aboutsummaryrefslogtreecommitdiffstats
path: root/common/AST.v
blob: 868364cd75fc82952f8341d44630dc45dfffcc68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU Lesser General Public License as        *)
(*  published by the Free Software Foundation, either version 2.1 of   *)
(*  the License, or  (at your option) any later version.               *)
(*  This file is also distributed under the terms of the               *)
(*  INRIA Non-Commercial License Agreement.                            *)
(*                                                                     *)
(* *********************************************************************)

(** This file defines a number of data types and operations used in
  the abstract syntax trees of many of the intermediate languages. *)

Require Import String.
Require Import Coqlib Maps Errors Integers Floats BinPos.
Require Archi.

Set Implicit Arguments.

(** * Syntactic elements *)

(** Identifiers (names of local variables, of global symbols and functions,
  etc) are represented by the type [positive] of positive integers. *)

Definition ident := positive.

Definition ident_eq := peq.

(** The intermediate languages are weakly typed, using the following types: *)

Inductive typ : Type :=
  | Tint                (**r 32-bit integers or pointers *)
  | Tfloat              (**r 64-bit double-precision floats *)
  | Tlong               (**r 64-bit integers *)
  | Tsingle             (**r 32-bit single-precision floats *)
  | Tany32              (**r any 32-bit value *)
  | Tany64.             (**r any 64-bit value, i.e. any value *)

Lemma typ_eq: forall (t1 t2: typ), {t1=t2} + {t1<>t2}.
Proof. decide equality. Defined.
Global Opaque typ_eq.

Definition list_typ_eq: forall (l1 l2: list typ), {l1=l2} + {l1<>l2}
                     := list_eq_dec typ_eq.

Definition Tptr : typ := if Archi.ptr64 then Tlong else Tint.

Definition typesize (ty: typ) : Z :=
  match ty with
  | Tint => 4
  | Tfloat => 8
  | Tlong => 8
  | Tsingle => 4
  | Tany32 => 4
  | Tany64 => 8
  end.

Lemma typesize_pos: forall ty, typesize ty > 0.
Proof. destruct ty; simpl; lia. Qed.

Lemma typesize_Tptr: typesize Tptr = if Archi.ptr64 then 8 else 4.
Proof. unfold Tptr; destruct Archi.ptr64; auto. Qed.

(** All values of size 32 bits are also of type [Tany32].  All values
  are of type [Tany64].  This corresponds to the following subtyping
  relation over types. *)

Definition subtype (ty1 ty2: typ) : bool :=
  match ty1, ty2 with
  | Tint, Tint => true
  | Tlong, Tlong => true
  | Tfloat, Tfloat => true
  | Tsingle, Tsingle => true
  | (Tint | Tsingle | Tany32), Tany32 => true
  | _, Tany64 => true
  | _, _ => false
  end.

Fixpoint subtype_list (tyl1 tyl2: list typ) : bool :=
  match tyl1, tyl2 with
  | nil, nil => true
  | ty1::tys1, ty2::tys2 => subtype ty1 ty2 && subtype_list tys1 tys2
  | _, _ => false
  end.

(** To describe the values returned by functions, we use the more precise
    types below. *)

Inductive rettype : Type :=
  | Tret (t: typ)                       (**r like type [t] *)
  | Tint8signed                         (**r 8-bit signed integer *)
  | Tint8unsigned                       (**r 8-bit unsigned integer *)
  | Tint16signed                        (**r 16-bit signed integer *)
  | Tint16unsigned                      (**r 16-bit unsigned integer *)
  | Tvoid.                              (**r no value returned *)

Coercion Tret: typ >-> rettype.

Lemma rettype_eq: forall (t1 t2: rettype), {t1=t2} + {t1<>t2}.
Proof. generalize typ_eq; decide equality. Defined.
Global Opaque rettype_eq.

Definition proj_rettype (r: rettype) : typ :=
  match r with
  | Tret t => t
  | Tint8signed | Tint8unsigned | Tint16signed | Tint16unsigned => Tint
  | Tvoid => Tint
  end.

(** Additionally, function definitions and function calls are annotated
  by function signatures indicating:
- the number and types of arguments;
- the type of the returned value;
- additional information on which calling convention to use.

