aboutsummaryrefslogtreecommitdiffstats
path: root/cfrontend/Csem.v
blob: 6698c56f4e3763115d73b14ab4f78f4f34466ac0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU Lesser General Public License as        *)
(*  published by the Free Software Foundation, either version 2.1 of   *)
(*  the License, or  (at your option) any later version.               *)
(*  This file is also distributed under the terms of the               *)
(*  INRIA Non-Commercial License Agreement.                            *)
(*                                                                     *)
(* *********************************************************************)

(** Dynamic semantics for the Compcert C language *)

Require Import Coqlib Errors Maps.
Require Import Integers Floats Values AST Memory Builtins Events Globalenvs.
Require Import Ctypes Cop Csyntax.
Require Import Smallstep.

(** * Operational semantics *)

(** The semantics uses two environments.  The global environment
  maps names of functions and global variables to memory block references,
  and function pointers to their definitions.  (See module [Globalenvs].)
  It also contains a composite environment, used by type-dependent operations. *)

Record genv := { genv_genv :> Genv.t fundef type; genv_cenv :> composite_env }.

Definition globalenv (p: program) :=
  {| genv_genv := Genv.globalenv p; genv_cenv := p.(prog_comp_env) |}.

(** The local environment maps local variables to block references and types.
  The current value of the variable is stored in the associated memory
  block. *)

Definition env := PTree.t (block * type). (* map variable -> location & type *)

Definition empty_env: env := (PTree.empty (block * type)).


Section SEMANTICS.

Variable ge: genv.

(** [deref_loc ty m b ofs bf t v] computes the value of a datum
  of type [ty] residing in memory [m] at block [b], offset [ofs],
  and bitfield designation [bf].
  If the type [ty] indicates an access by value, the corresponding
  memory load is performed.  If the type [ty] indicates an access by
  reference, the pointer [Vptr b ofs] is returned.  [v] is the value
  returned, and [t] the trace of observables (nonempty if this is
  a volatile access). *)

Inductive deref_loc (ty: type) (m: mem) (b: block) (ofs: ptrofs) :
                                       bitfield -> trace -> val -> Prop :=
  | deref_loc_value: forall chunk v,
      access_mode ty = By_value chunk ->
      type_is_volatile ty = false ->
      Mem.loadv chunk m (Vptr b ofs) = Some v ->
      deref_loc ty m b ofs Full E0 v
  | deref_loc_volatile: forall chunk t v,
      access_mode ty = By_value chunk -> type_is_volatile ty = true ->
      volatile_load ge chunk m b ofs t v ->
      deref_loc ty m b ofs Full t v
  | deref_loc_reference:
      access_mode ty = By_reference ->
      deref_loc ty m b ofs Full E0 (Vptr b ofs)
  | deref_loc_copy:
      access_mode ty = By_copy ->
      deref_loc ty m b ofs Full E0 (Vptr b ofs)
  | deref_loc_bitfield: forall sz sg pos width v,
      load_bitfield ty sz sg pos width m (Vptr b ofs) v ->
      deref_loc ty m b ofs (Bits sz sg pos width) E0 v.

(** Symmetrically, [assign_loc ty m b ofs bf v t m' v'] returns the
  memory state after storing the value [v] in the datum
  of type [ty] residing in memory [m] at block [b], offset [ofs],
  and bitfield designation [bf].
  This is allowed only if [ty] indicates an access by value or by copy.
  [m'] is the updated memory state and [t] the trace of observables
  (nonempty if this is a volatile store).
  [v'] is the result value of the assignment.  It is equal to [v]
  if [bf] is [Full], and to [v] normalized to the width and signedness
  of the bitfield [bf] otherwise.
*)

Inductive assign_loc (ty: type) (m: mem) (b: block) (ofs: ptrofs):
                              bitfield -> val -> trace -> mem -> val -> Prop :=
  | assign_loc_value: forall v chunk m',
      access_mode ty = By_value chunk ->
      type_is_volatile ty = false ->
      Mem.storev chunk m (Vptr b ofs) v = Some m' ->
      assign_loc ty m b ofs Full v E0 m' v
  | assign_loc_volatile: forall v chunk t m',
      access_mode ty = By_value chunk -> type_is_volatile ty = true ->
      volatile_store ge chunk m b ofs v t m' ->
      assign_loc ty m b ofs Full v t m' v
  | assign_loc_copy: forall b' ofs' bytes m',
      access_mode ty = By_copy ->
      (alignof_blockcopy ge ty | Ptrofs.unsigned ofs') ->
      (alignof_blockcopy ge ty | Ptrofs.unsigned ofs) ->
      b' <> b \/ Ptrofs.unsigned ofs' = Ptrofs.unsigned ofs
              \/ Ptrofs.unsigned ofs' + sizeof ge ty <= Ptrofs.unsigned ofs
              \/ Ptrofs.unsigned ofs + sizeof ge ty <= Ptrofs.unsigned ofs' ->
      Mem.loadbytes m b' (Ptrofs.unsigned ofs') (sizeof ge ty) = Some bytes ->
      Mem.storebytes m b (Ptrofs.unsigned ofs) bytes = Some m' ->
      assign_loc ty m b ofs Full (Vptr b' ofs') E0 m' (Vptr b' ofs')
  | assign_loc_bitfield: forall sz sg pos width v m' v',
      store_bitfield ty sz sg pos width m (Vptr b ofs) v m' v' ->
      assign_loc ty m b ofs (Bits sz sg pos width) v E0 m' v'.

