aboutsummaryrefslogtreecommitdiffstats
path: root/common/Globalenvs.v
blob: ccb7b03e3c0263add929b35f0dc2edda74f330a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
(** Global environments are a component of the dynamic semantics of 
  all languages involved in the compiler.  A global environment
  maps symbol names (names of functions and of global variables)
  to the corresponding memory addresses.  It also maps memory addresses
  of functions to the corresponding function descriptions.  

  Global environments, along with the initial memory state at the beginning
  of program execution, are built from the program of interest, as follows:
- A distinct memory address is assigned to each function of the program.
  These function addresses use negative numbers to distinguish them from
  addresses of memory blocks.  The associations of function name to function
  address and function address to function description are recorded in
  the global environment.
- For each global variable, a memory block is allocated and associated to
  the name of the variable.

  These operations reflect (at a high level of abstraction) what takes
  place during program linking and program loading in a real operating
  system. *)

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Mem.

Set Implicit Arguments.

Module Type GENV.

(** ** Types and operations *)

  Variable t: Set -> Set.
   (** The type of global environments.  The parameter [F] is the type
       of function descriptions. *)

  Variable globalenv: forall (F V: Set), program F V -> t F.
   (** Return the global environment for the given program. *)

  Variable init_mem: forall (F V: Set), program F V -> mem.
   (** Return the initial memory state for the given program. *)

  Variable find_funct_ptr: forall (F: Set), t F -> block -> option F.
   (** Return the function description associated with the given address,
       if any. *)

  Variable find_funct: forall (F: Set), t F -> val -> option F.
   (** Same as [find_funct_ptr] but the function address is given as
       a value, which must be a pointer with offset 0. *)

  Variable find_symbol: forall (F: Set), t F -> ident -> option block.
   (** Return the address of the given global symbol, if any. *)

(** ** Properties of the operations. *)

  Hypothesis find_funct_inv:
    forall (F: Set) (ge: t F) (v: val) (f: F),
    find_funct ge v = Some f -> exists b, v = Vptr b Int.zero.
  Hypothesis find_funct_find_funct_ptr:
    forall (F: Set) (ge: t F) (b: block),
    find_funct ge (Vptr b Int.zero) = find_funct_ptr ge b.    
  Hypothesis find_funct_ptr_prop:
    forall (F V: Set) (P: F -> Prop) (p: program F V) (b: block) (f: F),
    (forall id f, In (id, f) (prog_funct p) -> P f) ->
    find_funct_ptr (globalenv p) b = Some f ->
    P f.
  Hypothesis find_funct_prop:
    forall (F V: Set) (P: F -> Prop) (p: program F V) (v: val) (f: F),
    (forall id f, In (id, f) (prog_funct p) -> P f) ->
    find_funct (globalenv p) v = Some f ->
    P f.
  Hypothesis find_funct_ptr_symbol_inversion:
    forall (F V: Set) (p: program F V) (id: ident) (b: block) (f: F),
    find_symbol (globalenv p) id = Some b ->
    find_funct_ptr (globalenv p) b = Some f ->
    In (id, f) p.(prog_funct).

  Hypothesis initmem_nullptr:
    forall (F V: Set) (p: program F V),
    let m := init_mem p in
    valid_block m nullptr /\
    m.(blocks) nullptr = empty_block 0 0.
  Hypothesis initmem_block_init:
    forall (F V: Set) (p: program F V) (b: block),
    exists id, (init_mem p).(blocks) b = block_init_data id.
  Hypothesis find_funct_ptr_inv:
    forall (F V: Set) (p: program F V) (b: block) (f: F),
    find_funct_ptr (globalenv p) b = Some f -> b < 0.
  Hypothesis find_symbol_inv:
    forall (F V: Set) (p: program F V) (id: ident) (b: block),
    find_symbol (globalenv p) id = Some b -> b < nextblock (init_mem p).

