aboutsummaryrefslogtreecommitdiffstats
path: root/cparser/Elab.ml
blob: aa71eb1a5568f5a2e991f89de32818db868826ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU Lesser General Public License as        *)
(*  published by the Free Software Foundation, either version 2.1 of   *)
(*  the License, or  (at your option) any later version.               *)
(*  This file is also distributed under the terms of the               *)
(*  INRIA Non-Commercial License Agreement.                            *)
(*                                                                     *)
(* *********************************************************************)

(* Elaboration from Cabs parse tree to C simplified, typed syntax tree *)

(* Numbered references are to sections of the ISO C99 standard *)

open Machine
open Cabs
open C
open Diagnostics
open! Cutil

(** * Utility functions *)

(* Error reporting  *)

let fatal_error loc fmt =
  fatal_error (loc.filename,loc.lineno) fmt

let error loc fmt =
  error (loc.filename,loc.lineno) fmt

let warning loc =
  warning (loc.filename,loc.lineno)

let print_typ env fmt ty =
  match ty with
  | TNamed _  ->
    Format.fprintf fmt "'%a'" Cprint.typ_raw ty;
    let ty' = unroll env ty in
    if not (is_anonymous_type ty')
    then Format.fprintf fmt " (aka '%a')" Cprint.typ_raw ty'
  | TStruct (id,_) when id.C.name = "" ->
    Format.fprintf fmt "'struct <anonymous>'"
  | TUnion (id,_) when id.C.name = "" ->
    Format.fprintf fmt "'union <anonymous>'"
  | TEnum (id,_) when id.C.name = "" ->
    Format.fprintf fmt "'enum <anonymous>'"
  | _ -> Format.fprintf fmt "'%a'" Cprint.typ_raw ty

let pp_field fmt id =
 Format.fprintf fmt "%s" (if id <> "" then id else "<anonymous>")

(* Error reporting for Env functions *)

let wrap fn loc env arg =
  try fn env arg
  with Env.Error msg -> fatal_error loc "%s" (Env.error_message msg)

let wrap2 fn loc env arg1 arg2 =
  try fn env arg1 arg2
  with Env.Error msg -> fatal_error loc "%s" (Env.error_message msg)

(* Translation of locations *)

let elab_loc l = (l.filename, l.lineno)

(* Buffering of the result (a list of topdecl *)

let top_declarations = ref ([] : globdecl list)

(* Environment that records the top declarations of functions and
   variables with external or internal linkage.  Used for
   analyzing "extern" declarations. *)

let top_environment = ref Env.empty

(* Set of all globals with a definitions *)

module StringSet = Set.Make(String)

let global_defines = ref StringSet.empty

let add_global_define loc name =
  if StringSet.mem name !global_defines then
    error loc "redefinition of '%s'" name;
  global_defines := StringSet.add name !global_defines

let is_global_defined name =
  StringSet.mem name !global_defines

let emit_elab ?(debuginfo = true) ?(linkage = false) env loc td =
  let loc = elab_loc loc in
  let dec ={ gdesc = td; gloc = loc } in
  if debuginfo then Debug.insert_global_declaration env dec;
  top_declarations := dec :: !top_declarations;
  if linkage then begin
    match td with
    | Gdecl(sto, id, ty, init) ->
        top_environment := Env.add_ident !top_environment id sto ty
    | Gfundef f ->
        top_environment :=
          Env.add_ident !top_environment f.fd_name f.fd_storage (fundef_typ f)
    | _ -> ()
  end

let reset() = top_declarations := []; top_environment := Env.empty; global_defines := StringSet.empty

let elaborated_program () =
  let p = !top_declarations in
  top_declarations := [];
  (* Reverse it and eliminate unreferenced declarations *)
  Cleanup.program p

(* Monadic map for functions env -> 'a -> 'b * env *)

let rec mmap f env = function
  | [] -> ([], env)
  | hd :: tl ->
      let (hd', env1) = f env hd in
      let (tl', env2) = mmap f env1 tl in
      (hd' :: tl', env2)

let rec mmap2_filter f env l1 l2 =
  match l1,l2 with
  | [], [] -> ([], env)
  | a1 :: l1, a2 :: l2 ->
      let (opt_hd, env1) = f env a1 a2 in
      let (tl, env2) = mmap2_filter f env1 l1 l2 in
      ((match opt_hd with Some hd -> hd :: tl | None -> tl), env2)
  | _, _ ->
      invalid_arg "mmap2_filter"

(* To detect redefinitions within the same scope *)

let previous_def fn env arg =
  try
    Some (fn env arg)
  with Env.Error _ ->
    None

let redef fn env arg =
  match previous_def fn env arg with
  | None -> false
  | Some(id, info) -> Env.in_current_scope env id

