strict tt)...
- unfold provenance; destruct (va_strict tt)...
- unfold provenance; destruct (va_strict tt)...
- destruct (zlt n 8)...
- destruct (zlt n 16)...
Qed.

(** Analysis of known builtin functions.  All we have is a dynamic semantics
  as a function [list val -> option val], but we can still perform 
  some constant propagation. *)

Definition val_of_aval (a: aval) : val :=
  match a with
  | I n => Vint n
  | L n => Vlong n
  | F f => Vfloat f
  | FS f => Vsingle f
  | _ => Vundef
  end.

Definition aval_of_val (v: val) : option aval :=
  match v with
  | Vint n => Some (I n)
  | Vlong n => Some (L n)
  | Vfloat f => Some (F f)
  | Vsingle f => Some (FS f)
  | _ => None
  end.

Lemma val_of_aval_sound:
  forall v a, vmatch v a -> Val.lessdef (val_of_aval a) v.
Proof.
  destruct 1; simpl; auto.
Qed.

Corollary list_val_of_aval_sound:
  forall vl al, list_forall2 vmatch vl al -> Val.lessdef_list (map val_of_aval al) vl.
Proof.
  induction 1; simpl; constructor; auto using val_of_aval_sound.
Qed.

Lemma aval_of_val_sound:
  forall v a, aval_of_val v = Some a -> vmatch v a. 
Proof.
  intros v a E; destruct v; simpl in E; inv E; constructor.
Qed.

(** * Abstracting memory blocks *)

Inductive acontent : Type :=
 | ACval (chunk: memory_chunk) (av: aval).

Definition eq_acontent : forall (c1 c2: acontent), {c1=c2} + {c1<>c2}.
Proof.
  intros. generalize chunk_eq eq_aval. decide equality.
Defined.

Record ablock : Type := ABlock {
  ab_contents: ZTree.t acontent;
  ab_summary: aptr
}.

Local Notation "a ## b" := (ZTree.get b a) (at level 1).

Definition ablock_init (p: aptr) : ablock :=
  {| ab_contents := ZTree.empty _; ab_summary := p |}.

Definition chunk_compat (chunk chunk': memory_chunk) : bool :=
  match chunk, chunk' with
  | (Mint8signed | Mint8unsigned), (Mint8signed | Mint8unsigned) => true
  | (Mint16signed | Mint16unsigned), (Mint16signed | Mint16unsigned) => true
  | Mint32, Mint32 => true
  | Mfloat32, Mfloat32 => true
  | Mint64, Mint64 => true
  | Mfloat64, Mfloat64 => true
  | Many32, Many32 => true
  | Many64, Many64 => true
  | _, _ => false
  end.

Definition ablock_load (chunk: memory_chunk) (ab: ablock) (i: Z) : aval :=
  match ab.(ab_contents)##i with
  | None => vnormalize chunk (Ifptr ab.(ab_summary))
  | Some (ACval chunk' av) =>
      if chunk_compat chunk chunk'
      then vnormalize chunk av
      else vnormalize chunk (Ifptr ab.(ab_summary))
  end.

Definition ablock_load_anywhere (chunk: memory_chunk) (ab: ablock) : aval :=
  vnormalize chunk (Ifptr ab.(ab_summary)).

Function inval_after (lo: Z) (hi: Z) (c: ZTree.t acontent) { wf (Zwf lo) hi } : ZTree.t acontent :=
  if zle lo hi
  then inval_after lo (hi - 1) (ZTree.remove hi c)
  else c.
Proof.
  intros; red; lia.
  apply Zwf_well_founded.
Qed.

Definition inval_if (hi: Z) (lo: Z) (c: ZTree.t acontent) :=
  match c##lo with
  | None => c
  | Some (ACval chunk av) => if zle (lo + size_chunk chunk) hi then c else ZTree.remove lo c
  end.

Function inval_before (hi: Z) (lo: Z) (c: ZTree.t acontent) { wf (Zwf_up hi) lo } : ZTree.t acontent :=
  if zlt lo hi
  then inval_before hi (lo + 1) (inval_if hi lo c)
  else c.
Proof.
  intros; red; lia.
  apply Zwf_up_well_founded.
Qed.

Definition ablock_store (chunk: memory_chunk) (ab: ablock) (i: Z) (av: aval) : ablock :=
  {| ab_contents :=
       ZTree.set i (ACval chunk av)
         (inval_before i (i - 7)
            (inval_after (i + 1) (i + size_chunk chunk - 1) ab.(ab_contents)));
     ab_summary :=
       vplub av ab.(ab_summary) |}.

Definition ablock_store_anywhere (chunk: memory_chunk) (ab: ablock) (av: aval) : ablock :=
  ablock_init (vplub av ab.(ab_summary)).

Definition ablock_loadbytes (ab: ablock) : aptr := ab.(ab_summary).

Definition ablock_storebytes (ab: ablock) (p: aptr) (ofs: Z) (sz: Z) :=
  {| ab_contents :=
       inval_before ofs (ofs - 7)
         (inval_after ofs (ofs + sz - 1) ab.(ab_contents));
     ab_summary :=
       plub p ab.(ab_summary) |}.

Definition ablock_storebytes_anywhere (ab: ablock) (p: aptr) :=
  ablock_init (plub p ab.(ab_summary)).

Definition smatch (m: mem) (b: block) (p: aptr) : Prop :=
  (forall chunk ofs v, Mem.load chunk m b ofs = Some v -> vmatch v (Ifptr p))
/\(forall ofs b' ofs' q i, Mem.loadbytes m b ofs 1 = Some (Fragment (Vptr b' ofs') q i :: nil) -> pmatch b' ofs' p).

Remark loadbytes_load_ext:
  forall b m m',
  (forall ofs n bytes, Mem.loadbytes m' b ofs n = Some bytes -> n >= 0 -> Mem.loadbytes m b ofs n = Some bytes) ->
  forall chunk ofs v, Mem.load chunk m' b ofs = Some v -> Mem.load chunk m b ofs = Some v.
Proof.
  intros. exploit Mem.load_loadbytes; eauto. intros [bytes [A B]].
  exploit Mem.load_valid_access; eauto. intros [C D].
  subst v. apply Mem.loadbytes_load; auto. apply H; auto. generalize (size_chunk_pos chunk); lia.
Qed.

Lemma smatch_ext:
  forall m b p m',
  smatch m b p ->
  (forall ofs n bytes, Mem.loadbytes m' b ofs n = Some bytes -> n >= 0 -> Mem.loadbytes m b ofs n = Some bytes) ->
  smatch m' b p.
Proof.
  intros. destruct H. split; intros.
  eapply H; eauto. eapply loadbytes_load_ext; eauto.
  eapply H1; eauto. apply H0; eauto. lia.
Qed.

Lemma smatch_inv:
  forall m b p m',
  smatch m b p ->
  (forall ofs n, n >= 0 -> Mem.loadbytes m' b ofs n = Mem.loadbytes m b ofs n) ->
  smatch m' b p.
Proof.
  intros. eapply smatch_ext; eauto.
  intros. rewrite <- H0; eauto.
Qed.

Lemma smatch_ge:
  forall m b p q, smatch m b p -> pge q p -> smatch m b q.
Proof.
  intros. destruct H as [A B]. split; intros.
  apply vmatch_ge with (Ifptr p); eauto with va.
  apply pmatch_ge with p; eauto with va.
Qed.

Lemma In_loadbytes:
  forall m b byte n ofs bytes,
  Mem.loadbytes m b ofs n = Some bytes ->
  In byte bytes ->
  exists ofs', ofs <= ofs' < ofs + n /\ Mem.loadbytes m b ofs' 1 = Some(byte :: nil).
Proof.
  intros until n. pattern n.
  apply well_founded_ind with (R := Zwf 0).
- apply Zwf_well_founded.
- intros sz REC ofs bytes LOAD IN.
  destruct (zle sz 0).
  + rewrite (Mem.loadbytes_empty m b ofs sz) in LOAD by auto.
    inv LOAD. contradiction.
  + exploit (Mem.loadbytes_split m b ofs 1 (sz - 1) bytes).
    replace (1 + (sz - 1)) with sz by lia. auto.
    lia.
    lia.
    intros (bytes1 & bytes2 & LOAD1 & LOAD2 & CONCAT).
    subst bytes.
    exploit Mem.loadbytes_length. eexact LOAD1. change (Z.to_nat 1) with 1%nat. intros LENGTH1.
    rewrite in_app_iff in IN. destruct IN.
  * destruct bytes1; try discriminate. destruct bytes1; try discriminate.
    simpl in H. destruct H; try contradiction. subst m0.
    exists ofs; split. lia. auto.
  * exploit (REC (sz - 1)). red; lia. eexact LOAD2. auto.
    intros (ofs' & A & B).
    exists ofs'; split. lia. auto.
Qed.

Lemma smatch_loadbytes:
  forall m b p b' ofs' q i n ofs bytes,
  Mem.loadbytes m b ofs n = Some bytes ->
  smatch m b p ->
  In (Fragment (Vptr b' ofs') q i) bytes ->
  pmatch b' ofs' p.
Proof.
  intros. exploit In_loadbytes; eauto. intros (ofs1 & A & B).
  eapply H0; eauto.
Qed.