(** Commutation properties between program transformations
  and operations over global environments. *)

  Hypothesis find_funct_ptr_transf:
    forall (A B V: Set) (transf: A -> B) (p: program A V) (b: block) (f: A),
    find_funct_ptr (globalenv p) b = Some f ->
    find_funct_ptr (globalenv (transform_program transf p)) b = Some (transf f).
  Hypothesis find_funct_transf:
    forall (A B V: Set) (transf: A -> B) (p: program A V) (v: val) (f: A),
    find_funct (globalenv p) v = Some f ->
    find_funct (globalenv (transform_program transf p)) v = Some (transf f).
  Hypothesis find_symbol_transf:
    forall (A B V: Set) (transf: A -> B) (p: program A V) (s: ident),
    find_symbol (globalenv (transform_program transf p)) s =
    find_symbol (globalenv p) s.
  Hypothesis init_mem_transf:
    forall (A B V: Set) (transf: A -> B) (p: program A V),
    init_mem (transform_program transf p) = init_mem p.

(** Commutation properties between partial program transformations
  and operations over global environments. *)

  Hypothesis find_funct_ptr_transf_partial:
    forall (A B V: Set) (transf: A -> option B)
           (p: program A V) (p': program B V),
    transform_partial_program transf p = Some p' ->
    forall (b: block) (f: A),
    find_funct_ptr (globalenv p) b = Some f ->
    find_funct_ptr (globalenv p') b = transf f /\ transf f <> None.
  Hypothesis find_funct_transf_partial:
    forall (A B V: Set) (transf: A -> option B)
           (p: program A V) (p': program B V),
    transform_partial_program transf p = Some p' ->
    forall (v: val) (f: A),
    find_funct (globalenv p) v = Some f ->
    find_funct (globalenv p') v = transf f /\ transf f <> None.
  Hypothesis find_symbol_transf_partial:
    forall (A B V: Set) (transf: A -> option B)
           (p: program A V) (p': program B V),
    transform_partial_program transf p = Some p' ->
    forall (s: ident),
    find_symbol (globalenv p') s = find_symbol (globalenv p) s.
  Hypothesis init_mem_transf_partial:
    forall (A B V: Set) (transf: A -> option B)
           (p: program A V) (p': program B V),
    transform_partial_program transf p = Some p' ->
    init_mem p' = init_mem p.

  Hypothesis find_funct_ptr_transf_partial2:
    forall (A B V W: Set) (transf_fun: A -> option B) (transf_var: V -> option W)
           (p: program A V) (p': program B W),
    transform_partial_program2 transf_fun transf_var p = Some p' ->
    forall (b: block) (f: A),
    find_funct_ptr (globalenv p) b = Some f ->
    find_funct_ptr (globalenv p') b = transf_fun f /\ transf_fun f <> None.
  Hypothesis find_funct_transf_partial2:
    forall (A B V W: Set) (transf_fun: A -> option B) (transf_var: V -> option W)
           (p: program A V) (p': program B W),
    transform_partial_program2 transf_fun transf_var p = Some p' ->
    forall (v: val) (f: A),
    find_funct (globalenv p) v = Some f ->
    find_funct (globalenv p') v = transf_fun f /\ transf_fun f <> None.
  Hypothesis find_symbol_transf_partial2:
    forall (A B V W: Set) (transf_fun: A -> option B) (transf_var: V -> option W)
           (p: program A V) (p': program B W),
    transform_partial_program2 transf_fun transf_var p = Some p' ->
    forall (s: ident),
    find_symbol (globalenv p') s = find_symbol (globalenv p) s.
  Hypothesis init_mem_transf_partial2:
    forall (A B V W: Set) (transf_fun: A -> option B) (transf_var: V -> option W)
           (p: program A V) (p': program B W),
    transform_partial_program2 transf_fun transf_var p = Some p' ->
    init_mem p' = init_mem p.

End GENV.

(** The rest of this library is a straightforward implementation of
  the module signature above. *)

Module Genv: GENV.

Section GENV.

Variable F: Set.                    (* The type of functions *)
Variable V: Set.                    (* The type of information over variables *)

Record genv : Set := mkgenv {
  functions: ZMap.t (option F);     (* mapping function ptr -> function *)
  nextfunction: Z;
  symbols: PTree.t block                (* mapping symbol -> block *)
}.

