aboutsummaryrefslogtreecommitdiffstats
path: root/cfrontend/Csem.v
blob: 5f8bbf140583beae44e2abfedd73922941d8e8e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Dynamic semantics for the Clight language *)

Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import AST.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Csyntax.
Require Import Smallstep.

(** * Semantics of type-dependent operations *)

(** Interpretation of values as truth values.
  Non-zero integers, non-zero floats and non-null pointers are
  considered as true.  The integer zero (which also represents
  the null pointer) and the float 0.0 are false. *)

Inductive is_false: val -> type -> Prop :=
  | is_false_int: forall sz sg,
      is_false (Vint Int.zero) (Tint sz sg)
  | is_false_pointer: forall t,
      is_false (Vint Int.zero) (Tpointer t)
 | is_false_float: forall sz f,
      Float.cmp Ceq f Float.zero = true ->
      is_false (Vfloat f) (Tfloat sz).

Inductive is_true: val -> type -> Prop :=
  | is_true_int_int: forall n sz sg,
      n <> Int.zero ->
      is_true (Vint n) (Tint sz sg)
  | is_true_pointer_int: forall b ofs sz sg,
      is_true (Vptr b ofs) (Tint sz sg)
  | is_true_int_pointer: forall n t,
      n <> Int.zero ->
      is_true (Vint n) (Tpointer t)
  | is_true_pointer_pointer: forall b ofs t,
      is_true (Vptr b ofs) (Tpointer t)
 | is_true_float: forall f sz,
      Float.cmp Ceq f Float.zero = false ->
      is_true (Vfloat f) (Tfloat sz).

Inductive bool_of_val : val -> type -> val -> Prop :=
  | bool_of_val_true:   forall v ty, 
         is_true v ty -> 
         bool_of_val v ty Vtrue
  | bool_of_val_false:   forall v ty,
        is_false v ty ->
        bool_of_val v ty Vfalse.

(** The following [sem_] functions compute the result of an operator
  application.  Since operators are overloaded, the result depends
  both on the static types of the arguments and on their run-time values.
  Unlike in C, automatic conversions between integers and floats
  are not performed.  For instance, [e1 + e2] is undefined if [e1]
  is a float and [e2] an integer.  The Clight producer must have explicitly
  promoted [e2] to a float. *)

Function sem_neg (v: val) (ty: type) : option val :=
  match ty with
  | Tint _ _ =>
      match v with
      | Vint n => Some (Vint (Int.neg n))
      | _ => None
      end
  | Tfloat _ =>
      match v with
      | Vfloat f => Some (Vfloat (Float.neg f))
      | _ => None
      end
  | _ => None
  end.

Function sem_notint (v: val) : option val :=
  match v with
  | Vint n => Some (Vint (Int.xor n Int.mone))
  | _ => None
  end.

Function sem_notbool (v: val) (ty: type) : option val :=
  match typeconv ty with
  | Tint _ _ =>
      match v with
      | Vint n => Some (Val.of_bool (Int.eq n Int.zero))
      | Vptr _ _ => Some Vfalse
      | _ => None
      end
  | Tpointer _ =>
      match v with
      | Vint n => Some (Val.of_bool (Int.eq n Int.zero))
      | Vptr _ _ => Some Vfalse
      | _ => None
      end
  | Tfloat _ =>
      match v with
      | Vfloat f => Some (Val.of_bool (Float.cmp Ceq f Float.zero))
      | _ => None
      end
  | _ => None
  end.

Function sem_fabs (v: val) : option val :=
  match v with
  | Vfloat f => Some (Vfloat (Float.abs f))
  | _ => None
  end.

Function sem_add (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
  match classify_add t1 t2 with 
  | add_case_ii =>                      (**r integer addition *)
      match v1, v2 with
      | Vint n1, Vint n2 => Some (Vint (Int.add n1 n2))
      | _,  _ => None
      end
  | add_case_ff =>                      (**r float addition *)
      match v1, v2 with
      | Vfloat n1, Vfloat n2 => Some (Vfloat (Float.add n1 n2))
      | _,  _ => None
      end
  | add_case_pi ty =>                   (**r pointer plus integer *)
      match v1,v2 with
      | Vptr b1 ofs1, Vint n2 => 
	Some (Vptr b1 (Int.add ofs1 (Int.mul (Int.repr (sizeof ty)) n2)))
      | _,  _ => None
      end   
  | add_case_ip ty =>                   (**r integer plus pointer *)
      match v1,v2 with
      | Vint n1, Vptr b2 ofs2 => 
	Some (Vptr b2 (Int.add ofs2 (Int.mul (Int.repr (sizeof ty)) n1)))
      | _,  _ => None
      end   
  | add_default => None
end.

Function sem_sub (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
  match classify_sub t1 t2 with
  | sub_case_ii =>               (**r integer subtraction *)
      match v1,v2 with
      | Vint n1, Vint n2 => Some (Vint (Int.sub n1 n2))
      | _,  _ => None
      end 
  | sub_case_ff =>               (**r float subtraction *)
      match v1,v2 with
      | Vfloat f1, Vfloat f2 => Some (Vfloat(Float.sub f1 f2))
      | _,  _ => None
      end
  | sub_case_pi ty =>            (**r pointer minus integer *)
      match v1,v2 with
      | Vptr b1 ofs1, Vint n2 => 
            Some (Vptr b1 (Int.sub ofs1 (Int.mul (Int.repr (sizeof ty)) n2)))
      | _,  _ => None
      end
  | sub_case_pp ty =>          (**r pointer minus pointer *)
      match v1,v2 with
      | Vptr b1 ofs1, Vptr b2 ofs2 =>
          if zeq b1 b2 then
            if Int.eq (Int.repr (sizeof ty)) Int.zero then None
            else Some (Vint (Int.divu (Int.sub ofs1 ofs2) (Int.repr (sizeof ty))))
          else None
      | _, _ => None
      end
  | sub_default => None
  end.
 
Function sem_mul (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
 match classify_mul t1 t2 with
  | mul_case_ii =>
      match v1,v2 with
      | Vint n1, Vint n2 => Some (Vint (Int.mul n1 n2))
      | _,  _ => None
      end
  | mul_case_ff =>
      match v1,v2 with
      | Vfloat f1, Vfloat f2 => Some (Vfloat (Float.mul f1 f2))
      | _,  _ => None
      end
  | mul_default =>
      None
end.

Function sem_div (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
   match classify_div t1 t2 with
  | div_case_I32unsi =>
      match v1,v2 with
      | Vint n1, Vint n2 =>
          if Int.eq n2 Int.zero then None else Some (Vint (Int.divu n1 n2))
      | _,_ => None
      end
  | div_case_ii =>
      match v1,v2 with
       | Vint n1, Vint n2 =>
          if Int.eq n2 Int.zero then None else Some (Vint(Int.divs n1 n2))
      | _,_ => None
      end
  | div_case_ff =>
      match v1,v2 with
      | Vfloat f1, Vfloat f2 => Some (Vfloat(Float.div f1 f2))
      | _,  _ => None
      end 
  | div_default =>
      None
end.

Function sem_mod (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
  match classify_mod t1 t2 with
  | mod_case_I32unsi =>
      match v1, v2 with
      | Vint n1, Vint n2 =>
          if Int.eq n2 Int.zero then None else Some (Vint (Int.modu n1 n2))
      | _, _ => None
      end
  | mod_case_ii =>
      match v1,v2 with
      | Vint n1, Vint n2 =>
          if Int.eq n2 Int.zero then None else Some (Vint (Int.mods n1 n2))
      | _, _ => None
      end
  | mod_default =>
      None
  end.

Function sem_and (v1 v2: val) : option val :=
  match v1, v2 with
  | Vint n1, Vint n2 => Some (Vint(Int.and n1 n2))
  | _, _ => None
  end .

Function sem_or (v1 v2: val) : option val :=
  match v1, v2 with
  | Vint n1, Vint n2 => Some (Vint(Int.or n1 n2))
  | _, _ => None
  end. 

Function sem_xor (v1 v2: val): option val :=
  match v1, v2 with
  | Vint n1, Vint n2 => Some (Vint(Int.xor n1 n2))
  | _, _ => None
  end.

Function sem_shl (v1 v2: val): option val :=
  match v1, v2 with
  | Vint n1, Vint n2 =>
     if Int.ltu n2 Int.iwordsize then Some (Vint(Int.shl n1 n2)) else None
  | _, _ => None
  end.

Function sem_shr (v1: val) (t1: type) (v2: val) (t2: type): option val :=
  match classify_shr t1 t2 with 
  | shr_case_I32unsi => 
      match v1,v2 with 
      | Vint n1, Vint n2 =>
          if Int.ltu n2 Int.iwordsize then Some (Vint (Int.shru n1 n2)) else None
      | _,_ => None
      end
   | shr_case_ii => 
      match v1,v2 with
      | Vint n1,  Vint n2 =>
          if Int.ltu n2 Int.iwordsize then Some (Vint (Int.shr n1 n2)) else None
      | _,  _ => None
      end
   | shr_default=>
      None
   end.