Lemma loadbytes_provenance:
  forall m b ofs' byte n ofs bytes,
  Mem.loadbytes m b ofs n = Some bytes ->
  Mem.loadbytes m b ofs' 1 = Some (byte :: nil) ->
  ofs <= ofs' < ofs + n ->
  In byte bytes.
Proof.
  intros until n. pattern n.
  apply well_founded_ind with (R := Zwf 0).
- apply Zwf_well_founded.
- intros sz REC ofs bytes LOAD LOAD1 IN.
  exploit (Mem.loadbytes_split m b ofs 1 (sz - 1) bytes).
  replace (1 + (sz - 1)) with sz by lia. auto.
  lia.
  lia.
  intros (bytes1 & bytes2 & LOAD3 & LOAD4 & CONCAT). subst bytes. rewrite in_app_iff.
  destruct (zeq ofs ofs').
+ subst ofs'. rewrite LOAD1 in LOAD3; inv LOAD3. left; simpl; auto.
+ right. eapply (REC (sz - 1)). red; lia. eexact LOAD4. auto. lia.
Qed.

Lemma storebytes_provenance:
  forall m b ofs bytes m' b' ofs' b'' ofs'' q i,
  Mem.storebytes m b ofs bytes = Some m' ->
  Mem.loadbytes m' b' ofs' 1 = Some (Fragment (Vptr b'' ofs'') q i :: nil) ->
  In (Fragment (Vptr b'' ofs'') q i) bytes
  \/ Mem.loadbytes m b' ofs' 1 = Some (Fragment (Vptr b'' ofs'') q i :: nil).
Proof.
  intros.
  assert (EITHER:
            (b' <> b \/ ofs' + 1 <= ofs \/ ofs + Z.of_nat (length bytes) <= ofs')
         \/ (b' = b /\ ofs <= ofs' < ofs + Z.of_nat (length bytes))).
  {
    destruct (eq_block b' b); auto.
    destruct (zle (ofs' + 1) ofs); auto.
    destruct (zle (ofs + Z.of_nat (length bytes)) ofs'); auto.
    right. split. auto. lia.
  }
  destruct EITHER as [A | (A & B)].
- right. rewrite <- H0. symmetry. eapply Mem.loadbytes_storebytes_other; eauto. lia.
- subst b'. left.
  eapply loadbytes_provenance; eauto.
  eapply Mem.loadbytes_storebytes_same; eauto.
Qed.

Lemma store_provenance:
  forall chunk m b ofs v m' b' ofs' b'' ofs'' q i,
  Mem.store chunk m b ofs v = Some m' ->
  Mem.loadbytes m' b' ofs' 1 = Some (Fragment (Vptr b'' ofs'') q i :: nil) ->
  v = Vptr b'' ofs'' /\ (chunk = Mint32 \/ chunk = Many32 \/ chunk = Mint64 \/ chunk = Many64)
  \/ Mem.loadbytes m b' ofs' 1 = Some (Fragment (Vptr b'' ofs'') q i :: nil).
Proof.
  intros. exploit storebytes_provenance; eauto. eapply Mem.store_storebytes; eauto.
  intros [A|A]; auto. left.
  generalize (encode_val_shape chunk v). intros ENC; inv ENC.
- split; auto. rewrite <- H1 in A; destruct A.
  + congruence.
  + exploit H5; eauto. intros (j & P & Q); congruence.
- rewrite <- H1 in A; destruct A.
  + congruence.
  + exploit H3; eauto. intros [byte P]; congruence.
- rewrite <- H1 in A; destruct A.
  + congruence.
  + exploit H2; eauto. congruence.
Qed.

Lemma smatch_store:
  forall chunk m b ofs v m' b' p av,
  Mem.store chunk m b ofs v = Some m' ->
  smatch m b' p ->
  vmatch v av ->
  smatch m' b' (vplub av p).
Proof.
  intros. destruct H0 as [A B]. split.
- intros chunk' ofs' v' LOAD. destruct v'; auto with va.
  exploit Mem.load_pointer_store; eauto.
  intros [(P & Q & R & S) | DISJ].
+ subst. apply vmatch_vplub_l. auto.
+ apply vmatch_vplub_r. apply A with (chunk := chunk') (ofs := ofs').
  rewrite <- LOAD. symmetry. eapply Mem.load_store_other; eauto.
- intros. exploit store_provenance; eauto. intros [[P Q] | P].
+ subst.
  assert (V: vmatch (Vptr b'0 ofs') (Ifptr (vplub av p))).
  {
    apply vmatch_vplub_l. auto.
  }
  inv V; auto.
+ apply pmatch_vplub. eapply B; eauto.
Qed.

Lemma smatch_storebytes:
  forall m b ofs bytes m' b' p p',
  Mem.storebytes m b ofs bytes = Some m' ->
  smatch m b' p ->
  (forall b' ofs' q i, In (Fragment (Vptr b' ofs') q i) bytes -> pmatch b' ofs' p') ->
  smatch m' b' (plub p' p).
Proof.
  intros. destruct H0 as [A B]. split.
- intros. apply vmatch_ifptr. intros bx ofsx EQ; subst v.
  exploit Mem.load_loadbytes; eauto. intros (bytes' & P & Q).
  destruct bytes' as [ | byte1' bytes'].
  exploit Mem.loadbytes_length; eauto. intros. destruct chunk; discriminate.
  generalize (decode_val_shape chunk byte1' bytes'). rewrite <- Q.
  intros DEC; inv DEC; try contradiction.
  assert (v = Vptr bx ofsx).
  { destruct H5 as [E|[E|[E|E]]]; rewrite E in H4; destruct v; simpl in H4;
    try congruence; destruct Archi.ptr64; congruence. }
  exploit In_loadbytes; eauto. eauto with coqlib.
  intros (ofs' & X & Y). subst v.
  exploit storebytes_provenance; eauto. intros [Z | Z].
  apply pmatch_lub_l. eauto.
  apply pmatch_lub_r. eauto.
- intros. exploit storebytes_provenance; eauto. intros [Z | Z].
  apply pmatch_lub_l. eauto.
  apply pmatch_lub_r. eauto.
Qed.

Definition bmatch (m: mem) (b: block) (ab: ablock) : Prop :=
  smatch m b ab.(ab_summary) /\
  forall chunk ofs v, Mem.load chunk m b ofs = Some v -> vmatch v (ablock_load chunk ab ofs).

Lemma bmatch_ext:
  forall m b ab m',
  bmatch m b ab ->
  (forall ofs n bytes, Mem.loadbytes m' b ofs n = Some bytes -> n >= 0 -> Mem.loadbytes m b ofs n = Some bytes) ->
  bmatch m' b ab.
Proof.
  intros. destruct H as [A B]. split; intros.
  apply smatch_ext with m; auto.
  eapply B; eauto. eapply loadbytes_load_ext; eauto.
Qed.

Lemma bmatch_inv:
  forall m b ab m',
  bmatch m b ab ->
  (forall ofs n, n >= 0 -> Mem.loadbytes m' b ofs n = Mem.loadbytes m b ofs n) ->
  bmatch m' b ab.
Proof.
  intros. eapply bmatch_ext; eauto.
  intros. rewrite <- H0; eauto.
Qed.

Lemma ablock_load_sound:
  forall chunk m b ofs v ab,
  Mem.load chunk m b ofs = Some v ->
  bmatch m b ab ->
  vmatch v (ablock_load chunk ab ofs).
Proof.
  intros. destruct H0. eauto.
Qed.

Lemma ablock_load_anywhere_sound:
  forall chunk m b ofs v ab,
  Mem.load chunk m b ofs = Some v ->
  bmatch m b ab ->
  vmatch v (ablock_load_anywhere chunk ab).
Proof.
  intros. destruct H0. destruct H0. unfold ablock_load_anywhere.
  eapply vnormalize_cast; eauto.
Qed.

Lemma ablock_init_sound:
  forall m b p, smatch m b p -> bmatch m b (ablock_init p).
Proof.
  intros; split; auto; intros.
  unfold ablock_load, ablock_init; simpl.
  eapply vnormalize_cast; eauto. eapply H; eauto.
Qed.

Lemma ablock_store_anywhere_sound:
  forall chunk m b ofs v m' b' ab av,
  Mem.store chunk m b ofs v = Some m' ->
  bmatch m b' ab ->
  vmatch v av ->
  bmatch m' b' (ablock_store_anywhere chunk ab av).
Proof.
  intros. destruct H0 as [A B]. unfold ablock_store_anywhere.
  apply ablock_init_sound. eapply smatch_store; eauto.
Qed.

Remark inval_after_outside:
  forall i lo hi c, i < lo \/ i > hi -> (inval_after lo hi c)##i = c##i.
Proof.
  intros until c. functional induction (inval_after lo hi c); intros.
  rewrite IHt by lia. apply ZTree.gro. unfold ZTree.elt, ZIndexed.t; lia.
  auto.
Qed.

Remark inval_after_contents:
  forall chunk av i lo hi c,
  (inval_after lo hi c)##i = Some (ACval chunk av) ->
  c##i = Some (ACval chunk av) /\ (i < lo \/ i > hi).
Proof.
  intros until c. functional induction (inval_after lo hi c); intros.
  destruct (zeq i hi).
  subst i. rewrite inval_after_outside in H by lia. rewrite ZTree.grs in H. discriminate.
  exploit IHt; eauto. intros [A B]. rewrite ZTree.gro in A by auto. split. auto. lia.
  split. auto. lia.
Qed.

Remark inval_before_outside:
  forall i hi lo c, i < lo \/ i >= hi -> (inval_before hi lo c)##i = c##i.
Proof.
  intros until c. functional induction (inval_before hi lo c); intros.
  rewrite IHt by lia. unfold inval_if. destruct (c##lo) as [[chunk av]|]; auto.
  destruct (zle (lo + size_chunk chunk) hi); auto.
  apply ZTree.gro. unfold ZTree.elt, ZIndexed.t; lia.
  auto.
Qed.

