aboutsummaryrefslogtreecommitdiffstats
path: root/cfrontend/SimplExprproof.v
blob: cff182d401e66399038ff3c56edeb306cc6bae5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Correctness proof for expression simplification. *)

Require Import Coq.Program.Equality.
Require Import Axioms.
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Errors.
Require Import Integers.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Smallstep.
Require Import Globalenvs.
Require Import Determinism.
Require Import Csyntax.
Require Import Csem.
Require Import Cstrategy.
Require Import Clight.
Require Import SimplExpr.
Require Import SimplExprspec.

Section PRESERVATION.

Variable prog: C.program.
Variable tprog: Clight.program.
Hypothesis TRANSL: transl_program prog = OK tprog.

Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.

(** Invariance properties. *)

Lemma symbols_preserved:
  forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof
  (Genv.find_symbol_transf_partial transl_fundef _ TRANSL).

Lemma function_ptr_translated:
  forall b f,
  Genv.find_funct_ptr ge b = Some f ->
  exists tf,
  Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = OK tf.
Proof
  (Genv.find_funct_ptr_transf_partial transl_fundef _ TRANSL).

Lemma functions_translated:
  forall v f,
  Genv.find_funct ge v = Some f ->
  exists tf,
  Genv.find_funct tge v = Some tf /\ transl_fundef f = OK tf.
Proof
  (Genv.find_funct_transf_partial transl_fundef _ TRANSL).

Lemma varinfo_preserved:
  forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
Proof
  (Genv.find_var_info_transf_partial transl_fundef _ TRANSL).

Lemma type_of_fundef_preserved:
  forall f tf, transl_fundef f = OK tf ->
  type_of_fundef tf = C.type_of_fundef f.
Proof.
  intros. destruct f; monadInv H.
  exploit transl_function_spec; eauto. intros [A [B [C D]]].
  simpl. unfold type_of_function, C.type_of_function. congruence.
  auto.
Qed.

Lemma function_return_preserved:
  forall f tf, transl_function f = OK tf ->
  fn_return tf = C.fn_return f.
Proof.
  intros. unfold transl_function in H.
  destruct (transl_stmt (C.fn_body f) initial_generator); inv H.
  auto.
Qed.

Lemma type_of_global_preserved:
  forall b ty,
  Csem.type_of_global ge b = Some ty ->
  type_of_global tge b = Some ty.
Proof.
  intros until ty. unfold Csem.type_of_global, type_of_global.
  rewrite varinfo_preserved. destruct (Genv.find_var_info ge b). auto. 
  case_eq (Genv.find_funct_ptr ge b); intros. 
  inv H0. exploit function_ptr_translated; eauto. intros [tf [A B]]. 
  rewrite A. decEq. apply type_of_fundef_preserved; auto.
  congruence.
Qed.

(** Translation of simple expressions. *)

Lemma tr_simple_nil:
  (forall le dst r sl a tmps, tr_expr le dst r sl a tmps ->
   dst = For_val \/ dst = For_effects -> simple r -> sl = nil)
/\(forall le rl sl al tmps, tr_exprlist le rl sl al tmps ->
   simplelist rl -> sl = nil).
Proof.
  assert (A: forall dst a, dst = For_val \/ dst = For_effects -> final dst a = nil).
    intros. destruct H; subst dst; auto.
  apply tr_expr_exprlist; intros; simpl in *; try contradiction; auto.
  rewrite H0; auto. simpl; auto.
  rewrite H0; auto. simpl; auto.
  destruct H1; congruence.
  rewrite H0; auto. simpl; auto.
  rewrite H0; auto. simpl; auto.
  rewrite H0; auto. simpl; auto.
  destruct H7. rewrite H0; auto. rewrite H2; auto. simpl; auto.
  rewrite H0; auto. simpl; auto.
  destruct H6. rewrite H0; auto.
Qed.

Lemma tr_simple_expr_nil:
  forall le dst r sl a tmps, tr_expr le dst r sl a tmps ->
  dst = For_val \/ dst = For_effects -> simple r -> sl = nil.
Proof (proj1 tr_simple_nil).

Lemma tr_simple_exprlist_nil:
  forall le rl sl al tmps, tr_exprlist le rl sl al tmps ->
  simplelist rl -> sl = nil.
Proof (proj2 tr_simple_nil).

(** Evaluation of simple expressions and of their translation *)

Lemma tr_simple:
 forall e m,
 (forall r v,
  eval_simple_rvalue ge e m r v ->
  forall le dst sl a tmps,
  tr_expr le dst r sl a tmps ->
  match dst with
  | For_val => sl = nil /\ C.typeof r = typeof a /\ eval_expr tge e le m a v
  | For_effects => sl = nil
  | For_test s1 s2 =>
      exists b, sl = makeif b s1 s2 :: nil /\ C.typeof r = typeof b /\ eval_expr tge e le m b v
  end)
/\
 (forall l b ofs,
  eval_simple_lvalue ge e m l b ofs ->
  forall le sl a tmps,
  tr_expr le For_val l sl a tmps ->
  sl = nil /\ C.typeof l = typeof a /\ eval_lvalue tge e le m a b ofs).
Proof.
Opaque makeif.
  intros e m.
  apply (eval_simple_rvalue_lvalue_ind ge e m); intros until tmps; intros TR; inv TR.
(* value *)
  auto.
  auto.
  exists a0; auto.
(* rvalof *)
  exploit H0; eauto. intros [A [B C]].
  subst sl1; simpl.
  assert (eval_expr tge e le m a v). eapply eval_Elvalue. eauto. congruence.
  destruct dst; auto.
  econstructor. split. simpl; eauto. auto. 
(* addrof *)
  exploit H0; eauto. intros [A [B C]].
  subst sl1; simpl.
  assert (eval_expr tge e le m (Eaddrof a1 ty) (Vptr b ofs)). econstructor; eauto.
  destruct dst; auto. simpl; econstructor; eauto. 
(* unop *)
  exploit H0; eauto. intros [A [B C]].
  subst sl1; simpl.
  assert (eval_expr tge e le m (Eunop op a1 ty) v). econstructor; eauto. congruence.
  destruct dst; auto. simpl; econstructor; eauto.
(* binop *)
  exploit H0; eauto. intros [A [B C]].
  exploit H2; eauto. intros [D [E F]].
  subst sl1 sl2; simpl.
  assert (eval_expr tge e le m (Ebinop op a1 a2 ty) v). econstructor; eauto. congruence.
  destruct dst; auto. simpl; econstructor; eauto.
(* cast *)
  exploit H0; eauto. intros [A [B C]].
  subst sl1; simpl.
  assert (eval_expr tge e le m (Ecast a1 ty) v). econstructor; eauto. congruence.
  destruct dst; auto. simpl; econstructor; eauto.
(* sizeof *)
  destruct dst.
  split; auto. split; auto. constructor.
  auto.
  exists (Esizeof ty1 ty). split. auto. split. auto. constructor.
(* var local *)
  split; auto. split; auto. apply eval_Evar_local; auto. 
(* var global *)
  split; auto. split; auto. apply eval_Evar_global; auto.
    rewrite symbols_preserved; auto.
    eapply type_of_global_preserved; eauto. 
(* deref *)
  exploit H0; eauto. intros [A [B C]]. subst sl1.
  split; auto. split; auto. constructor; auto.
(* field struct *)
  exploit H0; eauto. intros [A [B C]]. subst sl1.
  split; auto. split; auto. rewrite B in H1. eapply eval_Efield_struct; eauto.
(* field union *)
  exploit H0; eauto. intros [A [B C]]. subst sl1.
  split; auto. split; auto. rewrite B in H1. eapply eval_Efield_union; eauto.
Qed.

Lemma tr_simple_rvalue:
  forall e m r v,
  eval_simple_rvalue ge e m r v ->
  forall le dst sl a tmps,
  tr_expr le dst r sl a tmps ->
  match dst with
  | For_val => sl = nil /\ C.typeof r = typeof a /\ eval_expr tge e le m a v
  | For_effects => sl = nil
  | For_test s1 s2 =>
      exists b, sl = makeif b s1 s2 :: nil /\ C.typeof r = typeof b /\ eval_expr tge e le m b v
  end.
Proof.
  intros e m. exact (proj1 (tr_simple e m)).
Qed.

Lemma tr_simple_lvalue: 
  forall e m l b ofs,
  eval_simple_lvalue ge e m l b ofs ->
  forall le sl a tmps,
  tr_expr le For_val l sl a tmps ->
  sl = nil /\ C.typeof l = typeof a /\ eval_lvalue tge e le m a b ofs.
Proof.
  intros e m. exact (proj2 (tr_simple e m)).
Qed.

Lemma tr_simple_exprlist:
  forall le rl sl al tmps,
  tr_exprlist le rl sl al tmps ->
  forall e m tyl vl,
  eval_simple_list ge e m rl tyl vl ->
  sl = nil /\ eval_exprlist tge e le m al tyl vl.
Proof.
  induction 1; intros. 
  inv H. split. auto. constructor.
  inv H4.
  exploit tr_simple_rvalue; eauto. intros [A [B C]].
  exploit IHtr_exprlist; eauto. intros [D E].
  split. subst; auto. econstructor; eauto. congruence.
Qed.

(** Commutation between the translation of expressions and left contexts. *)

Lemma typeof_context:
  forall k1 k2 C, leftcontext k1 k2 C ->
  forall e1 e2, C.typeof e1 = C.typeof e2 ->
  C.typeof (C e1) = C.typeof (C e2).
Proof.
  induction 1; intros; auto. 
Qed.

Inductive compat_dest: (C.expr -> C.expr) -> purpose -> purpose -> list statement -> Prop :=
  | compat_dest_base: forall dst,
      compat_dest (fun x => x) dst dst nil
  | compat_dest_val: forall C dst sl,
      compat_dest C For_val dst sl
  | compat_dest_effects: forall C dst sl,
      compat_dest C For_effects dst sl
  | compat_dest_paren: forall C ty dst' dst sl,
      compat_dest C dst' dst sl ->
      compat_dest (fun x => C.Eparen (C x) ty) dst' dst sl.

