aboutsummaryrefslogtreecommitdiffstats
path: root/common/Separation.v
blob: f41d94c3820fe59a1329409582ecdc4e769aa8b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris                                  *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU Lesser General Public License as        *)
(*  published by the Free Software Foundation, either version 2.1 of   *)
(*  the License, or  (at your option) any later version.               *)
(*  This file is also distributed under the terms of the               *)
(*  INRIA Non-Commercial License Agreement.                            *)
(*                                                                     *)
(* *********************************************************************)

(** Assertions on memory states, in the style of separation logic *)

(** This library defines a number of useful logical assertions about
  CompCert memory states, such as "block [b] at offset [ofs] contains
  value [v]".  Assertions can be grouped using a separating conjunction
  operator in the style of separation logic.

  Currently, this library is used only in module [Stackingproof]
  to reason about the shapes of stack frames generated during the
  [Stacking] pass.

  This is not a full-fledged separation logic because there is no
  program logic (Hoare triples) to speak of.  Also, there is no general
  frame rule; instead, a weak form of the frame rule is provided
  by the lemmas that help us reason about the logical assertions. *)

Require Import Setoid Program.Basics.
Require Import Coqlib Decidableplus.
Require Import AST Integers Values Memory Events Globalenvs.

(** * Assertions about memory *)

(** An assertion is composed of:
- a predicate over memory states (of type [mem -> Prop])
- a set of (block, offset) memory locations that represents the memory footprint of the assertion
- a proof that the predicate is invariant by changes of memory outside of the footprint
- a proof that the footprint contains only valid memory blocks.

This presentation (where the footprint is part of the assertion) makes
it possible to define separating conjunction without explicitly
defining a separation algebra over CompCert memory states (i.e. the
notion of splitting a memory state into two disjoint halves).  *)

Record massert : Type := {
  m_pred : mem -> Prop;
  m_footprint: block -> Z -> Prop;
  m_invar: forall m m', m_pred m -> Mem.unchanged_on m_footprint m m' -> m_pred m';
  m_valid: forall m b ofs, m_pred m -> m_footprint b ofs -> Mem.valid_block m b
}.

Notation "m |= p" := (m_pred p m) (at level 74, no associativity) : sep_scope.

(** Implication and logical equivalence between memory predicates *)

Definition massert_imp (P Q: massert) : Prop :=
  (forall m, m_pred P m -> m_pred Q m) /\ (forall b ofs, m_footprint Q b ofs -> m_footprint P b ofs).
Definition massert_eqv (P Q: massert) : Prop :=
  massert_imp P Q /\ massert_imp Q P.

Remark massert_imp_refl: forall p, massert_imp p p.
Proof.
  unfold massert_imp; auto.
Qed.

Remark massert_imp_trans: forall p q r, massert_imp p q -> massert_imp q r -> massert_imp p r.
Proof.
  unfold massert_imp; intros; firstorder auto.
Qed.

Remark massert_eqv_refl: forall p, massert_eqv p p.
Proof.
  unfold massert_eqv, massert_imp; intros. tauto.
Qed.

Remark massert_eqv_sym: forall p q, massert_eqv p q -> massert_eqv q p.
Proof.
  unfold massert_eqv, massert_imp; intros. tauto.
Qed.

Remark massert_eqv_trans: forall p q r, massert_eqv p q -> massert_eqv q r -> massert_eqv p r.
Proof.
  unfold massert_eqv, massert_imp; intros. firstorder auto.
Qed.

(** Record [massert_eqv] and [massert_imp] as relations so that they can be used by rewriting tactics. *)
Add Relation massert massert_imp
  reflexivity proved by massert_imp_refl
  transitivity proved by massert_imp_trans
as massert_imp_prel.

Add Relation massert massert_eqv
  reflexivity proved by massert_eqv_refl
  symmetry proved by massert_eqv_sym
  transitivity proved by massert_eqv_trans
as massert_eqv_prel.

Add Morphism m_pred
  with signature massert_imp ==> eq ==> impl
  as m_pred_morph_1.
Proof.
  intros P Q [A B]. auto.
Qed.

Add Morphism m_pred
  with signature massert_eqv ==> eq ==> iff
  as m_pred_morph_2.
Proof.
  intros P Q [[A B] [C D]]. split; auto.
Qed.

Global Hint Resolve massert_imp_refl massert_eqv_refl : core.

(** * Separating conjunction *)

Definition disjoint_footprint (P Q: massert) : Prop :=
  forall b ofs, m_footprint P b ofs -> m_footprint Q b ofs -> False.

Program Definition sepconj (P Q: massert) : massert := {|
  m_pred := fun m => m_pred P m /\ m_pred Q m /\ disjoint_footprint P Q;
  m_footprint := fun b ofs => m_footprint P b ofs \/ m_footprint Q b ofs
|}.
Next Obligation.
  repeat split; auto.
  apply (m_invar P) with m; auto. eapply Mem.unchanged_on_implies; eauto. simpl; auto.
  apply (m_invar Q) with m; auto. eapply Mem.unchanged_on_implies; eauto. simpl; auto.
Qed.
Next Obligation.
  destruct H0; [eapply (m_valid P) | eapply (m_valid Q)]; eauto.
Qed.