Remark inval_before_contents_1:
  forall i chunk av lo hi c,
  lo <= i < hi -> (inval_before hi lo c)##i = Some(ACval chunk av) ->
  c##i = Some(ACval chunk av) /\ i + size_chunk chunk <= hi.
Proof.
  intros until c. functional induction (inval_before hi lo c); intros.
- destruct (zeq lo i).
+ subst i. rewrite inval_before_outside in H0 by lia.
  unfold inval_if in H0. destruct (c##lo) as [[chunk0 v0]|] eqn:C; try congruence.
  destruct (zle (lo + size_chunk chunk0) hi).
  rewrite C in H0; inv H0. auto.
  rewrite ZTree.grs in H0. congruence.
+ exploit IHt. lia. auto. intros [A B]; split; auto.
  unfold inval_if in A. destruct (c##lo) as [[chunk0 v0]|] eqn:C; auto.
  destruct (zle (lo + size_chunk chunk0) hi); auto.
  rewrite ZTree.gro in A; auto.
- extlia.
Qed.

Lemma max_size_chunk: forall chunk, size_chunk chunk <= 8.
Proof.
  destruct chunk; simpl; lia.
Qed.

Remark inval_before_contents:
  forall i c chunk' av' j,
  (inval_before i (i - 7) c)##j = Some (ACval chunk' av') ->
  c##j = Some (ACval chunk' av') /\ (j + size_chunk chunk' <= i \/ i <= j).
Proof.
  intros. destruct (zlt j (i - 7)).
  rewrite inval_before_outside in H by lia.
  split. auto. left. generalize (max_size_chunk chunk'); lia.
  destruct (zlt j i).
  exploit inval_before_contents_1; eauto. lia. tauto.
  rewrite inval_before_outside in H by lia.
  split. auto. lia.
Qed.

Lemma ablock_store_contents:
  forall chunk ab i av j chunk' av',
  (ablock_store chunk ab i av).(ab_contents)##j = Some(ACval chunk' av') ->
     (i = j /\ chunk' = chunk /\ av' = av)
  \/ (ab.(ab_contents)##j = Some(ACval chunk' av')
      /\ (j + size_chunk chunk' <= i \/ i + size_chunk chunk <= j)).
Proof.
  unfold ablock_store; simpl; intros.
  destruct (zeq i j).
  subst j. rewrite ZTree.gss in H. inv H; auto.
  right. rewrite ZTree.gso in H by auto.
  exploit inval_before_contents; eauto. intros [A B].
  exploit inval_after_contents; eauto. intros [C D].
  split. auto. lia.
Qed.

Lemma chunk_compat_true:
  forall c c',
  chunk_compat c c' = true ->
  size_chunk c = size_chunk c' /\ align_chunk c <= align_chunk c' /\ type_of_chunk c = type_of_chunk c'.
Proof.
  destruct c, c'; intros; try discriminate; simpl; auto with va.
Qed.

Lemma ablock_store_sound:
  forall chunk m b ofs v m' ab av,
  Mem.store chunk m b ofs v = Some m' ->
  bmatch m b ab ->
  vmatch v av ->
  bmatch m' b (ablock_store chunk ab ofs av).
Proof.
  intros until av; intros STORE BIN VIN. destruct BIN as [BIN1 BIN2]. split.
  eapply smatch_store; eauto.
  intros chunk' ofs' v' LOAD.
  assert (SUMMARY: vmatch v' (vnormalize chunk' (Ifptr (vplub av ab.(ab_summary))))).
  { exploit smatch_store; eauto. intros [A B]. eapply vnormalize_cast; eauto. }
  unfold ablock_load.
  destruct ((ab_contents (ablock_store chunk ab ofs av)) ## ofs') as [[chunk1 av1]|] eqn:C; auto.
  destruct (chunk_compat chunk' chunk1) eqn:COMPAT; auto.
  exploit chunk_compat_true; eauto. intros (U & V & W).
  exploit ablock_store_contents; eauto. intros [(P & Q & R) | (P & Q)].
- (* same offset and compatible chunks *)
  subst.
  assert (v' = Val.load_result chunk' v).
  { exploit Mem.load_store_similar_2; eauto. congruence. }
  subst v'. apply vnormalize_sound; auto.
- (* disjoint load/store *)
  assert (Mem.load chunk' m b ofs' = Some v').
  { rewrite <- LOAD. symmetry. eapply Mem.load_store_other; eauto.
    rewrite U. auto. }
  exploit BIN2; eauto. unfold ablock_load. rewrite P. rewrite COMPAT. auto.
Qed.

Lemma ablock_loadbytes_sound:
  forall m b ab b' ofs' q i n ofs bytes,
  Mem.loadbytes m b ofs n = Some bytes ->
  bmatch m b ab ->
  In (Fragment (Vptr b' ofs') q i) bytes ->
  pmatch b' ofs' (ablock_loadbytes ab).
Proof.
  intros. destruct H0. eapply smatch_loadbytes; eauto.
Qed.

Lemma ablock_storebytes_anywhere_sound:
  forall m b ofs bytes p m' b' ab,
  Mem.storebytes m b ofs bytes = Some m' ->
  (forall b' ofs' q i, In (Fragment (Vptr b' ofs') q i) bytes -> pmatch b' ofs' p) ->
  bmatch m b' ab ->
  bmatch m' b' (ablock_storebytes_anywhere ab p).
Proof.
  intros. destruct H1 as [A B]. apply ablock_init_sound.
  eapply smatch_storebytes; eauto.
Qed.

Lemma ablock_storebytes_contents:
  forall ab p i sz j chunk' av',
  (ablock_storebytes ab p i sz).(ab_contents)##j = Some(ACval chunk' av') ->
  ab.(ab_contents)##j = Some (ACval chunk' av')
  /\ (j + size_chunk chunk' <= i \/ i + Z.max sz 0 <= j).
Proof.
  unfold ablock_storebytes; simpl; intros.
  exploit inval_before_contents; eauto. clear H. intros [A B].
  exploit inval_after_contents; eauto. clear A. intros [C D].
  split. auto. extlia.
Qed.

Lemma ablock_storebytes_sound:
  forall m b ofs bytes m' p ab sz,
  Mem.storebytes m b ofs bytes = Some m' ->
  length bytes = Z.to_nat sz ->
  (forall b' ofs' q i, In (Fragment (Vptr b' ofs') q i) bytes -> pmatch b' ofs' p) ->
  bmatch m b ab ->
  bmatch m' b (ablock_storebytes ab p ofs sz).
Proof.
  intros until sz; intros STORE LENGTH CONTENTS BM. destruct BM as [BM1 BM2]. split.
  eapply smatch_storebytes; eauto.
  intros chunk' ofs' v' LOAD'.
  assert (SUMMARY: vmatch v' (vnormalize chunk' (Ifptr (plub p ab.(ab_summary))))).
  { exploit smatch_storebytes; eauto. intros [A B]. eapply vnormalize_cast; eauto. }
  unfold ablock_load.
  destruct (ab_contents (ablock_storebytes ab p ofs sz))##ofs' as [[chunk av]|] eqn:C; auto.
  destruct (chunk_compat chunk' chunk) eqn:COMPAT; auto.
  exploit chunk_compat_true; eauto. intros (U & V & W).
  exploit ablock_storebytes_contents; eauto. intros [A B].
  assert (Mem.load chunk' m b ofs' = Some v').
  { rewrite <- LOAD'; symmetry. eapply Mem.load_storebytes_other; eauto.
    rewrite U. rewrite LENGTH. rewrite Z_to_nat_max. right; lia. }
  exploit BM2; eauto. unfold ablock_load. rewrite A. rewrite COMPAT. auto.
Qed.

(** Boolean equality *)

Definition bbeq (ab1 ab2: ablock) : bool :=
  eq_aptr ab1.(ab_summary) ab2.(ab_summary) &&
  ZTree.beq (fun c1 c2 => proj_sumbool (eq_acontent c1 c2)) ab1.(ab_contents) ab2.(ab_contents).

Lemma bbeq_load:
  forall ab1 ab2,
  bbeq ab1 ab2 = true ->
  ab1.(ab_summary) = ab2.(ab_summary)
  /\ (forall chunk i, ablock_load chunk ab1 i = ablock_load chunk ab2 i).
Proof.
  unfold bbeq; intros. InvBooleans. split.
- unfold ablock_load_anywhere; intros; congruence.
- assert (A: forall i, ZTree.get i (ab_contents ab1) = ZTree.get i (ab_contents ab2)).
  {
    intros. exploit ZTree.beq_sound; eauto. instantiate (1 := i).
    destruct (ab_contents ab1)##i, (ab_contents ab2)##i; intros; try contradiction.
    InvBooleans; subst; auto.
    auto. }
  intros. unfold ablock_load. rewrite A, H.
  destruct (ab_contents ab2)##i; auto.
Qed.

Lemma bbeq_sound:
  forall ab1 ab2,
  bbeq ab1 ab2 = true ->
  forall m b, bmatch m b ab1 <-> bmatch m b ab2.
Proof.
  intros. exploit bbeq_load; eauto. intros [A B].
  unfold bmatch. rewrite A. intuition. rewrite <- B; eauto. rewrite B; eauto.
Qed.

(** Least upper bound *)

Definition combine_acontents (c1 c2: option acontent) : option acontent :=
  match c1, c2 with
  | Some (ACval chunk1 v1), Some (ACval chunk2 v2) =>
      if chunk_eq chunk1 chunk2 then Some(ACval chunk1 (vlub v1 v2)) else None
  | _, _ =>
      None
  end.

Definition blub (ab1 ab2: ablock) : ablock :=
  {| ab_contents := ZTree.combine combine_acontents ab1.(ab_contents) ab2.(ab_contents);
     ab_summary := plub ab1.(ab_summary) ab2.(ab_summary) |}.