(** Allocation of function-local variables.
  [alloc_variables e1 m1 vars e2 m2] allocates one memory block
  for each variable declared in [vars], and associates the variable
  name with this block.  [e1] and [m1] are the initial local environment
  and memory state.  [e2] and [m2] are the final local environment
  and memory state. *)

Inductive alloc_variables: env -> mem ->
                           list (ident * type) ->
                           env -> mem -> Prop :=
  | alloc_variables_nil:
      forall e m,
      alloc_variables e m nil e m
  | alloc_variables_cons:
      forall e m id ty vars m1 b1 m2 e2,
      Mem.alloc m 0 (sizeof ge ty) = (m1, b1) ->
      alloc_variables (PTree.set id (b1, ty) e) m1 vars e2 m2 ->
      alloc_variables e m ((id, ty) :: vars) e2 m2.

(** Initialization of local variables that are parameters to a function.
  [bind_parameters e m1 params args m2] stores the values [args]
  in the memory blocks corresponding to the variables [params].
  [m1] is the initial memory state and [m2] the final memory state. *)

Inductive bind_parameters (e: env):
                           mem -> list (ident * type) -> list val ->
                           mem -> Prop :=
  | bind_parameters_nil:
      forall m,
      bind_parameters e m nil nil m
  | bind_parameters_cons:
      forall m id ty params v1 vl v1' b m1 m2,
      PTree.get id e = Some(b, ty) ->
      assign_loc ty m b Ptrofs.zero Full v1 E0 m1 v1' ->
      bind_parameters e m1 params vl m2 ->
      bind_parameters e m ((id, ty) :: params) (v1 :: vl) m2.

(** Return the list of blocks in the codomain of [e], with low and high bounds. *)

Definition block_of_binding (id_b_ty: ident * (block * type)) :=
  match id_b_ty with (id, (b, ty)) => (b, 0, sizeof ge ty) end.

Definition blocks_of_env (e: env) : list (block * Z * Z) :=
  List.map block_of_binding (PTree.elements e).

(** Selection of the appropriate case of a [switch], given the value [n]
  of the selector expression. *)

Fixpoint select_switch_default (sl: labeled_statements): labeled_statements :=
  match sl with
  | LSnil => sl
  | LScons None s sl' => sl
  | LScons (Some i) s sl' => select_switch_default sl'
  end.

Fixpoint select_switch_case (n: Z) (sl: labeled_statements): option labeled_statements :=
  match sl with
  | LSnil => None
  | LScons None s sl' => select_switch_case n sl'
  | LScons (Some c) s sl' => if zeq c n then Some sl else select_switch_case n sl'
  end.

Definition select_switch (n: Z) (sl: labeled_statements): labeled_statements :=
  match select_switch_case n sl with
  | Some sl' => sl'
  | None => select_switch_default sl
  end.

(** Turn a labeled statement into a sequence *)

Fixpoint seq_of_labeled_statement (sl: labeled_statements) : statement :=
  match sl with
  | LSnil => Sskip
  | LScons _ s sl' => Ssequence s (seq_of_labeled_statement sl')
  end.

(** Extract the values from a list of function arguments *)

Inductive cast_arguments (m: mem): exprlist -> typelist -> list val -> Prop :=
  | cast_args_nil:
      cast_arguments m Enil Tnil nil
  | cast_args_cons: forall v ty el targ1 targs v1 vl,
      sem_cast v ty targ1 m = Some v1 -> cast_arguments m el targs vl ->
      cast_arguments m (Econs (Eval v ty) el) (Tcons targ1 targs) (v1 :: vl).

(** ** Reduction semantics for expressions *)

Section EXPR.

Variable e: env.

(** The semantics of expressions follows the popular Wright-Felleisen style.
  It is a small-step semantics that reduces one redex at a time.
  We first define head reductions (at the top of an expression, then
  use reduction contexts to define reduction within an expression. *)

(** Head reduction for l-values. *)

Inductive lred: expr -> mem -> expr -> mem -> Prop :=
  | red_var_local: forall x ty m b,
      e!x = Some(b, ty) ->
      lred (Evar x ty) m
           (Eloc b Ptrofs.zero Full ty) m
  | red_var_global: forall x ty m b,
      e!x = None ->
      Genv.find_symbol ge x = Some b ->
      lred (Evar x ty) m
           (Eloc b Ptrofs.zero Full ty) m
  | red_deref: forall b ofs ty1 ty m,
      lred (Ederef (Eval (Vptr b ofs) ty1) ty) m
           (Eloc b ofs Full ty) m
  | red_field_struct: forall b ofs id co a f ty m delta bf,
      ge.(genv_cenv)!id = Some co ->
      field_offset ge f (co_members co) = OK (delta, bf) ->
      lred (Efield (Eval (Vptr b ofs) (Tstruct id a)) f ty) m
           (Eloc b (Ptrofs.add ofs (Ptrofs.repr delta)) bf ty) m
  | red_field_union: forall b ofs id co a f ty m delta bf,
      ge.(genv_cenv)!id = Some co ->
      union_field_offset ge f (co_members co) = OK (delta, bf) ->
      lred (Efield (Eval (Vptr b ofs) (Tunion id a)) f ty) m
           (Eloc b (Ptrofs.add ofs (Ptrofs.repr delta)) bf ty) m.