Lemma compat_dest_not_test:
  forall  C dst' dst sl,
  compat_dest C dst' dst sl ->
  dst = For_val \/ dst = For_effects ->
  dst' = For_val \/ dst' = For_effects.
Proof.
  induction 1; intros; auto.
Qed.

Lemma compat_dest_change:
  forall C1 dst' dst1 sl1 C2 dst2 sl2,
  compat_dest C1 dst' dst1 sl1 ->
  dst1 = For_val \/ dst1 = For_effects ->
  compat_dest C2 dst' dst2 sl2.
Proof.
  intros. exploit compat_dest_not_test; eauto. intros [A | A]; subst dst'; constructor.
Qed.

Scheme leftcontext_ind2 := Minimality for leftcontext Sort Prop
  with leftcontextlist_ind2 := Minimality for leftcontextlist Sort Prop.
Combined Scheme leftcontext_leftcontextlist_ind from leftcontext_ind2, leftcontextlist_ind2.

Lemma tr_expr_leftcontext_rec:
 (
  forall from to C, leftcontext from to C ->
  forall le e dst sl a tmps,
  tr_expr le dst (C e) sl a tmps ->
  exists dst', exists sl1, exists sl2, exists a', exists tmp',
  tr_expr le dst' e sl1 a' tmp'
  /\ sl = sl1 ++ sl2
  /\ compat_dest C dst' dst sl2
  /\ incl tmp' tmps
  /\ (forall le' e' sl3,
        tr_expr le' dst' e' sl3 a' tmp' ->
        (forall id, ~In id tmp' -> le'!id = le!id) ->
        C.typeof e' = C.typeof e ->
        tr_expr le' dst (C e') (sl3 ++ sl2) a tmps)
 ) /\ (
  forall from C, leftcontextlist from C ->
  forall le e sl a tmps,
  tr_exprlist le (C e) sl a tmps ->
  exists dst', exists sl1, exists sl2, exists a', exists tmp',
  tr_expr le dst' e sl1 a' tmp'
  /\ sl = sl1 ++ sl2
  /\ match dst' with For_test _ _ => False | _ => True end
  /\ incl tmp' tmps
  /\ (forall le' e' sl3,
        tr_expr le' dst' e' sl3 a' tmp' ->
        (forall id, ~In id tmp' -> le'!id = le!id) ->
        C.typeof e' = C.typeof e ->
        tr_exprlist le' (C e') (sl3 ++ sl2) a tmps)
).
Proof.

Ltac TR :=
  econstructor; econstructor; econstructor; econstructor; econstructor;
  split; [eauto | split; [idtac | split; [eauto | split]]].

Ltac NOTIN :=
  match goal with
  | [ H1: In ?x ?l, H2: list_disjoint ?l _ |- ~In ?x _ ] =>
        red; intro; elim (H2 x x); auto
  | [ H1: In ?x ?l, H2: list_disjoint _ ?l |- ~In ?x _ ] =>
        red; intro; elim (H2 x x); auto
  end.

Ltac UNCHANGED :=
  match goal with
  | [ H: (forall (id: ident), ~In id _ -> ?le' ! id = ?le ! id) |-
         (forall (id: ident), In id _ -> ?le' ! id = ?le ! id) ] =>
      intros; apply H; NOTIN
  end.

  generalize compat_dest_change; intro CDC.
  apply leftcontext_leftcontextlist_ind; intros.

(* base *)
  TR. rewrite <- app_nil_end; auto. constructor. red; auto.
  intros. rewrite <- app_nil_end; auto. 
(* deref *)
  inv H1. 
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl1; rewrite app_ass; eauto. auto. 
  intros. rewrite <- app_ass. econstructor; eauto. 
(* field *)
  inv H1.
  exploit H0. eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl1; rewrite app_ass; eauto. auto. 
  intros. rewrite <- app_ass. econstructor; eauto.
(* rvalof *)
  inv H1.
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl1; rewrite app_ass; eauto. auto. 
  intros. rewrite <- app_ass; econstructor; eauto.
(* addrof *)
  inv H1. 
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl1; rewrite app_ass; eauto. auto. 
  intros. rewrite <- app_ass. econstructor; eauto.
(* unop *) 
  inv H1. 
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl1; rewrite app_ass; eauto. auto. 
  intros. rewrite <- app_ass. econstructor; eauto. 
(* binop left *)
  inv H1.
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl1. rewrite app_ass. eauto. 
  red; auto. 
  intros. rewrite <- app_ass. econstructor; eauto.
  eapply tr_expr_invariant; eauto. UNCHANGED. 
(* binop right *)
  inv H2. 
  assert (sl1 = nil) by (eapply tr_simple_expr_nil; eauto). subst sl1; simpl.
  exploit H1; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl2. rewrite app_ass. eauto. 
  red; auto. 
  intros. rewrite <- app_ass. change (sl3 ++ sl2') with (nil ++ sl3 ++ sl2'). rewrite app_ass. econstructor; eauto.
  eapply tr_expr_invariant; eauto. UNCHANGED. 
(* cast *)
  inv H1.
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl1; rewrite app_ass; eauto. auto. 
  intros. rewrite <- app_ass. econstructor; eauto.
(* condition *)
  inv H1.
  (* for val *)
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. 
  rewrite Q. rewrite app_ass. eauto. 
  red; auto.
  intros. rewrite <- app_ass. econstructor. apply S; auto. 
  eapply tr_expr_invariant; eauto. UNCHANGED.
  eapply tr_expr_invariant; eauto. UNCHANGED.
  auto. auto. auto. auto. auto. auto. auto. 
  (* for effects *)
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. 
  rewrite Q. rewrite app_ass. eauto. 
  red; auto.
  intros. rewrite <- app_ass. econstructor. auto. apply S; auto. 
  eapply tr_expr_invariant; eauto. UNCHANGED.
  eapply tr_expr_invariant; eauto. UNCHANGED.
  auto. auto. auto. auto. auto.
(* assign left *)
  inv H1.
  (* for effects *)
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl1. rewrite app_ass. eauto. 
  red; auto. 
  intros. rewrite <- app_ass. econstructor. apply S; auto.
  eapply tr_expr_invariant; eauto. UNCHANGED.
  auto. auto. auto.
  (* for val *)
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl1. rewrite app_ass. eauto. 
  red; auto. 
  intros. rewrite <- app_ass. econstructor. apply S; auto.
  eapply tr_expr_invariant; eauto. UNCHANGED.
  auto. auto. auto. auto. auto. auto.
  eapply typeof_context; eauto.
  auto. 
(* assign right *)
  inv H2. 
  (* for effects *)
  assert (sl1 = nil) by (eapply tr_simple_expr_nil; eauto). subst sl1; simpl.
  exploit H1; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl2. rewrite app_ass. eauto. 
  red; auto. 
  intros. rewrite <- app_ass. change (sl3 ++ sl2') with (nil ++ (sl3 ++ sl2')). rewrite app_ass. 
  econstructor. 
  eapply tr_expr_invariant; eauto. UNCHANGED.
  apply S; auto. auto. auto. auto.
  (* for val *)
  assert (sl1 = nil) by (eapply tr_simple_expr_nil; eauto). subst sl1; simpl.
  exploit H1; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl2. rewrite app_ass. eauto. 
  red; auto. 
  intros. rewrite <- app_ass. change (sl3 ++ sl2') with (nil ++ (sl3 ++ sl2')). rewrite app_ass. 
  econstructor. 
  eapply tr_expr_invariant; eauto. UNCHANGED.
  apply S; auto. auto. auto. auto. auto. auto. auto. auto. 
  eapply typeof_context; eauto.
(* assignop left *)
  inv H1.
  (* for effects *)
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl1. rewrite app_ass. eauto. 
  red; auto. 
  intros. rewrite <- app_ass. econstructor. apply S; auto.
  eapply tr_expr_invariant; eauto. UNCHANGED.
  auto. auto. auto.
  (* for val *)
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl1. rewrite app_ass. eauto. 
  red; auto. 
  intros. rewrite <- app_ass. econstructor. apply S; auto.
  eapply tr_expr_invariant; eauto. UNCHANGED.
  auto. auto. auto. auto. auto. auto.
  eapply typeof_context; eauto.
(* assignop right *)
  inv H2.
  (* for effects *)
  assert (sl1 = nil) by (eapply tr_simple_expr_nil; eauto). subst sl1; simpl.
  exploit H1; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl2. rewrite app_ass. eauto. 
  red; auto.
  intros. rewrite <- app_ass. change (sl3 ++ sl2') with (nil ++ sl3 ++ sl2'). rewrite app_ass. econstructor. 
  eapply tr_expr_invariant; eauto. UNCHANGED.
  apply S; auto. auto. auto. auto.
  (* for val *)
  assert (sl1 = nil) by (eapply tr_simple_expr_nil; eauto). subst sl1; simpl.
  exploit H1; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl2. rewrite app_ass. eauto. 
  red; auto. 
  intros. rewrite <- app_ass. change (sl3 ++ sl2') with (nil ++ sl3 ++ sl2'). rewrite app_ass. econstructor. 
  eapply tr_expr_invariant; eauto. UNCHANGED.
  apply S; auto. auto. auto. auto. auto. auto. auto. auto. 
(* postincr *)
  inv H1.
  (* for effects *)
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. rewrite Q; rewrite app_ass; eauto. red; auto. 
  intros. replace (C.typeof (C e)) with (C.typeof (C e')). rewrite <- app_ass.
  econstructor; eauto. 
  eapply typeof_context; eauto.
  (* for val *)
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. rewrite Q; rewrite app_ass; eauto. red; auto. 
  intros. rewrite <- app_ass. econstructor; eauto. 
  eapply typeof_context; eauto.
(* call left *)
  inv H1.
  (* for effects *)
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. rewrite Q; rewrite app_ass; eauto. red; auto. 
  intros. rewrite <- app_ass. econstructor. apply S; auto.
  eapply tr_exprlist_invariant; eauto. UNCHANGED.
  auto. auto. auto.
  (* for val *)
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. rewrite Q; rewrite app_ass; eauto. red; auto. 
  intros. rewrite <- app_ass. econstructor. auto. apply S; auto.
  eapply tr_exprlist_invariant; eauto. UNCHANGED.
  auto. auto. auto. auto. 
(* call right *)
  inv H2.
  (* for effects *)
  assert (sl1 = nil) by (eapply tr_simple_expr_nil; eauto). subst sl1; simpl. 
  exploit H1; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. rewrite Q; rewrite app_ass; eauto. destruct dst'; contradiction || constructor.
  red; auto. 
  intros. rewrite <- app_ass. change (sl3++sl2') with (nil ++ sl3 ++ sl2'). rewrite app_ass. econstructor.
  eapply tr_expr_invariant; eauto. UNCHANGED.
  apply S; auto. auto. auto. auto.
  (* for val *)
  assert (sl1 = nil) by (eapply tr_simple_expr_nil; eauto). subst sl1; simpl. 
  exploit H1; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. rewrite Q; rewrite app_ass; eauto. destruct dst'; contradiction || constructor.
  red; auto. 
  intros. rewrite <- app_ass. change (sl3++sl2') with (nil ++ sl3 ++ sl2'). rewrite app_ass. econstructor.
  auto. eapply tr_expr_invariant; eauto. UNCHANGED.
  apply S; auto.
  auto. auto. auto. auto.
(* comma *)
  inv H1.
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. rewrite Q; rewrite app_ass; eauto. red; auto. 
  intros. rewrite <- app_ass. econstructor. apply S; auto.
  eapply tr_expr_invariant; eauto. UNCHANGED.
  auto. auto. auto.
(* paren *)
  inv H1. 
  (* for val *)
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. rewrite Q. rewrite app_ass. eauto. red; auto. 
  intros. rewrite <- app_ass. econstructor; eauto. 
  (* for effects *)
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. rewrite Q. eauto. constructor; auto. auto.
  intros. econstructor; eauto.
(* cons left *)
  inv H1.
  exploit H0; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl1. rewrite app_ass. eauto. 
  exploit compat_dest_not_test; eauto. intros [A|A]; subst dst'; auto.
  red; auto. 
  intros. rewrite <- app_ass. econstructor. apply S; auto.
  eapply tr_exprlist_invariant; eauto.  UNCHANGED.
  auto. auto. auto.
(* cons right *)
  inv H2.
  assert (sl1 = nil) by (eapply tr_simple_expr_nil; eauto). subst sl1; simpl. 
  exploit H1; eauto. intros [dst' [sl1' [sl2' [a' [tmp' [P [Q [U [R S]]]]]]]]].
  TR. subst sl2. eauto. 
  red; auto. 
  intros. change sl3 with (nil ++ sl3). rewrite app_ass. econstructor.
  eapply tr_expr_invariant; eauto. UNCHANGED.
  apply S; auto.
  auto. auto. auto.
Qed.