Lemma smatch_lub_l:
  forall m b p q, smatch m b p -> smatch m b (plub p q).
Proof.
  intros. destruct H as [A B]. split; intros.
  change (vmatch v (vlub (Ifptr p) (Ifptr q))). apply vmatch_lub_l. eapply A; eauto.
  apply pmatch_lub_l. eapply B; eauto.
Qed.

Lemma smatch_lub_r:
  forall m b p q, smatch m b q -> smatch m b (plub p q).
Proof.
  intros. destruct H as [A B]. split; intros.
  change (vmatch v (vlub (Ifptr p) (Ifptr q))). apply vmatch_lub_r. eapply A; eauto.
  apply pmatch_lub_r. eapply B; eauto.
Qed.

Lemma bmatch_lub_l:
  forall m b x y, bmatch m b x -> bmatch m b (blub x y).
Proof.
  intros. destruct H as [BM1 BM2]. split; unfold blub; simpl.
- apply smatch_lub_l; auto.
- intros.
  assert (SUMMARY: vmatch v (vnormalize chunk (Ifptr (plub (ab_summary x) (ab_summary y))))
).
  { exploit smatch_lub_l; eauto. instantiate (1 := ab_summary y).
    intros [SUMM _]. eapply vnormalize_cast; eauto. }
  exploit BM2; eauto.
  unfold ablock_load; simpl. rewrite ZTree.gcombine by auto.
  unfold combine_acontents;
  destruct (ab_contents x)##ofs as [[chunkx avx]|], (ab_contents y)##ofs as [[chunky avy]|]; auto.
  destruct (chunk_eq chunkx chunky); auto. subst chunky.
  destruct (chunk_compat chunk chunkx); auto.
  intros. eapply vmatch_ge; eauto. apply vnormalize_monotone. apply vge_lub_l.
Qed.

Lemma bmatch_lub_r:
  forall m b x y, bmatch m b y -> bmatch m b (blub x y).
Proof.
  intros. destruct H as [BM1 BM2]. split; unfold blub; simpl.
- apply smatch_lub_r; auto.
- intros.
  assert (SUMMARY: vmatch v (vnormalize chunk (Ifptr (plub (ab_summary x) (ab_summary y))))
).
  { exploit smatch_lub_r; eauto. instantiate (1 := ab_summary x).
    intros [SUMM _]. eapply vnormalize_cast; eauto. }
  exploit BM2; eauto.
  unfold ablock_load; simpl. rewrite ZTree.gcombine by auto.
  unfold combine_acontents;
  destruct (ab_contents x)##ofs as [[chunkx avx]|], (ab_contents y)##ofs as [[chunky avy]|]; auto.
  destruct (chunk_eq chunkx chunky); auto. subst chunky.
  destruct (chunk_compat chunk chunkx); auto.
  intros. eapply vmatch_ge; eauto. apply vnormalize_monotone. apply vge_lub_r.
Qed.

(** * Abstracting read-only global variables *)

Definition romem := PTree.t ablock.

Definition romatch  (m: mem) (rm: romem) : Prop :=
  forall b id ab,
  bc b = BCglob id ->
  rm!id = Some ab ->
  pge Glob ab.(ab_summary)
  /\ bmatch m b ab
  /\ forall ofs, ~Mem.perm m b ofs Max Writable.

Lemma romatch_store:
  forall chunk m b ofs v m' rm,
  Mem.store chunk m b ofs v = Some m' ->
  romatch m rm ->
  romatch m' rm.
Proof.
  intros; red; intros. exploit H0; eauto. intros (A & B & C). split; auto. split.
- exploit Mem.store_valid_access_3; eauto. intros [P _].
  apply bmatch_inv with m; auto.
+ intros. eapply Mem.loadbytes_store_other; eauto.
  left. red; intros; subst b0. elim (C ofs). apply Mem.perm_cur_max.
  apply P. generalize (size_chunk_pos chunk); lia.
- intros; red; intros; elim (C ofs0). eauto with mem.
Qed.

Lemma romatch_storebytes:
  forall m b ofs bytes m' rm,
  Mem.storebytes m b ofs bytes = Some m' ->
  romatch m rm ->
  romatch m' rm.
Proof.
  intros; red; intros. exploit H0; eauto. intros (A & B & C). split; auto. split.
- apply bmatch_inv with m; auto.
  intros. eapply Mem.loadbytes_storebytes_disjoint; eauto.
  destruct (eq_block b0 b); auto. subst b0. right; red; unfold Intv.In; simpl; red; intros.
  elim (C x). apply Mem.perm_cur_max. eapply Mem.storebytes_range_perm; eauto.
- intros; red; intros; elim (C ofs0). eauto with mem.
Qed.

Lemma romatch_ext:
  forall m rm m',
  romatch m rm ->
  (forall b id ofs n bytes, bc b = BCglob id -> Mem.loadbytes m' b ofs n = Some bytes -> Mem.loadbytes m b ofs n = Some bytes) ->
  (forall b id ofs p, bc b = BCglob id -> Mem.perm m' b ofs Max p -> Mem.perm m b ofs Max p) ->
  romatch m' rm.
Proof.
  intros; red; intros. exploit H; eauto. intros (A & B & C).
  split. auto.
  split. apply bmatch_ext with m; auto. intros. eapply H0; eauto.
  intros; red; intros. elim (C ofs). eapply H1; eauto.
Qed.

Lemma romatch_free:
  forall m b lo hi m' rm,
  Mem.free m b lo hi = Some m' ->
  romatch m rm ->
  romatch m' rm.
Proof.
  intros. apply romatch_ext with m; auto.
  intros. eapply Mem.loadbytes_free_2; eauto.
  intros. eauto with mem.
Qed.

Lemma romatch_alloc:
  forall m b lo hi m' rm,
  Mem.alloc m lo hi = (m', b) ->
  bc_below bc (Mem.nextblock m) ->
  romatch m rm ->
  romatch m' rm.
Proof.
  intros. apply romatch_ext with m; auto.
  intros. rewrite <- H3; symmetry. eapply Mem.loadbytes_alloc_unchanged; eauto.
  apply H0. congruence.
  intros. eapply Mem.perm_alloc_4; eauto. apply Mem.valid_not_valid_diff with m; eauto with mem.
  apply H0. congruence.
Qed.

(** * Abstracting memory states *)

Record amem : Type := AMem {
  am_stack: ablock;
  am_glob: PTree.t ablock;
  am_nonstack: aptr;
  am_top: aptr
}.

Record mmatch (m: mem) (am: amem) : Prop := mk_mem_match {
  mmatch_stack: forall b,
    bc b = BCstack ->
    bmatch m b am.(am_stack);
  mmatch_glob: forall id ab b,
    bc b = BCglob id ->
    am.(am_glob)!id = Some ab ->
    bmatch m b ab;
  mmatch_nonstack: forall b,
    bc b <> BCstack -> bc b <> BCinvalid ->
    smatch m b am.(am_nonstack);
  mmatch_top: forall b,
    bc b <> BCinvalid ->
    smatch m b am.(am_top);
  mmatch_below:
    bc_below bc (Mem.nextblock m)
}.

Definition minit (p: aptr) :=
  {| am_stack := ablock_init p;
     am_glob := PTree.empty _;
     am_nonstack := p;
     am_top := p |}.

Definition mbot := minit Pbot.
Definition mtop := minit Ptop.

Definition load (chunk: memory_chunk) (rm: romem) (m: amem) (p: aptr) : aval :=
  match p with
  | Pbot => if va_strict tt then Vbot else Vtop
  | Gl id ofs =>
      match rm!id with
      | Some ab => ablock_load chunk ab (Ptrofs.unsigned ofs)
      | None =>
          match m.(am_glob)!id with
          | Some ab => ablock_load chunk ab (Ptrofs.unsigned ofs)
          | None => vnormalize chunk (Ifptr m.(am_nonstack))
          end
      end
  | Glo id =>
      match rm!id with
      | Some ab => ablock_load_anywhere chunk ab
      | None =>
          match m.(am_glob)!id with
          | Some ab => ablock_load_anywhere chunk ab
          | None => vnormalize chunk (Ifptr m.(am_nonstack))
          end
      end
  | Stk ofs => ablock_load chunk m.(am_stack) (Ptrofs.unsigned ofs)
  | Stack => ablock_load_anywhere chunk m.(am_stack)
  | Glob | Nonstack => vnormalize chunk (Ifptr m.(am_nonstack))
  | Ptop => vnormalize chunk (Ifptr m.(am_top))
  end.

Definition loadv (chunk: memory_chunk) (rm: romem) (m: amem) (addr: aval) : aval :=
  load chunk rm m (aptr_of_aval addr).

Definition store (chunk: memory_chunk) (m: amem) (p: aptr) (av: aval) : amem :=
  {| am_stack :=
       match p with
       | Stk ofs      => ablock_store chunk m.(am_stack) (Ptrofs.unsigned ofs) av
       | Stack | Ptop => ablock_store_anywhere chunk m.(am_stack) av
       | _ => m.(am_stack)
       end;
     am_glob :=
       match p with
       | Gl id ofs =>
           let ab := match m.(am_glob)!id with Some ab => ab | None => ablock_init m.(am_nonstack) end in
           PTree.set id (ablock_store chunk ab (Ptrofs.unsigned ofs) av) m.(am_glob)
       | Glo id =>
           let ab := match m.(am_glob)!id with Some ab => ab | None => ablock_init m.(am_nonstack) end in
           PTree.set id (ablock_store_anywhere chunk ab av) m.(am_glob)
       | Glob | Nonstack | Ptop => PTree.empty _
       | _ => m.(am_glob)
       end;
     am_nonstack :=
       match p with
       | Gl _ _ | Glo _ | Glob | Nonstack | Ptop => vplub av m.(am_nonstack)
       | _ => m.(am_nonstack)
       end;
     am_top := vplub av m.(am_top)
  |}.