(** Head reductions for r-values *)

Inductive rred: expr -> mem -> trace -> expr -> mem -> Prop :=
  | red_rvalof: forall b ofs bf ty m t v,
      deref_loc ty m b ofs bf t v ->
      rred (Evalof (Eloc b ofs bf ty) ty) m
         t (Eval v ty) m
  | red_addrof: forall b ofs ty1 ty m,
      rred (Eaddrof (Eloc b ofs Full ty1) ty) m
        E0 (Eval (Vptr b ofs) ty) m
  | red_unop: forall op v1 ty1 ty m v,
      sem_unary_operation op v1 ty1 m = Some v ->
      rred (Eunop op (Eval v1 ty1) ty) m
        E0 (Eval v ty) m
  | red_binop: forall op v1 ty1 v2 ty2 ty m v,
      sem_binary_operation ge op v1 ty1 v2 ty2 m = Some v ->
      rred (Ebinop op (Eval v1 ty1) (Eval v2 ty2) ty) m
        E0 (Eval v ty) m
  | red_cast: forall ty v1 ty1 m v,
      sem_cast v1 ty1 ty m = Some v ->
      rred (Ecast (Eval v1 ty1) ty) m
        E0 (Eval v ty) m
  | red_seqand_true: forall v1 ty1 r2 ty m,
      bool_val v1 ty1 m = Some true ->
      rred (Eseqand (Eval v1 ty1) r2 ty) m
        E0 (Eparen r2 type_bool ty) m
  | red_seqand_false: forall v1 ty1 r2 ty m,
      bool_val v1 ty1 m = Some false ->
      rred (Eseqand (Eval v1 ty1) r2 ty) m
        E0 (Eval (Vint Int.zero) ty) m
  | red_seqor_true: forall v1 ty1 r2 ty m,
      bool_val v1 ty1 m = Some true ->
      rred (Eseqor (Eval v1 ty1) r2 ty) m
        E0 (Eval (Vint Int.one) ty) m
  | red_seqor_false: forall v1 ty1 r2 ty m,
      bool_val v1 ty1 m = Some false ->
      rred (Eseqor (Eval v1 ty1) r2 ty) m
        E0 (Eparen r2 type_bool ty) m
  | red_condition: forall v1 ty1 r1 r2 ty b m,
      bool_val v1 ty1 m = Some b ->
      rred (Econdition (Eval v1 ty1) r1 r2 ty) m
        E0 (Eparen (if b then r1 else r2) ty ty) m
  | red_sizeof: forall ty1 ty m,
      rred (Esizeof ty1 ty) m
        E0 (Eval (Vptrofs (Ptrofs.repr (sizeof ge ty1))) ty) m
  | red_alignof: forall ty1 ty m,
      rred (Ealignof ty1 ty) m
        E0 (Eval (Vptrofs (Ptrofs.repr (alignof ge ty1))) ty) m
  | red_assign: forall b ofs ty1 bf v2 ty2 m v t m' v',
      sem_cast v2 ty2 ty1 m = Some v ->
      assign_loc ty1 m b ofs bf v t m' v' ->
      rred (Eassign (Eloc b ofs bf ty1) (Eval v2 ty2) ty1) m
         t (Eval v' ty1) m'
  | red_assignop: forall op b ofs ty1 bf v2 ty2 tyres m t v1,
      deref_loc ty1 m b ofs bf t v1 ->
      rred (Eassignop op (Eloc b ofs bf ty1) (Eval v2 ty2) tyres ty1) m
         t (Eassign (Eloc b ofs bf ty1)
                    (Ebinop op (Eval v1 ty1) (Eval v2 ty2) tyres) ty1) m
  | red_postincr: forall id b ofs ty bf m t v1 op,
      deref_loc ty m b ofs bf t v1 ->
      op = match id with Incr => Oadd | Decr => Osub end ->
      rred (Epostincr id (Eloc b ofs bf ty) ty) m
         t (Ecomma (Eassign (Eloc b ofs bf ty)
                            (Ebinop op (Eval v1 ty)
                                       (Eval (Vint Int.one) type_int32s)
                                       (incrdecr_type ty))
                           ty)
                   (Eval v1 ty) ty) m
  | red_comma: forall v ty1 r2 ty m,
      typeof r2 = ty ->
      rred (Ecomma (Eval v ty1) r2 ty) m
        E0 r2 m
  | red_paren: forall v1 ty1 ty2 ty m v,
      sem_cast v1 ty1 ty2 m = Some v ->
      rred (Eparen (Eval v1 ty1) ty2 ty) m
        E0 (Eval v ty) m
  | red_builtin: forall ef tyargs el ty m vargs t vres m',
      cast_arguments m el tyargs vargs ->
      external_call ef ge vargs m t vres m' ->
      rred (Ebuiltin ef tyargs el ty) m
         t (Eval vres ty) m'.