Function sem_cmp_mismatch (c: comparison): option val :=
  match c with
  | Ceq =>  Some Vfalse
  | Cne =>  Some Vtrue
  | _   => None
  end.

Function sem_cmp (c:comparison)
                  (v1: val) (t1: type) (v2: val) (t2: type)
                  (m: mem): option val :=
  match classify_cmp t1 t2 with
  | cmp_case_I32unsi =>
      match v1,v2 with
      | Vint n1, Vint n2 => Some (Val.of_bool (Int.cmpu c n1 n2))
      | _,  _ => None
      end
  | cmp_case_ipip =>
      match v1,v2 with
      | Vint n1, Vint n2 => Some (Val.of_bool (Int.cmp c n1 n2))
      | Vptr b1 ofs1,  Vptr b2 ofs2  =>
          if Mem.valid_pointer m b1 (Int.signed ofs1)
          && Mem.valid_pointer m b2 (Int.signed ofs2) then
            if zeq b1 b2
            then Some (Val.of_bool (Int.cmp c ofs1 ofs2))
            else sem_cmp_mismatch c
          else None
      | Vptr b ofs, Vint n =>
          if Int.eq n Int.zero then sem_cmp_mismatch c else None
      | Vint n, Vptr b ofs =>
          if Int.eq n Int.zero then sem_cmp_mismatch c else None
      | _,  _ => None
      end
  | cmp_case_ff =>
      match v1,v2 with
      | Vfloat f1, Vfloat f2 => Some (Val.of_bool (Float.cmp c f1 f2))  
      | _,  _ => None
      end
  | cmp_default => None
  end.

Definition sem_unary_operation
            (op: unary_operation) (v: val) (ty: type): option val :=
  match op with
  | Onotbool => sem_notbool v ty
  | Onotint => sem_notint v
  | Oneg => sem_neg v ty
  | Ofabs => sem_fabs v
  end.

Definition sem_binary_operation
    (op: binary_operation)
    (v1: val) (t1: type) (v2: val) (t2:type)
    (m: mem): option val :=
  match op with
  | Oadd => sem_add v1 t1 v2 t2
  | Osub => sem_sub v1 t1 v2 t2 
  | Omul => sem_mul v1 t1 v2 t2
  | Omod => sem_mod v1 t1 v2 t2
  | Odiv => sem_div v1 t1 v2 t2 
  | Oand => sem_and v1 v2  
  | Oor  => sem_or v1 v2 
  | Oxor  => sem_xor v1 v2 
  | Oshl => sem_shl v1 v2 
  | Oshr  => sem_shr v1 t1 v2 t2   
  | Oeq => sem_cmp Ceq v1 t1 v2 t2 m
  | One => sem_cmp Cne v1 t1 v2 t2 m
  | Olt => sem_cmp Clt v1 t1 v2 t2 m
  | Ogt => sem_cmp Cgt v1 t1 v2 t2 m
  | Ole => sem_cmp Cle v1 t1 v2 t2 m
  | Oge => sem_cmp Cge v1 t1 v2 t2 m
  end.

(** Semantic of casts.  [cast v1 t1 t2 v2] holds if value [v1],
  viewed with static type [t1], can be cast to type [t2],
  resulting in value [v2].  *)

Definition cast_int_int (sz: intsize) (sg: signedness) (i: int) : int :=
  match sz, sg with
  | I8, Signed => Int.sign_ext 8 i
  | I8, Unsigned => Int.zero_ext 8 i
  | I16, Signed => Int.sign_ext 16 i
  | I16, Unsigned => Int.zero_ext 16 i 
  | I32, _ => i
  end.

Definition cast_int_float (si : signedness) (i: int) : float :=
  match si with
  | Signed => Float.floatofint i
  | Unsigned => Float.floatofintu i
  end.

Definition cast_float_int (si : signedness) (f: float) : int :=
  match si with
  | Signed => Float.intoffloat f
  | Unsigned => Float.intuoffloat f
  end.

Definition cast_float_float (sz: floatsize) (f: float) : float :=
  match sz with
  | F32 => Float.singleoffloat f
  | F64 => f
  end.

Inductive neutral_for_cast: type -> Prop :=
  | nfc_int: forall sg,
      neutral_for_cast (Tint I32 sg)
  | nfc_ptr: forall ty,
      neutral_for_cast (Tpointer ty)
  | nfc_array: forall ty sz,
      neutral_for_cast (Tarray ty sz)
  | nfc_fun: forall targs tres,
      neutral_for_cast (Tfunction targs tres).

Inductive cast : val -> type -> type -> val -> Prop :=
  | cast_ii:   forall i sz2 sz1 si1 si2,            (**r int to int  *)
      cast (Vint i) (Tint sz1 si1) (Tint sz2 si2)
           (Vint (cast_int_int sz2 si2 i))
  | cast_fi:   forall f sz1 sz2 si2,                (**r float to int *)
      cast (Vfloat f) (Tfloat sz1) (Tint sz2 si2)
           (Vint (cast_int_int sz2 si2 (cast_float_int si2 f)))
  | cast_if:   forall i sz1 sz2 si1,                (**r int to float  *)
      cast (Vint i) (Tint sz1 si1) (Tfloat sz2)
          (Vfloat (cast_float_float sz2 (cast_int_float si1 i)))
  | cast_ff:   forall f sz1 sz2,                    (**r float to float *)
      cast (Vfloat f) (Tfloat sz1) (Tfloat sz2)
           (Vfloat (cast_float_float sz2 f))
  | cast_nn_p: forall b ofs t1 t2, (**r no change in data representation *)
      neutral_for_cast t1 -> neutral_for_cast t2 ->
      cast (Vptr b ofs) t1 t2 (Vptr b ofs)
  | cast_nn_i: forall n t1 t2,     (**r no change in data representation *)
      neutral_for_cast t1 -> neutral_for_cast t2 ->
      cast (Vint n) t1 t2 (Vint n).

(** * Operational semantics *)

(** The semantics uses two environments.  The global environment
  maps names of functions and global variables to memory block references,
  and function pointers to their definitions.  (See module [Globalenvs].) *)

Definition genv := Genv.t fundef type.

(** The local environment maps local variables to block references.
  The current value of the variable is stored in the associated memory
  block. *)

Definition env := PTree.t (block * type). (* map variable -> location & type *)

Definition empty_env: env := (PTree.empty (block * type)).

(** [load_value_of_type ty m b ofs] computes the value of a datum
  of type [ty] residing in memory [m] at block [b], offset [ofs].
  If the type [ty] indicates an access by value, the corresponding
  memory load is performed.  If the type [ty] indicates an access by
  reference, the pointer [Vptr b ofs] is returned. *)

Definition load_value_of_type (ty: type) (m: mem) (b: block) (ofs: int) : option val :=
  match access_mode ty with
  | By_value chunk => Mem.loadv chunk m (Vptr b ofs)
  | By_reference => Some (Vptr b ofs)
  | By_nothing => None
  end.

(** Symmetrically, [store_value_of_type ty m b ofs v] returns the
  memory state after storing the value [v] in the datum
  of type [ty] residing in memory [m] at block [b], offset [ofs].
  This is allowed only if [ty] indicates an access by value. *)

Definition store_value_of_type (ty_dest: type) (m: mem) (loc: block) (ofs: int) (v: val) : option mem :=
  match access_mode ty_dest with
  | By_value chunk => Mem.storev chunk m (Vptr loc ofs) v
  | By_reference => None
  | By_nothing => None
  end.

(** Allocation of function-local variables.
  [alloc_variables e1 m1 vars e2 m2] allocates one memory block
  for each variable declared in [vars], and associates the variable
  name with this block.  [e1] and [m1] are the initial local environment
  and memory state.  [e2] and [m2] are the final local environment
  and memory state. *)

Inductive alloc_variables: env -> mem ->
                           list (ident * type) ->
                           env -> mem -> Prop :=
  | alloc_variables_nil:
      forall e m,
      alloc_variables e m nil e m
  | alloc_variables_cons:
      forall e m id ty vars m1 b1 m2 e2,
      Mem.alloc m 0 (sizeof ty) = (m1, b1) ->
      alloc_variables (PTree.set id (b1, ty) e) m1 vars e2 m2 ->
      alloc_variables e m ((id, ty) :: vars) e2 m2.

(** Initialization of local variables that are parameters to a function.
  [bind_parameters e m1 params args m2] stores the values [args]
  in the memory blocks corresponding to the variables [params].
  [m1] is the initial memory state and [m2] the final memory state. *)

Inductive bind_parameters: env ->
                           mem -> list (ident * type) -> list val ->
                           mem -> Prop :=
  | bind_parameters_nil:
      forall e m,
      bind_parameters e m nil nil m
  | bind_parameters_cons:
      forall e m id ty params v1 vl b m1 m2,
      PTree.get id e = Some(b, ty) ->
      store_value_of_type ty m b Int.zero v1 = Some m1 ->
      bind_parameters e m1 params vl m2 ->
      bind_parameters e m ((id, ty) :: params) (v1 :: vl) m2.