Add Morphism sepconj
  with signature massert_imp ==> massert_imp ==> massert_imp
  as sepconj_morph_1.
Proof.
  intros P1 P2 [A B] Q1 Q2 [C D].
  red; simpl; split; intros.
- intuition auto. red; intros. apply (H2 b ofs); auto.
- intuition auto.
Qed.

Add Morphism sepconj
  with signature massert_eqv ==> massert_eqv ==> massert_eqv
  as sepconj_morph_2.
Proof.
  intros. destruct H, H0. split; apply sepconj_morph_1; auto.
Qed.

Infix "**" := sepconj (at level 60, right associativity) : sep_scope.

Local Open Scope sep_scope.

Lemma sep_imp:
  forall P P' Q Q' m,
  m |= P ** Q -> massert_imp P P' -> massert_imp Q Q' -> m |= P' ** Q'.
Proof.
  intros. rewrite <- H0, <- H1; auto.
Qed.

Lemma sep_comm_1:
  forall P Q,  massert_imp (P ** Q) (Q ** P).
Proof.
  unfold massert_imp; simpl; split; intros.
- intuition auto. red; intros; eapply H2; eauto.
- intuition auto.
Qed.

Lemma sep_comm:
  forall P Q, massert_eqv (P ** Q) (Q ** P).
Proof.
  intros; split; apply sep_comm_1.
Qed.

Lemma sep_assoc_1:
  forall P Q R, massert_imp ((P ** Q) ** R) (P ** (Q ** R)).
Proof.
  intros. unfold massert_imp, sepconj, disjoint_footprint; simpl; firstorder auto.
Qed.

Lemma sep_assoc_2:
  forall P Q R, massert_imp (P ** (Q ** R)) ((P ** Q) ** R).
Proof.
  intros. unfold massert_imp, sepconj, disjoint_footprint; simpl; firstorder auto.
Qed.

Lemma sep_assoc:
  forall P Q R, massert_eqv ((P ** Q) ** R) (P ** (Q ** R)).
Proof.
  intros; split. apply sep_assoc_1. apply sep_assoc_2.
Qed.

Lemma sep_swap:
  forall P Q R, massert_eqv (P ** Q ** R) (Q ** P ** R).
Proof.
  intros. rewrite <- sep_assoc. rewrite (sep_comm P). rewrite sep_assoc. reflexivity.
Qed.

Definition sep_swap12 := sep_swap.

Lemma sep_swap23:
  forall P Q R S, massert_eqv (P ** Q ** R ** S) (P ** R ** Q ** S).
Proof.
  intros. rewrite (sep_swap Q). reflexivity.
Qed.

Lemma sep_swap34:
  forall P Q R S T, massert_eqv (P ** Q ** R ** S ** T) (P ** Q ** S ** R ** T).
Proof.
  intros. rewrite (sep_swap R). reflexivity.
Qed.

Lemma sep_swap45:
  forall P Q R S T U, massert_eqv (P ** Q ** R ** S ** T ** U) (P ** Q ** R ** T ** S ** U).
Proof.
  intros. rewrite (sep_swap S). reflexivity.
Qed.

Definition sep_swap2 := sep_swap.

Lemma sep_swap3:
  forall P Q R S, massert_eqv (P ** Q ** R ** S) (R ** Q ** P ** S).
Proof.
  intros. rewrite sep_swap. rewrite (sep_swap P). rewrite sep_swap. reflexivity.
Qed.

Lemma sep_swap4:
  forall P Q R S T, massert_eqv (P ** Q ** R ** S ** T) (S ** Q ** R ** P ** T).
Proof.
  intros. rewrite sep_swap. rewrite (sep_swap3 P). rewrite sep_swap. reflexivity.
Qed.

Lemma sep_swap5:
  forall P Q R S T U, massert_eqv (P ** Q ** R ** S ** T ** U) (T ** Q ** R ** S ** P ** U).
Proof.
  intros. rewrite sep_swap. rewrite (sep_swap4 P). rewrite sep_swap. reflexivity.
Qed.

Lemma sep_drop:
  forall P Q m, m |= P ** Q -> m |= Q.
Proof.
  simpl; intros. tauto.
Qed.

Lemma sep_drop2:
  forall P Q R m, m |= P ** Q ** R -> m |= P ** R.
Proof.
  intros. rewrite sep_swap in H. eapply sep_drop; eauto.
Qed.

Lemma sep_proj1:
  forall Q P m, m |= P ** Q -> m |= P.
Proof.
  intros. destruct H; auto.
Qed.

Lemma sep_proj2:
  forall P Q m, m |= P ** Q -> m |= Q.
Proof sep_drop.

Definition sep_pick1 := sep_proj1.

Lemma sep_pick2:
  forall P Q R m, m |= P ** Q ** R -> m |= Q.
Proof.
  intros. eapply sep_proj1; eapply sep_proj2; eauto.
Qed.