(** Head reduction for function calls.
    (More exactly, identification of function calls that can reduce.) *)

Inductive callred: expr -> mem -> fundef -> list val -> type -> Prop :=
  | red_call: forall vf tyf m tyargs tyres cconv el ty fd vargs,
      Genv.find_funct ge vf = Some fd ->
      cast_arguments m el tyargs vargs ->
      type_of_fundef fd = Tfunction tyargs tyres cconv ->
      classify_fun tyf = fun_case_f tyargs tyres cconv ->
      callred (Ecall (Eval vf tyf) el ty) m
              fd vargs ty.

(** Reduction contexts.  In accordance with C's nondeterministic semantics,
  we allow reduction both to the left and to the right of a binary operator.
  To enforce C's notion of sequence point, reductions within a conditional
  [a ? b : c] can only take place in [a], not in [b] nor [c];
  reductions within a sequential "or" / "and" [a && b] or [a || b] can
  only take place in [a], not in [b];
  and reductions within a sequence [a, b] can only take place in [a],
  not in [b].

  Reduction contexts are represented by functions [C] from expressions
  to expressions, suitably constrained by the [context from to C]
  predicate below.  Contexts are "kinded" with respect to l-values and
  r-values: [from] is the kind of the hole in the context and [to] is
  the kind of the term resulting from filling the hole.
*)

Inductive kind : Type := LV | RV.

Inductive context: kind -> kind -> (expr -> expr) -> Prop :=
  | ctx_top: forall k,
      context k k (fun x => x)
  | ctx_deref: forall k C ty,
      context k RV C -> context k LV (fun x => Ederef (C x) ty)
  | ctx_field: forall k C f ty,
      context k RV C -> context k LV (fun x => Efield (C x) f ty)
  | ctx_rvalof: forall k C ty,
      context k LV C -> context k RV (fun x => Evalof (C x) ty)
  | ctx_addrof: forall k C ty,
      context k LV C -> context k RV (fun x => Eaddrof (C x) ty)
  | ctx_unop: forall k C op ty,
      context k RV C -> context k RV (fun x => Eunop op (C x) ty)
  | ctx_binop_left: forall k C op e2 ty,
      context k RV C -> context k RV (fun x => Ebinop op (C x) e2 ty)
  | ctx_binop_right: forall k C op e1 ty,
      context k RV C -> context k RV (fun x => Ebinop op e1 (C x) ty)
  | ctx_cast: forall k C ty,
      context k RV C -> context k RV (fun x => Ecast (C x) ty)
  | ctx_seqand: forall k C r2 ty,
      context k RV C -> context k RV (fun x => Eseqand (C x) r2 ty)
  | ctx_seqor: forall k C r2 ty,
      context k RV C -> context k RV (fun x => Eseqor (C x) r2 ty)
  | ctx_condition: forall k C r2 r3 ty,
      context k RV C -> context k RV (fun x => Econdition (C x) r2 r3 ty)
  | ctx_assign_left: forall k C e2 ty,
      context k LV C -> context k RV (fun x => Eassign (C x) e2 ty)
  | ctx_assign_right: forall k C e1 ty,
      context k RV C -> context k RV (fun x => Eassign e1 (C x) ty)
  | ctx_assignop_left: forall k C op e2 tyres ty,
      context k LV C -> context k RV (fun x => Eassignop op (C x) e2 tyres ty)
  | ctx_assignop_right: forall k C op e1 tyres ty,
      context k RV C -> context k RV (fun x => Eassignop op e1 (C x) tyres ty)
  | ctx_postincr: forall k C id ty,
      context k LV C -> context k RV (fun x => Epostincr id (C x) ty)
  | ctx_call_left: forall k C el ty,
      context k RV C -> context k RV (fun x => Ecall (C x) el ty)
  | ctx_call_right: forall k C e1 ty,
      contextlist k C -> context k RV (fun x => Ecall e1 (C x) ty)
  | ctx_builtin: forall k C ef tyargs ty,
      contextlist k C -> context k RV (fun x => Ebuiltin ef tyargs (C x) ty)
  | ctx_comma: forall k C e2 ty,
      context k RV C -> context k RV (fun x => Ecomma (C x) e2 ty)
  | ctx_paren: forall k C tycast ty,
      context k RV C -> context k RV (fun x => Eparen (C x) tycast ty)

with contextlist: kind -> (expr -> exprlist) -> Prop :=
  | ctx_list_head: forall k C el,
      context k RV C -> contextlist k (fun x => Econs (C x) el)
  | ctx_list_tail: forall k C e1,
      contextlist k C -> contextlist k (fun x => Econs e1 (C x)).

(** In a nondeterministic semantics, expressions can go wrong according
  to one reduction order while being defined according to another.
  Consider for instance [(x = 1) + (10 / x)] where [x] is initially [0].
  This expression goes wrong if evaluated right-to-left, but is defined
  if evaluated left-to-right.  Since our compiler is going to pick one
  particular evaluation order, we must make sure that all orders are safe,
  i.e. never evaluate a subexpression that goes wrong.

  Being safe is a stronger requirement than just not getting stuck during
  reductions.  Consider [f() + (10 / x)], where [f()] does not terminate.
  This expression is never stuck because the evaluation of [f()] can make
  infinitely many transitions.  Yet it contains a subexpression [10 / x]
  that can go wrong if [x = 0], and the compiler may choose to evaluate
  [10 / x] first, before calling [f()].