Theorem tr_expr_leftcontext:
  forall C le r dst sl a tmps,
  leftcontext RV RV C ->
  tr_expr le dst (C r) sl a tmps ->
  exists dst', exists sl1, exists sl2, exists a', exists tmp',
  tr_expr le dst' r sl1 a' tmp'
  /\ sl = sl1 ++ sl2
  /\ compat_dest C dst' dst sl2
  /\ incl tmp' tmps
  /\ (forall le' r' sl3,
        tr_expr le' dst' r' sl3 a' tmp' ->
        (forall id, ~In id tmp' -> le'!id = le!id) ->
        C.typeof r' = C.typeof r ->
        tr_expr le' dst (C r') (sl3 ++ sl2) a tmps).
Proof.
  intros. eapply (proj1 tr_expr_leftcontext_rec); eauto.
Qed.

Theorem tr_top_leftcontext:
  forall e le m dst rtop sl a tmps,
  tr_top tge e le m dst rtop sl a tmps ->
  forall r C,
  rtop = C r ->
  leftcontext RV RV C ->
  exists dst', exists sl1, exists sl2, exists a', exists tmp',
  tr_top tge e le m dst' r sl1 a' tmp'
  /\ sl = sl1 ++ sl2
  /\ compat_dest C dst' dst sl2
  /\ incl tmp' tmps
  /\ (forall le' m' r' sl3,
        tr_expr le' dst' r' sl3 a' tmp' ->
        (forall id, ~In id tmp' -> le'!id = le!id) ->
        C.typeof r' = C.typeof r ->
        tr_top tge e le' m' dst (C r') (sl3 ++ sl2) a tmps).
Proof.
  induction 1; intros.
(* val for val *)
  inv H2; inv H1.
  exists For_val; econstructor; econstructor; econstructor; econstructor.
  split. apply tr_top_val_val; eauto.
  split. instantiate (1 := nil); auto.
  split. constructor.
  split. apply incl_refl.
  intros. rewrite <- app_nil_end. constructor; auto.
(* val for test *)
  inv H2; inv H1.
  exists (For_test s1 s2); econstructor; econstructor; econstructor; econstructor.
  split. apply tr_top_val_test; eauto.
  split. instantiate (1 := nil); auto.
  split. constructor.
  split. apply incl_refl.
  intros. rewrite <- app_nil_end. constructor; eauto.
(* base *)
  subst r. exploit tr_expr_leftcontext; eauto.
  intros [dst' [sl1 [sl2 [a' [tmp' [P [Q [R [S T]]]]]]]]].
  exists dst'; exists sl1; exists sl2; exists a'; exists tmp'.
  split. apply tr_top_base; auto.
  split. auto. split. auto. split. auto.
  intros. apply tr_top_base. apply T; auto. 
(* paren *)
  inv H1; inv H0.
  (* at top *)
  exists (For_test s1 s2); econstructor; econstructor; econstructor; econstructor.
  split. apply tr_top_paren_test; eauto.
  split. instantiate (1 := nil). rewrite <- app_nil_end; auto.
  split. constructor.
  split. apply incl_refl.
  intros. rewrite <- app_nil_end. constructor; eauto.
  (* below *)
  exploit (IHtr_top r0 C0); auto. 
  intros [dst' [sl1 [sl2 [a' [tmp' [P [Q [T [R S]]]]]]]]].
  exists dst'; exists sl1; exists sl2; exists a'; exists tmp'.
  split. auto.
  split. auto.
  split. constructor; auto.
  split. auto.
  intros. apply tr_top_paren_test. apply S; auto.
Qed.

Theorem tr_top_testcontext:
  forall C s1 s2 dst sl2 r sl1 a tmps e le m,
  compat_dest C (For_test s1 s2) dst sl2 ->
  tr_top tge e le m (For_test s1 s2) r sl1 a tmps ->
  dst = For_test s1 s2 /\ tr_top tge e le m dst (C r) (sl1 ++ sl2) a tmps.
Proof.
  intros. dependent induction H.
  split. auto. rewrite <- app_nil_end. auto.
  exploit IHcompat_dest; eauto. intros [A B].
  split. auto. subst dst. apply tr_top_paren_test. auto. 
Qed.

(** Semantics of smart constructors *)

Lemma step_makeif_true:
  forall f a s1 s2 k e le m v1,
  eval_expr tge e le m a v1 ->
  is_true v1 (typeof a) ->
  star step tge (State f (makeif a s1 s2) k e le m)
             E0 (State f s1 k e le m).
Proof.
  intros. functional induction (makeif a s1 s2).
  inversion H. subst v1. inversion H0. congruence. congruence.
  inversion H1.
  apply star_refl.
  apply star_one. apply step_ifthenelse_true with v1; auto. 
Qed.

Lemma step_makeif_false:
  forall f a s1 s2 k e le m v1,
  eval_expr tge e le m a v1 ->
  is_false v1 (typeof a) ->
  star step tge (State f (makeif a s1 s2) k e le m)
             E0 (State f s2 k e le m).
Proof.
  intros. functional induction (makeif a s1 s2).
  apply star_refl.
  inversion H. subst v1. inversion H0. congruence. congruence.
  inversion H1.
  apply star_one. apply step_ifthenelse_false with v1; auto. 
Qed.

(** Matching between continuations *)

Fixpoint Kseqlist (sl: list statement) (k: cont) :=
  match sl with
  | nil => k
  | s :: l => Kseq s (Kseqlist l k)
  end.

Remark Kseqlist_app:
  forall sl1 sl2 k,
  Kseqlist (sl1 ++ sl2) k = Kseqlist sl1 (Kseqlist sl2 k).
Proof.
  induction sl1; simpl; congruence.
Qed.