Lemma sep_pick3:
  forall P Q R S m, m |= P ** Q ** R ** S -> m |= R.
Proof.
  intros. eapply sep_pick2; eapply sep_proj2; eauto.
Qed.

Lemma sep_pick4:
  forall P Q R S T m, m |= P ** Q ** R ** S ** T -> m |= S.
Proof.
  intros. eapply sep_pick3; eapply sep_proj2; eauto.
Qed.

Lemma sep_pick5:
  forall P Q R S T U m, m |= P ** Q ** R ** S ** T ** U -> m |= T.
Proof.
  intros. eapply sep_pick4; eapply sep_proj2; eauto.
Qed.

Lemma sep_preserved:
  forall m m' P Q,
  m |= P ** Q ->
  (m |= P -> m' |= P) ->
  (m |= Q -> m' |= Q) ->
  m' |= P ** Q.
Proof.
  simpl; intros. intuition auto.
Qed.

(** * Basic memory assertions. *)

(** Pure logical assertion *)

Program Definition pure (P: Prop) : massert := {|
  m_pred := fun m => P;
  m_footprint := fun b ofs => False
|}.
Next Obligation.
  tauto.
Qed.

Lemma sep_pure:
  forall P Q m, m |= pure P ** Q <-> P /\ m |= Q.
Proof.
  simpl; intros. intuition auto. red; simpl; tauto.
Qed.

(** A range of bytes, with full permissions and unspecified contents. *)

Program Definition range (b: block) (lo hi: Z) : massert := {|
  m_pred := fun m =>
       0 <= lo /\ hi <= Ptrofs.modulus
    /\ (forall i k p, lo <= i < hi -> Mem.perm m b i k p);
  m_footprint := fun b' ofs' => b' = b /\ lo <= ofs' < hi
|}.
Next Obligation.
  split; auto. split; auto. intros. eapply Mem.perm_unchanged_on; eauto. simpl; auto.
Qed.
Next Obligation.
  apply Mem.perm_valid_block with ofs Cur Freeable; auto.
Qed.

Lemma alloc_rule:
  forall m lo hi b m' P,
  Mem.alloc m lo hi = (m', b) ->
  0 <= lo -> hi <= Ptrofs.modulus ->
  m |= P ->
  m' |= range b lo hi ** P.
Proof.
  intros; simpl. split; [|split].
- split; auto. split; auto. intros.
  apply Mem.perm_implies with Freeable; auto with mem.
  eapply Mem.perm_alloc_2; eauto.
- apply (m_invar P) with m; auto. eapply Mem.alloc_unchanged_on; eauto.
- red; simpl. intros. destruct H3; subst b0.
  eelim Mem.fresh_block_alloc; eauto. eapply (m_valid P); eauto.
Qed.

Lemma range_split:
  forall b lo hi P mid m,
  lo <= mid <= hi ->
  m |= range b lo hi ** P ->
  m |= range b lo mid ** range b mid hi ** P.
Proof.
  intros. rewrite <- sep_assoc. eapply sep_imp; eauto.
  split; simpl; intros.
- intuition auto.
+ lia.
+ apply H5; lia.
+ lia.
+ apply H5; lia.
+ red; simpl; intros; lia.
- intuition lia.
Qed.

Lemma range_drop_left:
  forall b lo hi P mid m,
  lo <= mid <= hi ->
  m |= range b lo hi ** P ->
  m |= range b mid hi ** P.
Proof.
  intros. apply sep_drop with (range b lo mid). apply range_split; auto.
Qed.

Lemma range_drop_right:
  forall b lo hi P mid m,
  lo <= mid <= hi ->
  m |= range b lo hi ** P ->
  m |= range b lo mid ** P.
Proof.
  intros. apply sep_drop2 with (range b mid hi). apply range_split; auto.
Qed.

Lemma range_split_2:
  forall b lo hi P mid al m,
  lo <= align mid al <= hi ->
  al > 0 ->
  m |= range b lo hi ** P ->
  m |= range b lo mid ** range b (align mid al) hi ** P.
Proof.
  intros. rewrite <- sep_assoc. eapply sep_imp; eauto.
  assert (mid <= align mid al) by (apply align_le; auto).
  split; simpl; intros.
- intuition auto.
+ lia.
+ apply H7; lia.
+ lia.
+ apply H7; lia.
+ red; simpl; intros; lia.
- intuition lia.
Qed.

Lemma range_preserved:
  forall m m' b lo hi,
  m |= range b lo hi ->
  (forall i k p, lo <= i < hi -> Mem.perm m b i k p -> Mem.perm m' b i k p) ->
  m' |= range b lo hi.
Proof.
  intros. destruct H as (A & B & C). simpl; intuition auto.
Qed.