Definition storev (chunk: memory_chunk) (m: amem) (addr: aval) (v: aval): amem :=
  store chunk m (aptr_of_aval addr) v.

Definition loadbytes (m: amem) (rm: romem) (p: aptr) : aptr :=
  match p with
  | Pbot => if va_strict tt then Pbot else Ptop
  | Gl id _ | Glo id =>
      match rm!id with
      | Some ab => ablock_loadbytes ab
      | None =>
          match m.(am_glob)!id with
          | Some ab => ablock_loadbytes ab
          | None => m.(am_nonstack)
          end
      end
  | Stk _ | Stack => ablock_loadbytes m.(am_stack)
  | Glob | Nonstack => m.(am_nonstack)
  | Ptop => m.(am_top)
  end.

Definition storebytes (m: amem) (dst: aptr) (sz: Z) (p: aptr) : amem :=
  {| am_stack :=
       match dst with
       | Stk ofs      => ablock_storebytes m.(am_stack) p (Ptrofs.unsigned ofs) sz
       | Stack | Ptop => ablock_storebytes_anywhere m.(am_stack) p
       | _ => m.(am_stack)
       end;
     am_glob :=
       match dst with
       | Gl id ofs =>
           let ab := match m.(am_glob)!id with Some ab => ab | None => ablock_init m.(am_nonstack) end in
           PTree.set id (ablock_storebytes ab p (Ptrofs.unsigned ofs) sz) m.(am_glob)
       | Glo id =>
           let ab := match m.(am_glob)!id with Some ab => ab | None => ablock_init m.(am_nonstack) end in
           PTree.set id (ablock_storebytes_anywhere ab p) m.(am_glob)
       | Glob | Nonstack | Ptop => PTree.empty _
       | _ => m.(am_glob)
       end;
     am_nonstack :=
       match dst with
       | Gl _ _ | Glo _ | Glob | Nonstack | Ptop => plub p m.(am_nonstack)
       | _ => m.(am_nonstack)
       end;
     am_top := plub p m.(am_top)
  |}.

Theorem load_sound:
  forall chunk m b ofs v rm am p,
  Mem.load chunk m b (Ptrofs.unsigned ofs) = Some v ->
  romatch m rm ->
  mmatch m am ->
  pmatch b ofs p ->
  vmatch v (load chunk rm am p).
Proof.
  intros. unfold load. inv H2.
- (* Gl id ofs *)
  destruct (rm!id) as [ab|] eqn:RM.
  eapply ablock_load_sound; eauto. eapply H0; eauto.
  destruct (am_glob am)!id as [ab|] eqn:AM.
  eapply ablock_load_sound; eauto. eapply mmatch_glob; eauto.
  eapply vnormalize_cast; eauto. eapply mmatch_nonstack; eauto; congruence.
- (* Glo id *)
  destruct (rm!id) as [ab|] eqn:RM.
  eapply ablock_load_anywhere_sound; eauto. eapply H0; eauto.
  destruct (am_glob am)!id as [ab|] eqn:AM.
  eapply ablock_load_anywhere_sound; eauto. eapply mmatch_glob; eauto.
  eapply vnormalize_cast; eauto. eapply mmatch_nonstack; eauto; congruence.
- (* Glob *)
  eapply vnormalize_cast; eauto. eapply mmatch_nonstack; eauto. congruence. congruence.
- (* Stk ofs *)
  eapply ablock_load_sound; eauto. eapply mmatch_stack; eauto.
- (* Stack *)
  eapply ablock_load_anywhere_sound; eauto. eapply mmatch_stack; eauto.
- (* Nonstack *)
  eapply vnormalize_cast; eauto. eapply mmatch_nonstack; eauto.
- (* Top *)
  eapply vnormalize_cast; eauto. eapply mmatch_top; eauto.
Qed.

Theorem loadv_sound:
  forall chunk m addr v rm am aaddr,
  Mem.loadv chunk m addr = Some v ->
  romatch m rm ->
  mmatch m am ->
  vmatch addr aaddr ->
  vmatch v (loadv chunk rm am aaddr).
Proof.
  intros. destruct addr; simpl in H; try discriminate.
  eapply load_sound; eauto. apply match_aptr_of_aval; auto.
Qed.

Theorem store_sound:
  forall chunk m b ofs v m' am p av,
  Mem.store chunk m b (Ptrofs.unsigned ofs) v = Some m' ->
  mmatch m am ->
  pmatch b ofs p ->
  vmatch v av ->
  mmatch m' (store chunk am p av).
Proof.
  intros until av; intros STORE MM PM VM.
  unfold store; constructor; simpl; intros.
- (* Stack *)
  assert (DFL: bc b <> BCstack -> bmatch m' b0 (am_stack am)).
  { intros. apply bmatch_inv with m. eapply mmatch_stack; eauto.
    intros. eapply Mem.loadbytes_store_other; eauto. left; congruence. }
  inv PM; try (apply DFL; congruence).
  + assert (b0 = b) by (eapply bc_stack; eauto). subst b0.
    eapply ablock_store_sound; eauto. eapply mmatch_stack; eauto.
  + assert (b0 = b) by (eapply bc_stack; eauto). subst b0.
    eapply ablock_store_anywhere_sound; eauto. eapply mmatch_stack; eauto.
  + eapply ablock_store_anywhere_sound; eauto. eapply mmatch_stack; eauto.

- (* Globals *)
  rename b0 into b'.
  assert (DFL: bc b <> BCglob id -> (am_glob am)!id = Some ab ->
               bmatch m' b' ab).
  { intros. apply bmatch_inv with m. eapply mmatch_glob; eauto.
    intros. eapply Mem.loadbytes_store_other; eauto. left; congruence. }
  inv PM.
  + rewrite PTree.gsspec in H0. destruct (peq id id0).
    subst id0; inv H0.
    assert (b' = b) by (eapply bc_glob; eauto). subst b'.
    eapply ablock_store_sound; eauto.
    destruct (am_glob am)!id as [ab0|] eqn:GL.
    eapply mmatch_glob; eauto.
    apply ablock_init_sound. eapply mmatch_nonstack; eauto; congruence.
    eapply DFL; eauto. congruence.
  + rewrite PTree.gsspec in H0. destruct (peq id id0).
    subst id0; inv H0.
    assert (b' = b) by (eapply bc_glob; eauto). subst b'.
    eapply ablock_store_anywhere_sound; eauto.
    destruct (am_glob am)!id as [ab0|] eqn:GL.
    eapply mmatch_glob; eauto.
    apply ablock_init_sound. eapply mmatch_nonstack; eauto; congruence.
    eapply DFL; eauto. congruence.
  + rewrite PTree.gempty in H0; congruence.
  + eapply DFL; eauto. congruence.
  + eapply DFL; eauto. congruence.
  + rewrite PTree.gempty in H0; congruence.
  + rewrite PTree.gempty in H0; congruence.

- (* Nonstack *)
  assert (DFL: smatch m' b0 (vplub av (am_nonstack am))).
  { eapply smatch_store; eauto. eapply mmatch_nonstack; eauto. }
  assert (STK: bc b = BCstack -> smatch m' b0 (am_nonstack am)).
  { intros. apply smatch_inv with m. eapply mmatch_nonstack; eauto; congruence.
    intros. eapply Mem.loadbytes_store_other; eauto. left. congruence.
  }
  inv PM; (apply DFL || apply STK; congruence).

- (* Top *)
  eapply smatch_store; eauto. eapply mmatch_top; eauto.

- (* Below *)
  erewrite Mem.nextblock_store by eauto. eapply mmatch_below; eauto.
Qed.

Theorem storev_sound:
  forall chunk m addr v m' am aaddr av,
  Mem.storev chunk m addr v = Some m' ->
  mmatch m am ->
  vmatch addr aaddr ->
  vmatch v av ->
  mmatch m' (storev chunk am aaddr av).
Proof.
  intros. destruct addr; simpl in H; try discriminate.
  eapply store_sound; eauto. apply match_aptr_of_aval; auto.
Qed.

Theorem loadbytes_sound:
  forall m b ofs sz bytes am rm p,
  Mem.loadbytes m b (Ptrofs.unsigned ofs) sz = Some bytes ->
  romatch m rm ->
  mmatch m am ->
  pmatch b ofs p ->
  forall  b' ofs' q i, In (Fragment (Vptr b' ofs') q i) bytes -> pmatch b' ofs' (loadbytes am rm p).
Proof.
  intros. unfold loadbytes; inv H2.
- (* Gl id ofs *)
  destruct (rm!id) as [ab|] eqn:RM.
  exploit H0; eauto. intros (A & B & C). eapply ablock_loadbytes_sound; eauto.
  destruct (am_glob am)!id as [ab|] eqn:GL.
  eapply ablock_loadbytes_sound; eauto. eapply mmatch_glob; eauto.
  eapply smatch_loadbytes; eauto. eapply mmatch_nonstack; eauto with va.
- (* Glo id *)
  destruct (rm!id) as [ab|] eqn:RM.
  exploit H0; eauto. intros (A & B & C). eapply ablock_loadbytes_sound; eauto.
  destruct (am_glob am)!id as [ab|] eqn:GL.
  eapply ablock_loadbytes_sound; eauto. eapply mmatch_glob; eauto.
  eapply smatch_loadbytes; eauto. eapply mmatch_nonstack; eauto with va.
- (* Glob *)
  eapply smatch_loadbytes; eauto. eapply mmatch_nonstack; eauto with va.
- (* Stk ofs *)
  eapply ablock_loadbytes_sound; eauto. eapply mmatch_stack; eauto.
- (* Stack *)
  eapply ablock_loadbytes_sound; eauto. eapply mmatch_stack; eauto.
- (* Nonstack *)
  eapply smatch_loadbytes; eauto. eapply mmatch_nonstack; eauto with va.
- (* Top *)
  eapply smatch_loadbytes; eauto. eapply mmatch_top; eauto with va.
Qed.