(* Auxiliaries for handling declarations and redeclarations *)

let name_of_storage_class = function
  | Storage_default -> "<default>"
  | Storage_extern -> "'extern'"
  | Storage_static -> "'static'"
  | Storage_thread_local -> "'_Thread_local'"
  | Storage_thread_local_extern -> "'_Thread_local extern'"
  | Storage_thread_local_static -> "'_Thread_local static'"
  | Storage_auto -> "'auto'"
  | Storage_register -> "'register'"

let combine_toplevel_definitions loc env s old_sto old_ty sto ty =
  let new_ty =
    match combine_types AttrCompat env old_ty ty with
    | Some new_ty ->
        new_ty
    | None ->
        error loc
          "redefinition of '%s' with a different type: %a vs %a"
          s (print_typ env) old_ty (print_typ env) ty;
        ty in
  if is_global_defined s then begin
    let old_attrs = attributes_of_type env old_ty
    and new_attrs = attributes_of_type env ty in
    if not (Cutil.incl_attributes new_attrs old_attrs) then
      warning loc Ignored_attributes "attribute declaration must precede definition"
  end;
  let new_sto =
    (* The only case not allowed is removing static *)
    match old_sto,sto with
    | Storage_static,Storage_static
    | Storage_extern,Storage_extern
    | Storage_default,Storage_default -> sto
    | Storage_thread_local_static,Storage_thread_local_static
    | Storage_thread_local_extern,Storage_thread_local_extern
    | Storage_thread_local,Storage_thread_local -> sto
    | _,Storage_static | _,Storage_thread_local_static ->
	error loc "static declaration of '%s' follows non-static declaration" s;
        sto
    | Storage_static,_ -> Storage_static (* Static stays static *)
    | Storage_thread_local_static,_ -> Storage_thread_local_static (* Thread-local static stays static *)
    | (Storage_extern|Storage_thread_local_extern),_ -> if is_function_type env new_ty then Storage_extern else sto
    | Storage_default,Storage_extern ->
      if is_global_defined s && is_function_type env ty then
        warning loc Extern_after_definition "this extern declaration follows a non-extern definition and is ignored";
      Storage_extern
    | Storage_thread_local,Storage_thread_local_extern ->
      if is_global_defined s && is_function_type env ty then
        warning loc Extern_after_definition "this extern declaration follows a non-extern definition and is ignored";
      Storage_extern
    | Storage_thread_local, Storage_default ->
       error loc "Non thread-local declaration follows thread-local";
       sto
    | Storage_default, (Storage_thread_local|Storage_thread_local_extern) ->
       error loc "Thread-local declaration follows non thread-local";
       sto
    | _,Storage_extern -> old_sto
    (* "auto" and "register" don't appear in toplevel definitions.
       Normally this was checked earlier.  Generate error message
       instead of "assert false", just in case. *)
    | _,Storage_auto
    | Storage_auto,_
    | _,Storage_register
    | Storage_register,_ ->
	error loc "unexpected %s declaration of '%s'"
                  (name_of_storage_class sto) s;
        sto
  in
    (new_sto, new_ty)

let enter_or_refine_ident_base local loc env new_id sto ty =
  let s = new_id.C.name in
  (* Check for illegal redefinitions:
       - a name that was previously a typedef
       - a variable that was already declared in the same local scope
         (unless both old and new declarations are extern)
       - an enum that was already declared in the same scope.
     Redefinition of a variable at global scope (or extern) is treated below. *)
  if redef Env.lookup_typedef env s then
    error loc "redefinition of '%s' as different kind of symbol" s;
  begin match previous_def Env.lookup_ident env s with
  | Some(old_id, Env.II_ident(old_sto, old_ty))
    when local && Env.in_current_scope env old_id
               && not (sto = Storage_extern && old_sto = Storage_extern) ->
      error loc "redefinition of '%s'" s
  | Some(old_id, Env.II_enum _) when Env.in_current_scope env old_id ->
      error loc "redefinition of '%s' as different kind of symbol" s;
  | _ ->
     ()
  end;
  (* For a block-scoped, "static" or "auto" or "register" variable,
     a new declaration is entered, and it has no linkage. *)
  if local
  && (sto = Storage_auto || sto = Storage_register || sto = Storage_static)
  then begin
    (new_id, sto, Env.add_ident env new_id sto ty, ty, false)
  end else begin
  (* For a file-scoped or "extern" variable, we need to check against
     prior declarations of this variable with internal or external linkage.
     The variable has linkage. *)
    match previous_def Env.lookup_ident !top_environment s with
    | Some(old_id, Env.II_ident(old_sto, old_ty)) ->
        let (new_sto, new_ty) =
          combine_toplevel_definitions loc env s old_sto old_ty sto ty in
        (old_id, new_sto, Env.add_ident env old_id new_sto new_ty, new_ty, true)
    | _ ->
        (new_id, sto, Env.add_ident env new_id sto ty, ty, true)
  end