(** A memory area that contains a value sastifying a given predicate *)

Program Definition contains (chunk: memory_chunk) (b: block) (ofs: Z) (spec: val -> Prop) : massert := {|
  m_pred := fun m =>
       0 <= ofs <= Ptrofs.max_unsigned
    /\ Mem.valid_access m chunk b ofs Freeable
    /\ exists v, Mem.load chunk m b ofs = Some v /\ spec v;
  m_footprint := fun b' ofs' => b' = b /\ ofs <= ofs' < ofs + size_chunk chunk
|}.
Next Obligation.
  rename H2 into v. split;[|split].
- auto.
- destruct H1; split; auto. red; intros; eapply Mem.perm_unchanged_on; eauto. simpl; auto.
- exists v. split; auto. eapply Mem.load_unchanged_on; eauto. simpl; auto.
Qed.
Next Obligation.
  eauto with mem.
Qed.

Lemma contains_no_overflow:
  forall spec m chunk b ofs,
  m |= contains chunk b ofs spec ->
  0 <= ofs <= Ptrofs.max_unsigned.
Proof.
  intros. simpl in H. tauto.
Qed.

Lemma load_rule:
  forall spec m chunk b ofs,
  m |= contains chunk b ofs spec ->
  exists v, Mem.load chunk m b ofs = Some v /\ spec v.
Proof.
  intros. destruct H as (D & E & v & F & G).
  exists v; auto.
Qed.

Lemma loadv_rule:
  forall spec m chunk b ofs,
  m |= contains chunk b ofs spec ->
  exists v, Mem.loadv chunk m (Vptr b (Ptrofs.repr ofs)) = Some v /\ spec v.
Proof.
  intros. exploit load_rule; eauto. intros (v & A & B). exists v; split; auto.
  simpl. rewrite Ptrofs.unsigned_repr; auto. eapply contains_no_overflow; eauto.
Qed.

Lemma store_rule:
  forall chunk m b ofs v (spec1 spec: val -> Prop) P,
  m |= contains chunk b ofs spec1 ** P ->
  spec (Val.load_result chunk v) ->
  exists m',
  Mem.store chunk m b ofs v = Some m' /\ m' |= contains chunk b ofs spec ** P.
Proof.
  intros. destruct H as (A & B & C). destruct A as (D & E & v0 & F & G).
  assert (H: Mem.valid_access m chunk b ofs Writable) by eauto with mem.
  destruct (Mem.valid_access_store _ _ _ _ v H) as [m' STORE].
  exists m'; split; auto. simpl. intuition auto.
- eapply Mem.store_valid_access_1; eauto.
- exists (Val.load_result chunk v); split; auto. eapply Mem.load_store_same; eauto.
- apply (m_invar P) with m; auto.
  eapply Mem.store_unchanged_on; eauto.
  intros; red; intros. apply (C b i); simpl; auto.
Qed.

Lemma storev_rule:
  forall chunk m b ofs v (spec1 spec: val -> Prop) P,
  m |= contains chunk b ofs spec1 ** P ->
  spec (Val.load_result chunk v) ->
  exists m',
  Mem.storev chunk m (Vptr b (Ptrofs.repr ofs)) v = Some m' /\ m' |= contains chunk b ofs spec ** P.
Proof.
  intros. exploit store_rule; eauto. intros (m' & A & B). exists m'; split; auto.
  simpl. rewrite Ptrofs.unsigned_repr; auto. eapply contains_no_overflow. eapply sep_pick1; eauto.
Qed.

Lemma range_contains:
  forall chunk b ofs P m,
  m |= range b ofs (ofs + size_chunk chunk) ** P ->
  (align_chunk chunk | ofs) ->
  m |= contains chunk b ofs (fun v => True) ** P.
Proof.
  intros. destruct H as (A & B & C). destruct A as (D & E & F).
  split; [|split].
- assert (Mem.valid_access m chunk b ofs Freeable).
  { split; auto. red; auto. }
  split. generalize (size_chunk_pos chunk). unfold Ptrofs.max_unsigned. lia.
  split. auto.
+ destruct (Mem.valid_access_load m chunk b ofs) as [v LOAD].
  eauto with mem.
  exists v; auto.
- auto.
- auto.
Qed.

Lemma contains_imp:
  forall (spec1 spec2: val -> Prop) chunk b ofs,
  (forall v, spec1 v -> spec2 v) ->
  massert_imp (contains chunk b ofs spec1) (contains chunk b ofs spec2).
Proof.
  intros; split; simpl; intros.
- intuition auto. destruct H4 as (v & A & B). exists v; auto.
- auto.
Qed.

(** A memory area that contains a given value *)

Definition hasvalue (chunk: memory_chunk) (b: block) (ofs: Z) (v: val) : massert :=
  contains chunk b ofs (fun v' => v' = v).

Lemma store_rule':
  forall chunk m b ofs v (spec1: val -> Prop) P,
  m |= contains chunk b ofs spec1 ** P ->
  exists m',
  Mem.store chunk m b ofs v = Some m' /\ m' |= hasvalue chunk b ofs (Val.load_result chunk v) ** P.
Proof.
  intros. eapply store_rule; eauto.
Qed.