These signatures are used in particular to determine appropriate
calling conventions for the function. *)

Record calling_convention : Type := mkcallconv {
  cc_vararg: option Z;  (**r variable-arity function (+ number of fixed args) *)
  cc_unproto: bool;     (**r old-style unprototyped function *)
  cc_structret: bool    (**r function returning a struct  *)
}.

Definition cc_default :=
  {| cc_vararg := None; cc_unproto := false; cc_structret := false |}.

Definition calling_convention_eq (x y: calling_convention) : {x=y} + {x<>y}.
Proof.
  decide equality; try (apply bool_dec). decide equality; apply Z.eq_dec.
Defined.
Global Opaque calling_convention_eq.

Record signature : Type := mksignature {
  sig_args: list typ;
  sig_res: rettype;
  sig_cc: calling_convention
}.

Definition proj_sig_res (s: signature) : typ := proj_rettype s.(sig_res).

Definition signature_eq: forall (s1 s2: signature), {s1=s2} + {s1<>s2}.
Proof.
  generalize rettype_eq, list_typ_eq, calling_convention_eq; decide equality.
Defined.
Global Opaque signature_eq.

Definition signature_main :=
  {| sig_args := nil; sig_res := Tint; sig_cc := cc_default |}.

(** Memory accesses (load and store instructions) are annotated by
  a ``memory chunk'' indicating the type, size and signedness of the
  chunk of memory being accessed. *)

Inductive memory_chunk : Type :=
  | Mint8signed     (**r 8-bit signed integer *)
  | Mint8unsigned   (**r 8-bit unsigned integer *)
  | Mint16signed    (**r 16-bit signed integer *)
  | Mint16unsigned  (**r 16-bit unsigned integer *)
  | Mint32          (**r 32-bit integer, or pointer *)
  | Mint64          (**r 64-bit integer *)
  | Mfloat32        (**r 32-bit single-precision float *)
  | Mfloat64        (**r 64-bit double-precision float *)
  | Many32          (**r any value that fits in 32 bits *)
  | Many64.         (**r any value *)

Definition chunk_eq: forall (c1 c2: memory_chunk), {c1=c2} + {c1<>c2}.
Proof. decide equality. Defined.
Global Opaque chunk_eq.

Definition Mptr : memory_chunk := if Archi.ptr64 then Mint64 else Mint32.

(** The type (integer/pointer or float) of a chunk. *)

Definition type_of_chunk (c: memory_chunk) : typ :=
  match c with
  | Mint8signed => Tint
  | Mint8unsigned => Tint
  | Mint16signed => Tint
  | Mint16unsigned => Tint
  | Mint32 => Tint
  | Mint64 => Tlong
  | Mfloat32 => Tsingle
  | Mfloat64 => Tfloat
  | Many32 => Tany32
  | Many64 => Tany64
  end.

Lemma type_of_Mptr: type_of_chunk Mptr = Tptr.
Proof. unfold Mptr, Tptr; destruct Archi.ptr64; auto. Qed.

(** Same, as a return type. *)

Definition rettype_of_chunk (c: memory_chunk) : rettype :=
  match c with
  | Mint8signed => Tint8signed
  | Mint8unsigned => Tint8unsigned
  | Mint16signed => Tint16signed
  | Mint16unsigned => Tint16unsigned
  | Mint32 => Tint
  | Mint64 => Tlong
  | Mfloat32 => Tsingle
  | Mfloat64 => Tfloat
  | Many32 => Tany32
  | Many64 => Tany64
  end.

Lemma proj_rettype_of_chunk:
  forall chunk, proj_rettype (rettype_of_chunk chunk) = type_of_chunk chunk.
Proof.
  destruct chunk; auto.
Qed.

(** The chunk that is appropriate to store and reload a value of
  the given type, without losing information. *)

Definition chunk_of_type (ty: typ) :=
  match ty with
  | Tint => Mint32
  | Tfloat => Mfloat64
  | Tlong => Mint64
  | Tsingle => Mfloat32
  | Tany32 => Many32
  | Tany64 => Many64
  end.