(** Return the list of blocks in the codomain of [e], with low and high bounds. *)

Definition block_of_binding (id_b_ty: ident * (block * type)) :=
  match id_b_ty with (id, (b, ty)) => (b, 0, sizeof ty) end.

Definition blocks_of_env (e: env) : list (block * Z * Z) :=
  List.map block_of_binding (PTree.elements e).

(** Selection of the appropriate case of a [switch], given the value [n]
  of the selector expression. *)

Fixpoint select_switch (n: int) (sl: labeled_statements)
                       {struct sl}: labeled_statements :=
  match sl with
  | LSdefault _ => sl
  | LScase c s sl' => if Int.eq c n then sl else select_switch n sl'
  end.

(** Turn a labeled statement into a sequence *)

Fixpoint seq_of_labeled_statement (sl: labeled_statements) : statement :=
  match sl with
  | LSdefault s => s
  | LScase c s sl' => Ssequence s (seq_of_labeled_statement sl')
  end.

Section SEMANTICS.

Variable ge: genv.

(** ** Evaluation of expressions *)

Section EXPR.

Variable e: env.
Variable m: mem.

(** [eval_expr ge e m a v] defines the evaluation of expression [a]
  in r-value position.  [v] is the value of the expression.
  [e] is the current environment and [m] is the current memory state. *)

Inductive eval_expr: expr -> val -> Prop :=
  | eval_Econst_int:   forall i ty,
      eval_expr (Expr (Econst_int i) ty) (Vint i)
  | eval_Econst_float:   forall f ty,
      eval_expr (Expr (Econst_float f) ty) (Vfloat f)
  | eval_Elvalue: forall a ty loc ofs v,
      eval_lvalue (Expr a ty) loc ofs ->
      load_value_of_type ty m loc ofs = Some v ->
      eval_expr (Expr a ty) v
  | eval_Eaddrof: forall a ty loc ofs,
      eval_lvalue a loc ofs ->
      eval_expr (Expr (Eaddrof a) ty) (Vptr loc ofs)
  | eval_Esizeof: forall ty' ty,
      eval_expr (Expr (Esizeof ty') ty) (Vint (Int.repr (sizeof ty')))
  | eval_Eunop:  forall op a ty v1 v,
      eval_expr a v1 ->
      sem_unary_operation op v1 (typeof a) = Some v ->
      eval_expr (Expr (Eunop op a) ty) v
  | eval_Ebinop: forall op a1 a2 ty v1 v2 v,
      eval_expr a1 v1 ->
      eval_expr a2 v2 ->
      sem_binary_operation op v1 (typeof a1) v2 (typeof a2) m = Some v ->
      eval_expr (Expr (Ebinop op a1 a2) ty) v
  | eval_Econdition_true: forall a1 a2 a3 ty v1 v2,
      eval_expr a1 v1 ->
      is_true v1 (typeof a1) ->
      eval_expr a2 v2 ->
      eval_expr (Expr (Econdition a1 a2 a3) ty) v2
  | eval_Econdition_false: forall a1 a2 a3 ty v1 v3,
      eval_expr a1 v1 ->
      is_false v1 (typeof a1) ->
      eval_expr a3 v3 ->
      eval_expr (Expr (Econdition a1 a2 a3) ty) v3
  | eval_Eorbool_1: forall a1 a2 ty v1,
      eval_expr a1 v1 ->
      is_true v1 (typeof a1) ->
      eval_expr (Expr (Eorbool a1 a2) ty) Vtrue
  | eval_Eorbool_2: forall a1 a2 ty v1 v2 v,
      eval_expr a1 v1 ->
      is_false v1 (typeof a1) -> 
      eval_expr a2 v2 ->
      bool_of_val v2 (typeof a2) v ->
      eval_expr (Expr (Eorbool a1 a2) ty) v
  | eval_Eandbool_1: forall a1 a2 ty v1,
      eval_expr a1 v1 ->
      is_false v1 (typeof a1) ->
      eval_expr (Expr (Eandbool a1 a2) ty) Vfalse
  | eval_Eandbool_2: forall a1 a2 ty v1 v2 v,
      eval_expr a1 v1 ->
      is_true v1 (typeof a1) -> 
      eval_expr a2 v2 ->
      bool_of_val v2 (typeof a2) v ->
      eval_expr (Expr (Eandbool a1 a2) ty) v
  | eval_Ecast:   forall a ty ty' v1 v,
      eval_expr a v1 ->
      cast v1 (typeof a) ty v ->
      eval_expr (Expr (Ecast ty a) ty') v

(** [eval_lvalue ge e m a b ofs] defines the evaluation of expression [a]
  in l-value position.  The result is the memory location [b, ofs]
  that contains the value of the expression [a]. *)

with eval_lvalue: expr -> block -> int -> Prop :=
  | eval_Evar_local:   forall id l ty,
      e!id = Some(l, ty) ->
      eval_lvalue (Expr (Evar id) ty) l Int.zero
  | eval_Evar_global: forall id l ty,
      e!id = None ->
      Genv.find_symbol ge id = Some l ->
      eval_lvalue (Expr (Evar id) ty) l Int.zero
  | eval_Ederef: forall a ty l ofs,
      eval_expr a (Vptr l ofs) ->
      eval_lvalue (Expr (Ederef a) ty) l ofs
 | eval_Efield_struct:   forall a i ty l ofs id fList delta,
      eval_lvalue a l ofs ->
      typeof a = Tstruct id fList ->
      field_offset i fList = OK delta ->
      eval_lvalue (Expr (Efield a i) ty) l (Int.add ofs (Int.repr delta))
 | eval_Efield_union:   forall a i ty l ofs id fList,
      eval_lvalue a l ofs ->
      typeof a = Tunion id fList ->
      eval_lvalue (Expr (Efield a i) ty) l ofs.

Scheme eval_expr_ind2 := Minimality for eval_expr Sort Prop
  with eval_lvalue_ind2 := Minimality for eval_lvalue Sort Prop.

(** [eval_exprlist ge e m al vl] evaluates a list of r-value
  expressions [al] to their values [vl]. *)

Inductive eval_exprlist: list expr -> list val -> Prop :=
  | eval_Enil:
      eval_exprlist nil nil
  | eval_Econs:   forall a bl v vl,
      eval_expr a v ->
      eval_exprlist bl vl ->
      eval_exprlist (a :: bl) (v :: vl).

End EXPR.

(** ** Transition semantics for statements and functions *)

(** Continuations *)

Inductive cont: Type :=
  | Kstop: cont
  | Kseq: statement -> cont -> cont
       (**r [Kseq s2 k] = after [s1] in [s1;s2] *)
  | Kwhile: expr -> statement -> cont -> cont
       (**r [Kwhile e s k] = after [s] in [while (e) s] *)
  | Kdowhile: expr -> statement -> cont -> cont
       (**r [Kdowhile e s k] = after [s] in [do s while (e)] *)
  | Kfor2: expr -> statement -> statement -> cont -> cont
       (**r [Kfor2 e2 e3 s k] = after [s] in [for(e1;e2;e3) s] *)
  | Kfor3: expr -> statement -> statement -> cont -> cont
       (**r [Kfor3 e2 e3 s k] = after [e3] in [for(e1;e2;e3) s] *)
  | Kswitch: cont -> cont
       (**r catches [break] statements arising out of [switch] *)
  | Kcall: option (block * int * type) ->   (**r where to store result *)
           function ->                      (**r calling function *)
           env ->                           (**r local env of calling function *)
           cont -> cont.

(** Pop continuation until a call or stop *)

Fixpoint call_cont (k: cont) : cont :=
  match k with
  | Kseq s k => call_cont k
  | Kwhile e s k => call_cont k
  | Kdowhile e s k => call_cont k
  | Kfor2 e2 e3 s k => call_cont k
  | Kfor3 e2 e3 s k => call_cont k
  | Kswitch k => call_cont k
  | _ => k
  end.

Definition is_call_cont (k: cont) : Prop :=
  match k with
  | Kstop => True
  | Kcall _ _ _ _ => True
  | _ => False
  end.

(** States *)

Inductive state: Type :=
  | State
      (f: function)
      (s: statement)
      (k: cont)
      (e: env)
      (m: mem) : state
  | Callstate
      (fd: fundef)
      (args: list val)
      (k: cont)
      (m: mem) : state
  | Returnstate
      (res: val)
      (k: cont)
      (m: mem) : state.
                 