  Therefore, we must make sure that not only an expression cannot get stuck,
  but none of its subexpressions can either.  We say that a subexpression
  is not immediately stuck if it is a value (of the appropriate kind)
  or it can reduce (at head or within). *)

Inductive imm_safe: kind -> expr -> mem -> Prop :=
  | imm_safe_val: forall v ty m,
      imm_safe RV (Eval v ty) m
  | imm_safe_loc: forall b ofs bf ty m,
      imm_safe LV (Eloc b ofs bf ty) m
  | imm_safe_lred: forall to C e m e' m',
      lred e m e' m' ->
      context LV to C ->
      imm_safe to (C e) m
  | imm_safe_rred: forall to C e m t e' m',
      rred e m t e' m' ->
      context RV to C ->
      imm_safe to (C e) m
  | imm_safe_callred: forall to C e m fd args ty,
      callred e m fd args ty ->
      context RV to C ->
      imm_safe to (C e) m.

Definition not_stuck (e: expr) (m: mem) : Prop :=
  forall k C e' ,
  context k RV C -> e = C e' -> imm_safe k e' m.

(** ** Derived forms. *)

(** The following are admissible reduction rules for some derived forms
  of the CompCert C language.  They help showing that the derived forms
  make sense. *)

Lemma red_selection:
  forall v1 ty1 v2 ty2 v3 ty3 ty m b v2' v3',
  ty <> Tvoid ->
  bool_val v1 ty1 m = Some b ->
  sem_cast v2 ty2 ty m = Some v2' ->
  sem_cast v3 ty3 ty m = Some v3' ->
  rred (Eselection (Eval v1 ty1) (Eval v2 ty2) (Eval v3 ty3) ty) m
    E0 (Eval (if b then v2' else v3') ty) m.
Proof.
  intros. unfold Eselection.
  set (t := typ_of_type ty).
  set (sg := mksignature (AST.Tint :: t :: t :: nil) t cc_default).
  assert (LK: lookup_builtin_function "__builtin_sel"%string sg = Some (BI_standard (BI_select t))).
  { unfold sg, t; destruct ty as   [ | ? ? ? | ? | [] ? | ? ? | ? ? ? | ? ? ? | ? ? | ? ? ];
    simpl; unfold Tptr; destruct Archi.ptr64; reflexivity. }
  set (v' := if b then v2' else v3').
  assert (C: val_casted v' ty).
  { unfold v'; destruct b; eapply cast_val_is_casted; eauto. }
  assert (EQ: Val.normalize v' t = v').
  { apply Val.normalize_idem. apply val_casted_has_type; auto. }
  econstructor.
- constructor. rewrite cast_bool_bool_val, H0. eauto.
  constructor. eauto.
  constructor. eauto.
  constructor.
- red. red. rewrite LK. constructor. simpl. rewrite <- EQ.
  destruct b; auto.
Qed.

Lemma ctx_selection_1:
  forall k C r2 r3 ty, context k RV C -> context k RV (fun x => Eselection (C x) r2 r3 ty).
Proof.
  intros. apply ctx_builtin. constructor; auto.
Qed.

Lemma ctx_selection_2:
  forall k r1 C r3 ty, context k RV C -> context k RV (fun x => Eselection r1 (C x) r3 ty).
Proof.
  intros. apply ctx_builtin. constructor; constructor; auto.
Qed.

Lemma ctx_selection_3:
  forall k r1 r2 C ty, context k RV C -> context k RV (fun x => Eselection r1 r2 (C x) ty).
Proof.
  intros. apply ctx_builtin. constructor; constructor; constructor; auto.
Qed.

End EXPR.

(** ** Transition semantics. *)

(** Continuations describe the computations that remain to be performed
    after the statement or expression under consideration has
    evaluated completely. *)

Inductive cont: Type :=
  | Kstop: cont
  | Kdo: cont -> cont       (**r [Kdo k] = after [x] in [x;] *)
  | Kseq: statement -> cont -> cont    (**r [Kseq s2 k] = after [s1] in [s1;s2] *)
  | Kifthenelse: statement -> statement -> cont -> cont     (**r [Kifthenelse s1 s2 k] = after [x] in [if (x) { s1 } else { s2 }] *)
  | Kwhile1: expr -> statement -> cont -> cont      (**r [Kwhile1 x s k] = after [x] in [while(x) s] *)
  | Kwhile2: expr -> statement -> cont -> cont      (**r [Kwhile x s k] = after [s] in [while (x) s] *)
  | Kdowhile1: expr -> statement -> cont -> cont    (**r [Kdowhile1 x s k] = after [s] in [do s while (x)] *)
  | Kdowhile2: expr -> statement -> cont -> cont    (**r [Kdowhile2 x s k] = after [x] in [do s while (x)] *)
  | Kfor2: expr -> statement -> statement -> cont -> cont   (**r [Kfor2 e2 e3 s k] = after [e2] in [for(e1;e2;e3) s] *)
  | Kfor3: expr -> statement -> statement -> cont -> cont   (**r [Kfor3 e2 e3 s k] = after [s] in [for(e1;e2;e3) s] *)
  | Kfor4: expr -> statement -> statement -> cont -> cont   (**r [Kfor4 e2 e3 s k] = after [e3] in [for(e1;e2;e3) s] *)
  | Kswitch1: labeled_statements -> cont -> cont     (**r [Kswitch1 ls k] = after [e] in [switch(e) { ls }] *)
  | Kswitch2: cont -> cont       (**r catches [break] statements arising out of [switch] *)
  | Kreturn: cont -> cont        (**r [Kreturn k] = after [e] in [return e;] *)
  | Kcall: function ->           (**r calling function *)
           env ->                (**r local env of calling function *)
           (expr -> expr) ->     (**r context of the call *)
           type ->               (**r type of call expression *)
           cont -> cont.