Inductive match_cont : Csem.cont -> cont -> Prop :=
  | match_Kstop:
      match_cont Csem.Kstop Kstop
  | match_Kseq: forall s k ts tk,
      tr_stmt s ts ->
      match_cont k tk ->
      match_cont (Csem.Kseq s k) (Kseq ts tk)
  | match_Kwhile2: forall r s k s' ts tk,
      tr_if r Sskip Sbreak s' ->
      tr_stmt s ts ->
      match_cont k tk ->
      match_cont (Csem.Kwhile2 r s k)
                 (Kwhile expr_true (Ssequence s' ts) tk)
  | match_Kdowhile1: forall r s k s' ts tk,
      tr_if r Sskip Sbreak s' ->
      tr_stmt s ts ->
      match_cont k tk ->
      match_cont (Csem.Kdowhile1 r s k)
                 (Kfor2 expr_true s' ts tk)
  | match_Kfor3: forall r s3 s k ts3 s' ts tk,
      tr_if r Sskip Sbreak s' ->
      tr_stmt s3 ts3 ->
      tr_stmt s ts ->
      match_cont k tk ->
      match_cont (Csem.Kfor3 r s3 s k)
                 (Kfor2 expr_true ts3 (Ssequence s' ts) tk)
  | match_Kfor4: forall r s3 s k ts3 s' ts tk,
      tr_if r Sskip Sbreak s' ->
      tr_stmt s3 ts3 ->
      tr_stmt s ts ->
      match_cont k tk ->
      match_cont (Csem.Kfor4 r s3 s k)
                 (Kfor3 expr_true ts3 (Ssequence s' ts) tk)
  | match_Kswitch2: forall k tk,
      match_cont k tk ->
      match_cont (Csem.Kswitch2 k) (Kswitch tk)
  | match_Kcall_none: forall f e C ty k tf le sl tk a dest tmps,
      transl_function f = Errors.OK tf ->
      leftcontext RV RV C ->
      (forall v m, tr_top tge e le m dest (C (C.Eval v ty)) sl a tmps) ->
      match_cont_exp dest a k tk ->
      match_cont (Csem.Kcall f e C ty k)
                 (Kcall None tf e le (Kseqlist sl tk))
  | match_Kcall_some: forall f e C ty k dst tf le sl tk a dest tmps,
      transl_function f = Errors.OK tf ->
      leftcontext RV RV C ->
      (forall v m, tr_top tge e (PTree.set dst v le) m dest (C (C.Eval v ty)) sl a tmps) ->
      match_cont_exp dest a k tk ->
      match_cont (Csem.Kcall f e C ty k)
                 (Kcall (Some dst) tf e le (Kseqlist sl tk))

with match_cont_exp : purpose -> expr -> Csem.cont -> cont -> Prop :=
  | match_Kdo: forall k a tk,
      match_cont k tk ->
      match_cont_exp For_effects a (Csem.Kdo k) tk
  | match_Kifthenelse_1: forall a s1 s2 k ts1 ts2 tk,
      tr_stmt s1 ts1 -> tr_stmt s2 ts2 ->
      match_cont k tk ->
      match_cont_exp For_val a (Csem.Kifthenelse s1 s2 k) (Kseq (Sifthenelse a ts1 ts2) tk)
  | match_Kifthenelse_2: forall a s1 s2 k ts1 ts2 tk,
      tr_stmt s1 ts1 -> tr_stmt s2 ts2 ->
      match_cont k tk ->
      match_cont_exp (For_test ts1 ts2) a (Csem.Kifthenelse s1 s2 k) tk
  | match_Kwhile1: forall r s k s' a ts tk,
      tr_if r Sskip Sbreak s' ->
      tr_stmt s ts ->
      match_cont k tk ->
      match_cont_exp (For_test Sskip Sbreak) a
         (Csem.Kwhile1 r s k)
         (Kseq ts (Kwhile expr_true (Ssequence s' ts) tk))
  | match_Kdowhile2: forall r s k s' a ts tk,
      tr_if r Sskip Sbreak s' ->
      tr_stmt s ts ->
      match_cont k tk ->
      match_cont_exp (For_test Sskip Sbreak) a
        (Csem.Kdowhile2 r s k)
        (Kfor3 expr_true s' ts tk)
  | match_Kfor2: forall r s3 s k s' a ts3 ts tk,
      tr_if r Sskip Sbreak s' ->
      tr_stmt s3 ts3 ->
      tr_stmt s ts ->
      match_cont k tk ->
      match_cont_exp (For_test Sskip Sbreak) a
        (Csem.Kfor2 r s3 s k)
        (Kseq ts (Kfor2 expr_true ts3 (Ssequence s' ts) tk))
  | match_Kswitch1: forall ls k a tls tk,
      tr_lblstmts ls tls ->
      match_cont k tk ->
      match_cont_exp For_val a (Csem.Kswitch1 ls k) (Kseq (Sswitch a tls) tk)
  | match_Kreturn: forall k a tk,
      match_cont k tk ->
      match_cont_exp For_val a (Csem.Kreturn k) (Kseq (Sreturn (Some a)) tk).

Lemma match_cont_call:
  forall k tk,
  match_cont k tk ->
  match_cont (Csem.call_cont k) (call_cont tk).
Proof.
  induction 1; simpl; auto. constructor. econstructor; eauto. econstructor; eauto.
Qed.

Lemma match_cont_exp_for_test_inv:
  forall s1 s2 a a' k tk,
  match_cont_exp (For_test s1 s2) a k tk ->
  match_cont_exp (For_test s1 s2) a' k tk.
Proof.
  intros. inv H; econstructor; eauto.
Qed.

(** Matching between states *)

Inductive match_states: Csem.state -> state -> Prop :=
  | match_exprstates: forall f r k e m tf sl tk le dest a tmps,
      transl_function f = Errors.OK tf ->
      tr_top tge e le m dest r sl a tmps ->
      match_cont_exp dest a k tk ->
      match_states (Csem.ExprState f r k e m)
                   (State tf Sskip (Kseqlist sl tk) e le m)
  | match_regularstates: forall f s k e m tf ts tk le,
      transl_function f = Errors.OK tf ->
      tr_stmt s ts ->
      match_cont k tk ->
      match_states (Csem.State f s k e m)
                   (State tf ts tk e le m)
  | match_callstates: forall fd args k m tfd tk,
      transl_fundef fd = Errors.OK tfd ->
      match_cont k tk ->
      match_states (Csem.Callstate fd args k m)
                   (Callstate tfd args tk m)
  | match_returnstates: forall res k m tk,
      match_cont k tk ->
      match_states (Csem.Returnstate res k m)
                   (Returnstate res tk m).

Lemma push_seq:
  forall f sl k e le m,
  star step tge (State f (makeseq sl) k e le m)
             E0 (State f Sskip (Kseqlist sl k) e le m).
Proof.
  intros. unfold makeseq. generalize Sskip. revert sl k. 
  induction sl; simpl; intros.
  apply star_refl.
  eapply star_right. apply IHsl. constructor. traceEq.
Qed.

(** Additional results on translation of statements *)

Lemma tr_select_switch:
  forall n ls tls,
  tr_lblstmts ls tls ->
  tr_lblstmts (Csem.select_switch n ls) (select_switch n tls).
Proof.
  induction 1; simpl.
  constructor; auto.
  destruct (Int.eq n0 n). constructor; auto. auto.
Qed.

Lemma tr_seq_of_labeled_statement:
  forall ls tls,
  tr_lblstmts ls tls ->
  tr_stmt (Csem.seq_of_labeled_statement ls) (seq_of_labeled_statement tls).
Proof.
  induction 1; simpl. auto. constructor; auto.
Qed.

(** Commutation between translation and the "find label" operation. *)

Section FIND_LABEL.

Variable lbl: label.

Definition nolabel (s: statement) : Prop :=
  forall k, find_label lbl s k = None.

Fixpoint nolabel_list (sl: list statement) : Prop :=
  match sl with
  | nil => True
  | s1 :: sl' => nolabel s1 /\ nolabel_list sl'
  end.

Lemma nolabel_list_app:
  forall sl2 sl1, nolabel_list sl1 -> nolabel_list sl2 -> nolabel_list (sl1 ++ sl2).
Proof.
  induction sl1; simpl; intros. auto. tauto. 
Qed.

Lemma makeseq_nolabel:
  forall sl, nolabel_list sl -> nolabel (makeseq sl).
Proof.
  assert (forall sl s, nolabel s -> nolabel_list sl -> nolabel (makeseq_rec s sl)).
  induction sl; simpl; intros. auto. destruct H0. apply IHsl; auto. 
  red. intros; simpl. rewrite H. apply H0.
  intros. unfold makeseq. apply H; auto. red. auto. 
Qed.

Lemma small_stmt_nolabel:
  forall s, small_stmt s = true -> nolabel s.
Proof.
  induction s; simpl; intros; congruence || (red; auto).
  destruct (andb_prop _ _ H). intros; simpl. rewrite IHs1; auto. apply IHs2; auto. 
Qed.

Lemma makeif_nolabel:
  forall a s1 s2, nolabel s1 -> nolabel s2 -> nolabel (makeif a s1 s2).
Proof.
  intros. functional induction (makeif a s1 s2); auto. 
  red; simpl; intros. rewrite H; auto.
Qed.

Definition nolabel_dest (dst: purpose) : Prop :=
  match dst with
  | For_val => True
  | For_effects => True
  | For_test s1 s2 => nolabel s1 /\ nolabel s2
  end.

Lemma nolabel_final:
  forall dst a, nolabel_dest dst -> nolabel_list (final dst a).
Proof.
  destruct dst; simpl; intros. auto. auto. 
  split; auto. destruct H. apply makeif_nolabel; auto.
Qed. 

Ltac NoLabelTac :=
  match goal with
  | [ |- nolabel_list nil ] => exact I
  | [ |- nolabel_list (final _ _) ] => apply nolabel_final; NoLabelTac
  | [ |- nolabel_list (_ :: _) ] => simpl; split; NoLabelTac
  | [ |- nolabel_list (_ ++ _) ] => apply nolabel_list_app; NoLabelTac
  | [ |- nolabel_dest For_val ] => exact I
  | [ |- nolabel_dest For_effects ] => exact I
  | [ H: _ -> nolabel_list ?x |- nolabel_list ?x ] => apply H; NoLabelTac
  | [ |- nolabel _ ] => red; intros; simpl; auto
  | [ |- _ /\ _ ] => split; NoLabelTac
  | _ => auto
  end.

Lemma tr_find_label_expr:
  (forall le dst r sl a tmps, tr_expr le dst r sl a tmps -> nolabel_dest dst -> nolabel_list sl)
/\(forall le rl sl al tmps, tr_exprlist le rl sl al tmps -> nolabel_list sl).
Proof.
  apply tr_expr_exprlist; intros; NoLabelTac.
  destruct H1. apply makeif_nolabel; auto. 
  apply makeif_nolabel; NoLabelTac.
  rewrite (makeseq_nolabel sl2); auto.
  rewrite (makeseq_nolabel sl3); auto.
  apply makeif_nolabel; NoLabelTac.
  rewrite (makeseq_nolabel sl2); auto.
  rewrite (makeseq_nolabel sl3); auto.
Qed.