(** Find the statement and manufacture the continuation 
  corresponding to a label *)

Fixpoint find_label (lbl: label) (s: statement) (k: cont) 
                    {struct s}: option (statement * cont) :=
  match s with
  | Ssequence s1 s2 =>
      match find_label lbl s1 (Kseq s2 k) with
      | Some sk => Some sk
      | None => find_label lbl s2 k
      end
  | Sifthenelse a s1 s2 =>
      match find_label lbl s1 k with
      | Some sk => Some sk
      | None => find_label lbl s2 k
      end
  | Swhile a s1 =>
      find_label lbl s1 (Kwhile a s1 k)
  | Sdowhile a s1 =>
      find_label lbl s1 (Kdowhile a s1 k)
  | Sfor a1 a2 a3 s1 =>
      match find_label lbl a1 (Kseq (Sfor Sskip a2 a3 s1) k) with
      | Some sk => Some sk
      | None =>
          match find_label lbl s1 (Kfor2 a2 a3 s1 k) with
          | Some sk => Some sk
          | None => find_label lbl a3 (Kfor3 a2 a3 s1 k)
          end
      end
  | Sswitch e sl =>
      find_label_ls lbl sl (Kswitch k)
  | Slabel lbl' s' =>
      if ident_eq lbl lbl' then Some(s', k) else find_label lbl s' k
  | _ => None
  end

with find_label_ls (lbl: label) (sl: labeled_statements) (k: cont) 
                    {struct sl}: option (statement * cont) :=
  match sl with
  | LSdefault s => find_label lbl s k
  | LScase _ s sl' =>
      match find_label lbl s (Kseq (seq_of_labeled_statement sl') k) with
      | Some sk => Some sk
      | None => find_label_ls lbl sl' k
      end
  end.

(** Transition relation *)

Inductive step: state -> trace -> state -> Prop :=

  | step_assign:   forall f a1 a2 k e m loc ofs v2 m',
      eval_lvalue e m a1 loc ofs ->
      eval_expr e m a2 v2 ->
      store_value_of_type (typeof a1) m loc ofs v2 = Some m' ->
      step (State f (Sassign a1 a2) k e m)
        E0 (State f Sskip k e m')

  | step_call_none:   forall f a al k e m vf vargs fd,
      eval_expr e m a vf ->
      eval_exprlist e m al vargs ->
      Genv.find_funct ge vf = Some fd ->
      type_of_fundef fd = typeof a ->
      step (State f (Scall None a al) k e m)
        E0 (Callstate fd vargs (Kcall None f e k) m)

  | step_call_some:   forall f lhs a al k e m loc ofs vf vargs fd,
      eval_lvalue e m lhs loc ofs ->
      eval_expr e m a vf ->
      eval_exprlist e m al vargs ->
      Genv.find_funct ge vf = Some fd ->
      type_of_fundef fd = typeof a ->
      step (State f (Scall (Some lhs) a al) k e m)
        E0 (Callstate fd vargs (Kcall (Some(loc, ofs, typeof lhs)) f e k) m)

  | step_seq:  forall f s1 s2 k e m,
      step (State f (Ssequence s1 s2) k e m)
        E0 (State f s1 (Kseq s2 k) e m)
  | step_skip_seq: forall f s k e m,
      step (State f Sskip (Kseq s k) e m)
        E0 (State f s k e m)
  | step_continue_seq: forall f s k e m,
      step (State f Scontinue (Kseq s k) e m)
        E0 (State f Scontinue k e m)
  | step_break_seq: forall f s k e m,
      step (State f Sbreak (Kseq s k) e m)
        E0 (State f Sbreak k e m)

  | step_ifthenelse_true:  forall f a s1 s2 k e m v1,
      eval_expr e m a v1 ->
      is_true v1 (typeof a) ->
      step (State f (Sifthenelse a s1 s2) k e m)
        E0 (State f s1 k e m)
  | step_ifthenelse_false: forall f a s1 s2 k e m v1,
      eval_expr e m a v1 ->
      is_false v1 (typeof a) ->
      step (State f (Sifthenelse a s1 s2) k e m)
        E0 (State f s2 k e m)

  | step_while_false: forall f a s k e m v,
      eval_expr e m a v ->
      is_false v (typeof a) ->
      step (State f (Swhile a s) k e m)
        E0 (State f Sskip k e m)
  | step_while_true: forall f a s k e m v,
      eval_expr e m a v ->
      is_true v (typeof a) ->
      step (State f (Swhile a s) k e m)
        E0 (State f s (Kwhile a s k) e m)
  | step_skip_or_continue_while: forall f x a s k e m,
      x = Sskip \/ x = Scontinue ->
      step (State f x (Kwhile a s k) e m)
        E0 (State f (Swhile a s) k e m)
  | step_break_while: forall f a s k e m,
      step (State f Sbreak (Kwhile a s k) e m)
        E0 (State f Sskip k e m)

  | step_dowhile: forall f a s k e m,
      step (State f (Sdowhile a s) k e m)
        E0 (State f s (Kdowhile a s k) e m)
  | step_skip_or_continue_dowhile_false: forall f x a s k e m v,
      x = Sskip \/ x = Scontinue ->
      eval_expr e m a v ->
      is_false v (typeof a) ->
      step (State f x (Kdowhile a s k) e m)
        E0 (State f Sskip k e m)
  | step_skip_or_continue_dowhile_true: forall f x a s k e m v,
      x = Sskip \/ x = Scontinue ->
      eval_expr e m a v ->
      is_true v (typeof a) ->
      step (State f x (Kdowhile a s k) e m)
        E0 (State f (Sdowhile a s) k e m)
  | step_break_dowhile: forall f a s k e m,
      step (State f Sbreak (Kdowhile a s k) e m)
        E0 (State f Sskip k e m)

  | step_for_start: forall f a1 a2 a3 s k e m,
      a1 <> Sskip ->
      step (State f (Sfor a1 a2 a3 s) k e m)
        E0 (State f a1 (Kseq (Sfor Sskip a2 a3 s) k) e m)
  | step_for_false: forall f a2 a3 s k e m v,
      eval_expr e m a2 v ->
      is_false v (typeof a2) ->
      step (State f (Sfor Sskip a2 a3 s) k e m)
        E0 (State f Sskip k e m)
  | step_for_true: forall f a2 a3 s k e m v,
      eval_expr e m a2 v ->
      is_true v (typeof a2) ->
      step (State f (Sfor Sskip a2 a3 s) k e m)
        E0 (State f s (Kfor2 a2 a3 s k) e m)
  | step_skip_or_continue_for2: forall f x a2 a3 s k e m,
      x = Sskip \/ x = Scontinue ->
      step (State f x (Kfor2 a2 a3 s k) e m)
        E0 (State f a3 (Kfor3 a2 a3 s k) e m)
  | step_break_for2: forall f a2 a3 s k e m,
      step (State f Sbreak (Kfor2 a2 a3 s k) e m)
        E0 (State f Sskip k e m)
  | step_skip_for3: forall f a2 a3 s k e m,
      step (State f Sskip (Kfor3 a2 a3 s k) e m)
        E0 (State f (Sfor Sskip a2 a3 s) k e m)

  | step_return_0: forall f k e m m',
      f.(fn_return) = Tvoid ->
      Mem.free_list m (blocks_of_env e) = Some m' ->
      step (State f (Sreturn None) k e m)
        E0 (Returnstate Vundef (call_cont k) m')
  | step_return_1: forall f a k e m v m',
      f.(fn_return) <> Tvoid ->
      eval_expr e m a v ->
      Mem.free_list m (blocks_of_env e) = Some m' ->
      step (State f (Sreturn (Some a)) k e m)
        E0 (Returnstate v (call_cont k) m')
  | step_skip_call: forall f k e m m',
      is_call_cont k ->
      f.(fn_return) = Tvoid ->
      Mem.free_list m (blocks_of_env e) = Some m' ->
      step (State f Sskip k e m)
        E0 (Returnstate Vundef k m')

  | step_switch: forall f a sl k e m n,
      eval_expr e m a (Vint n) ->
      step (State f (Sswitch a sl) k e m)
        E0 (State f (seq_of_labeled_statement (select_switch n sl)) (Kswitch k) e m)
  | step_skip_break_switch: forall f x k e m,
      x = Sskip \/ x = Sbreak ->
      step (State f x (Kswitch k) e m)
        E0 (State f Sskip k e m)
  | step_continue_switch: forall f k e m,
      step (State f Scontinue (Kswitch k) e m)
        E0 (State f Scontinue k e m)

  | step_label: forall f lbl s k e m,
      step (State f (Slabel lbl s) k e m)
        E0 (State f s k e m)

  | step_goto: forall f lbl k e m s' k',
      find_label lbl f.(fn_body) (call_cont k) = Some (s', k') ->
      step (State f (Sgoto lbl) k e m)
        E0 (State f s' k' e m)

  | step_internal_function: forall f vargs k m e m1 m2,
      alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
      bind_parameters e m1 f.(fn_params) vargs m2 ->
      step (Callstate (Internal f) vargs k m)
        E0 (State f f.(fn_body) k e m2)

  | step_external_function: forall id targs tres vargs k m vres t m',
      external_call (external_function id targs tres) vargs m t vres m' ->
      step (Callstate (External id targs tres) vargs k m)
         t (Returnstate vres k m')

  | step_returnstate_0: forall v f e k m,
      step (Returnstate v (Kcall None f e k) m)
        E0 (State f Sskip k e m)

  | step_returnstate_1: forall v f e k m m' loc ofs ty,
      store_value_of_type ty m loc ofs v = Some m' ->
      step (Returnstate v (Kcall (Some(loc, ofs, ty)) f e k) m)
        E0 (State f Sskip k e m').