Theorem storebytes_sound:
  forall m b ofs bytes m' am p sz q,
  Mem.storebytes m b (Ptrofs.unsigned ofs) bytes = Some m' ->
  mmatch m am ->
  pmatch b ofs p ->
  length bytes = Z.to_nat sz ->
  (forall b' ofs' qt i, In (Fragment (Vptr b' ofs') qt i) bytes -> pmatch b' ofs' q) ->
  mmatch m' (storebytes am p sz q).
Proof.
  intros until q; intros STORE MM PM LENGTH BYTES.
  unfold storebytes; constructor; simpl; intros.
- (* Stack *)
  assert (DFL: bc b <> BCstack -> bmatch m' b0 (am_stack am)).
  { intros. apply bmatch_inv with m. eapply mmatch_stack; eauto.
    intros. eapply Mem.loadbytes_storebytes_other; eauto. left; congruence. }
  inv PM; try (apply DFL; congruence).
  + assert (b0 = b) by (eapply bc_stack; eauto). subst b0.
    eapply ablock_storebytes_sound; eauto. eapply mmatch_stack; eauto.
  + assert (b0 = b) by (eapply bc_stack; eauto). subst b0.
    eapply ablock_storebytes_anywhere_sound; eauto. eapply mmatch_stack; eauto.
  + eapply ablock_storebytes_anywhere_sound; eauto. eapply mmatch_stack; eauto.

- (* Globals *)
  rename b0 into b'.
  assert (DFL: bc b <> BCglob id -> (am_glob am)!id = Some ab ->
               bmatch m' b' ab).
  { intros. apply bmatch_inv with m. eapply mmatch_glob; eauto.
    intros. eapply Mem.loadbytes_storebytes_other; eauto. left; congruence. }
  inv PM.
  + rewrite PTree.gsspec in H0. destruct (peq id id0).
    subst id0; inv H0.
    assert (b' = b) by (eapply bc_glob; eauto). subst b'.
    eapply ablock_storebytes_sound; eauto.
    destruct (am_glob am)!id as [ab0|] eqn:GL.
    eapply mmatch_glob; eauto.
    apply ablock_init_sound. eapply mmatch_nonstack; eauto; congruence.
    eapply DFL; eauto. congruence.
  + rewrite PTree.gsspec in H0. destruct (peq id id0).
    subst id0; inv H0.
    assert (b' = b) by (eapply bc_glob; eauto). subst b'.
    eapply ablock_storebytes_anywhere_sound; eauto.
    destruct (am_glob am)!id as [ab0|] eqn:GL.
    eapply mmatch_glob; eauto.
    apply ablock_init_sound. eapply mmatch_nonstack; eauto; congruence.
    eapply DFL; eauto. congruence.
  + rewrite PTree.gempty in H0; congruence.
  + eapply DFL; eauto. congruence.
  + eapply DFL; eauto. congruence.
  + rewrite PTree.gempty in H0; congruence.
  + rewrite PTree.gempty in H0; congruence.

- (* Nonstack *)
  assert (DFL: smatch m' b0 (plub q (am_nonstack am))).
  { eapply smatch_storebytes; eauto. eapply mmatch_nonstack; eauto. }
  assert (STK: bc b = BCstack -> smatch m' b0 (am_nonstack am)).
  { intros. apply smatch_inv with m. eapply mmatch_nonstack; eauto; congruence.
    intros. eapply Mem.loadbytes_storebytes_other; eauto. left. congruence.
  }
  inv PM; (apply DFL || apply STK; congruence).

- (* Top *)
  eapply smatch_storebytes; eauto. eapply mmatch_top; eauto.

- (* Below *)
  erewrite Mem.nextblock_storebytes by eauto. eapply mmatch_below; eauto.
Qed.

Lemma mmatch_ext:
  forall m am m',
  mmatch m am ->
  (forall b ofs n bytes, bc b <> BCinvalid -> n >= 0 -> Mem.loadbytes m' b ofs n = Some bytes -> Mem.loadbytes m b ofs n = Some bytes) ->
  Ple (Mem.nextblock m) (Mem.nextblock m') ->
  mmatch m' am.
Proof.
  intros. inv H. constructor; intros.
- apply bmatch_ext with m; auto with va.
- apply bmatch_ext with m; eauto with va.
- apply smatch_ext with m; auto with va.
- apply smatch_ext with m; auto with va.
- red; intros. exploit mmatch_below0; eauto. extlia.
Qed.

Lemma mmatch_free:
  forall m b lo hi m' am,
  Mem.free m b lo hi = Some m' ->
  mmatch m am ->
  mmatch m' am.
Proof.
  intros. apply mmatch_ext with m; auto.
  intros. eapply Mem.loadbytes_free_2; eauto.
  erewrite <- Mem.nextblock_free by eauto. extlia.
Qed.

Lemma mmatch_top':
  forall m am, mmatch m am -> mmatch m mtop.
Proof.
  intros. constructor; simpl; intros.
- apply ablock_init_sound. apply smatch_ge with (ab_summary (am_stack am)).
  eapply mmatch_stack; eauto. constructor.
- rewrite PTree.gempty in H1; discriminate.
- eapply smatch_ge. eapply mmatch_nonstack; eauto. constructor.
- eapply smatch_ge. eapply mmatch_top; eauto. constructor.
- eapply mmatch_below; eauto.
Qed.

(** Boolean equality *)

Definition mbeq (m1 m2: amem) : bool :=
  eq_aptr m1.(am_top) m2.(am_top)
  && eq_aptr m1.(am_nonstack) m2.(am_nonstack)
  && bbeq m1.(am_stack) m2.(am_stack)
  && PTree.beq bbeq m1.(am_glob) m2.(am_glob).

Lemma mbeq_sound:
  forall m1 m2, mbeq m1 m2 = true -> forall m, mmatch m m1 <-> mmatch m m2.
Proof.
  unfold mbeq; intros. InvBooleans. rewrite PTree.beq_correct in H1.
  split; intros M; inv M; constructor; intros.
- erewrite <- bbeq_sound; eauto.
- specialize (H1 id). rewrite H4 in H1. destruct (am_glob m1)!id eqn:G; try contradiction.
  erewrite <- bbeq_sound; eauto.
- rewrite <- H; eauto.
- rewrite <- H0; eauto.
- auto.
- erewrite bbeq_sound; eauto.
- specialize (H1 id). rewrite H4 in H1. destruct (am_glob m2)!id eqn:G; try contradiction.
  erewrite bbeq_sound; eauto.
- rewrite H; eauto.
- rewrite H0; eauto.
- auto.
Qed.

(** Least upper bound *)

Definition combine_ablock (ob1 ob2: option ablock) : option ablock :=
  match ob1, ob2 with
  | Some b1, Some b2 => Some (blub b1 b2)
  | _, _ => None
  end.

Definition mlub (m1 m2: amem) : amem :=
{| am_stack := blub m1.(am_stack) m2.(am_stack);
   am_glob  := PTree.combine combine_ablock m1.(am_glob) m2.(am_glob);
   am_nonstack := plub m1.(am_nonstack) m2.(am_nonstack);
   am_top := plub m1.(am_top) m2.(am_top) |}.

Lemma mmatch_lub_l:
  forall m x y, mmatch m x -> mmatch m (mlub x y).
Proof.
  intros. inv H. constructor; simpl; intros.
- apply bmatch_lub_l; auto.
- rewrite PTree.gcombine in H0 by auto. unfold combine_ablock in H0.
  destruct (am_glob x)!id as [b1|] eqn:G1;
  destruct (am_glob y)!id as [b2|] eqn:G2;
  inv H0.
  apply bmatch_lub_l; eauto.
- apply smatch_lub_l; auto.
- apply smatch_lub_l; auto.
- auto.
Qed.

Lemma mmatch_lub_r:
  forall m x y, mmatch m y -> mmatch m (mlub x y).
Proof.
  intros. inv H. constructor; simpl; intros.
- apply bmatch_lub_r; auto.
- rewrite PTree.gcombine in H0 by auto. unfold combine_ablock in H0.
  destruct (am_glob x)!id as [b1|] eqn:G1;
  destruct (am_glob y)!id as [b2|] eqn:G2;
  inv H0.
  apply bmatch_lub_r; eauto.
- apply smatch_lub_r; auto.
- apply smatch_lub_r; auto.
- auto.
Qed.

End MATCH.

(** * Monotonicity properties when the block classification changes. *)

Lemma genv_match_exten:
  forall ge (bc1 bc2: block_classification),
  genv_match bc1 ge ->
  (forall b id, bc1 b = BCglob id <-> bc2 b = BCglob id) ->
  (forall b, bc1 b = BCother -> bc2 b = BCother) ->
  genv_match bc2 ge.
Proof.
  intros. destruct H as [A B]. split; intros.
- rewrite <- H0. eauto.
- exploit B; eauto. destruct (bc1 b) eqn:BC1.
  + intuition congruence.
  + rewrite H0 in BC1. intuition congruence.
  + intuition congruence.
  + erewrite H1 by eauto. intuition congruence.
Qed.