Lemma tr_find_label_top:
  forall e le m dst r sl a tmps,
  tr_top tge e le m dst r sl a tmps -> nolabel_dest dst -> nolabel_list sl.
Proof.
  induction 1; intros; NoLabelTac.
  destruct H1. apply makeif_nolabel; auto. 
  eapply (proj1 tr_find_label_expr); eauto.
Qed.

Lemma tr_find_label_expression:
  forall r s a, tr_expression r s a -> forall k, find_label lbl s k = None.
Proof.
  intros. inv H.
  assert (nolabel (makeseq sl)). apply makeseq_nolabel.
  eapply tr_find_label_top with (e := empty_env) (le := PTree.empty val) (m := Mem.empty).
  eauto. exact I. 
  apply H.
Qed.

Lemma tr_find_label_expr_stmt:
  forall r s, tr_expr_stmt r s -> forall k, find_label lbl s k = None.
Proof.
  intros. inv H.
  assert (nolabel (makeseq sl)). apply makeseq_nolabel.
  eapply tr_find_label_top with (e := empty_env) (le := PTree.empty val) (m := Mem.empty).
  eauto. exact I. 
  apply H.
Qed.

Lemma tr_find_label_if:
  forall r s1 s2 s,
  tr_if r s1 s2 s ->
  small_stmt s1 = true -> small_stmt s2 = true ->
  forall k, find_label lbl s k = None.
Proof.
  intros. inv H. 
  assert (nolabel (makeseq sl)). apply makeseq_nolabel.
  eapply tr_find_label_top with (e := empty_env) (le := PTree.empty val) (m := Mem.empty).
  eauto. split; apply small_stmt_nolabel; auto.
  apply H.
Qed.

Lemma tr_find_label:
  forall s k ts tk
    (TR: tr_stmt s ts)
    (MC: match_cont k tk),
  match Csem.find_label lbl s k with
  | None =>
      find_label lbl ts tk = None
  | Some (s', k') =>
      exists ts', exists tk',
          find_label lbl ts tk = Some (ts', tk')
       /\ tr_stmt s' ts'
       /\ match_cont k' tk'
  end
with tr_find_label_ls:
  forall s k ts tk
    (TR: tr_lblstmts s ts)
    (MC: match_cont k tk),
  match Csem.find_label_ls lbl s k with
  | None =>
      find_label_ls lbl ts tk = None
  | Some (s', k') =>
      exists ts', exists tk',
          find_label_ls lbl ts tk = Some (ts', tk')
       /\ tr_stmt s' ts'
       /\ match_cont k' tk'
  end.
Proof.
  induction s; intros; inversion TR; subst; clear TR; simpl.
  auto.
  eapply tr_find_label_expr_stmt; eauto.
(* seq *)
  exploit (IHs1 (Csem.Kseq s2 k)); eauto. constructor; eauto.
  destruct (Csem.find_label lbl s1 (Csem.Kseq s2 k)) as [[s' k'] | ].
  intros [ts' [tk' [A [B C]]]]. rewrite A. exists ts'; exists tk'; auto.
  intro EQ. rewrite EQ. eapply IHs2; eauto. 
(* if no-opt *)
  rename s' into sr. 
  rewrite (tr_find_label_expression _ _ _ H2).
  exploit (IHs1 k); eauto.
  destruct (Csem.find_label lbl s1 k) as [[s' k'] | ].
  intros [ts' [tk' [A [B C]]]]. rewrite A. exists ts'; exists tk'; intuition.
  intro EQ. rewrite EQ. eapply IHs2; eauto.
(* if opt *)
  rewrite (tr_find_label_if _ _ _ _ H7); auto.
  exploit (IHs1 k); eauto.
  destruct (Csem.find_label lbl s1 k) as [[s' k'] | ].
  intros [ts' [tk' [A [B C]]]]. 
  exploit small_stmt_nolabel. eexact H4. instantiate (1 := tk). congruence.
  intros.
  exploit (IHs2 k); eauto.
  destruct (Csem.find_label lbl s2 k) as [[s' k'] | ].
  intros [ts' [tk' [A [B C]]]]. 
  exploit small_stmt_nolabel. eexact H6. instantiate (1 := tk). congruence.
  auto.
(* while *)
  rename s' into sr. 
  rewrite (tr_find_label_if _ _ _ _ H1); auto.
  eapply IHs; eauto. econstructor; eauto.
(* dowhile *)
  rename s' into sr.
  rewrite (tr_find_label_if _ _ _ _ H1); auto.
  exploit (IHs (Kdowhile1 e s k)); eauto. econstructor; eauto.
  destruct (Csem.find_label lbl s (Kdowhile1 e s k)) as [[s' k'] | ].
  intros [ts' [tk' [A [B C]]]]. rewrite A. exists ts'; exists tk'; intuition.
  intro EQ. rewrite EQ. auto. 
(* for skip *)
  rename s' into sr.
  rewrite (tr_find_label_if _ _ _ _ H4); auto.
  exploit (IHs3 (Csem.Kfor3 e s2 s3 k)); eauto. econstructor; eauto.
  destruct (Csem.find_label lbl s3 (Csem.Kfor3 e s2 s3 k)) as [[s' k'] | ].
  intros [ts' [tk' [A [B C]]]]. rewrite A. exists ts'; exists tk'; intuition.
  intro EQ. rewrite EQ.
  exploit (IHs2 (Csem.Kfor4 e s2 s3 k)); eauto. econstructor; eauto.
(* for not skip *)
  rename s' into sr.
  rewrite (tr_find_label_if _ _ _ _ H3); auto.
  exploit (IHs1 (Csem.Kseq (C.Sfor C.Sskip e s2 s3) k)); eauto. 
    econstructor; eauto. econstructor; eauto. 
  destruct (Csem.find_label lbl s1
               (Csem.Kseq (C.Sfor C.Sskip e s2 s3) k)) as [[s' k'] | ].
  intros [ts' [tk' [A [B C]]]]. rewrite A. exists ts'; exists tk'; intuition.
  intro EQ; rewrite EQ.
  exploit (IHs3 (Csem.Kfor3 e s2 s3 k)); eauto. econstructor; eauto.
  destruct (Csem.find_label lbl s3 (Csem.Kfor3 e s2 s3 k)) as [[s'' k''] | ].
  intros [ts' [tk' [A [B C]]]]. rewrite A. exists ts'; exists tk'; intuition.
  intro EQ'. rewrite EQ'. 
  exploit (IHs2 (Csem.Kfor4 e s2 s3 k)); eauto. econstructor; eauto.
(* break, continue, return 0 *)
  auto. auto. auto.
(* return 1 *)
  rewrite (tr_find_label_expression _ _ _ H0). auto.
(* switch *)
  rewrite (tr_find_label_expression _ _ _ H1). apply tr_find_label_ls. auto. constructor; auto.
(* labeled stmt *)
  destruct (ident_eq lbl l). exists ts0; exists tk; auto. apply IHs; auto. 
(* goto *)
  auto.

  induction s; intros; inversion TR; subst; clear TR; simpl.
(* default *)
  apply tr_find_label; auto. 
(* case *)
  exploit (tr_find_label s (Csem.Kseq (Csem.seq_of_labeled_statement s0) k)); eauto.
  econstructor; eauto. apply tr_seq_of_labeled_statement; eauto.
  destruct (Csem.find_label lbl s
    (Csem.Kseq (Csem.seq_of_labeled_statement s0) k)) as [[s' k'] | ].
  intros [ts' [tk' [A [B C]]]]. rewrite A. exists ts'; exists tk'; auto.
  intro EQ. rewrite EQ. eapply IHs; eauto.
Qed.
 
End FIND_LABEL.

(** Anti-stuttering measure *)

(** There are some stuttering steps in the translation:
- The execution of [Sdo a] where [a] is side-effect free,
  which is three transitions in the source:
<<
    Sdo a, k  --->  a, Kdo k ---> rval v, Kdo k ---> Sskip, k
>>
  but the translation, which is [Sskip], makes no transitions.
- The reduction [C.Ecomma (C.Eval v) r2 --> r2].
- The reduction [C.Eparen (C.Eval v) --> C.Eval v] in a [For_effects] context.

The following measure decreases for these stuttering steps. *)

Fixpoint esize (a: C.expr) : nat :=
  match a with
  | C.Eloc _ _ _ => 1%nat
  | C.Evar _ _ => 1%nat
  | C.Ederef r1 _ => S(esize r1)
  | C.Efield l1 _ _ => S(esize l1)
  | C.Eval _ _ => O
  | C.Evalof l1 _ => S(esize l1)
  | C.Eaddrof l1 _ => S(esize l1)
  | C.Eunop _ r1 _ => S(esize r1)
  | C.Ebinop _ r1 r2 _ => S(esize r1 + esize r2)%nat
  | C.Ecast r1 _ => S(esize r1)
  | C.Econdition r1 _ _ _ => S(esize r1)
  | C.Esizeof _ _ => 1%nat
  | C.Eassign l1 r2 _ => S(esize l1 + esize r2)%nat
  | C.Eassignop _ l1 r2 _ _ => S(esize l1 + esize r2)%nat
  | C.Epostincr _ l1 _ => S(esize l1)
  | C.Ecomma r1 r2 _ => S(esize r1 + esize r2)%nat
  | C.Ecall r1 rl2 _ => S(esize r1 + esizelist rl2)%nat
  | C.Eparen r1 _ => S(esize r1)
  end

with esizelist (el: C.exprlist) : nat :=
  match el with
  | C.Enil => O
  | C.Econs r1 rl2 => (esize r1 + esizelist rl2)%nat
  end.

Definition measure (st: Csem.state) : nat :=
  match st with
  | Csem.ExprState _ r _ _ _ => (esize r + 1)%nat
  | Csem.State _ C.Sskip _ _ _ => 0%nat
  | Csem.State _ (C.Sdo r) _ _ _ => (esize r + 2)%nat
  | Csem.State _ (C.Sifthenelse r _ _) _ _ _ => (esize r + 2)%nat
  | _ => 0%nat
  end.