Lemma chunk_of_Tptr: chunk_of_type Tptr = Mptr.
Proof. unfold Mptr, Tptr; destruct Archi.ptr64; auto. Qed.

(** Trapping mode: does undefined behavior result in a trap or an undefined value (e.g. for loads) *)
Inductive trapping_mode : Type := TRAP | NOTRAP.

Definition trapping_mode_eq : forall x y : trapping_mode,
    { x=y } + { x <> y}.
Proof.
  decide equality.
Defined.


(** Initialization data for global variables. *)

Inductive init_data: Type :=
  | Init_int8: int -> init_data
  | Init_int16: int -> init_data
  | Init_int32: int -> init_data
  | Init_int64: int64 -> init_data
  | Init_float32: float32 -> init_data
  | Init_float64: float -> init_data
  | Init_space: Z -> init_data
  | Init_addrof: ident -> ptrofs -> init_data.  (**r address of symbol + offset *)

Definition init_data_size (i: init_data) : Z :=
  match i with
  | Init_int8 _ => 1
  | Init_int16 _ => 2
  | Init_int32 _ => 4
  | Init_int64 _ => 8
  | Init_float32 _ => 4
  | Init_float64 _ => 8
  | Init_addrof _ _ => if Archi.ptr64 then 8 else 4
  | Init_space n => Z.max n 0
  end.

Fixpoint init_data_list_size (il: list init_data) {struct il} : Z :=
  match il with
  | nil => 0
  | i :: il' => init_data_size i + init_data_list_size il'
  end.

Lemma init_data_size_pos:
  forall i, init_data_size i >= 0.
Proof.
  destruct i; simpl; try extlia. destruct Archi.ptr64; lia.
Qed.

Lemma init_data_list_size_pos:
  forall il, init_data_list_size il >= 0.
Proof.
  induction il; simpl. lia. generalize (init_data_size_pos a); lia.
Qed.

(** Information attached to global variables. *)

Record globvar (V: Type) : Type := mkglobvar {
  gvar_info: V;                    (**r language-dependent info, e.g. a type *)
  gvar_init: list init_data;       (**r initialization data *)
  gvar_readonly: bool;             (**r read-only variable? (const) *)
  gvar_volatile: bool              (**r volatile variable? *)
}.

(** Whole programs consist of:
- a collection of global definitions (name and description);
- a set of public names (the names that are visible outside
  this compilation unit);
- the name of the ``main'' function that serves as entry point in the program.

A global definition is either a global function or a global variable.
The type of function descriptions and that of additional information
for variables vary among the various intermediate languages and are
taken as parameters to the [program] type.  The other parts of whole
programs are common to all languages. *)

Inductive globdef (F V: Type) : Type :=
  | Gfun (f: F)
  | Gvar (v: globvar V).

Arguments Gfun [F V].
Arguments Gvar [F V].

Record program (F V: Type) : Type := mkprogram {
  prog_defs: list (ident * globdef F V);
  prog_public: list ident;
  prog_main: ident
}.

Definition prog_defs_names (F V: Type) (p: program F V) : list ident :=
  List.map fst p.(prog_defs).

(** The "definition map" of a program maps names of globals to their definitions.
  If several definitions have the same name, the one appearing last in [p.(prog_defs)] wins. *)

Definition prog_defmap (F V: Type) (p: program F V) : PTree.t (globdef F V) :=
  PTree_Properties.of_list p.(prog_defs).

Section DEFMAP.

Variables F V: Type.
Variable p: program F V.

Lemma in_prog_defmap:
  forall id g, (prog_defmap p)!id = Some g -> In (id, g) (prog_defs p).
Proof.
  apply PTree_Properties.in_of_list.
Qed.

Lemma prog_defmap_dom:
  forall id, In id (prog_defs_names p) -> exists g, (prog_defmap p)!id = Some g.
Proof.
  apply PTree_Properties.of_list_dom.
Qed.

Lemma prog_defmap_unique:
  forall defs1 id g defs2,
  prog_defs p = defs1 ++ (id, g) :: defs2 ->
  ~In id (map fst defs2) ->
  (prog_defmap p)!id = Some g.
Proof.
  unfold prog_defmap; intros. rewrite H. apply PTree_Properties.of_list_unique; auto.
Qed.