Lemma romatch_exten:
  forall (bc1 bc2: block_classification) m rm,
  romatch bc1 m rm ->
  (forall b id, bc2 b = BCglob id <-> bc1 b = BCglob id) ->
  romatch bc2 m rm.
Proof.
  intros; red; intros. rewrite H0 in H1. exploit H; eauto. intros (A & B & C).
  split; auto. split; auto.
  assert (PM: forall b ofs p, pmatch bc1 b ofs p -> pmatch bc1 b ofs (ab_summary ab) -> pmatch bc2 b ofs p).
  {
    intros.
    assert (pmatch bc1 b0 ofs Glob) by (eapply pmatch_ge; eauto).
    inv H5.
    assert (bc2 b0 = BCglob id0) by (rewrite H0; auto).
    inv H3; econstructor; eauto with va.
  }
  assert (VM: forall v x, vmatch bc1 v x -> vmatch bc1 v (Ifptr (ab_summary ab)) -> vmatch bc2 v x).
  {
    intros. inv H3; constructor; auto; inv H4; eapply PM; eauto.
  }
  destruct B as [[B1 B2] B3]. split. split.
- intros. apply VM; eauto.
- intros. apply PM; eauto.
- intros. apply VM; eauto.
Qed.

Definition bc_incr (bc1 bc2: block_classification) : Prop :=
  forall b, bc1 b <> BCinvalid -> bc2 b = bc1 b.

Section MATCH_INCR.

Variables bc1 bc2: block_classification.
Hypothesis INCR: bc_incr bc1 bc2.

Lemma pmatch_incr: forall b ofs p, pmatch bc1 b ofs p -> pmatch bc2 b ofs p.
Proof.
  induction 1;
  assert (bc2 b = bc1 b) by (apply INCR; congruence);
  econstructor; eauto with va. rewrite H0; eauto.
Qed.

Lemma vmatch_incr: forall v x, vmatch bc1 v x -> vmatch bc2 v x.
Proof.
  induction 1; constructor; auto; apply pmatch_incr; auto.
Qed.

Lemma smatch_incr: forall m b p, smatch bc1 m b p -> smatch bc2 m b p.
Proof.
  intros. destruct H as [A B]. split; intros.
  apply vmatch_incr; eauto.
  apply pmatch_incr; eauto.
Qed.

Lemma bmatch_incr: forall m b ab, bmatch bc1 m b ab -> bmatch bc2 m b ab.
Proof.
  intros. destruct H as [B1 B2]. split.
  apply smatch_incr; auto.
  intros. apply vmatch_incr; eauto.
Qed.

End MATCH_INCR.

(** * Matching and memory injections. *)

Definition inj_of_bc (bc: block_classification) : meminj :=
  fun b => match bc b with BCinvalid => None | _ => Some(b, 0) end.

Lemma inj_of_bc_valid:
  forall (bc: block_classification) b, bc b <> BCinvalid -> inj_of_bc bc b = Some(b, 0).
Proof.
  intros. unfold inj_of_bc. destruct (bc b); congruence.
Qed.

Lemma inj_of_bc_inv:
  forall (bc: block_classification) b b' delta,
  inj_of_bc bc b = Some(b', delta) -> bc b <> BCinvalid /\ b' = b /\ delta = 0.
Proof.
  unfold inj_of_bc; intros. destruct (bc b); intuition congruence.
Qed.

Lemma pmatch_inj:
  forall bc b ofs p, pmatch bc b ofs p -> inj_of_bc bc b = Some(b, 0).
Proof.
  intros. apply inj_of_bc_valid. inv H; congruence.
Qed.

Lemma vmatch_inj:
  forall bc v x, vmatch bc v x -> Val.inject (inj_of_bc bc) v v.
Proof.
  induction 1; econstructor.
  eapply pmatch_inj; eauto. rewrite Ptrofs.add_zero; auto.
  eapply pmatch_inj; eauto. rewrite Ptrofs.add_zero; auto.
Qed.

Lemma vmatch_list_inj:
  forall bc vl xl, list_forall2 (vmatch bc) vl xl -> Val.inject_list (inj_of_bc bc) vl vl.
Proof.
  induction 1; constructor. eapply vmatch_inj; eauto. auto.
Qed.

Lemma mmatch_inj:
  forall bc m am, mmatch bc m am -> bc_below bc (Mem.nextblock m) -> Mem.inject (inj_of_bc bc) m m.
Proof.
  intros. constructor. constructor.
- (* perms *)
  intros. exploit inj_of_bc_inv; eauto. intros (A & B & C); subst.
  rewrite Z.add_0_r. auto.
- (* alignment *)
  intros. exploit inj_of_bc_inv; eauto. intros (A & B & C); subst.
  apply Z.divide_0_r.
- (* contents *)
  intros. exploit inj_of_bc_inv; eauto. intros (A & B & C); subst.
  rewrite Z.add_0_r.
  set (mv := ZMap.get ofs (PMap.get b1 (Mem.mem_contents m))).
  assert (Mem.loadbytes m b1 ofs 1 = Some (mv :: nil)).
  {
    Local Transparent Mem.loadbytes.
    unfold Mem.loadbytes. rewrite pred_dec_true. reflexivity.
    red; intros. replace ofs0 with ofs by lia. auto.
  }
  destruct mv; econstructor. destruct v; econstructor.
  apply inj_of_bc_valid.
  assert (PM: pmatch bc b i Ptop).
  { exploit mmatch_top; eauto. intros [P Q].
    eapply pmatch_top'. eapply Q; eauto. }
  inv PM; auto.
  rewrite Ptrofs.add_zero; auto.
- (* free blocks *)
  intros. unfold inj_of_bc. erewrite bc_below_invalid; eauto.
- (* mapped blocks *)
  intros. exploit inj_of_bc_inv; eauto. intros (A & B & C); subst.
  apply H0; auto.
- (* overlap *)
  red; intros.
  exploit inj_of_bc_inv. eexact H2. intros (A1 & B & C); subst.
  exploit inj_of_bc_inv. eexact H3. intros (A2 & B & C); subst.
  auto.
- (* overflow *)
  intros. exploit inj_of_bc_inv; eauto. intros (A & B & C); subst.
  rewrite Z.add_0_r. split. lia. apply Ptrofs.unsigned_range_2.
- (* perm inv *)
  intros. exploit inj_of_bc_inv; eauto. intros (A & B & C); subst.
  rewrite Z.add_0_r in H2. auto.
Qed.

Lemma inj_of_bc_preserves_globals:
  forall bc ge, genv_match bc ge -> meminj_preserves_globals ge (inj_of_bc bc).
Proof.
  intros. destruct H as [A B].
  split. intros. apply inj_of_bc_valid. rewrite A in H. congruence.
  split. intros. apply inj_of_bc_valid. apply B.
    rewrite Genv.find_var_info_iff in H. eapply Genv.genv_defs_range; eauto.
  intros. exploit inj_of_bc_inv; eauto. intros (P & Q & R). auto.
Qed.

Lemma pmatch_inj_top:
  forall bc b b' delta ofs, inj_of_bc bc b = Some(b', delta) -> pmatch bc b ofs Ptop.
Proof.
  intros. exploit inj_of_bc_inv; eauto. intros (A & B & C). constructor; auto.
Qed.

Lemma vmatch_inj_top:
  forall bc v v', Val.inject (inj_of_bc bc) v v' -> vmatch bc v Vtop.
Proof.
  intros. inv H; constructor. eapply pmatch_inj_top; eauto.
Qed.

Lemma mmatch_inj_top:
  forall bc m m', Mem.inject (inj_of_bc bc) m m' -> mmatch bc m mtop.
Proof.
  intros.
  assert (SM: forall b, bc b <> BCinvalid -> smatch bc m b Ptop).
  {
    intros; split; intros.
    - exploit Mem.load_inject. eauto. eauto. apply inj_of_bc_valid; auto.
      intros (v' & A & B). eapply vmatch_inj_top; eauto.
    - exploit Mem.loadbytes_inject. eauto. eauto. apply inj_of_bc_valid; auto.
      intros (bytes' & A & B). inv B. inv H4. inv H8. eapply pmatch_inj_top; eauto.
  }
  constructor; simpl; intros.
  - apply ablock_init_sound. apply SM. congruence.
  - rewrite PTree.gempty in H1; discriminate.
  - apply SM; auto.
  - apply SM; auto.
  - red; intros. eapply Mem.valid_block_inject_1. eapply inj_of_bc_valid; eauto. eauto.
Qed.

(** * Abstracting RTL register environments *)

Module AVal <: SEMILATTICE_WITH_TOP.

  Definition t := aval.
  Definition eq (x y: t) := (x = y).
  Definition eq_refl: forall x, eq x x := (@eq_refl t).
  Definition eq_sym: forall x y, eq x y -> eq y x := (@eq_sym t).
  Definition eq_trans: forall x y z, eq x y -> eq y z -> eq x z := (@eq_trans t).
  Definition beq (x y: t) : bool := proj_sumbool (eq_aval x y).
  Lemma beq_correct: forall x y, beq x y = true -> eq x y.
  Proof. unfold beq; intros. InvBooleans. auto. Qed.
  Definition ge := vge.
  Lemma ge_refl: forall x y, eq x y -> ge x y.
  Proof. unfold eq, ge; intros. subst y. apply vge_refl. Qed.
  Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
  Proof. unfold ge; intros. eapply vge_trans; eauto. Qed.
  Definition bot : t := Vbot.
  Lemma ge_bot: forall x, ge x bot.
  Proof. intros. constructor. Qed.
  Definition top : t := Vtop.
  Lemma ge_top: forall x, ge top x.
  Proof. intros. apply vge_top. Qed.
  Definition lub := vlub.
  Lemma ge_lub_left: forall x y, ge (lub x y) x.
  Proof vge_lub_l.
  Lemma ge_lub_right: forall x y, ge (lub x y) y.
  Proof vge_lub_r.
End AVal.

Module AE := LPMap(AVal).

Definition aenv := AE.t.

Section MATCHENV.

Variable bc: block_classification.