Definition t := genv.

Definition add_funct (name_fun: (ident * F)) (g: genv) : genv :=
  let b := g.(nextfunction) in
  mkgenv (ZMap.set b (Some (snd name_fun)) g.(functions))
         (Zpred b)
         (PTree.set (fst name_fun) b g.(symbols)).

Definition add_symbol (name: ident) (b: block) (g: genv) : genv :=
  mkgenv g.(functions)
         g.(nextfunction)
         (PTree.set name b g.(symbols)).

Definition find_funct_ptr (g: genv) (b: block) : option F :=
  ZMap.get b g.(functions).

Definition find_funct (g: genv) (v: val) : option F :=
  match v with
  | Vptr b ofs =>
      if Int.eq ofs Int.zero then find_funct_ptr g b else None
  | _ =>
      None
  end.

Definition find_symbol (g: genv) (symb: ident) : option block :=
  PTree.get symb g.(symbols).

Lemma find_funct_inv:
  forall (ge: t) (v: val) (f: F),
  find_funct ge v = Some f -> exists b, v = Vptr b Int.zero.
Proof.
  intros until f. unfold find_funct. destruct v; try (intros; discriminate).
  generalize (Int.eq_spec i Int.zero). case (Int.eq i Int.zero); intros.
  exists b. congruence.
  discriminate.
Qed.

Lemma find_funct_find_funct_ptr:
  forall (ge: t) (b: block),
  find_funct ge (Vptr b Int.zero) = find_funct_ptr ge b. 
Proof.
  intros. simpl. 
  generalize (Int.eq_spec Int.zero Int.zero).
  case (Int.eq Int.zero Int.zero); intros.
  auto. tauto.
Qed.

(* Construct environment and initial memory store *)

Definition empty : genv :=
  mkgenv (ZMap.init None) (-1) (PTree.empty block).

Definition add_functs (init: genv) (fns: list (ident * F)) : genv :=
  List.fold_right add_funct init fns.

Definition add_globals 
       (init: genv * mem) (vars: list (ident * list init_data * V))
       : genv * mem :=
  List.fold_right
    (fun (id_init: ident * list init_data * V) (g_st: genv * mem) =>
       match id_init, g_st with
       | ((id, init), info), (g, st) =>
           let (st', b) := Mem.alloc_init_data st init in
           (add_symbol id b g, st')
       end)
    init vars.

Definition globalenv_initmem (p: program F V) : (genv * mem) :=
  add_globals
    (add_functs empty p.(prog_funct), Mem.empty)
    p.(prog_vars).

Definition globalenv (p: program F V) : genv :=
  fst (globalenv_initmem p).
Definition init_mem  (p: program F V) : mem :=
  snd (globalenv_initmem p).

Lemma functions_globalenv:
  forall (p: program F V),
  functions (globalenv p) = functions (add_functs empty p.(prog_funct)).
Proof.
  assert (forall init vars,
     functions (fst (add_globals init vars)) = functions (fst init)).
  induction vars; simpl.
  reflexivity.
  destruct a as [[id1 init1] info1]. destruct (add_globals init vars).
  simpl. exact IHvars. 

  unfold add_globals; simpl. 
  intros. unfold globalenv; unfold globalenv_initmem.
  rewrite H. reflexivity.
Qed.

Lemma initmem_nullptr:
  forall (p: program F V),
  let m := init_mem p in
  valid_block m nullptr /\
  m.(blocks) nullptr = mkblock 0 0 (fun y => Undef) (undef_undef_outside 0 0).
Proof.
  pose (P := fun m => valid_block m nullptr /\
        m.(blocks) nullptr = mkblock 0 0 (fun y => Undef) (undef_undef_outside 0 0)).
  assert (forall init, P (snd init) -> forall vars, P (snd (add_globals init vars))).
  induction vars; simpl; intros.
  auto.
  destruct a as [[id1 in1] inf1]. 
  destruct (add_globals init vars) as [g st]. 
  simpl in *. destruct IHvars. split.
  red; simpl. red in H0. omega.
  simpl. rewrite update_o. auto. unfold block. red in H0. omega. 

  intro. unfold init_mem, globalenv_initmem. apply H. 
  red; simpl. split. compute. auto. reflexivity.
Qed. 