Lemma prog_defmap_norepet:
  forall id g,
  list_norepet (prog_defs_names p) ->
  In (id, g) (prog_defs p) ->
  (prog_defmap p)!id = Some g.
Proof.
  apply PTree_Properties.of_list_norepet.
Qed.

End DEFMAP.

(** * Generic transformations over programs *)

(** We now define a general iterator over programs that applies a given
  code transformation function to all function descriptions and leaves
  the other parts of the program unchanged. *)

Section TRANSF_PROGRAM.

Variable A B V: Type.
Variable transf: A -> B.

Definition transform_program_globdef (idg: ident * globdef A V) : ident * globdef B V :=
  match idg with
  | (id, Gfun f) => (id, Gfun (transf f))
  | (id, Gvar v) => (id, Gvar v)
  end.

Definition transform_program (p: program A V) : program B V :=
  mkprogram
    (List.map transform_program_globdef p.(prog_defs))
    p.(prog_public)
    p.(prog_main).

End TRANSF_PROGRAM.

(** The following is a more general presentation of [transform_program]:
- Global variable information can be transformed, in addition to function
  definitions.
- The transformation functions can fail and return an error message.
- The transformation for function definitions receives a global context
  (derived from the compilation unit being transformed) as additiona
  argument.
- The transformation functions receive the name of the global as
  additional argument. *)

Local Open Scope error_monad_scope.

Section TRANSF_PROGRAM_GEN.

Variables A B V W: Type.
Variable transf_fun: ident -> A -> res B.
Variable transf_var: ident -> V -> res W.

Definition transf_globvar (i: ident) (g: globvar V) : res (globvar W) :=
  do info' <- transf_var i g.(gvar_info);
  OK (mkglobvar info' g.(gvar_init) g.(gvar_readonly) g.(gvar_volatile)).

Fixpoint transf_globdefs (l: list (ident * globdef A V)) : res (list (ident * globdef B W)) :=
  match l with
  | nil => OK nil
  | (id, Gfun f) :: l' =>
    match transf_fun id f with
      | Error msg => Error (MSG "In function " :: CTX id :: MSG ": " :: msg)
      | OK tf =>
        do tl' <- transf_globdefs l'; OK ((id, Gfun tf) :: tl')
    end
  | (id, Gvar v) :: l' =>
    match transf_globvar id v with
      | Error msg => Error (MSG "In variable " :: CTX id :: MSG ": " :: msg)
      | OK tv =>
        do tl' <- transf_globdefs l'; OK ((id, Gvar tv) :: tl')
    end
  end.

Definition transform_partial_program2 (p: program A V) : res (program B W) :=
  do gl' <- transf_globdefs p.(prog_defs);
  OK (mkprogram gl' p.(prog_public) p.(prog_main)).

End TRANSF_PROGRAM_GEN.

(** The following is a special case of [transform_partial_program2],
  where only function definitions are transformed, but not variable definitions. *)

Section TRANSF_PARTIAL_PROGRAM.

Variable A B V: Type.
Variable transf_fun: A -> res B.

Definition transform_partial_program (p: program A V) : res (program B V) :=
  transform_partial_program2 (fun i f => transf_fun f) (fun i v => OK v) p.

End TRANSF_PARTIAL_PROGRAM.

Lemma transform_program_partial_program:
  forall (A B V: Type) (transf_fun: A -> B) (p: program A V),
  transform_partial_program (fun f => OK (transf_fun f)) p = OK (transform_program transf_fun p).
Proof.
  intros. unfold transform_partial_program, transform_partial_program2.
  assert (EQ: forall l,
              transf_globdefs (fun i f => OK (transf_fun f)) (fun i (v: V) => OK v) l =
              OK (List.map (transform_program_globdef transf_fun) l)).
  { induction l as [ | [id g] l]; simpl.
  - auto.
  - destruct g; simpl; rewrite IHl; simpl. auto. destruct v; auto.
  }
  rewrite EQ; simpl. auto.
Qed.

(** * External functions *)

(* Identifiers for profiling information *)
Parameter profiling_id : Type.
Axiom profiling_id_eq : forall (x y : profiling_id), {x=y} + {x<>y}.
Definition profiling_kind := Z.t.