Lemma storev_rule':
  forall chunk m b ofs v (spec1: val -> Prop) P,
  m |= contains chunk b ofs spec1 ** P ->
  exists m',
  Mem.storev chunk m (Vptr b (Ptrofs.repr ofs)) v = Some m' /\ m' |= hasvalue chunk b ofs (Val.load_result chunk v) ** P.
Proof.
  intros. eapply storev_rule; eauto.
Qed.

(** Non-separating conjunction *)

Program Definition mconj (P Q: massert) : massert := {|
  m_pred := fun m => m_pred P m /\ m_pred Q m;
  m_footprint := fun b ofs => m_footprint P b ofs \/ m_footprint Q b ofs
|}.
Next Obligation.
  split.
  apply (m_invar P) with m; auto. eapply Mem.unchanged_on_implies; eauto. simpl; auto.
  apply (m_invar Q) with m; auto. eapply Mem.unchanged_on_implies; eauto. simpl; auto.
Qed.
Next Obligation.
  destruct H0; [eapply (m_valid P) | eapply (m_valid Q)]; eauto.
Qed.

Lemma mconj_intro:
  forall P Q R m,
  m |= P ** R -> m |= Q ** R -> m |= mconj P Q ** R.
Proof.
  intros. destruct H as (A & B & C). destruct H0 as (D & E & F).
  split; [|split].
- simpl; auto.
- auto.
- red; simpl; intros. destruct H; [eelim C | eelim F]; eauto.
Qed.

Lemma mconj_proj1:
  forall P Q R m, m |= mconj P Q ** R -> m |= P ** R.
Proof.
  intros. destruct H as (A & B & C); simpl in A.
  simpl. intuition auto.
  red; intros; eapply C; eauto; simpl; auto.
Qed.

Lemma mconj_proj2:
  forall P Q R m, m |= mconj P Q ** R -> m |= Q ** R.
Proof.
  intros. destruct H as (A & B & C); simpl in A.
  simpl. intuition auto.
  red; intros; eapply C; eauto; simpl; auto.
Qed.

Lemma frame_mconj:
  forall P P' Q R m m',
  m |= mconj P Q ** R ->
  m' |= P' ** R ->
  m' |= Q ->
  m' |= mconj P' Q ** R.
Proof.
  intros. destruct H as (A & B & C); simpl in A.
  destruct H0 as (D & E & F).
  simpl. intuition auto.
  red; simpl; intros. destruct H2. eapply F; eauto. eapply C; simpl; eauto.
Qed.

Add Morphism mconj
  with signature massert_imp ==> massert_imp ==> massert_imp
  as mconj_morph_1.
Proof.
  intros P1 P2 [A B] Q1 Q2 [C D].
  red; simpl; intuition auto.
Qed.

Add Morphism mconj
  with signature massert_eqv ==> massert_eqv ==> massert_eqv
  as mconj_morph_2.
Proof.
  intros. destruct H, H0. split; apply mconj_morph_1; auto.
Qed.

(** The image of a memory injection *)

Program Definition minjection (j: meminj) (m0: mem) : massert := {|
  m_pred := fun m => Mem.inject j m0 m;
  m_footprint := fun b ofs => exists b0 delta, j b0 = Some(b, delta) /\ Mem.perm m0 b0 (ofs - delta) Max Nonempty
|}.
Next Obligation.
  set (img := fun b' ofs => exists b delta, j b = Some(b', delta) /\ Mem.perm m0 b (ofs - delta) Max Nonempty) in *.
  assert (IMG: forall b1 b2 delta ofs k p,
           j b1 = Some (b2, delta) -> Mem.perm m0 b1 ofs k p -> img b2 (ofs + delta)).
  { intros. red. exists b1, delta; split; auto.
    replace (ofs + delta - delta) with ofs by lia.
    eauto with mem. }
  destruct H. constructor.
- destruct mi_inj. constructor; intros.
+ eapply Mem.perm_unchanged_on; eauto.
+ eauto.
+ rewrite (Mem.unchanged_on_contents _ _ _ H0); eauto.
- assumption.
- intros. eapply Mem.valid_block_unchanged_on; eauto.
- assumption.
- assumption.
- intros. destruct (Mem.perm_dec m0 b1 ofs Max Nonempty); auto.
  eapply mi_perm_inv; eauto.
  eapply Mem.perm_unchanged_on_2; eauto.
Qed.
Next Obligation.
  eapply Mem.valid_block_inject_2; eauto.
Qed.

Lemma loadv_parallel_rule:
  forall j m1 m2 chunk addr1 v1 addr2,
  m2 |= minjection j m1 ->
  Mem.loadv chunk m1 addr1 = Some v1 ->
  Val.inject j addr1 addr2 ->
  exists v2, Mem.loadv chunk m2 addr2 = Some v2 /\ Val.inject j v1 v2.
Proof.
  intros. simpl in H. eapply Mem.loadv_inject; eauto.
Qed.