(** Pop continuation until a call or stop *)

Fixpoint call_cont (k: cont) : cont :=
  match k with
  | Kstop => k
  | Kdo k => k
  | Kseq s k => call_cont k
  | Kifthenelse s1 s2 k => call_cont k
  | Kwhile1 e s k => call_cont k
  | Kwhile2 e s k => call_cont k
  | Kdowhile1 e s k => call_cont k
  | Kdowhile2 e s k => call_cont k
  | Kfor2 e2 e3 s k => call_cont k
  | Kfor3 e2 e3 s k => call_cont k
  | Kfor4 e2 e3 s k => call_cont k
  | Kswitch1 ls k => call_cont k
  | Kswitch2 k => call_cont k
  | Kreturn k => call_cont k
  | Kcall _ _ _ _ _ => k
  end.

Definition is_call_cont (k: cont) : Prop :=
  match k with
  | Kstop => True
  | Kcall _ _ _ _ _ => True
  | _ => False
  end.

(** Execution states of the program are grouped in 4 classes corresponding
  to the part of the program we are currently executing.  It can be
  a statement ([State]), an expression ([ExprState]), a transition
  from a calling function to a called function ([Callstate]), or
  the symmetrical transition from a function back to its caller
  ([Returnstate]). *)

Inductive state: Type :=
  | State                               (**r execution of a statement *)
      (f: function)
      (s: statement)
      (k: cont)
      (e: env)
      (m: mem) : state
  | ExprState                           (**r reduction of an expression *)
      (f: function)
      (r: expr)
      (k: cont)
      (e: env)
      (m: mem) : state
  | Callstate                           (**r calling a function *)
      (fd: fundef)
      (args: list val)
      (k: cont)
      (m: mem) : state
  | Returnstate                         (**r returning from a function *)
      (res: val)
      (k: cont)
      (m: mem) : state
  | Stuckstate.                         (**r undefined behavior occurred *)

(** Find the statement and manufacture the continuation
  corresponding to a label. *)

Fixpoint find_label (lbl: label) (s: statement) (k: cont)
                    {struct s}: option (statement * cont) :=
  match s with
  | Ssequence s1 s2 =>
      match find_label lbl s1 (Kseq s2 k) with
      | Some sk => Some sk
      | None => find_label lbl s2 k
      end
  | Sifthenelse a s1 s2 =>
      match find_label lbl s1 k with
      | Some sk => Some sk
      | None => find_label lbl s2 k
      end
  | Swhile a s1 =>
      find_label lbl s1 (Kwhile2 a s1 k)
  | Sdowhile a s1 =>
      find_label lbl s1 (Kdowhile1 a s1 k)
  | Sfor a1 a2 a3 s1 =>
      match find_label lbl a1 (Kseq (Sfor Sskip a2 a3 s1) k) with
      | Some sk => Some sk
      | None =>
          match find_label lbl s1 (Kfor3 a2 a3 s1 k) with
          | Some sk => Some sk
          | None => find_label lbl a3 (Kfor4 a2 a3 s1 k)
          end
      end
  | Sswitch e sl =>
      find_label_ls lbl sl (Kswitch2 k)
  | Slabel lbl' s' =>
      if ident_eq lbl lbl' then Some(s', k) else find_label lbl s' k
  | _ => None
  end

with find_label_ls (lbl: label) (sl: labeled_statements) (k: cont)
                    {struct sl}: option (statement * cont) :=
  match sl with
  | LSnil => None
  | LScons _ s sl' =>
      match find_label lbl s (Kseq (seq_of_labeled_statement sl') k) with
      | Some sk => Some sk
      | None => find_label_ls lbl sl' k
      end
  end.

(** We separate the transition rules in two groups:
- one group that deals with reductions over expressions;
- the other group that deals with everything else: statements, function calls, etc.

This makes it easy to express different reduction strategies for expressions:
the second group of rules can be reused as is. *)

Inductive estep: state -> trace -> state -> Prop :=

  | step_lred: forall C f a k e m a' m',
      lred e a m a' m' ->
      context LV RV C ->
      estep (ExprState f (C a) k e m)
         E0 (ExprState f (C a') k e m')

  | step_rred: forall C f a k e m t a' m',
      rred a m t a' m' ->
      context RV RV C ->
      estep (ExprState f (C a) k e m)
          t (ExprState f (C a') k e m')

  | step_call: forall C f a k e m fd vargs ty,
      callred a m fd vargs ty ->
      context RV RV C ->
      estep (ExprState f (C a) k e m)
         E0 (Callstate fd vargs (Kcall f e C ty k) m)

  | step_stuck: forall C f a k e m K,
      context K RV C -> ~(imm_safe e K a m) ->
      estep (ExprState f (C a) k e m)
         E0 Stuckstate.