(** For most languages, the functions composing the program are either
  internal functions, defined within the language, or external functions,
  defined outside.  External functions include system calls but also
  compiler built-in functions.  We define a type for external functions
  and associated operations. *)

Inductive external_function : Type :=
  | EF_external (name: string) (sg: signature)
     (** A system call or library function.  Produces an event
         in the trace. *)
  | EF_builtin (name: string) (sg: signature)
     (** A compiler built-in function.  Behaves like an external, but
         can be inlined by the compiler. *)
  | EF_runtime (name: string) (sg: signature)
     (** A function from the run-time library.  Behaves like an
         external, but must not be redefined. *)
  | EF_vload (chunk: memory_chunk)
     (** A volatile read operation.  If the address given as first argument
         points within a volatile global variable, generate an
         event and return the value found in this event.  Otherwise,
         produce no event and behave like a regular memory load. *)
  | EF_vstore (chunk: memory_chunk)
     (** A volatile store operation.   If the address given as first argument
         points within a volatile global variable, generate an event.
         Otherwise, produce no event and behave like a regular memory store. *)
  | EF_malloc
     (** Dynamic memory allocation.  Takes the requested size in bytes
         as argument; returns a pointer to a fresh block of the given size.
         Produces no observable event. *)
  | EF_free
     (** Dynamic memory deallocation.  Takes a pointer to a block
         allocated by an [EF_malloc] external call and frees the
         corresponding block.
         Produces no observable event. *)
  | EF_memcpy (sz: Z) (al: Z)
     (** Block copy, of [sz] bytes, between addresses that are [al]-aligned. *)
  | EF_annot (kind: positive) (text: string) (targs: list typ)
     (** A programmer-supplied annotation.  Takes zero, one or several arguments,
         produces an event carrying the text and the values of these arguments,
         and returns no value. *)
  | EF_annot_val (kind: positive) (text: string) (targ: typ)
     (** Another form of annotation that takes one argument, produces
         an event carrying the text and the value of this argument,
         and returns the value of the argument. *)
  | EF_inline_asm (text: string) (sg: signature) (clobbers: list string)
     (** Inline [asm] statements.  Semantically, treated like an
         annotation with no parameters ([EF_annot text nil]).  To be
         used with caution, as it can invalidate the semantic
         preservation theorem.  Generated only if [-finline-asm] is
         given. *)
  | EF_debug (kind: positive) (text: ident) (targs: list typ)
     (** Transport debugging information from the front-end to the generated
         assembly.  Takes zero, one or several arguments like [EF_annot].
         Unlike [EF_annot], produces no observable event. *)
  | EF_profiling (id: profiling_id) (kind : profiling_kind).
     (** Count one profiling event for this identifier and kind.
         Takes no argument. Produces no observable event. *)

(** The type signature of an external function. *)

Definition ef_sig (ef: external_function): signature :=
  match ef with
  | EF_external name sg => sg
  | EF_builtin name sg => sg
  | EF_runtime name sg => sg
  | EF_vload chunk => mksignature (Tptr :: nil) (rettype_of_chunk chunk) cc_default
  | EF_vstore chunk => mksignature (Tptr :: type_of_chunk chunk :: nil) Tvoid cc_default
  | EF_malloc => mksignature (Tptr :: nil) Tptr cc_default
  | EF_free => mksignature (Tptr :: nil) Tvoid cc_default
  | EF_memcpy sz al => mksignature (Tptr :: Tptr :: nil) Tvoid cc_default
  | EF_annot kind text targs => mksignature targs Tvoid cc_default
  | EF_annot_val kind text targ => mksignature (targ :: nil) targ cc_default
  | EF_inline_asm text sg clob => sg
  | EF_debug kind text targs => mksignature targs Tvoid cc_default
  | EF_profiling id kind => mksignature nil Tvoid cc_default
  end.