Lemma storev_parallel_rule:
  forall j m1 m2 P chunk addr1 v1 m1' addr2 v2,
  m2 |= minjection j m1 ** P ->
  Mem.storev chunk m1 addr1 v1 = Some m1' ->
  Val.inject j addr1 addr2 ->
  Val.inject j v1 v2 ->
  exists m2', Mem.storev chunk m2 addr2 v2 = Some m2' /\ m2' |= minjection j m1' ** P.
Proof.
  intros. destruct H as (A & B & C). simpl in A.
  exploit Mem.storev_mapped_inject; eauto. intros (m2' & STORE & INJ).
  inv H1; simpl in STORE; try discriminate.
  assert (VALID: Mem.valid_access m1 chunk b1 (Ptrofs.unsigned ofs1) Writable)
    by eauto with mem.
  assert (EQ: Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta)) = Ptrofs.unsigned ofs1 + delta).
  { eapply Mem.address_inject'; eauto with mem. }
  exists m2'; split; auto.
  split; [|split].
- exact INJ.
- apply (m_invar P) with m2; auto.
  eapply Mem.store_unchanged_on; eauto.
  intros; red; intros. eelim C; eauto. simpl.
  exists b1, delta; split; auto. destruct VALID as [V1 V2].
  apply Mem.perm_cur_max. apply Mem.perm_implies with Writable; auto with mem.
  apply V1. lia.
- red; simpl; intros. destruct H1 as (b0 & delta0 & U & V).
  eelim C; eauto. simpl. exists b0, delta0; eauto with mem.
Qed.

Lemma alloc_parallel_rule:
  forall m1 sz1 m1' b1 m2 sz2 m2' b2 P j lo hi delta,
  m2 |= minjection j m1 ** P ->
  Mem.alloc m1 0 sz1 = (m1', b1) ->
  Mem.alloc m2 0 sz2 = (m2', b2) ->
  (8 | delta) ->
  lo = delta ->
  hi = delta + Z.max 0 sz1 ->
  0 <= sz2 <= Ptrofs.max_unsigned ->
  0 <= delta -> hi <= sz2 ->
  exists j',
     m2' |= range b2 0 lo ** range b2 hi sz2 ** minjection j' m1' ** P
  /\ inject_incr j j'
  /\ j' b1 = Some(b2, delta)
  /\ (forall b, b <> b1 -> j' b = j b).
Proof.
  intros until delta; intros SEP ALLOC1 ALLOC2 ALIGN LO HI RANGE1 RANGE2 RANGE3.
  assert (RANGE4: lo <= hi) by extlia.
  assert (FRESH1: ~Mem.valid_block m1 b1) by (eapply Mem.fresh_block_alloc; eauto).
  assert (FRESH2: ~Mem.valid_block m2 b2) by (eapply Mem.fresh_block_alloc; eauto).
  destruct SEP as (INJ & SP & DISJ). simpl in INJ.
  exploit Mem.alloc_left_mapped_inject.
- eapply Mem.alloc_right_inject; eauto.
- eexact ALLOC1.
- instantiate (1 := b2). eauto with mem.
- instantiate (1 := delta). extlia.
- intros. assert (0 <= ofs < sz2) by (eapply Mem.perm_alloc_3; eauto). lia.
- intros. apply Mem.perm_implies with Freeable; auto with mem.
  eapply Mem.perm_alloc_2; eauto. extlia.
- red; intros. apply Z.divide_trans with 8; auto.
  exists (8 / align_chunk chunk). destruct chunk; reflexivity.
- intros. elim FRESH2. eapply Mem.valid_block_inject_2; eauto.
- intros (j' & INJ' & J1 & J2 & J3).
  exists j'; split; auto.
  rewrite <- ! sep_assoc.
  split; [|split].
+ simpl. intuition auto; try (unfold Ptrofs.max_unsigned in *; lia).
* apply Mem.perm_implies with Freeable; auto with mem.
  eapply Mem.perm_alloc_2; eauto. lia.
* apply Mem.perm_implies with Freeable; auto with mem.
  eapply Mem.perm_alloc_2; eauto. lia.
* red; simpl; intros. destruct H1, H2. lia.
* red; simpl; intros.
  assert (b = b2) by tauto. subst b.
  assert (0 <= ofs < lo \/ hi <= ofs < sz2) by tauto. clear H1.
  destruct H2 as (b0 & delta0 & D & E).
  eapply Mem.perm_alloc_inv in E; eauto.
  destruct (eq_block b0 b1).
  subst b0. rewrite J2 in D. inversion D; clear D; subst delta0. extlia.
  rewrite J3 in D by auto. elim FRESH2. eapply Mem.valid_block_inject_2; eauto.
+ apply (m_invar P) with m2; auto. eapply Mem.alloc_unchanged_on; eauto.
+ red; simpl; intros.
  assert (VALID: Mem.valid_block m2 b) by (eapply (m_valid P); eauto).
  destruct H as [A | (b0 & delta0 & A & B)].
* assert (b = b2) by tauto. subst b. contradiction.
* eelim DISJ; eauto. simpl.
  eapply Mem.perm_alloc_inv in B; eauto.
  destruct (eq_block b0 b1).
  subst b0. rewrite J2 in A. inversion A; clear A; subst b delta0. contradiction.
  rewrite J3 in A by auto. exists b0, delta0; auto.
Qed.