Lemma leftcontext_size:
  forall from to C,
  leftcontext from to C ->
  forall e1 e2,
  (esize e1 < esize e2)%nat ->
  (esize (C e1) < esize (C e2))%nat
with leftcontextlist_size:
  forall from C,
  leftcontextlist from C ->
  forall e1 e2,
  (esize e1 < esize e2)%nat ->
  (esizelist (C e1) < esizelist (C e2))%nat.
Proof.
  induction 1; intros; simpl; auto with arith. exploit leftcontextlist_size; eauto. auto with arith.
  induction 1; intros; simpl; auto with arith. exploit leftcontext_size; eauto. auto with arith.
Qed.

(** Forward simulation for expressions. *)

Lemma tr_val_gen:
  forall le dst v ty a tmp,
  typeof a = ty ->
  (forall tge e le' m,
      (forall id, In id tmp -> le'!id = le!id) ->
      eval_expr tge e le' m a v) ->
  tr_expr le dst (C.Eval v ty) (final dst a) a tmp.
Proof.
  intros. destruct dst; simpl; econstructor; auto.
Qed.

Lemma estep_simulation:
  forall S1 t S2, Cstrategy.estep ge S1 t S2 ->
  forall S1' (MS: match_states S1 S1'),
  exists S2',
     (plus step tge S1' t S2' \/
       (star step tge S1' t S2' /\ measure S2 < measure S1)%nat)
  /\ match_states S2 S2'.
Proof.
  induction 1; intros; inv MS.
(* expr *)
  assert (tr_expr le dest r sl a tmps).
    inv H9. contradiction. contradiction. auto. inv H. 
  econstructor; split.
  right; split. apply star_refl. destruct r; simpl; (contradiction || omega).
  econstructor; eauto.
  instantiate (1 := tmps).
  exploit tr_simple_rvalue; eauto. destruct dest.
  intros [A [B C]]. subst sl. apply tr_top_val_val; auto.
  intros A. subst sl. apply tr_top_base. constructor. 
  intros [b [A [B C]]]. subst sl. apply tr_top_val_test; auto. 
(* condition true *)
  exploit tr_top_leftcontext; eauto. clear H10. 
  intros [dst' [sl1 [sl2 [a' [tmp' [P [Q [T [R S]]]]]]]]].
  inv P. inv H2. 
  (* for value *)
  exploit tr_simple_rvalue; eauto. intros [SL [TY EV]].
  subst sl0; simpl Kseqlist.
  econstructor; split.
  left. eapply plus_left. constructor.
  eapply star_trans. apply step_makeif_true with v; auto. congruence.
  eapply star_left. constructor. apply push_seq. 
  reflexivity. reflexivity. traceEq.
  replace (Kseqlist sl3 (Kseq (Sset t a2) (Kseqlist sl2 tk)))
     with (Kseqlist (sl3 ++ Sset t a2 :: sl2) tk).
  eapply match_exprstates; eauto. 
  change (Sset t a2 :: sl2) with ((Sset t a2 :: nil) ++ sl2). rewrite <- app_ass. 
  apply S. econstructor; eauto.  auto. auto. 
  rewrite Kseqlist_app. auto. 
  (* for effects *)
  exploit tr_simple_rvalue; eauto. intros [SL [TY EV]].
  subst sl0; simpl Kseqlist.
  econstructor; split.
  left. eapply plus_left. constructor.
  eapply star_trans. apply step_makeif_true with v; auto. congruence.
  apply push_seq. 
  reflexivity. traceEq.
  rewrite <- Kseqlist_app.
  econstructor. eauto. apply S.
    econstructor; eauto. apply tr_expr_monotone with tmp2; eauto. 
    econstructor; eauto. 
  auto. auto.
(* condition false *)
  exploit tr_top_leftcontext; eauto. clear H10. 
  intros [dst' [sl1 [sl2 [a' [tmp' [P [Q [T [R S]]]]]]]]].
  inv P. inv H2. 
  (* for value *)
  exploit tr_simple_rvalue; eauto. intros [SL [TY EV]].
  subst sl0; simpl Kseqlist.
  econstructor; split.
  left. eapply plus_left. constructor.
  eapply star_trans. apply step_makeif_false with v; auto. congruence.
  eapply star_left. constructor. apply push_seq. 
  reflexivity. reflexivity. traceEq.
  replace (Kseqlist sl4 (Kseq (Sset t a3) (Kseqlist sl2 tk)))
     with (Kseqlist (sl4 ++ Sset t a3 :: sl2) tk).
  eapply match_exprstates; eauto. 
  change (Sset t a3 :: sl2) with ((Sset t a3 :: nil) ++ sl2). rewrite <- app_ass. 
  apply S. econstructor; eauto.  auto. auto. 
  rewrite Kseqlist_app. auto. 
  (* for effects *)
  exploit tr_simple_rvalue; eauto. intros [SL [TY EV]].
  subst sl0; simpl Kseqlist.
  econstructor; split.
  left. eapply plus_left. constructor.
  eapply star_trans. apply step_makeif_false with v; auto. congruence.
  apply push_seq. 
  reflexivity. traceEq.
  rewrite <- Kseqlist_app.
  econstructor. eauto. apply S.
    econstructor; eauto. apply tr_expr_monotone with tmp3; eauto. 
  auto. auto. auto.
(* assign *)
  exploit tr_top_leftcontext; eauto. clear H12. 
  intros [dst' [sl1 [sl2 [a' [tmp' [P [Q [T [R S]]]]]]]]].
  inv P. inv H4.
  (* for effects *)
  exploit tr_simple_rvalue; eauto. intros [SL2 [TY2 EV2]].
  exploit tr_simple_lvalue; eauto. intros [SL1 [TY1 EV1]].
  subst; simpl Kseqlist.
  econstructor; split.
  left. eapply plus_left. constructor.
  apply star_one. econstructor; eauto.
  rewrite <- TY1; rewrite <- TY2; eauto.
  rewrite <- TY1; eauto.
  traceEq.
  econstructor. auto. change sl2 with (nil ++ sl2). apply S.
  constructor. auto. auto. auto.
  (* for value *)
  exploit tr_simple_rvalue; eauto. intros [SL2 [TY2 EV2]].
  exploit tr_simple_lvalue. eauto.
    eapply tr_expr_invariant with (le' := PTree.set t v le). eauto. 
    intros. apply PTree.gso. intuition congruence.
  intros [SL1 [TY1 EV1]].
  subst; simpl Kseqlist.
  econstructor; split.
  left. eapply plus_left. constructor. 
  eapply star_left. constructor. eauto. 
  eapply star_left. constructor.
  apply star_one. econstructor; eauto. constructor. apply PTree.gss.
  simpl. rewrite <- TY1; eauto.
  rewrite <- TY1; eauto.
  reflexivity. reflexivity. traceEq.
  econstructor. auto. apply S.
  apply tr_val_gen. auto. intros. econstructor; eauto. constructor. 
  rewrite H4; auto. apply PTree.gss. 
  intros. apply PTree.gso. intuition congruence.
  auto. auto.
(* assignop *)
  exploit tr_top_leftcontext; eauto. clear H14. 
  intros [dst' [sl1 [sl2 [a' [tmp' [P [Q [T [R S]]]]]]]]].
  inv P. inv H6.
  (* for effects *)
  exploit tr_simple_rvalue; eauto. intros [SL2 [TY2 EV2]].
  exploit tr_simple_lvalue; eauto. intros [SL1 [TY1 EV1]].
  subst; simpl Kseqlist.
  econstructor; split.
  left. eapply plus_left. constructor.
  apply star_one. econstructor; eauto.
    econstructor; eauto. eapply eval_Elvalue; eauto. rewrite <- TY1; eauto. 
    rewrite <- TY1; rewrite <- TY2; eauto.
    rewrite <- TY1; eauto.
    rewrite <- TY1; eauto.
  traceEq.
  econstructor. auto. change sl2 with (nil ++ sl2). apply S.
  constructor. auto. auto. auto.
  (* for value *)
  exploit tr_simple_rvalue; eauto. intros [SL2 [TY2 EV2]].
  exploit tr_simple_lvalue; eauto. intros [SL1 [TY1 EV1]].
  exploit tr_simple_lvalue. eauto.
    eapply tr_expr_invariant with (le' := PTree.set t v3 le). eauto. 
    intros. apply PTree.gso. intuition congruence.
  intros [SL3 [TY3 EV3]]. 
  subst; simpl Kseqlist.
  econstructor; split.
  left. eapply plus_left. constructor. 
  eapply star_left. constructor.
    econstructor. eapply eval_Elvalue; eauto. rewrite <- TY1; eauto. eauto.
    rewrite <- TY1; rewrite <- TY2. eauto. 
  eapply star_left. constructor.
  apply star_one. econstructor. eauto. constructor. apply PTree.gss. 
    rewrite <- TY1. eauto. rewrite <- TY1. eauto.
  reflexivity. reflexivity. traceEq.
  econstructor. auto. apply S.
  apply tr_val_gen. auto. intros. econstructor; eauto. constructor. 
  rewrite H6; auto. apply PTree.gss. 
  intros. apply PTree.gso. intuition congruence.
  auto. auto.
(* postincr *)
  exploit tr_top_leftcontext; eauto. clear H13. 
  intros [dst' [sl1 [sl2 [a' [tmp' [P [Q [T [R S]]]]]]]]].
  inv P. inv H5.
  (* for effects *)
  exploit tr_simple_lvalue; eauto. intros [SL1 [TY1 EV1]].
  assert (EV2: eval_expr tge e le m a1 v1). eapply eval_Elvalue; eauto. rewrite <- TY1; auto.
  subst; simpl Kseqlist.
  econstructor; split.
  left. eapply plus_two. constructor.
  econstructor; eauto.
  unfold transl_incrdecr. destruct id; simpl in H2. 
  econstructor. eauto. constructor. simpl. rewrite <- TY1. eauto.
  econstructor. eauto. constructor. simpl. rewrite <- TY1. eauto.
  rewrite <- TY1. instantiate (1 := v3). destruct id; auto. 
  rewrite <- TY1. eauto. 
  traceEq.
  econstructor. auto. change sl2 with (nil ++ sl2). apply S.
  constructor. auto. auto. auto.
  (* for value *)
  exploit tr_simple_lvalue; eauto. intros [SL1 [TY1 EV1]].
  exploit tr_simple_lvalue. eauto.
    eapply tr_expr_invariant with (le' := PTree.set t v1 le). eauto. 
    intros. apply PTree.gso. intuition congruence.
  intros [SL2 [TY2 EV2]].
  subst; simpl Kseqlist.
  econstructor; split.
  left. eapply plus_four. constructor. 
  constructor. eapply eval_Elvalue; eauto. rewrite <- TY1; eauto.
  constructor.
  econstructor. eauto. 
  unfold transl_incrdecr. destruct id; simpl in H2. 
  econstructor. constructor. apply PTree.gss. constructor. simpl. eauto.
  econstructor. constructor. apply PTree.gss. constructor. simpl. eauto.
  rewrite <- TY1. instantiate (1 := v3). destruct id; auto. 
  rewrite <- TY1. eauto. 
  traceEq.
  econstructor. auto. apply S.
  apply tr_val_gen. auto. intros. econstructor; eauto.
  rewrite H5; auto. apply PTree.gss. 
  intros. apply PTree.gso. intuition congruence.
  auto. auto.
(* comma *)
  exploit tr_top_leftcontext; eauto. clear H9. 
  intros [dst' [sl1 [sl2 [a' [tmp' [P [Q [T [R S]]]]]]]]].
  inv P. inv H1.
  exploit tr_simple_rvalue; eauto. simpl; intro SL1.
  subst sl0; simpl Kseqlist.
  econstructor; split.
  right; split. apply star_refl. simpl. apply plus_lt_compat_r. 
  apply (leftcontext_size _ _ _ H). simpl. omega. 
  econstructor; eauto. apply S. 
  eapply tr_expr_monotone; eauto. 
  auto. auto. 
(* paren *)
  exploit tr_top_leftcontext; eauto. clear H9. 
  intros [dst' [sl1 [sl2 [a' [tmp' [P [Q [T [R S]]]]]]]]].
  inv P. inv H1.
  (* for value *)
  exploit tr_simple_rvalue; eauto. intros [SL1 [TY1 EV1]].
  subst sl0; simpl Kseqlist.
  econstructor; split.
  left. eapply plus_left. constructor. apply star_one.
  econstructor. eauto. traceEq.
  econstructor; eauto. change sl2 with (final For_val (Etempvar t (C.typeof r)) ++ sl2). apply S.
  constructor. auto. intros. constructor. rewrite H1; auto. apply PTree.gss.
  intros. apply PTree.gso. intuition congruence.
  auto. 
  (* for effects *)
  econstructor; split.
  right; split. apply star_refl. simpl. apply plus_lt_compat_r.
  apply (leftcontext_size _ _ _ H). simpl. omega.
  econstructor; eauto.
  exploit tr_simple_rvalue; eauto. destruct dst'.
  (* dst' = For_val: impossible *)
  congruence.
  (* dst' = For_effects: easy *)
  intros A. subst sl1. apply S. constructor; auto. auto. auto. 
  (* dst' = For_test: then dest is For_test as well and C is a string of C.Eparen,
     so we can apply tr_top_paren. *)
  intros [b [A [B D]]].
  eapply tr_top_testcontext; eauto. 
  subst sl1. apply tr_top_val_test; auto.
  (* already reduced *)
  econstructor; split.
  right; split. apply star_refl. simpl. apply plus_lt_compat_r.
  apply (leftcontext_size _ _ _ H). simpl. omega.
  econstructor; eauto. instantiate (1 := @nil ident).
  inv H7. 
    inv H0. eapply tr_top_testcontext; eauto. constructor. auto. auto.
    exploit tr_simple_rvalue; eauto. simpl. intros [b [A [B D]]]. 
    eapply tr_top_testcontext; eauto. subst sl1. apply tr_top_val_test. auto. auto. 
    inv H0.
(* call *)
  exploit tr_top_leftcontext; eauto. clear H12. 
  intros [dst' [sl1 [sl2 [a' [tmp' [P [Q [U [R S]]]]]]]]].
  inv P. inv H5.
  (* for effects *)
  exploit tr_simple_rvalue; eauto. intros [SL1 [TY1 EV1]].
  exploit tr_simple_exprlist; eauto. intros [SL2 EV2].
  subst. simpl Kseqlist.
  exploit functions_translated; eauto. intros [tfd [J K]].
  econstructor; split. 
  left. eapply plus_left. constructor.  apply star_one.
  econstructor; eauto. rewrite <- TY1; eauto.
  exploit type_of_fundef_preserved; eauto. congruence.
  traceEq.
  constructor; auto. econstructor; eauto.
  intros. change sl2 with (nil ++ sl2). apply S.
  constructor. auto. auto. 
  (* for value *)
  exploit tr_simple_rvalue; eauto. intros [SL1 [TY1 EV1]].
  exploit tr_simple_exprlist; eauto. intros [SL2 EV2].
  subst. simpl Kseqlist.
  exploit functions_translated; eauto. intros [tfd [J K]].
  econstructor; split. 
  left. eapply plus_left. constructor.  apply star_one.
  econstructor; eauto. rewrite <- TY1; eauto.
  exploit type_of_fundef_preserved; eauto. congruence.
  traceEq.
  constructor; auto. econstructor; eauto.
  intros. apply S.
  destruct dst'; constructor.
  auto. intros. constructor. rewrite H5; auto. apply PTree.gss. 
  auto. intros. constructor. rewrite H5; auto. apply PTree.gss.  
  intros. apply PTree.gso. intuition congruence.
  auto. 
Qed.