(** * Alternate big-step semantics *)

(** ** Big-step semantics for terminating statements and functions *)

(** The execution of a statement produces an ``outcome'', indicating
  how the execution terminated: either normally or prematurely
  through the execution of a [break], [continue] or [return] statement. *)

Inductive outcome: Type :=
   | Out_break: outcome                 (**r terminated by [break] *)
   | Out_continue: outcome              (**r terminated by [continue] *)
   | Out_normal: outcome                (**r terminated normally *)
   | Out_return: option val -> outcome. (**r terminated by [return] *)

Inductive out_normal_or_continue : outcome -> Prop :=
  | Out_normal_or_continue_N: out_normal_or_continue Out_normal
  | Out_normal_or_continue_C: out_normal_or_continue Out_continue.

Inductive out_break_or_return : outcome -> outcome -> Prop :=
  | Out_break_or_return_B: out_break_or_return Out_break Out_normal
  | Out_break_or_return_R: forall ov,
      out_break_or_return (Out_return ov) (Out_return ov).

Definition outcome_switch (out: outcome) : outcome :=
  match out with
  | Out_break => Out_normal
  | o => o
  end.

Definition outcome_result_value (out: outcome) (t: type) (v: val) : Prop :=
  match out, t with
  | Out_normal, Tvoid => v = Vundef
  | Out_return None, Tvoid => v = Vundef
  | Out_return (Some v'), ty => ty <> Tvoid /\ v'=v
  | _, _ => False
  end. 

(** [exec_stmt ge e m1 s t m2 out] describes the execution of 
  the statement [s].  [out] is the outcome for this execution.
  [m1] is the initial memory state, [m2] the final memory state.
  [t] is the trace of input/output events performed during this
  evaluation. *)

Inductive exec_stmt: env -> mem -> statement -> trace -> mem -> outcome -> Prop :=
  | exec_Sskip:   forall e m,
      exec_stmt e m Sskip
               E0 m Out_normal
  | exec_Sassign:   forall e m a1 a2 loc ofs v2 m',
      eval_lvalue e m a1 loc ofs ->
      eval_expr e m a2 v2 ->
      store_value_of_type (typeof a1) m loc ofs v2 = Some m' ->
      exec_stmt e m (Sassign a1 a2)
               E0 m' Out_normal
  | exec_Scall_none:   forall e m a al vf vargs f t m' vres,
      eval_expr e m a vf ->
      eval_exprlist e m al vargs ->
      Genv.find_funct ge vf = Some f ->
      type_of_fundef f = typeof a ->
      eval_funcall m f vargs t m' vres ->
      exec_stmt e m (Scall None a al)
                t m' Out_normal
  | exec_Scall_some:   forall e m lhs a al loc ofs vf vargs f t m' vres m'',
      eval_lvalue e m lhs loc ofs ->
      eval_expr e m a vf ->
      eval_exprlist e m al vargs ->
      Genv.find_funct ge vf = Some f ->
      type_of_fundef f = typeof a ->
      eval_funcall m f vargs t m' vres ->
      store_value_of_type (typeof lhs) m' loc ofs vres = Some m'' ->
      exec_stmt e m (Scall (Some lhs) a al)
                t m'' Out_normal
  | exec_Sseq_1:   forall e m s1 s2 t1 m1 t2 m2 out,
      exec_stmt e m s1 t1 m1 Out_normal ->
      exec_stmt e m1 s2 t2 m2 out ->
      exec_stmt e m (Ssequence s1 s2)
                (t1 ** t2) m2 out
  | exec_Sseq_2:   forall e m s1 s2 t1 m1 out,
      exec_stmt e m s1 t1 m1 out ->
      out <> Out_normal ->
      exec_stmt e m (Ssequence s1 s2)
                t1 m1 out
  | exec_Sifthenelse_true: forall e m a s1 s2 v1 t m' out,
      eval_expr e m a v1 ->
      is_true v1 (typeof a) ->
      exec_stmt e m s1 t m' out ->
      exec_stmt e m (Sifthenelse a s1 s2)
                t m' out
  | exec_Sifthenelse_false: forall e m a s1 s2 v1 t m' out,
      eval_expr e m a v1 ->
      is_false v1 (typeof a) ->
      exec_stmt e m s2 t m' out ->
      exec_stmt e m (Sifthenelse a s1 s2)
                t m' out
  | exec_Sreturn_none:   forall e m,
      exec_stmt e m (Sreturn None)
               E0 m (Out_return None)
  | exec_Sreturn_some: forall e m a v,
      eval_expr e m a v ->
      exec_stmt e m (Sreturn (Some a))
               E0 m (Out_return (Some v))
  | exec_Sbreak:   forall e m,
      exec_stmt e m Sbreak
               E0 m Out_break
  | exec_Scontinue:   forall e m,
      exec_stmt e m Scontinue
               E0 m Out_continue
  | exec_Swhile_false: forall e m a s v,
      eval_expr e m a v ->
      is_false v (typeof a) ->
      exec_stmt e m (Swhile a s)
               E0 m Out_normal
  | exec_Swhile_stop: forall e m a v s t m' out' out,
      eval_expr e m a v ->
      is_true v (typeof a) ->
      exec_stmt e m s t m' out' ->
      out_break_or_return out' out ->
      exec_stmt e m (Swhile a s)
                t m' out
  | exec_Swhile_loop: forall e m a s v t1 m1 out1 t2 m2 out,
      eval_expr e m a v ->
      is_true v (typeof a) ->
      exec_stmt e m s t1 m1 out1 ->
      out_normal_or_continue out1 ->
      exec_stmt e m1 (Swhile a s) t2 m2 out ->
      exec_stmt e m (Swhile a s)
                (t1 ** t2) m2 out
  | exec_Sdowhile_false: forall e m s a t m1 out1 v,
      exec_stmt e m s t m1 out1 ->
      out_normal_or_continue out1 ->
      eval_expr e m1 a v ->
      is_false v (typeof a) ->
      exec_stmt e m (Sdowhile a s)
                t m1 Out_normal
  | exec_Sdowhile_stop: forall e m s a t m1 out1 out,
      exec_stmt e m s t m1 out1 ->
      out_break_or_return out1 out ->
      exec_stmt e m (Sdowhile a s)
                t m1 out
  | exec_Sdowhile_loop: forall e m s a m1 m2 t1 t2 out out1 v,
      exec_stmt e m s t1 m1 out1 ->
      out_normal_or_continue out1 ->
      eval_expr e m1 a v ->
      is_true v (typeof a) ->
      exec_stmt e m1 (Sdowhile a s) t2 m2 out ->
      exec_stmt e m (Sdowhile a s) 
                (t1 ** t2) m2 out
  | exec_Sfor_start: forall e m s a1 a2 a3 out m1 m2 t1 t2,
      a1 <> Sskip ->
      exec_stmt e m a1 t1 m1 Out_normal ->
      exec_stmt e m1 (Sfor Sskip a2 a3 s) t2 m2 out ->
      exec_stmt e m (Sfor a1 a2 a3 s) 
                (t1 ** t2) m2 out
  | exec_Sfor_false: forall e m s a2 a3 v,
      eval_expr e m a2 v ->
      is_false v (typeof a2) ->
      exec_stmt e m (Sfor Sskip a2 a3 s)
               E0 m Out_normal
  | exec_Sfor_stop: forall e m s a2 a3 v m1 t out1 out,
      eval_expr e m a2 v ->
      is_true v (typeof a2) ->
      exec_stmt e m s t m1 out1 ->
      out_break_or_return out1 out ->
      exec_stmt e m (Sfor Sskip a2 a3 s)
                t m1 out
  | exec_Sfor_loop: forall e m s a2 a3 v m1 m2 m3 t1 t2 t3 out1 out,
      eval_expr e m a2 v ->
      is_true v (typeof a2) ->
      exec_stmt e m s t1 m1 out1 ->
      out_normal_or_continue out1 ->
      exec_stmt e m1 a3 t2 m2 Out_normal ->
      exec_stmt e m2 (Sfor Sskip a2 a3 s) t3 m3 out ->
      exec_stmt e m (Sfor Sskip a2 a3 s)
                (t1 ** t2 ** t3) m3 out
  | exec_Sswitch:   forall e m a t n sl m1 out,
      eval_expr e m a (Vint n) ->
      exec_stmt e m (seq_of_labeled_statement (select_switch n sl)) t m1 out ->
      exec_stmt e m (Sswitch a sl)
                t m1 (outcome_switch out)

(** [eval_funcall m1 fd args t m2 res] describes the invocation of
  function [fd] with arguments [args].  [res] is the value returned
  by the call.  *)

with eval_funcall: mem -> fundef -> list val -> trace -> mem -> val -> Prop :=
  | eval_funcall_internal: forall m f vargs t e m1 m2 m3 out vres m4,
      alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
      bind_parameters e m1 f.(fn_params) vargs m2 ->
      exec_stmt e m2 f.(fn_body) t m3 out ->
      outcome_result_value out f.(fn_return) vres ->
      Mem.free_list m3 (blocks_of_env e) = Some m4 ->
      eval_funcall m (Internal f) vargs t m4 vres
  | eval_funcall_external: forall m id targs tres vargs t vres m',
      external_call (external_function id targs tres) vargs m t vres m' ->
      eval_funcall m (External id targs tres) vargs t m' vres.