Lemma free_parallel_rule:
  forall j m1 b1 sz1 m1' m2 b2 sz2 lo hi delta P,
  m2 |= range b2 0 lo ** range b2 hi sz2 ** minjection j m1 ** P ->
  Mem.free m1 b1 0 sz1 = Some m1' ->
  j b1 = Some (b2, delta) ->
  lo = delta -> hi = delta + Z.max 0 sz1 ->
  exists m2',
     Mem.free m2 b2 0 sz2 = Some m2'
  /\ m2' |= minjection j m1' ** P.
Proof.
  intros. rewrite <- ! sep_assoc in H.
  destruct H as (A & B & C).
  destruct A as (D & E & F).
  destruct D as (J & K & L).
  destruct J as (_ & _ & J). destruct K as (_ & _ & K).
  simpl in E.
  assert (PERM: Mem.range_perm m2 b2 0 sz2 Cur Freeable).
  { red; intros.
    destruct (zlt ofs lo). apply J; lia.
    destruct (zle hi ofs). apply K; lia.
    replace ofs with ((ofs - delta) + delta) by lia.
    eapply Mem.perm_inject; eauto.
    eapply Mem.free_range_perm; eauto. extlia.
  }
  destruct (Mem.range_perm_free _ _ _ _ PERM) as [m2' FREE].
  exists m2'; split; auto. split; [|split].
- simpl. eapply Mem.free_right_inject; eauto. eapply Mem.free_left_inject; eauto.
  intros. apply (F b2 (ofs + delta0)).
+ simpl.
  destruct (zlt (ofs + delta0) lo). intuition auto.
  destruct (zle hi (ofs + delta0)). intuition auto.
  destruct (eq_block b0 b1).
* subst b0. rewrite H1 in H; inversion H; clear H; subst delta0.
  eelim (Mem.perm_free_2 m1); eauto. extlia.
* exploit Mem.mi_no_overlap; eauto.
  apply Mem.perm_max with k. apply Mem.perm_implies with p; auto with mem.
  eapply Mem.perm_free_3; eauto.
  apply Mem.perm_cur_max. apply Mem.perm_implies with Freeable; auto with mem.
  eapply (Mem.free_range_perm m1); eauto.
  instantiate (1 := ofs + delta0 - delta). extlia.
  intros [X|X]. congruence. lia.
+ simpl. exists b0, delta0; split; auto.
  replace (ofs + delta0 - delta0) with ofs by lia.
  apply Mem.perm_max with k. apply Mem.perm_implies with p; auto with mem.
  eapply Mem.perm_free_3; eauto.
- apply (m_invar P) with m2; auto.
  eapply Mem.free_unchanged_on; eauto.
  intros; red; intros. eelim C; eauto. simpl.
  destruct (zlt i lo). intuition auto.
  destruct (zle hi i). intuition auto.
  right; exists b1, delta; split; auto.
  apply Mem.perm_cur_max. apply Mem.perm_implies with Freeable; auto with mem.
  eapply Mem.free_range_perm; eauto. extlia.
- red; simpl; intros. eelim C; eauto.
  simpl. right. destruct H as (b0 & delta0 & U & V).
  exists b0, delta0; split; auto.
  eapply Mem.perm_free_3; eauto.
Qed.

(** Preservation of a global environment by a memory injection *)

Inductive globalenv_preserved {F V: Type} (ge: Genv.t F V) (j: meminj) (bound: block) : Prop :=
  | globalenv_preserved_intro
      (DOMAIN: forall b, Plt b bound -> j b = Some(b, 0))
      (IMAGE: forall b1 b2 delta, j b1 = Some(b2, delta) -> Plt b2 bound -> b1 = b2)
      (SYMBOLS: forall id b, Genv.find_symbol ge id = Some b -> Plt b bound)
      (FUNCTIONS: forall b fd, Genv.find_funct_ptr ge b = Some fd -> Plt b bound)
      (VARINFOS: forall b gv, Genv.find_var_info ge b = Some gv -> Plt b bound).

Program Definition globalenv_inject {F V: Type} (ge: Genv.t F V) (j: meminj) : massert := {|
  m_pred := fun m => exists bound, Ple bound (Mem.nextblock m) /\ globalenv_preserved ge j bound;
  m_footprint := fun b ofs => False
|}.
Next Obligation.
  rename H into bound. exists bound; split; auto. eapply Ple_trans; eauto. eapply Mem.unchanged_on_nextblock; eauto.
Qed.
Next Obligation.
  tauto.
Qed.

Lemma globalenv_inject_preserves_globals:
  forall (F V: Type) (ge: Genv.t F V) j m,
  m |= globalenv_inject ge j ->
  meminj_preserves_globals ge j.
Proof.
  intros. destruct H as (bound & A & B). destruct B.
  split; [|split]; intros.
- eauto.
- eauto.
- symmetry; eauto.
Qed.