(** Whether an external function should be inlined by the compiler. *)

Definition ef_inline (ef: external_function) : bool :=
  match ef with
  | EF_external name sg => false
  | EF_builtin name sg => true
  | EF_runtime name sg => false
  | EF_vload chunk => true
  | EF_vstore chunk => true
  | EF_malloc => false
  | EF_free => false
  | EF_memcpy sz al => true
  | EF_annot kind text targs => true
  | EF_annot_val kind Text rg => true
  | EF_inline_asm text sg clob => true
  | EF_debug kind text targs => true
  | EF_profiling id kind => true
  end.

(** Whether an external function must reload its arguments. *)

Definition ef_reloads (ef: external_function) : bool :=
  match ef with
  | EF_annot kind text targs => false
  | EF_debug kind text targs => false
  | _ => true
  end.

(** Equality between external functions.  Used in module [Allocation]. *)

Definition external_function_eq: forall (ef1 ef2: external_function), {ef1=ef2} + {ef1<>ef2}.
Proof.
  generalize profiling_id_eq ident_eq string_dec signature_eq chunk_eq typ_eq list_eq_dec zeq Int.eq_dec; intros.
  decide equality.
Defined.
Global Opaque external_function_eq.

(** Function definitions are the union of internal and external functions. *)

Inductive fundef (F: Type): Type :=
  | Internal: F -> fundef F
  | External: external_function -> fundef F.

Arguments External [F].

Section TRANSF_FUNDEF.

Variable A B: Type.
Variable transf: A -> B.

Definition transf_fundef (fd: fundef A): fundef B :=
  match fd with
  | Internal f => Internal (transf f)
  | External ef => External ef
  end.

End TRANSF_FUNDEF.

Section TRANSF_PARTIAL_FUNDEF.

Variable A B: Type.
Variable transf_partial: A -> res B.

Definition transf_partial_fundef (fd: fundef A): res (fundef B) :=
  match fd with
  | Internal f => do f' <- transf_partial f; OK (Internal f')
  | External ef => OK (External ef)
  end.

End TRANSF_PARTIAL_FUNDEF.

(** * Register pairs *)

Set Contextual Implicit.

(** In some intermediate languages (LTL, Mach), 64-bit integers can be
  split into two 32-bit halves and held in a pair of registers.
  Syntactically, this is captured by the type [rpair] below. *)

Inductive rpair (A: Type) : Type :=
  | One (r: A)
  | Twolong (rhi rlo: A).

Definition typ_rpair (A: Type) (typ_of: A -> typ) (p: rpair A): typ :=
  match p with
  | One r => typ_of r
  | Twolong rhi rlo => Tlong
  end.

Definition map_rpair (A B: Type) (f: A -> B) (p: rpair A): rpair B :=
  match p with
  | One r => One (f r)
  | Twolong rhi rlo => Twolong (f rhi) (f rlo)
  end.

Definition regs_of_rpair (A: Type) (p: rpair A): list A :=
  match p with
  | One r => r :: nil
  | Twolong rhi rlo => rhi :: rlo :: nil
  end.

Fixpoint regs_of_rpairs (A: Type) (l: list (rpair A)): list A :=
  match l with
  | nil => nil
  | p :: l => regs_of_rpair p ++ regs_of_rpairs l
  end.

Lemma in_regs_of_rpairs:
  forall (A: Type) (x: A) p, In x (regs_of_rpair p) -> forall l, In p l -> In x (regs_of_rpairs l).
Proof.
  induction l; simpl; intros. auto. apply in_app. destruct H0; auto. subst a. auto.
Qed.

Lemma in_regs_of_rpairs_inv:
  forall (A: Type) (x: A) l, In x (regs_of_rpairs l) -> exists p, In p l /\ In x (regs_of_rpair p).
Proof.
  induction l; simpl; intros. contradiction.
  rewrite in_app_iff in H; destruct H.
  exists a; auto.
  apply IHl in H. firstorder auto.
Qed.

Definition forall_rpair (A: Type) (P: A -> Prop) (p: rpair A): Prop :=
  match p with
  | One r => P r
  | Twolong rhi rlo => P rhi /\ P rlo
  end.