Inductive sstep: state -> trace -> state -> Prop :=

  | step_do_1: forall f x k e m,
      sstep (State f (Sdo x) k e m)
         E0 (ExprState f x (Kdo k) e m)
  | step_do_2: forall f v ty k e m,
      sstep (ExprState f (Eval v ty) (Kdo k) e m)
         E0 (State f Sskip k e m)

  | step_seq:  forall f s1 s2 k e m,
      sstep (State f (Ssequence s1 s2) k e m)
         E0 (State f s1 (Kseq s2 k) e m)
  | step_skip_seq: forall f s k e m,
      sstep (State f Sskip (Kseq s k) e m)
         E0 (State f s k e m)
  | step_continue_seq: forall f s k e m,
      sstep (State f Scontinue (Kseq s k) e m)
         E0 (State f Scontinue k e m)
  | step_break_seq: forall f s k e m,
      sstep (State f Sbreak (Kseq s k) e m)
         E0 (State f Sbreak k e m)

  | step_ifthenelse_1: forall f a s1 s2 k e m,
      sstep (State f (Sifthenelse a s1 s2) k e m)
         E0 (ExprState f a (Kifthenelse s1 s2 k) e m)
  | step_ifthenelse_2:  forall f v ty s1 s2 k e m b,
      bool_val v ty m = Some b ->
      sstep (ExprState f (Eval v ty) (Kifthenelse s1 s2 k) e m)
         E0 (State f (if b then s1 else s2) k e m)

  | step_while: forall f x s k e m,
      sstep (State f (Swhile x s) k e m)
        E0 (ExprState f x (Kwhile1 x s k) e m)
  | step_while_false: forall f v ty x s k e m,
      bool_val v ty m = Some false ->
      sstep (ExprState f (Eval v ty) (Kwhile1 x s k) e m)
        E0 (State f Sskip k e m)
  | step_while_true: forall f v ty x s k e m ,
      bool_val v ty m = Some true ->
      sstep (ExprState f (Eval v ty) (Kwhile1 x s k) e m)
        E0 (State f s (Kwhile2 x s k) e m)
  | step_skip_or_continue_while: forall f s0 x s k e m,
      s0 = Sskip \/ s0 = Scontinue ->
      sstep (State f s0 (Kwhile2 x s k) e m)
        E0 (State f (Swhile x s) k e m)
  | step_break_while: forall f x s k e m,
      sstep (State f Sbreak (Kwhile2 x s k) e m)
        E0 (State f Sskip k e m)

  | step_dowhile: forall f a s k e m,
      sstep (State f (Sdowhile a s) k e m)
        E0 (State f s (Kdowhile1 a s k) e m)
  | step_skip_or_continue_dowhile: forall f s0 x s k e m,
      s0 = Sskip \/ s0 = Scontinue ->
      sstep (State f s0 (Kdowhile1 x s k) e m)
         E0 (ExprState f x (Kdowhile2 x s k) e m)
  | step_dowhile_false: forall f v ty x s k e m,
      bool_val v ty m = Some false ->
      sstep (ExprState f (Eval v ty) (Kdowhile2 x s k) e m)
         E0 (State f Sskip k e m)
  | step_dowhile_true: forall f v ty x s k e m,
      bool_val v ty m = Some true ->
      sstep (ExprState f (Eval v ty) (Kdowhile2 x s k) e m)
         E0 (State f (Sdowhile x s) k e m)
  | step_break_dowhile: forall f a s k e m,
      sstep (State f Sbreak (Kdowhile1 a s k) e m)
         E0 (State f Sskip k e m)

  | step_for_start: forall f a1 a2 a3 s k e m,
      a1 <> Sskip ->
      sstep (State f (Sfor a1 a2 a3 s) k e m)
         E0 (State f a1 (Kseq (Sfor Sskip a2 a3 s) k) e m)
  | step_for: forall f a2 a3 s k e m,
      sstep (State f (Sfor Sskip a2 a3 s) k e m)
         E0 (ExprState f a2 (Kfor2 a2 a3 s k) e m)
  | step_for_false: forall f v ty a2 a3 s k e m,
      bool_val v ty m = Some false ->
      sstep (ExprState f (Eval v ty) (Kfor2 a2 a3 s k) e m)
         E0 (State f Sskip k e m)
  | step_for_true: forall f v ty a2 a3 s k e m,
      bool_val v ty m = Some true ->
      sstep (ExprState f (Eval v ty) (Kfor2 a2 a3 s k) e m)
         E0 (State f s (Kfor3 a2 a3 s k) e m)
  | step_skip_or_continue_for3: forall f x a2 a3 s k e m,
      x = Sskip \/ x = Scontinue ->
      sstep (State f x (Kfor3 a2 a3 s k) e m)
         E0 (State f a3 (Kfor4 a2 a3 s k) e m)
  | step_break_for3: forall f a2 a3 s k e m,
      sstep (State f Sbreak (Kfor3 a2 a3 s k) e m)
         E0 (State f Sskip k e m)
  | step_skip_for4: forall f a2 a3 s k e m,
      sstep (State f Sskip (Kfor4 a2 a3 s k) e m)
         E0 (State f (Sfor Sskip a2 a3 s) k e m)