(** Forward simulation for statements. *)

Lemma tr_top_val_for_val_inv:
  forall e le m v ty sl a tmps,
  tr_top tge e le m For_val (C.Eval v ty) sl a tmps ->
  sl = nil /\ typeof a = ty /\ eval_expr tge e le m a v.
Proof.
  intros. inv H. auto. inv H0. auto. 
Qed.

Lemma tr_top_val_for_test_inv:
  forall s1 s2 e le m v ty sl a tmps,
  tr_top tge e le m (For_test s1 s2) (C.Eval v ty) sl a tmps ->
  exists b, sl = makeif b s1 s2 :: nil /\ typeof b = ty /\ eval_expr tge e le m b v.
Proof.
  intros. inv H. exists a0; auto. 
  inv H0. exists a0; auto.
Qed.

Lemma sstep_simulation:
  forall S1 t S2, Csem.sstep ge S1 t S2 ->
  forall S1' (MS: match_states S1 S1'),
  exists S2',
     (plus step tge S1' t S2' \/
       (star step tge S1' t S2' /\ measure S2 < measure S1)%nat)
  /\ match_states S2 S2'.
Proof.
  induction 1; intros; inv MS.
(* do 1 *)
  inv H6. inv H0. 
  econstructor; split.
  right; split. apply push_seq. 
  simpl. omega.
  econstructor; eauto. constructor. auto.
(* do 2 *)
  inv H7. inv H6. inv H.  
  econstructor; split. 
  right; split. apply star_refl. simpl. omega.
  econstructor; eauto. constructor.

(* seq *)
  inv H6. econstructor; split. left. apply plus_one. constructor.
  econstructor; eauto. constructor; auto.
(* skip seq *)
  inv H6; inv H7. econstructor; split.
  left. apply plus_one; constructor.
  econstructor; eauto.
(* continue seq *)
  inv H6; inv H7. econstructor; split.
  left. apply plus_one; constructor.
  econstructor; eauto. constructor.
(* break seq *)
  inv H6; inv H7. econstructor; split.
  left. apply plus_one; constructor.
  econstructor; eauto. constructor.

(* ifthenelse *)
  inv H6.
  (* not optimized *)
  inv H2. econstructor; split.
  left. eapply plus_left. constructor. apply push_seq. traceEq.
  econstructor; eauto. econstructor; eauto.
  (* optimized *)
  inv H10. econstructor; split.
  right; split. apply push_seq. simpl. omega.
  econstructor; eauto. constructor; auto. 
(* ifthenelse true *)
  inv H8. 
  (* not optimized *)
  exploit tr_top_val_for_val_inv; eauto. intros [A [B C]]. subst. 
  econstructor; split.
  left. eapply plus_two. constructor.
  apply step_ifthenelse_true with v; auto. traceEq.
  econstructor; eauto.
  (* optimized *)
  exploit tr_top_val_for_test_inv; eauto. intros [b [A [B C]]]. subst. 
  econstructor; split.
  left. simpl. eapply plus_left. constructor.
  apply step_makeif_true with v; auto. traceEq.
  econstructor; eauto.
(* ifthenelse false *)
  inv H8. 
  (* not optimized *)
  exploit tr_top_val_for_val_inv; eauto. intros [A [B C]]. subst. 
  econstructor; split.
  left. eapply plus_two. constructor.
  apply step_ifthenelse_false with v; auto. traceEq.
  econstructor; eauto.
  (* optimized *)
  exploit tr_top_val_for_test_inv; eauto. intros [b [A [B C]]]. subst. 
  econstructor; split.
  left. simpl. eapply plus_left. constructor.
  apply step_makeif_false with v; auto. traceEq.
  econstructor; eauto.