Scheme exec_stmt_ind2 := Minimality for exec_stmt Sort Prop
  with eval_funcall_ind2 := Minimality for eval_funcall Sort Prop.

(** ** Big-step semantics for diverging statements and functions *)

(** Coinductive semantics for divergence.
  [execinf_stmt ge e m s t] holds if the execution of statement [s]
  diverges, i.e. loops infinitely.  [t] is the possibly infinite
  trace of observable events performed during the execution. *)

CoInductive execinf_stmt: env -> mem -> statement -> traceinf -> Prop :=
  | execinf_Scall_none:   forall e m a al vf vargs f t,
      eval_expr e m a vf ->
      eval_exprlist e m al vargs ->
      Genv.find_funct ge vf = Some f ->
      type_of_fundef f = typeof a ->
      evalinf_funcall m f vargs t ->
      execinf_stmt e m (Scall None a al) t
  | execinf_Scall_some:   forall e m lhs a al loc ofs vf vargs f t,
      eval_lvalue e m lhs loc ofs ->
      eval_expr e m a vf ->
      eval_exprlist e m al vargs ->
      Genv.find_funct ge vf = Some f ->
      type_of_fundef f = typeof a ->
      evalinf_funcall m f vargs t ->
      execinf_stmt e m (Scall (Some lhs) a al) t
  | execinf_Sseq_1:   forall e m s1 s2 t,
      execinf_stmt e m s1 t ->
      execinf_stmt e m (Ssequence s1 s2) t
  | execinf_Sseq_2:   forall e m s1 s2 t1 m1 t2,
      exec_stmt e m s1 t1 m1 Out_normal ->
      execinf_stmt e m1 s2 t2 ->
      execinf_stmt e m (Ssequence s1 s2) (t1 *** t2)
  | execinf_Sifthenelse_true: forall e m a s1 s2 v1 t,
      eval_expr e m a v1 ->
      is_true v1 (typeof a) ->
      execinf_stmt e m s1 t ->
      execinf_stmt e m (Sifthenelse a s1 s2) t
  | execinf_Sifthenelse_false: forall e m a s1 s2 v1 t,
      eval_expr e m a v1 ->
      is_false v1 (typeof a) ->
      execinf_stmt e m s2 t ->
      execinf_stmt e m (Sifthenelse a s1 s2) t
  | execinf_Swhile_body: forall e m a v s t,
      eval_expr e m a v ->
      is_true v (typeof a) ->
      execinf_stmt e m s t ->
      execinf_stmt e m (Swhile a s) t
  | execinf_Swhile_loop: forall e m a s v t1 m1 out1 t2,
      eval_expr e m a v ->
      is_true v (typeof a) ->
      exec_stmt e m s t1 m1 out1 ->
      out_normal_or_continue out1 ->
      execinf_stmt e m1 (Swhile a s) t2 ->
      execinf_stmt e m (Swhile a s) (t1 *** t2)
  | execinf_Sdowhile_body: forall e m s a t,
      execinf_stmt e m s t ->
      execinf_stmt e m (Sdowhile a s) t
  | execinf_Sdowhile_loop: forall e m s a m1 t1 t2 out1 v,
      exec_stmt e m s t1 m1 out1 ->
      out_normal_or_continue out1 ->
      eval_expr e m1 a v ->
      is_true v (typeof a) ->
      execinf_stmt e m1 (Sdowhile a s) t2 ->
      execinf_stmt e m (Sdowhile a s) (t1 *** t2)
  | execinf_Sfor_start_1: forall e m s a1 a2 a3 t,
      execinf_stmt e m a1 t ->
      execinf_stmt e m (Sfor a1 a2 a3 s) t
  | execinf_Sfor_start_2: forall e m s a1 a2 a3 m1 t1 t2,
      a1 <> Sskip ->
      exec_stmt e m a1 t1 m1 Out_normal ->
      execinf_stmt e m1 (Sfor Sskip a2 a3 s) t2 ->
      execinf_stmt e m (Sfor a1 a2 a3 s) (t1 *** t2)
  | execinf_Sfor_body: forall e m s a2 a3 v t,
      eval_expr e m a2 v ->
      is_true v (typeof a2) ->
      execinf_stmt e m s t ->
      execinf_stmt e m (Sfor Sskip a2 a3 s) t
  | execinf_Sfor_next: forall e m s a2 a3 v m1 t1 t2 out1,
      eval_expr e m a2 v ->
      is_true v (typeof a2) ->
      exec_stmt e m s t1 m1 out1 ->
      out_normal_or_continue out1 ->
      execinf_stmt e m1 a3 t2 ->
      execinf_stmt e m (Sfor Sskip a2 a3 s) (t1 *** t2)
  | execinf_Sfor_loop: forall e m s a2 a3 v m1 m2 t1 t2 t3 out1,
      eval_expr e m a2 v ->
      is_true v (typeof a2) ->
      exec_stmt e m s t1 m1 out1 ->
      out_normal_or_continue out1 ->
      exec_stmt e m1 a3 t2 m2 Out_normal ->
      execinf_stmt e m2 (Sfor Sskip a2 a3 s) t3 ->
      execinf_stmt e m (Sfor Sskip a2 a3 s) (t1 *** t2 *** t3)
  | execinf_Sswitch:   forall e m a t n sl,
      eval_expr e m a (Vint n) ->
      execinf_stmt e m (seq_of_labeled_statement (select_switch n sl)) t ->
      execinf_stmt e m (Sswitch a sl) t

(** [evalinf_funcall ge m fd args t] holds if the invocation of function
    [fd] on arguments [args] diverges, with observable trace [t]. *)

with evalinf_funcall: mem -> fundef -> list val -> traceinf -> Prop :=
  | evalinf_funcall_internal: forall m f vargs t e m1 m2,
      alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
      bind_parameters e m1 f.(fn_params) vargs m2 ->
      execinf_stmt e m2 f.(fn_body) t ->
      evalinf_funcall m (Internal f) vargs t.

End SEMANTICS.

(** * Whole-program semantics *)

(** Execution of whole programs are described as sequences of transitions
  from an initial state to a final state.  An initial state is a [Callstate]
  corresponding to the invocation of the ``main'' function of the program
  without arguments and with an empty continuation. *)

Inductive initial_state (p: program): state -> Prop :=
  | initial_state_intro: forall b f m0,
      let ge := Genv.globalenv p in
      Genv.init_mem p = Some m0 ->
      Genv.find_symbol ge p.(prog_main) = Some b ->
      Genv.find_funct_ptr ge b = Some f ->
      initial_state p (Callstate f nil Kstop m0).

(** A final state is a [Returnstate] with an empty continuation. *)

Inductive final_state: state -> int -> Prop :=
  | final_state_intro: forall r m,
      final_state (Returnstate (Vint r) Kstop m) r.

(** Execution of a whole program: [exec_program p beh]
  holds if the application of [p]'s main function to no arguments
  in the initial memory state for [p] has [beh] as observable
  behavior. *)

Definition exec_program (p: program) (beh: program_behavior) : Prop :=
  program_behaves step (initial_state p) final_state (Genv.globalenv p) beh.

(** Big-step execution of a whole program.  *)

Inductive bigstep_program_terminates (p: program): trace -> int -> Prop :=
  | bigstep_program_terminates_intro: forall b f m0 m1 t r,
      let ge := Genv.globalenv p in 
      Genv.init_mem p = Some m0 ->
      Genv.find_symbol ge p.(prog_main) = Some b ->
      Genv.find_funct_ptr ge b = Some f ->
      eval_funcall ge m0 f nil t m1 (Vint r) ->
      bigstep_program_terminates p t r.

Inductive bigstep_program_diverges (p: program): traceinf -> Prop :=
  | bigstep_program_diverges_intro: forall b f m0 t,
      let ge := Genv.globalenv p in 
      Genv.init_mem p = Some m0 ->
      Genv.find_symbol ge p.(prog_main) = Some b ->
      Genv.find_funct_ptr ge b = Some f ->
      evalinf_funcall ge m0 f nil t ->
      bigstep_program_diverges p t.