Lemma globalenv_inject_incr:
  forall j m0 (F V: Type) (ge: Genv.t F V) m j' P,
  inject_incr j j' ->
  inject_separated j j' m0 m ->
  m |= globalenv_inject ge j ** P ->
  m |= globalenv_inject ge j' ** P.
Proof.
  intros. destruct H1 as (A & B & C). destruct A as (bound & D & E).
  split; [|split]; auto.
  exists bound; split; auto.
  inv E; constructor; intros.
- eauto.
- destruct (j b1) as [[b0 delta0]|] eqn:JB1.
+ erewrite H in H1 by eauto. inv H1. eauto.
+ exploit H0; eauto. intros (X & Y). elim Y. apply Pos.lt_le_trans with bound; auto.
- eauto.
- eauto.
- eauto.
Qed.

Lemma external_call_parallel_rule:
  forall (F V: Type) ef (ge: Genv.t F V) vargs1 m1 t vres1 m1' m2 j P vargs2,
  external_call ef ge vargs1 m1 t vres1 m1' ->
  m2 |= minjection j m1 ** globalenv_inject ge j ** P ->
  Val.inject_list j vargs1 vargs2 ->
  exists j' vres2 m2',
     external_call ef ge vargs2 m2 t vres2 m2'
  /\ Val.inject j' vres1 vres2
  /\ m2' |= minjection j' m1' ** globalenv_inject ge j' ** P
  /\ inject_incr j j'
  /\ inject_separated j j' m1 m2.
Proof.
  intros until vargs2; intros CALL SEP ARGS.
  destruct SEP as (A & B & C). simpl in A.
  exploit external_call_mem_inject; eauto.
  eapply globalenv_inject_preserves_globals. eapply sep_pick1; eauto.
  intros (j' & vres2 & m2' & CALL' & RES & INJ' & UNCH1 & UNCH2 & INCR & ISEP).
  assert (MAXPERMS: forall b ofs p,
            Mem.valid_block m1 b -> Mem.perm m1' b ofs Max p -> Mem.perm m1 b ofs Max p).
  { intros. eapply external_call_max_perm; eauto. }
  exists j', vres2, m2'; intuition auto.
  split; [|split].
- exact INJ'.
- apply (m_invar _ m2).
+ apply globalenv_inject_incr with j m1; auto.
+ eapply Mem.unchanged_on_implies; eauto.
  intros; red; intros; red; intros.
  eelim C; eauto. simpl. exists b0, delta; auto.
- red; intros. destruct H as (b0 & delta & J' & E).
  destruct (j b0) as [[b' delta'] | ] eqn:J.
+ erewrite INCR in J' by eauto. inv J'.
  eelim C; eauto. simpl. exists b0, delta; split; auto. apply MAXPERMS; auto.
  eapply Mem.valid_block_inject_1; eauto.
+ exploit ISEP; eauto. intros (X & Y). elim Y. eapply m_valid; eauto.
Qed.

Lemma alloc_parallel_rule_2:
  forall (F V: Type) (ge: Genv.t F V) m1 sz1 m1' b1 m2 sz2 m2' b2 P j lo hi delta,
  m2 |= minjection j m1 ** globalenv_inject ge j ** P ->
  Mem.alloc m1 0 sz1 = (m1', b1) ->
  Mem.alloc m2 0 sz2 = (m2', b2) ->
  (8 | delta) ->
  lo = delta ->
  hi = delta + Z.max 0 sz1 ->
  0 <= sz2 <= Ptrofs.max_unsigned ->
  0 <= delta -> hi <= sz2 ->
  exists j',
     m2' |= range b2 0 lo ** range b2 hi sz2 ** minjection j' m1' ** globalenv_inject ge j' ** P
  /\ inject_incr j j'
  /\ j' b1 = Some(b2, delta).
Proof.
  intros.
  set (j1 := fun b => if eq_block b b1 then Some(b2, delta) else j b).
  assert (X: inject_incr j j1).
  { unfold j1; red; intros. destruct (eq_block b b1); auto.
    subst b. eelim Mem.fresh_block_alloc. eexact H0.
    eapply Mem.valid_block_inject_1. eauto. apply sep_proj1 in H. eexact H. }
  assert (Y: inject_separated j j1 m1 m2).
  { unfold j1; red; intros. destruct (eq_block b0 b1).
  - inversion H9; clear H9; subst b3 delta0 b0. split; eapply Mem.fresh_block_alloc; eauto.
  - congruence. }
  rewrite sep_swap in H. eapply globalenv_inject_incr with (j' := j1) in H; eauto. rewrite sep_swap in H.
  clear X Y.
  exploit alloc_parallel_rule; eauto.
  intros (j' & A & B & C & D).
  exists j'; split; auto.
  rewrite sep_swap4 in A. rewrite sep_swap4. apply globalenv_inject_incr with j1 m1; auto.
- red; unfold j1; intros. destruct (eq_block b b1). congruence. rewrite D; auto.
- red; unfold j1; intros. destruct (eq_block b0 b1). congruence. rewrite D in H9 by auto. congruence.
Qed.