Definition ematch (e: regset) (ae: aenv) : Prop :=
  forall r, vmatch bc e#r (AE.get r ae).

Lemma ematch_ge:
  forall e ae1 ae2,
  ematch e ae1 -> AE.ge ae2 ae1 -> ematch e ae2.
Proof.
  intros; red; intros. apply vmatch_ge with (AE.get r ae1); auto. apply H0.
Qed.

Lemma ematch_update:
  forall e ae v av r,
  ematch e ae -> vmatch bc v av -> ematch (e#r <- v) (AE.set r av ae).
Proof.
  intros; red; intros. rewrite AE.gsspec. rewrite PMap.gsspec.
  destruct (peq r0 r); auto.
  red; intros. specialize (H xH). subst ae. simpl in H. inv H.
  unfold AVal.eq; red; intros. subst av. inv H0.
Qed.

Fixpoint einit_regs (rl: list reg) : aenv :=
  match rl with
  | r1 :: rs => AE.set r1 (Ifptr Nonstack) (einit_regs rs)
  | nil => AE.top
  end.

Lemma ematch_init:
  forall rl vl,
  (forall v, In v vl -> vmatch bc v (Ifptr Nonstack)) ->
  ematch (init_regs vl rl) (einit_regs rl).
Proof.
  induction rl; simpl; intros.
- red; intros. rewrite Regmap.gi. simpl.
  constructor.
- destruct vl as [ | v1 vs ].
  + assert (ematch (init_regs nil rl) (einit_regs rl)).
    { apply IHrl. simpl; tauto. }
    replace (init_regs nil rl) with (Regmap.init Vundef) in H0 by (destruct rl; auto).
    red; intros. rewrite AE.gsspec. destruct (peq r a).
    rewrite Regmap.gi. constructor.
    apply H0.
    red; intros EQ; rewrite EQ in H0. specialize (H0 xH). simpl in H0. inv H0.
    unfold AVal.eq, AVal.bot. congruence.
  + assert (ematch (init_regs vs rl) (einit_regs rl)).
    { apply IHrl. eauto with coqlib. }
    red; intros. rewrite Regmap.gsspec. rewrite AE.gsspec. destruct (peq r a).
    auto with coqlib.
    apply H0.
    red; intros EQ; rewrite EQ in H0. specialize (H0 xH). simpl in H0. inv H0.
    unfold AVal.eq, AVal.bot. congruence.
Qed.

Fixpoint eforget (rl: list reg) (ae: aenv) {struct rl} : aenv :=
  match rl with
  | nil => ae
  | r1 :: rs => eforget rs (AE.set r1 Vtop ae)
  end.

Lemma eforget_ge:
  forall rl ae, AE.ge (eforget rl ae) ae.
Proof.
  unfold AE.ge; intros. revert rl ae; induction rl; intros; simpl.
  apply AVal.ge_refl. apply AVal.eq_refl.
  destruct ae. unfold AE.get at 2. apply AVal.ge_bot.
  eapply AVal.ge_trans. apply IHrl. rewrite AE.gsspec.
  destruct (peq p a). apply AVal.ge_top. apply AVal.ge_refl. apply AVal.eq_refl.
  congruence.
  unfold AVal.eq, Vtop, AVal.bot. congruence.
Qed.

Lemma ematch_forget:
  forall e rl ae, ematch e ae -> ematch e (eforget rl ae).
Proof.
  intros. eapply ematch_ge; eauto. apply eforget_ge.
Qed.

End MATCHENV.

Lemma ematch_incr:
  forall bc bc' e ae, ematch bc e ae -> bc_incr bc bc' -> ematch bc' e ae.
Proof.
  intros; red; intros. apply vmatch_incr with bc; auto.
Qed.

(** * Lattice for dataflow analysis *)

Module VA <: SEMILATTICE.

  Inductive t' := Bot | State (ae: aenv) (am: amem).
  Definition t := t'.

  Definition eq (x y: t) :=
    match x, y with
    | Bot, Bot => True
    | State ae1 am1, State ae2 am2 =>
        AE.eq ae1 ae2 /\ forall bc m, mmatch bc m am1 <-> mmatch bc m am2
    | _, _ => False
    end.

  Lemma eq_refl: forall x, eq x x.
  Proof.
    destruct x; simpl. auto. split. apply AE.eq_refl. tauto.
  Qed.
  Lemma eq_sym: forall x y, eq x y -> eq y x.
  Proof.
    destruct x, y; simpl; auto. intros [A B].
    split. apply AE.eq_sym; auto. intros. rewrite B. tauto.
  Qed.
  Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
  Proof.
    destruct x, y, z; simpl; try tauto. intros [A B] [C D]; split.
    eapply AE.eq_trans; eauto.
    intros. rewrite B; auto.
  Qed.

  Definition beq (x y: t) : bool :=
    match x, y with
    | Bot, Bot => true
    | State ae1 am1, State ae2 am2 => AE.beq ae1 ae2 && mbeq am1 am2
    | _, _ => false
    end.

  Lemma beq_correct: forall x y, beq x y = true -> eq x y.
  Proof.
    destruct x, y; simpl; intros.
    auto.
    congruence.
    congruence.
    InvBooleans; split.
    apply AE.beq_correct; auto.
    intros. apply mbeq_sound; auto.
  Qed.

  Definition ge (x y: t) : Prop :=
    match x, y with
    | _, Bot => True
    | Bot, _ => False
    | State ae1 am1, State ae2 am2 => AE.ge ae1 ae2 /\ forall bc m, mmatch bc m am2 -> mmatch bc m am1
    end.

  Lemma ge_refl: forall x y, eq x y -> ge x y.
  Proof.
    destruct x, y; simpl; try tauto. intros [A B]; split.
    apply AE.ge_refl; auto.
    intros. rewrite B; auto.
  Qed.
  Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
  Proof.
    destruct x, y, z; simpl; try tauto. intros [A B] [C D]; split.
    eapply AE.ge_trans; eauto.
    eauto.
  Qed.

  Definition bot : t := Bot.
  Lemma ge_bot: forall x, ge x bot.
  Proof.
    destruct x; simpl; auto.
  Qed.

  Definition lub (x y: t) : t :=
    match x, y with
    | Bot, _ => y
    | _, Bot => x
    | State ae1 am1, State ae2 am2 => State (AE.lub ae1 ae2) (mlub am1 am2)
    end.

  Lemma ge_lub_left: forall x y, ge (lub x y) x.
  Proof.
    destruct x, y.
    apply ge_refl; apply eq_refl.
    simpl. auto.
    apply ge_refl; apply eq_refl.
    simpl. split. apply AE.ge_lub_left. intros; apply mmatch_lub_l; auto.
  Qed.
  Lemma ge_lub_right: forall x y, ge (lub x y) y.
  Proof.
    destruct x, y.
    apply ge_refl; apply eq_refl.
    apply ge_refl; apply eq_refl.
    simpl. auto.
    simpl. split. apply AE.ge_lub_right. intros; apply mmatch_lub_r; auto.
  Qed.

End VA.

Global Hint Constructors cmatch : va.
Global Hint Constructors pmatch: va.
Global Hint Constructors vmatch: va.
Global Hint Resolve cnot_sound symbol_address_sound
       shl_sound shru_sound shr_sound
       and_sound or_sound xor_sound notint_sound
       ror_sound rolm_sound
       neg_sound add_sound sub_sound
       mul_sound mulhs_sound mulhu_sound
       divs_sound divu_sound mods_sound modu_sound shrx_sound
       shll_sound shrl_sound shrlu_sound
       andl_sound orl_sound xorl_sound notl_sound roll_sound rorl_sound
       negl_sound addl_sound subl_sound
       mull_sound mullhs_sound mullhu_sound
       divls_sound divlu_sound modls_sound modlu_sound shrxl_sound
       offset_ptr_sound
       negf_sound absf_sound
       addf_sound subf_sound mulf_sound divf_sound
       negfs_sound absfs_sound
       addfs_sound subfs_sound mulfs_sound divfs_sound
       zero_ext_sound sign_ext_sound longofint_sound longofintu_sound
       zero_ext_l_sound sign_ext_l_sound
       singleoffloat_sound floatofsingle_sound
       intoffloat_sound intuoffloat_sound floatofint_sound floatofintu_sound
       intofsingle_sound intuofsingle_sound singleofint_sound singleofintu_sound
       longoffloat_sound longuoffloat_sound floatoflong_sound floatoflongu_sound
       longofsingle_sound longuofsingle_sound singleoflong_sound singleoflongu_sound
       intofsingle_ne_sound intuofsingle_ne_sound
       longoffloat_ne_sound longuoffloat_ne_sound
       intofsingle_ne_total_sound intuofsingle_ne_total_sound
       longoffloat_ne_total_sound longuoffloat_ne_total_sound
       longofwords_sound loword_sound hiword_sound
       intoffloat_total_sound
       intuoffloat_total_sound
       intofsingle_total_sound
       intuofsingle_total_sound
       singleofint_total_sound
       singleofintu_total_sound
       longoffloat_total_sound
       longuoffloat_total_sound
       longofsingle_total_sound
       longuofsingle_total_sound
       singleoflong_total_sound
       singleoflongu_total_sound
       floatoflong_total_sound
       floatoflongu_total_sound
       floatofint_total_sound
       floatofintu_total_sound
       divu_total_sound divs_total_sound
       modu_total_sound mods_total_sound shrx_total_sound
       divlu_total_sound divls_total_sound
       modlu_total_sound modls_total_sound shrxl_total_sound
       cmpu_bool_sound cmp_bool_sound cmplu_bool_sound cmpl_bool_sound
       cmpf_bool_sound cmpfs_bool_sound
       maskzero_sound : va.