Lemma initmem_block_init:
  forall (p: program F V) (b: block),
  exists id, (init_mem p).(blocks) b = block_init_data id.
Proof.
  assert (forall g0 vars g1 m b,
      add_globals (g0, Mem.empty) vars = (g1, m) ->
      exists id, m.(blocks) b = block_init_data id).
  induction vars; simpl.
  intros. inversion H. unfold Mem.empty; simpl. 
  exists (@nil init_data). symmetry. apply Mem.block_init_data_empty.
  destruct a as [[id1 init1] info1]. 
  caseEq (add_globals (g0, Mem.empty) vars). intros g1 m1 EQ. 
  intros g m b EQ1. injection EQ1; intros EQ2 EQ3; clear EQ1.
  rewrite <- EQ2; simpl. unfold update.
  case (zeq b (nextblock m1)); intro.
  exists init1; auto.
  eauto.
  intros. caseEq (globalenv_initmem p). 
  intros g m EQ. unfold init_mem; rewrite EQ; simpl. 
  unfold globalenv_initmem in EQ. eauto.
Qed.      

Remark nextfunction_add_functs_neg:
  forall fns, nextfunction (add_functs empty fns) < 0.
Proof.
  induction fns; simpl; intros. omega. unfold Zpred. omega.
Qed.

Theorem find_funct_ptr_inv:
  forall (p: program F V) (b: block) (f: F),
  find_funct_ptr (globalenv p) b = Some f -> b < 0.
Proof.
  intros until f.
  assert (forall fns, ZMap.get b (functions (add_functs empty fns)) = Some f -> b < 0).
    induction fns; simpl.
    rewrite ZMap.gi. congruence.
    rewrite ZMap.gsspec. case (ZIndexed.eq b (nextfunction (add_functs empty fns))); intro.
    intro. rewrite e. apply nextfunction_add_functs_neg.
    auto. 
  unfold find_funct_ptr. rewrite functions_globalenv. 
  intros. eauto.
Qed.

Theorem find_symbol_inv:
  forall (p: program F V) (id: ident) (b: block),
  find_symbol (globalenv p) id = Some b -> b < nextblock (init_mem p).
Proof.
  assert (forall fns s b,
    (symbols (add_functs empty fns)) ! s = Some b -> b < 0).
  induction fns; simpl; intros until b.
  rewrite PTree.gempty. congruence.
  rewrite PTree.gsspec. destruct a; simpl. case (peq s i); intro.
  intro EQ; inversion EQ. apply nextfunction_add_functs_neg.
  eauto.
  assert (forall fns vars g m s b,
    add_globals (add_functs empty fns, Mem.empty) vars = (g, m) ->
    (symbols g)!s = Some b ->
    b < nextblock m).
  induction vars; simpl; intros until b.
  intros. inversion H0. subst g m. simpl. 
  generalize (H fns s b H1). omega.
  destruct a as [[id1 init1] info1]. 
  caseEq (add_globals (add_functs empty fns, Mem.empty) vars).
  intros g1 m1 ADG EQ. inversion EQ; subst g m; clear EQ.
  unfold add_symbol; simpl. rewrite PTree.gsspec. case (peq s id1); intro.
  intro EQ; inversion EQ. omega.
  intro. generalize (IHvars _ _ _ _ ADG H0). omega.
  intros until b. unfold find_symbol, globalenv, init_mem, globalenv_initmem; simpl.
  caseEq (add_globals (add_functs empty (prog_funct p), Mem.empty)
                      (prog_vars p)); intros g m EQ.
  simpl; intros. eauto. 
Qed.

End GENV.