(** * Arguments and results to builtin functions *)

Inductive builtin_arg (A: Type) : Type :=
  | BA (x: A)
  | BA_int (n: int)
  | BA_long (n: int64)
  | BA_float (f: float)
  | BA_single (f: float32)
  | BA_loadstack (chunk: memory_chunk) (ofs: ptrofs)
  | BA_addrstack (ofs: ptrofs)
  | BA_loadglobal (chunk: memory_chunk) (id: ident) (ofs: ptrofs)
  | BA_addrglobal (id: ident) (ofs: ptrofs)
  | BA_splitlong (hi lo: builtin_arg A)
  | BA_addptr (a1 a2: builtin_arg A).

Definition builtin_arg_eq {A: Type}:
  (forall x y : A, {x = y} + {x <> y}) ->
  forall (ba1 ba2: (builtin_arg A)), {ba1=ba2} + {ba1<>ba2}.
Proof.
  intro. generalize Integers.int_eq int64_eq float_eq float32_eq chunk_eq ptrofs_eq ident_eq.
  decide equality.
Defined.
Global Opaque builtin_arg_eq.

Inductive builtin_res (A: Type) : Type :=
  | BR (x: A)
  | BR_none
  | BR_splitlong (hi lo: builtin_res A).

Definition builtin_res_eq {A: Type}:
  (forall x y : A, {x = y} + {x <> y}) ->
  forall (a b: builtin_res A), {a=b} + {a<>b}.
Proof.
  intro. decide equality.
Defined.
Global Opaque builtin_res_eq.

Fixpoint globals_of_builtin_arg (A: Type) (a: builtin_arg A) : list ident :=
  match a with
  | BA_loadglobal chunk id ofs => id :: nil
  | BA_addrglobal id ofs => id :: nil
  | BA_splitlong hi lo => globals_of_builtin_arg hi ++ globals_of_builtin_arg lo
  | BA_addptr a1 a2 => globals_of_builtin_arg a1 ++ globals_of_builtin_arg a2
  | _ => nil
  end.

Definition globals_of_builtin_args (A: Type) (al: list (builtin_arg A)) : list ident :=
  List.fold_right (fun a l => globals_of_builtin_arg a ++ l) nil al.

Fixpoint params_of_builtin_arg (A: Type) (a: builtin_arg A) : list A :=
  match a with
  | BA x => x :: nil
  | BA_splitlong hi lo => params_of_builtin_arg hi ++ params_of_builtin_arg lo
  | BA_addptr a1 a2 => params_of_builtin_arg a1 ++ params_of_builtin_arg a2
  | _ => nil
  end.

Definition params_of_builtin_args (A: Type) (al: list (builtin_arg A)) : list A :=
  List.fold_right (fun a l => params_of_builtin_arg a ++ l) nil al.

Fixpoint params_of_builtin_res (A: Type) (a: builtin_res A) : list A :=
  match a with
  | BR x => x :: nil
  | BR_none => nil
  | BR_splitlong hi lo => params_of_builtin_res hi ++ params_of_builtin_res lo
  end.

Fixpoint map_builtin_arg (A B: Type) (f: A -> B) (a: builtin_arg A) : builtin_arg B :=
  match a with
  | BA x => BA (f x)
  | BA_int n => BA_int n
  | BA_long n => BA_long n
  | BA_float n => BA_float n
  | BA_single n => BA_single n
  | BA_loadstack chunk ofs => BA_loadstack chunk ofs
  | BA_addrstack ofs => BA_addrstack ofs
  | BA_loadglobal chunk id ofs => BA_loadglobal chunk id ofs
  | BA_addrglobal id ofs => BA_addrglobal id ofs
  | BA_splitlong hi lo =>
      BA_splitlong (map_builtin_arg f hi) (map_builtin_arg f lo)
  | BA_addptr a1 a2 =>
      BA_addptr (map_builtin_arg f a1) (map_builtin_arg f a2)
  end.

Fixpoint map_builtin_res (A B: Type) (f: A -> B) (a: builtin_res A) : builtin_res B :=
  match a with
  | BR x => BR (f x)
  | BR_none => BR_none
  | BR_splitlong hi lo =>
      BR_splitlong (map_builtin_res f hi) (map_builtin_res f lo)
  end.

(** Which kinds of builtin arguments are supported by which external function. *)

Inductive builtin_arg_constraint : Type :=
  | OK_default
  | OK_const
  | OK_addrstack
  | OK_addressing
  | OK_all.