  | step_return_0: forall f k e m m',
      Mem.free_list m (blocks_of_env e) = Some m' ->
      sstep (State f (Sreturn None) k e m)
         E0 (Returnstate Vundef (call_cont k) m')
  | step_return_1: forall f x k e m,
      sstep (State f (Sreturn (Some x)) k e m)
         E0 (ExprState f x (Kreturn k) e  m)
  | step_return_2:  forall f v1 ty k e m v2 m',
      sem_cast v1 ty f.(fn_return) m = Some v2 ->
      Mem.free_list m (blocks_of_env e) = Some m' ->
      sstep (ExprState f (Eval v1 ty) (Kreturn k) e m)
         E0 (Returnstate v2 (call_cont k) m')
  | step_skip_call: forall f k e m m',
      is_call_cont k ->
      Mem.free_list m (blocks_of_env e) = Some m' ->
      sstep (State f Sskip k e m)
         E0 (Returnstate Vundef k m')

  | step_switch: forall f x sl k e m,
      sstep (State f (Sswitch x sl) k e m)
         E0 (ExprState f x (Kswitch1 sl k) e m)
  | step_expr_switch: forall f ty sl k e m v n,
      sem_switch_arg v ty = Some n ->
      sstep (ExprState f (Eval v ty) (Kswitch1 sl k) e m)
         E0 (State f (seq_of_labeled_statement (select_switch n sl)) (Kswitch2 k) e m)
  | step_skip_break_switch: forall f x k e m,
      x = Sskip \/ x = Sbreak ->
      sstep (State f x (Kswitch2 k) e m)
         E0 (State f Sskip k e m)
  | step_continue_switch: forall f k e m,
      sstep (State f Scontinue (Kswitch2 k) e m)
         E0 (State f Scontinue k e m)

  | step_label: forall f lbl s k e m,
      sstep (State f (Slabel lbl s) k e m)
         E0 (State f s k e m)

  | step_goto: forall f lbl k e m s' k',
      find_label lbl f.(fn_body) (call_cont k) = Some (s', k') ->
      sstep (State f (Sgoto lbl) k e m)
         E0 (State f s' k' e m)

  | step_internal_function: forall f vargs k m e m1 m2,
      list_norepet (var_names (fn_params f) ++ var_names (fn_vars f)) ->
      alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
      bind_parameters e m1 f.(fn_params) vargs m2 ->
      sstep (Callstate (Internal f) vargs k m)
         E0 (State f f.(fn_body) k e m2)

  | step_external_function: forall ef targs tres cc vargs k m vres t m',
      external_call ef  ge vargs m t vres m' ->
      sstep (Callstate (External ef targs tres cc) vargs k m)
          t (Returnstate vres k m')

  | step_returnstate: forall v f e C ty k m,
      sstep (Returnstate v (Kcall f e C ty k) m)
         E0 (ExprState f (C (Eval v ty)) k e m).

Definition step (S: state) (t: trace) (S': state) : Prop :=
  estep S t S' \/ sstep S t S'.

End SEMANTICS.

(** * Whole-program semantics *)

(** Execution of whole programs are described as sequences of transitions
  from an initial state to a final state.  An initial state is a [Callstate]
  corresponding to the invocation of the ``main'' function of the program
  without arguments and with an empty continuation. *)

Inductive initial_state (p: program): state -> Prop :=
  | initial_state_intro: forall b f m0,
      let ge := globalenv p in
      Genv.init_mem p = Some m0 ->
      Genv.find_symbol ge p.(prog_main) = Some b ->
      Genv.find_funct_ptr ge b = Some f ->
      type_of_fundef f = Tfunction Tnil type_int32s cc_default ->
      initial_state p (Callstate f nil Kstop m0).

(** A final state is a [Returnstate] with an empty continuation. *)

Inductive final_state: state -> int -> Prop :=
  | final_state_intro: forall r m,
      final_state (Returnstate (Vint r) Kstop m) r.

(** Wrapping up these definitions in a small-step semantics. *)

Definition semantics (p: program) :=
  Semantics_gen step (initial_state p) final_state (globalenv p) (globalenv p).

(** This semantics has the single-event property. *)

Lemma semantics_single_events:
  forall p, single_events (semantics p).
Proof.
  unfold semantics; intros; red; simpl; intros.
  set (ge := globalenv p) in *.
  assert (DEREF: forall chunk m b ofs bf t v, deref_loc ge chunk m b ofs bf t v -> (length t <= 1)%nat).
  { intros. inv H0; simpl; try lia. inv H3; simpl; try lia. }
  assert (ASSIGN: forall chunk m b ofs bf t v m' v', assign_loc ge chunk m b ofs bf v t m' v' -> (length t <= 1)%nat).
  { intros. inv H0; simpl; try lia. inv H3; simpl; try lia. }
  destruct H.
  inv H; simpl; try lia. inv H0; eauto; simpl; try lia.
  eapply external_call_trace_length; eauto.
  inv H; simpl; try lia. eapply external_call_trace_length; eauto.
Qed.