(* Invariants on functions *)
Lemma find_funct_ptr_prop:
  forall (F V: Set) (P: F -> Prop) (p: program F V) (b: block) (f: F),
  (forall id f, In (id, f) (prog_funct p) -> P f) ->
  find_funct_ptr (globalenv p) b = Some f ->
  P f.
Proof.
  intros until f.
  unfold find_funct_ptr. rewrite functions_globalenv.
  generalize (prog_funct p). induction l; simpl.
  rewrite ZMap.gi. intros; discriminate.
  rewrite ZMap.gsspec.
  case (ZIndexed.eq b (nextfunction (add_functs (empty F) l))); intros.
  apply H with (fst a). left. destruct a. simpl in *. congruence.
  apply IHl. intros. apply H with id. right. auto. auto.
Qed.

Lemma find_funct_prop:
  forall (F V: Set) (P: F -> Prop) (p: program F V) (v: val) (f: F),
  (forall id f, In (id, f) (prog_funct p) -> P f) ->
  find_funct (globalenv p) v = Some f ->
  P f.
Proof.
  intros until f. unfold find_funct. 
  destruct v; try (intros; discriminate).
  case (Int.eq i Int.zero); [idtac | intros; discriminate].
  intros. eapply find_funct_ptr_prop; eauto.
Qed.

Lemma find_funct_ptr_symbol_inversion:
  forall (F V: Set) (p: program F V) (id: ident) (b: block) (f: F),
  find_symbol (globalenv p) id = Some b ->
  find_funct_ptr (globalenv p) b = Some f ->
  In (id, f) p.(prog_funct).
Proof.
  intros until f.
  assert (forall fns,
           let g := add_functs (empty F) fns in
           PTree.get id g.(symbols) = Some b ->
           b > g.(nextfunction)).
    induction fns; simpl.
    rewrite PTree.gempty. congruence.
    rewrite PTree.gsspec. case (peq id (fst a)); intro.
    intro EQ. inversion EQ. unfold Zpred. omega.
    intros. generalize (IHfns H). unfold Zpred; omega.
  assert (forall fns,
           let g := add_functs (empty F) fns in
           PTree.get id g.(symbols) = Some b ->
           ZMap.get b g.(functions) = Some f ->
           In (id, f) fns).
    induction fns; simpl.
    rewrite ZMap.gi. congruence.
    set (g := add_functs (empty F) fns). 
    rewrite PTree.gsspec. rewrite ZMap.gsspec. 
    case (peq id (fst a)); intro.
    intro EQ. inversion EQ. unfold ZIndexed.eq. rewrite zeq_true. 
    intro EQ2. left. destruct a. simpl in *. congruence. 
    intro. unfold ZIndexed.eq. rewrite zeq_false. intro. eauto.
    generalize (H _ H0). fold g. unfold block. omega.
  assert (forall g0 m0, b < 0 ->
          forall vars g m,
          @add_globals F V (g0, m0) vars = (g, m) ->
          PTree.get id g.(symbols) = Some b ->
          PTree.get id g0.(symbols) = Some b).
    induction vars; simpl.
    intros. inversion H2. auto.
    destruct a as [[id1 init1] info1]. caseEq (add_globals (g0, m0) vars). 
    intros g1 m1 EQ g m EQ1. injection EQ1; simpl; clear EQ1.
    unfold add_symbol; intros A B. rewrite <- B. simpl. 
    rewrite PTree.gsspec. case (peq id id1); intros.
    assert (b > 0). injection H2; intros. rewrite <- H3. apply nextblock_pos. 
    omegaContradiction.
    eauto. 
  intros. 
  generalize (find_funct_ptr_inv _ _ H3). intro.
  pose (g := add_functs (empty F) (prog_funct p)). 
  apply H0.  
  apply H1 with Mem.empty (prog_vars p) (globalenv p) (init_mem p).
  auto. unfold globalenv, init_mem. rewrite <- surjective_pairing.
  reflexivity. assumption. rewrite <- functions_globalenv. assumption.
Qed.

(* Global environments and program transformations. *)

Section TRANSF_PROGRAM_PARTIAL2.

Variable A B V W: Set.
Variable transf_fun: A -> option B.
Variable transf_var: V -> option W.
Variable p: program A V.
Variable p': program B W.
Hypothesis transf_OK:
  transform_partial_program2 transf_fun transf_var p = Some p'.