(** * Implication from big-step semantics to transition semantics *)

Section BIGSTEP_TO_TRANSITIONS.

Variable prog: program.
Let ge : genv := Genv.globalenv prog.

Definition exec_stmt_eval_funcall_ind
  (PS: env -> mem -> statement -> trace -> mem -> outcome -> Prop)
  (PF: mem -> fundef -> list val -> trace -> mem -> val -> Prop) :=
  fun a b c d e f g h i j k l m n o p q r s t u v w x y =>
  conj (exec_stmt_ind2 ge PS PF a b c d e f g h i j k l m n o p q r s t u v w x y)
       (eval_funcall_ind2 ge PS PF a b c d e f g h i j k l m n o p q r s t u v w x y).

Inductive outcome_state_match
       (e: env) (m: mem) (f: function) (k: cont): outcome -> state -> Prop :=
  | osm_normal:
      outcome_state_match e m f k Out_normal (State f Sskip k e m)
  | osm_break:
      outcome_state_match e m f k Out_break (State f Sbreak k e m)
  | osm_continue:
      outcome_state_match e m f k Out_continue (State f Scontinue k e m)
  | osm_return_none: forall k',
      call_cont k' = call_cont k ->
      outcome_state_match e m f k 
        (Out_return None) (State f (Sreturn None) k' e m)
  | osm_return_some: forall a v k',
      call_cont k' = call_cont k ->
      eval_expr ge e m a v ->
      outcome_state_match e m f k
        (Out_return (Some v)) (State f (Sreturn (Some a)) k' e m).

Lemma is_call_cont_call_cont:
  forall k, is_call_cont k -> call_cont k = k.
Proof.
  destruct k; simpl; intros; contradiction || auto.
Qed.

Lemma exec_stmt_eval_funcall_steps:
  (forall e m s t m' out,
   exec_stmt ge e m s t m' out ->
   forall f k, exists S,
   star step ge (State f s k e m) t S
   /\ outcome_state_match e m' f k out S)
/\
  (forall m fd args t m' res,
   eval_funcall ge m fd args t m' res ->
   forall k,
   is_call_cont k ->
   star step ge (Callstate fd args k m) t (Returnstate res k m')).
Proof.
  apply exec_stmt_eval_funcall_ind; intros.

(* skip *)
  econstructor; split. apply star_refl. constructor.

(* assign *)
  econstructor; split. apply star_one. econstructor; eauto. constructor.

(* call none *)
  econstructor; split.
  eapply star_left. econstructor; eauto. 
  eapply star_right. apply H4. simpl; auto. econstructor. reflexivity. traceEq.
  constructor.

(* call some *)
  econstructor; split.
  eapply star_left. econstructor; eauto. 
  eapply star_right. apply H5. simpl; auto. econstructor; eauto. reflexivity. traceEq.
  constructor.

(* sequence 2 *)
  destruct (H0 f (Kseq s2 k)) as [S1 [A1 B1]]. inv B1.
  destruct (H2 f k) as [S2 [A2 B2]]. 
  econstructor; split.
  eapply star_left. econstructor.
  eapply star_trans. eexact A1. 
  eapply star_left. constructor. eexact A2.
  reflexivity. reflexivity. traceEq.
  auto.

(* sequence 1 *)
  destruct (H0 f (Kseq s2 k)) as [S1 [A1 B1]].
  set (S2 :=
    match out with
    | Out_break => State f Sbreak k e m1
    | Out_continue => State f Scontinue k e m1
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. econstructor.
  eapply star_trans. eexact A1.
  unfold S2; inv B1.
    congruence.
    apply star_one. apply step_break_seq.
    apply star_one. apply step_continue_seq.
    apply star_refl.
    apply star_refl.
  reflexivity. traceEq.
  unfold S2; inv B1; congruence || econstructor; eauto.

(* ifthenelse true *)
  destruct (H2 f k) as [S1 [A1 B1]].
  exists S1; split.
  eapply star_left. eapply step_ifthenelse_true; eauto. eexact A1. traceEq.
  auto.

(* ifthenelse false *)
  destruct (H2 f k) as [S1 [A1 B1]].
  exists S1; split.
  eapply star_left. eapply step_ifthenelse_false; eauto. eexact A1. traceEq.
  auto.

(* return none *)
  econstructor; split. apply star_refl. constructor. auto.

(* return some *)
  econstructor; split. apply star_refl. econstructor; eauto.

(* break *)
  econstructor; split. apply star_refl. constructor.

(* continue *)
  econstructor; split. apply star_refl. constructor.

(* while false *)
  econstructor; split.
  apply star_one. eapply step_while_false; eauto. 
  constructor.

(* while stop *)
  destruct (H2 f (Kwhile a s k)) as [S1 [A1 B1]].
  set (S2 :=
    match out' with
    | Out_break => State f Sskip k e m'
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. eapply step_while_true; eauto. 
  eapply star_trans. eexact A1.
  unfold S2. inversion H3; subst.
  inv B1. apply star_one. constructor.    
  apply star_refl.
  reflexivity. traceEq.
  unfold S2. inversion H3; subst. constructor. inv B1; econstructor; eauto.

(* while loop *)
  destruct (H2 f (Kwhile a s k)) as [S1 [A1 B1]].
  destruct (H5 f k) as [S2 [A2 B2]].
  exists S2; split.
  eapply star_left. eapply step_while_true; eauto.
  eapply star_trans. eexact A1.
  eapply star_left.
  inv H3; inv B1; apply step_skip_or_continue_while; auto.
  eexact A2.
  reflexivity. reflexivity. traceEq.
  auto.

(* dowhile false *)
  destruct (H0 f (Kdowhile a s k)) as [S1 [A1 B1]].
  exists (State f Sskip k e m1); split.
  eapply star_left. constructor. 
  eapply star_right. eexact A1.
  inv H1; inv B1; eapply step_skip_or_continue_dowhile_false; eauto.
  reflexivity. traceEq. 
  constructor.

(* dowhile stop *)
  destruct (H0 f (Kdowhile a s k)) as [S1 [A1 B1]].
  set (S2 :=
    match out1 with
    | Out_break => State f Sskip k e m1
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. apply step_dowhile. 
  eapply star_trans. eexact A1.
  unfold S2. inversion H1; subst.
  inv B1. apply star_one. constructor.
  apply star_refl.
  reflexivity. traceEq.
  unfold S2. inversion H1; subst. constructor. inv B1; econstructor; eauto.

(* dowhile loop *)
  destruct (H0 f (Kdowhile a s k)) as [S1 [A1 B1]].
  destruct (H5 f k) as [S2 [A2 B2]].
  exists S2; split.
  eapply star_left. apply step_dowhile. 
  eapply star_trans. eexact A1.
  eapply star_left.
  inv H1; inv B1; eapply step_skip_or_continue_dowhile_true; eauto.
  eexact A2.
  reflexivity. reflexivity. traceEq.
  auto.

(* for start *)
  destruct (H1 f (Kseq (Sfor Sskip a2 a3 s) k)) as [S1 [A1 B1]]. inv B1.
  destruct (H3 f k) as [S2 [A2 B2]].
  exists S2; split.
  eapply star_left. apply step_for_start; auto.   
  eapply star_trans. eexact A1.
  eapply star_left. constructor. eexact A2.
  reflexivity. reflexivity. traceEq.
  auto.

(* for false *)
  econstructor; split.
  eapply star_one. eapply step_for_false; eauto. 
  constructor.

(* for stop *)
  destruct (H2 f (Kfor2 a2 a3 s k)) as [S1 [A1 B1]].
  set (S2 :=
    match out1 with
    | Out_break => State f Sskip k e m1
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. eapply step_for_true; eauto. 
  eapply star_trans. eexact A1.
  unfold S2. inversion H3; subst.
  inv B1. apply star_one. constructor. 
  apply star_refl.
  reflexivity. traceEq.
  unfold S2. inversion H3; subst. constructor. inv B1; econstructor; eauto.

(* for loop *)
  destruct (H2 f (Kfor2 a2 a3 s k)) as [S1 [A1 B1]].
  destruct (H5 f (Kfor3 a2 a3 s k)) as [S2 [A2 B2]]. inv B2.
  destruct (H7 f k) as [S3 [A3 B3]].
  exists S3; split.
  eapply star_left. eapply step_for_true; eauto. 
  eapply star_trans. eexact A1.
  eapply star_trans with (s2 := State f a3 (Kfor3 a2 a3 s k) e m1).
  inv H3; inv B1.
  apply star_one. constructor. auto. 
  apply star_one. constructor. auto. 
  eapply star_trans. eexact A2. 
  eapply star_left. constructor.
  eexact A3.
  reflexivity. reflexivity. reflexivity. reflexivity. traceEq.
  auto.