(* while *)
  inv H6. inv H1. econstructor; split.
  left. eapply plus_left. eapply step_while_true. constructor. 
  simpl. constructor. apply Int.one_not_zero.
  eapply star_left. constructor.
  apply push_seq.
  reflexivity. traceEq.
  econstructor; eauto. econstructor; eauto. econstructor; eauto.
(* while false *)
  inv H8. 
  exploit tr_top_val_for_test_inv; eauto. intros [b [A [B C]]]. subst. 
  econstructor; split.
  left. simpl. eapply plus_left. constructor.
  eapply star_trans. apply step_makeif_false with v; auto.
  eapply star_two. constructor. apply step_break_while. 
  reflexivity. reflexivity. traceEq.
  constructor; auto. constructor.
(* while true *)
  inv H8. 
  exploit tr_top_val_for_test_inv; eauto. intros [b [A [B C]]]. subst. 
  econstructor; split.
  left. simpl. eapply plus_left. constructor.
  eapply star_right. apply step_makeif_true with v; auto.
  constructor.
  reflexivity. traceEq.
  constructor; auto. constructor; auto. 
(* skip-or-continue while *)
  assert (ts = Sskip \/ ts = Scontinue). destruct H; subst s0; inv H7; auto.
  inv H8.
  econstructor; split.
  left. apply plus_one. apply step_skip_or_continue_while; auto. 
  constructor; auto. constructor; auto. 
(* break while *)
  inv H6. inv H7. 
  econstructor; split.
  left. apply plus_one. apply step_break_while. 
  constructor; auto. constructor.

(* dowhile *)
  inv H6. 
  econstructor; split.
  left. apply plus_one.
  apply step_for_true with (Vint Int.one). constructor. simpl; constructor. apply Int.one_not_zero.
  constructor; auto. constructor; auto.
(* skip_or_continue dowhile *)
  assert (ts = Sskip \/ ts = Scontinue). destruct H; subst s0; inv H7; auto.
  inv H8. inv H4.
  econstructor; split.
  left. eapply plus_left. apply step_skip_or_continue_for2. auto.
  apply push_seq. 
  reflexivity. traceEq.
  econstructor; eauto. econstructor; auto. econstructor; eauto. 
(* dowhile false *)
  inv H8. 
  exploit tr_top_val_for_test_inv; eauto. intros [b [A [B C]]]. subst. 
  econstructor; split.
  left. simpl. eapply plus_left. constructor. 
  eapply star_right. apply step_makeif_false with v; auto. 
  constructor. 
  reflexivity. traceEq.
  constructor; auto. constructor.
(* dowhile true *)
  inv H8. 
  exploit tr_top_val_for_test_inv; eauto. intros [b [A [B C]]]. subst. 
  econstructor; split.
  left. simpl. eapply plus_left. constructor. 
  eapply star_right. apply step_makeif_true with v; auto. 
  constructor. 
  reflexivity. traceEq.
  constructor; auto. constructor; auto. 
(* break dowhile *)
  inv H6. inv H7.
  econstructor; split.
  left. apply plus_one. apply step_break_for2. 
  constructor; auto. constructor.

(* for start *)
  inv H7. congruence. 
  econstructor; split. 
  left; apply plus_one. constructor.
  econstructor; eauto. constructor; auto. econstructor; eauto. 
(* for *)
  inv H6; try congruence. inv H2. 
  econstructor; split.
  left. eapply plus_left. apply step_for_true with (Vint Int.one). 
    constructor. simpl; constructor. apply Int.one_not_zero.
  eapply star_left. constructor. apply push_seq.
  reflexivity. traceEq.
  econstructor; eauto. constructor; auto. econstructor; eauto.
(* for false *)
  inv H8. exploit tr_top_val_for_test_inv; eauto. intros [b [A [B C]]]. subst.
  econstructor; split.
  left. simpl. eapply plus_left. constructor.
  eapply star_trans. apply step_makeif_false with v; auto.
  eapply star_two. constructor. apply step_break_for2. 
  reflexivity. reflexivity. traceEq.
  constructor; auto. constructor.
(* for true *)
  inv H8. exploit tr_top_val_for_test_inv; eauto. intros [b [A [B C]]]. subst.
  econstructor; split.
  left. simpl. eapply plus_left. constructor. 
  eapply star_right. apply step_makeif_true with v; auto.
  constructor.
  reflexivity. traceEq.
  constructor; auto. constructor; auto. 
(* skip_or_continue for3 *)
  assert (ts = Sskip \/ ts = Scontinue). destruct H; subst x; inv H7; auto.
  inv H8.
  econstructor; split.
  left. apply plus_one. apply step_skip_or_continue_for2. auto.
  econstructor; eauto. econstructor; auto.
(* break for3 *)
  inv H6. inv H7. 
  econstructor; split.
  left. apply plus_one. apply step_break_for2.
  econstructor; eauto. constructor.
(* skip for4 *)
  inv H6. inv H7. 
  econstructor; split.
  left. apply plus_one. constructor.
  econstructor; eauto. constructor; auto. 

(* return none *)
  inv H7. econstructor; split.
  left. apply plus_one. econstructor; eauto. 
  constructor. apply match_cont_call; auto. 
(* return some 1 *)
  inv H6. inv H0. econstructor; split.
  left; eapply plus_left. constructor. apply push_seq. traceEq.
  econstructor; eauto. constructor. auto.
(* return some 2 *)
  inv H9. exploit tr_top_val_for_val_inv; eauto. intros [A [B C]]. subst.
  econstructor; split.
  left. eapply plus_two. constructor. econstructor. eauto.
  replace (fn_return tf) with (C.fn_return f). eauto.
  exploit transl_function_spec; eauto. intuition congruence. 
  eauto. traceEq.
  constructor. apply match_cont_call; auto.
(* skip return *)
  inv H9. 
  assert (is_call_cont tk). inv H10; simpl in *; auto.
  econstructor; split.
  left. apply plus_one. apply step_skip_call; eauto.
  rewrite <- H0. apply function_return_preserved; auto.
  constructor. auto.

(* switch *)
  inv H6. inv H1. 
  econstructor; split. 
  left; eapply plus_left. constructor. apply push_seq. traceEq.
  econstructor; eauto. constructor; auto. 
(* expr switch *)
  inv H7. exploit tr_top_val_for_val_inv; eauto. intros [A [B C]]. subst.
  econstructor; split.
  left; eapply plus_two. constructor. econstructor; eauto. traceEq.
  econstructor; eauto.
  apply tr_seq_of_labeled_statement. apply tr_select_switch. auto. 
  constructor; auto.

(* skip-or-break switch *)
  assert (ts = Sskip \/ ts = Sbreak). destruct H; subst x; inv H7; auto.
  inv H8.
  econstructor; split.
  left; apply plus_one. apply step_skip_break_switch. auto. 
  constructor; auto. constructor.

(* continue switch *)
  inv H6. inv H7.
  econstructor; split.
  left; apply plus_one. apply step_continue_switch.
  constructor; auto. constructor.

(* label *)
  inv H6. econstructor; split.
  left; apply plus_one. constructor.
  constructor; auto.

(* goto *)
  inv H7.
  exploit transl_function_spec; eauto. intros [A [B [C D]]].
  exploit tr_find_label. eexact A. apply match_cont_call. eauto. 
  instantiate (1 := lbl). rewrite H. 
  intros [ts' [tk' [P [Q R]]]]. 
  econstructor; split. 
  left. apply plus_one. econstructor; eauto.
  econstructor; eauto. 

(* internal function *)
  monadInv H7. 
  exploit transl_function_spec; eauto. intros [A [B [C D]]].
  econstructor; split.
  left; apply plus_one. eapply step_internal_function. 
  rewrite C; rewrite D; auto.
  rewrite C; rewrite D; eauto.
  rewrite C; eauto.
  constructor; auto. 

(* external function *)
  monadInv H5. 
  econstructor; split.
  left; apply plus_one. econstructor; eauto.
  eapply external_call_symbols_preserved; eauto. 
  exact symbols_preserved. exact varinfo_preserved. 
  constructor; auto.

(* return *)
  inv H3.
  (* none *)
  econstructor; split.
  left; apply plus_one. constructor.
  econstructor; eauto.
  (* some *)
  econstructor; split.
  left; apply plus_one. constructor.
  econstructor; eauto.
Qed.

(** Semantic preservation *)

Theorem simulation:
  forall S1 t S2, Cstrategy.step ge S1 t S2 ->
  forall S1' (MS: match_states S1 S1'),
  exists S2',
     (plus step tge S1' t S2' \/
       (star step tge S1' t S2' /\ measure S2 < measure S1)%nat)
  /\ match_states S2 S2'.
Proof.
  intros S1 t S2 STEP. destruct STEP. 
  apply estep_simulation; auto.
  apply sstep_simulation; auto.
Qed.

Lemma transl_initial_states:
  forall S,
  Csem.initial_state prog S ->
  exists S', Clight.initial_state tprog S' /\ match_states S S'.
Proof.
  intros. inv H. 
  exploit function_ptr_translated; eauto. intros [tf [FIND TR]].
  econstructor; split.
  econstructor.
  apply (Genv.init_mem_transf_partial _ _ TRANSL). eauto. 
  simpl. fold tge. rewrite symbols_preserved.
  replace (prog_main tprog) with (prog_main prog). eexact H1.
  symmetry. unfold transl_program in TRANSL.
  eapply transform_partial_program_main; eauto.
  eexact FIND.
  rewrite <- H3. apply type_of_fundef_preserved. auto.
  constructor. auto. constructor.
Qed.

Lemma transl_final_states:
  forall S S' r,
  match_states S S' -> Csem.final_state S r -> Clight.final_state S' r.
Proof.
  intros. inv H0. inv H. inv H4. constructor.
Qed.

Theorem transl_program_correct:
  forall (beh: program_behavior),
  not_wrong beh -> Cstrategy.exec_program prog beh ->
  Clight.exec_program tprog beh.
Proof.
  unfold Cstrategy.exec_program, Clight.exec_program. intros. 
  eapply simulation_star_wf_preservation; eauto. 
  eexact transl_initial_states.
  eexact transl_final_states.
  instantiate (1 := ltof _ measure). apply well_founded_ltof. 
  exact simulation.
Qed.

End PRESERVATION.