Lemma add_functs_transf:
  forall (fns: list (ident * A)) (tfns: list (ident * B)),
  map_partial transf_fun fns = Some tfns ->
  let r := add_functs (empty A) fns in
  let tr := add_functs (empty B) tfns in
  nextfunction tr = nextfunction r /\
  symbols tr = symbols r /\
  forall (b: block) (f: A),
  ZMap.get b (functions r) = Some f ->
  ZMap.get b (functions tr) = transf_fun f /\ transf_fun f <> None.
Proof.
  induction fns; simpl.

  intros; injection H; intro; subst tfns.
  simpl. split. reflexivity. split. reflexivity.
  intros b f; repeat (rewrite ZMap.gi). intros; discriminate.

  intro tfns. destruct a. caseEq (transf_fun a). intros a' TA. 
  caseEq (map_partial transf_fun fns). intros l TPP EQ.
  injection EQ; intro; subst tfns.
  clear EQ. simpl. 
  generalize (IHfns l TPP).
  intros [HR1 [HR2 HR3]].
  rewrite HR1. rewrite HR2.
  split. reflexivity.
  split. reflexivity.
  intros b f.
  case (zeq b (nextfunction (add_functs (empty A) fns))); intro.
  subst b. repeat (rewrite ZMap.gss). 
  intro EQ; injection EQ; intro; subst f; clear EQ.
  rewrite TA. split. auto. discriminate.
  repeat (rewrite ZMap.gso; auto). 

  intros; discriminate.
  intros; discriminate.
Qed.

Lemma mem_add_globals_transf:
  forall (g1: genv A) (g2: genv B) (m: mem) 
         (vars: list (ident * list init_data * V))
         (tvars: list (ident * list init_data * W)),
  map_partial transf_var vars = Some tvars ->
  snd (add_globals (g1, m) vars) = snd (add_globals (g2, m) tvars).
Proof.
  induction vars; simpl.
  intros. inversion H. reflexivity.
  intro. destruct a as [[id1 init1] info1]. 
  caseEq (transf_var info1); try congruence.
  intros tinfo1 EQ1.
  caseEq (map_partial transf_var vars); try congruence.
  intros tvars' EQ2 EQ3. 
  inversion EQ3. simpl. 
  generalize (IHvars _ EQ2). 
  destruct (add_globals (g1, m) vars).
  destruct (add_globals (g2, m) tvars').
  simpl. intro. subst m1. auto.
Qed.

Lemma symbols_add_globals_transf:
  forall (g1: genv A) (g2: genv B) (m: mem),
  symbols g1 = symbols g2 ->
  forall (vars: list (ident * list init_data * V))
         (tvars: list (ident * list init_data * W)),
  map_partial transf_var vars = Some tvars ->
  symbols (fst (add_globals (g1, m) vars)) =
  symbols (fst (add_globals (g2, m) tvars)).
Proof.
  induction vars; simpl.
  intros. inversion H0. assumption.
  intro. destruct a as [[id1 init1] info1]. 
  caseEq (transf_var info1); try congruence. intros tinfo1 EQ1.
  caseEq (map_partial transf_var vars); try congruence.
  intros tvars' EQ2 EQ3. inversion EQ3; simpl. 
  generalize (IHvars _ EQ2). 
  generalize (mem_add_globals_transf g1 g2 m vars EQ2).
  destruct (add_globals (g1, m) vars).
  destruct (add_globals (g2, m) tvars').
  simpl. intros. congruence.
Qed.

(*
Lemma prog_funct_transf_OK:
  transf_partial_program transf p.(prog_funct) = Some p'.(prog_funct).
Proof.
  generalize transf_OK; unfold transform_partial_program.
  case (transf_partial_program transf (prog_funct p)); simpl; intros.
  injection transf_OK0; intros; subst p'. reflexivity.
  discriminate.
Qed.
*)

Theorem find_funct_ptr_transf_partial2:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  find_funct_ptr (globalenv p') b = transf_fun f /\ transf_fun f <> None.
Proof.
  intros until f. functional inversion transf_OK. 
  destruct (add_functs_transf _ H0) as [P [Q R]]. 
  unfold find_funct_ptr. repeat rewrite functions_globalenv. simpl. 
  auto.
Qed.