(* switch *)
  destruct (H1 f (Kswitch k)) as [S1 [A1 B1]].
  set (S2 :=
    match out with
    | Out_normal => State f Sskip k e m1
    | Out_break => State f Sskip k e m1
    | Out_continue => State f Scontinue k e m1
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. eapply step_switch; eauto. 
  eapply star_trans. eexact A1. 
  unfold S2; inv B1.
    apply star_one. constructor. auto. 
    apply star_one. constructor. auto. 
    apply star_one. constructor. 
    apply star_refl.
    apply star_refl.
  reflexivity. traceEq.
  unfold S2. inv B1; simpl; econstructor; eauto.

(* call internal *)
  destruct (H2 f k) as [S1 [A1 B1]].
  eapply star_left. eapply step_internal_function; eauto.
  eapply star_right. eexact A1. 
  inv B1; simpl in H3; try contradiction.
  (* Out_normal *)
  assert (fn_return f = Tvoid /\ vres = Vundef).
    destruct (fn_return f); auto || contradiction.
  destruct H6. subst vres. apply step_skip_call; auto.
  (* Out_return None *)
  assert (fn_return f = Tvoid /\ vres = Vundef).
    destruct (fn_return f); auto || contradiction.
  destruct H7. subst vres.
  rewrite <- (is_call_cont_call_cont k H5). rewrite <- H6.
  apply step_return_0; auto.
  (* Out_return Some *)
  destruct H3. subst vres.
  rewrite <- (is_call_cont_call_cont k H5). rewrite <- H6.
  eapply step_return_1; eauto.
  reflexivity. traceEq.

(* call external *)
  apply star_one. apply step_external_function; auto. 
Qed.

Lemma exec_stmt_steps:
   forall e m s t m' out,
   exec_stmt ge e m s t m' out ->
   forall f k, exists S,
   star step ge (State f s k e m) t S
   /\ outcome_state_match e m' f k out S.
Proof (proj1 exec_stmt_eval_funcall_steps).

Lemma eval_funcall_steps:
   forall m fd args t m' res,
   eval_funcall ge m fd args t m' res ->
   forall k,
   is_call_cont k ->
   star step ge (Callstate fd args k m) t (Returnstate res k m').
Proof (proj2 exec_stmt_eval_funcall_steps).

Definition order (x y: unit) := False.

Lemma evalinf_funcall_forever:
  forall m fd args T k,
  evalinf_funcall ge m fd args T ->
  forever_N step order ge tt (Callstate fd args k m) T.
Proof.
  cofix CIH_FUN.
  assert (forall e m s T f k,
          execinf_stmt ge e m s T ->
          forever_N step order ge tt (State f s k e m) T).
  cofix CIH_STMT.
  intros. inv H.

(* call none *)
  eapply forever_N_plus.
  apply plus_one. eapply step_call_none; eauto. 
  apply CIH_FUN. eauto. traceEq.
(* call some *)
  eapply forever_N_plus.
  apply plus_one. eapply step_call_some; eauto. 
  apply CIH_FUN. eauto. traceEq.

(* seq 1 *)
  eapply forever_N_plus.
  apply plus_one. econstructor.
  apply CIH_STMT; eauto. traceEq.
(* seq 2 *)
  destruct (exec_stmt_steps _ _ _ _ _ _ H0 f (Kseq s2 k)) as [S1 [A1 B1]].
  inv B1.
  eapply forever_N_plus.
  eapply plus_left. constructor. eapply star_trans. eexact A1. 
  apply star_one. constructor. reflexivity. reflexivity.
  apply CIH_STMT; eauto. traceEq.

(* ifthenelse true *)
  eapply forever_N_plus.
  apply plus_one. eapply step_ifthenelse_true; eauto. 
  apply CIH_STMT; eauto. traceEq.
(* ifthenelse false *)
  eapply forever_N_plus.
  apply plus_one. eapply step_ifthenelse_false; eauto. 
  apply CIH_STMT; eauto. traceEq.

(* while body *)
  eapply forever_N_plus.
  eapply plus_one. eapply step_while_true; eauto.
  apply CIH_STMT; eauto. traceEq.
(* while loop *)
  destruct (exec_stmt_steps _ _ _ _ _ _ H2 f (Kwhile a s0 k)) as [S1 [A1 B1]].
  eapply forever_N_plus with (s2 := State f (Swhile a s0) k e m1).
  eapply plus_left. eapply step_while_true; eauto.
  eapply star_right. eexact A1.
  inv H3; inv B1; apply step_skip_or_continue_while; auto. 
  reflexivity. reflexivity.
  apply CIH_STMT; eauto. traceEq.

(* dowhile body *)
  eapply forever_N_plus.
  eapply plus_one. eapply step_dowhile.
  apply CIH_STMT; eauto.
  traceEq.

(* dowhile loop *)
  destruct (exec_stmt_steps _ _ _ _ _ _ H0 f (Kdowhile a s0 k)) as [S1 [A1 B1]].
  eapply forever_N_plus with (s2 := State f (Sdowhile a s0) k e m1).
  eapply plus_left. eapply step_dowhile. 
  eapply star_right. eexact A1.
  inv H1; inv B1; eapply step_skip_or_continue_dowhile_true; eauto. 
  reflexivity. reflexivity.
  apply CIH_STMT. eauto. 
  traceEq.

(* for start 1 *)
  assert (a1 <> Sskip). red; intros; subst. inv H0.
  eapply forever_N_plus.
  eapply plus_one. apply step_for_start; auto. 
  apply CIH_STMT; eauto.
  traceEq.

(* for start 2 *)
  destruct (exec_stmt_steps _ _ _ _ _ _ H1 f (Kseq (Sfor Sskip a2 a3 s0) k)) as [S1 [A1 B1]].
  inv B1.
  eapply forever_N_plus.
  eapply plus_left. eapply step_for_start; eauto. 
  eapply star_right. eexact A1.
  apply step_skip_seq. 
  reflexivity. reflexivity.
  apply CIH_STMT; eauto.
  traceEq.

(* for body *)
  eapply forever_N_plus.
  apply plus_one. eapply step_for_true; eauto. 
  apply CIH_STMT; eauto.
  traceEq.

(* for next *)
  destruct (exec_stmt_steps _ _ _ _ _ _ H2 f (Kfor2 a2 a3 s0 k)) as [S1 [A1 B1]].
  eapply forever_N_plus.
  eapply plus_left. eapply step_for_true; eauto.
  eapply star_trans. eexact A1.
  apply star_one.
  inv H3; inv B1; apply step_skip_or_continue_for2; auto.
  reflexivity. reflexivity. 
  apply CIH_STMT; eauto.
  traceEq.

(* for body *)
  destruct (exec_stmt_steps _ _ _ _ _ _ H2 f (Kfor2 a2 a3 s0 k)) as [S1 [A1 B1]].
  destruct (exec_stmt_steps _ _ _ _ _ _ H4 f (Kfor3 a2 a3 s0 k)) as [S2 [A2 B2]].
  inv B2.
  eapply forever_N_plus.
  eapply plus_left. eapply step_for_true; eauto. 
  eapply star_trans. eexact A1.
  eapply star_left. inv H3; inv B1; apply step_skip_or_continue_for2; auto.
  eapply star_right. eexact A2. 
  constructor. 
  reflexivity. reflexivity. reflexivity. reflexivity.  
  apply CIH_STMT; eauto.
  traceEq.

(* switch *)
  eapply forever_N_plus.
  eapply plus_one. eapply step_switch; eauto.
  apply CIH_STMT; eauto.
  traceEq.

(* call internal *)
  intros. inv H0.
  eapply forever_N_plus.
  eapply plus_one. econstructor; eauto. 
  apply H; eauto.
  traceEq.
Qed.

Theorem bigstep_program_terminates_exec:
  forall t r, bigstep_program_terminates prog t r -> exec_program prog (Terminates t r).
Proof.
  intros. inv H. 
  econstructor.
  econstructor. eauto. eauto. eauto.
  apply eval_funcall_steps. eauto. red; auto. 
  econstructor.
Qed.

Theorem bigstep_program_diverges_exec:
  forall T, bigstep_program_diverges prog T ->
  exec_program prog (Reacts T) \/
  exists t, exec_program prog (Diverges t) /\ traceinf_prefix t T.
Proof.
  intros. inv H.
  set (st := Callstate f nil Kstop m0).
  assert (forever step ge0 st T). 
    eapply forever_N_forever with (order := order).
    red; intros. constructor; intros. red in H. elim H.
    eapply evalinf_funcall_forever; eauto. 
  destruct (forever_silent_or_reactive _ _ _ _ _ _ H)
  as [A | [t [s' [T' [B [C D]]]]]]. 
  left. econstructor. econstructor; eauto. eauto.
  right. exists t. split.
  econstructor. econstructor; eauto. eauto. auto. 
  subst T. rewrite <- (E0_right t) at 1. apply traceinf_prefix_app. constructor.
Qed.

End BIGSTEP_TO_TRANSITIONS.