Theorem find_funct_transf_partial2:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  find_funct (globalenv p') v = transf_fun f /\ transf_fun f <> None.
Proof.
  intros until f. unfold find_funct. 
  case v; try (intros; discriminate).
  intros b ofs.
  case (Int.eq ofs Int.zero); try (intros; discriminate).
  apply find_funct_ptr_transf_partial2. 
Qed.

Lemma symbols_init_transf2:
  symbols (globalenv p') = symbols (globalenv p).
Proof.
  unfold globalenv. unfold globalenv_initmem.
  functional inversion transf_OK.
  destruct (add_functs_transf _ H0) as [P [Q R]]. 
  simpl. symmetry. apply symbols_add_globals_transf. auto. auto.
Qed.

Theorem find_symbol_transf_partial2:
  forall (s: ident),
  find_symbol (globalenv p') s = find_symbol (globalenv p) s.
Proof.
  intros. unfold find_symbol. 
  rewrite symbols_init_transf2. auto.
Qed.

Theorem init_mem_transf_partial2:
  init_mem p' = init_mem p.
Proof.
  unfold init_mem. unfold globalenv_initmem. 
  functional inversion transf_OK.
  simpl. symmetry. apply mem_add_globals_transf. auto.
Qed.

End TRANSF_PROGRAM_PARTIAL2.


Section TRANSF_PROGRAM_PARTIAL.

Variable A B V: Set.
Variable transf: A -> option B.
Variable p: program A V.
Variable p': program B V.
Hypothesis transf_OK: transform_partial_program transf p = Some p'.

Remark transf2_OK:
  transform_partial_program2 transf (fun x => Some x) p = Some p'.
Proof.
  rewrite <- transf_OK. unfold transform_partial_program2, transform_partial_program.
  destruct (map_partial transf (prog_funct p)); auto.
  rewrite map_partial_identity; auto. 
Qed.

Theorem find_funct_ptr_transf_partial:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  find_funct_ptr (globalenv p') b = transf f /\ transf f <> None.
Proof.
  exact (@find_funct_ptr_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

Theorem find_funct_transf_partial:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  find_funct (globalenv p') v = transf f /\ transf f <> None.
Proof.
  exact (@find_funct_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

Theorem find_symbol_transf_partial:
  forall (s: ident),
  find_symbol (globalenv p') s = find_symbol (globalenv p) s.
Proof.
  exact (@find_symbol_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

Theorem init_mem_transf_partial:
  init_mem p' = init_mem p.
Proof.
  exact (@init_mem_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

End TRANSF_PROGRAM_PARTIAL.

Section TRANSF_PROGRAM.

Variable A B V: Set.
Variable transf: A -> B.
Variable p: program A V.
Let tp := transform_program transf p.

Remark transf_OK:
  transform_partial_program (fun x => Some (transf x)) p = Some tp.
Proof.
  unfold tp, transform_program, transform_partial_program.
  rewrite map_partial_total. reflexivity.
Qed.

Theorem find_funct_ptr_transf:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  find_funct_ptr (globalenv tp) b = Some (transf f).
Proof.
  intros. 
  destruct (@find_funct_ptr_transf_partial _ _ _ _ _ _ transf_OK _ _ H)
  as [X Y]. auto.
Qed.

Theorem find_funct_transf:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  find_funct (globalenv tp) v = Some (transf f).
Proof.
  intros. 
  destruct (@find_funct_transf_partial _ _ _ _ _ _ transf_OK _ _ H)
  as [X Y]. auto.
Qed.

Theorem find_symbol_transf:
  forall (s: ident),
  find_symbol (globalenv tp) s = find_symbol (globalenv p) s.
Proof.
  exact (@find_symbol_transf_partial _ _ _ _ _ _ transf_OK).
Qed.

Theorem init_mem_transf:
  init_mem tp = init_mem p.
Proof.
  exact (@init_mem_transf_partial _ _ _ _ _ _ transf_OK).
Qed.

End TRANSF_PROGRAM.

End Genv.