(* We use two variants of [enter_or_refine]:

 - [enter_or_refine_ident] is to be used for all declarations,
   block-scoped ([local = true]) or top-level ([local = false]).
   The name of the declared thing is given as a string [s].  If a
   previous declaration with this name exists in the current scope,
   its unique identifier is returned.  Otherwise a fresh identifier
   named [s] is created in the current scope of [env] and returned.

 - [enter_or_refine_function] is to be used for function definitions.
   Such definitions are always global, hence the [local] parameter
   defaults to [false] and is omitted.  The function name is given
   as an identifier, created in advance by the caller.  This
   identifier is used if no previous declaration exists for the
   function.  Otherwise, the identifier of the previous declaration is
   used.  By creating the identifier in advance, [elab_fundef] makes
   sure that it is properly scoped to file scope and not to the local
   scope of function parameters.
*)

let enter_or_refine_ident local loc env s sto ty =
  enter_or_refine_ident_base local loc env (Env.fresh_ident s) sto ty

let enter_or_refine_function loc env id sto ty =
  enter_or_refine_ident_base false loc env id sto ty

(* Forward declarations *)

let elab_expr_f : (Cabs.loc -> Env.t -> Cabs.expression -> C.exp * Env.t) ref
  = ref (fun _ _ _ -> assert false)

let elab_funbody_f : (C.typ -> bool -> bool -> Env.t -> statement -> C.stmt) ref
  = ref (fun _ _ _ _ _ -> assert false)


(** * Elaboration of constants - C99 section 6.4.4 *)

let has_suffix s suff =
  let ls = String.length s and lsuff = String.length suff in
  ls >= lsuff && String.sub s (ls - lsuff) lsuff = suff

let chop_last s n =
  assert (String.length s >= n);
  String.sub s 0 (String.length s - n)

let has_prefix s pref =
  let ls = String.length s and lpref = String.length pref in
  ls >= lpref && String.sub s 0 lpref = pref

let chop_first s n =
  assert (String.length s >= n);
  String.sub s n (String.length s - n)

exception Overflow
exception Bad_digit

let parse_int base s =
  let max_val = (* (2^64-1) / base, unsigned *)
    match base with
    |  8 -> 2305843009213693951L
    | 10 -> 1844674407370955161L
    | 16 -> 1152921504606846975L
    |  _ -> assert false in
  let v = ref 0L in
  for i = 0 to String.length s - 1 do
    let c = s.[i] in
    let digit =
      if c >= '0' && c <= '9' then Char.code c - 48
      else if c >= 'A' && c <= 'F' then Char.code c - 55
      else raise Bad_digit in
    if digit >= base then raise Bad_digit;
    if !v < 0L || !v > max_val then raise Overflow;
    (* because (2^64 - 1) % 10 = 5, not 9 *)
    if base = 10 && !v = max_val && digit > 5 then raise Overflow;
    v := Int64.mul !v (Int64.of_int base);
    v := Int64.add !v (Int64.of_int digit)
  done;
  !v

let integer_representable v ik =
  let bitsize = sizeof_ikind ik * 8
  and signed = is_signed_ikind ik in
  if bitsize >= 64 then
    (not signed) || (v >= 0L && v <= 0x7FFF_FFFF_FFFF_FFFFL)
  else if not signed then
    v >= 0L && v < Int64.shift_left 1L bitsize
  else
    v >= 0L && v < Int64.shift_left 1L (bitsize - 1)

let elab_int_constant loc s0 =
  let s = String.uppercase_ascii s0 in
  (* Determine possible types and chop type suffix *)
  let (s, dec_kinds, hex_kinds) =
    if has_suffix s "ULL" || has_suffix s "LLU" then
      (chop_last s 3, [IULongLong], [IULongLong])
    else if has_suffix s "LL" then
      (chop_last s 2, [ILongLong], [ILongLong; IULongLong])
    else if has_suffix s "UL" || has_suffix s "LU" then
      (chop_last s 2, [IULong; IULongLong], [IULong; IULongLong])
    else if has_suffix s "L" then
      (chop_last s 1, [ILong; ILongLong],
                      [ILong; IULong; ILongLong; IULongLong])
    else if has_suffix s "U" then
      (chop_last s 1, [IUInt; IULong; IULongLong],
                      [IUInt; IULong; IULongLong])
    else
      (s, [IInt; ILong; ILongLong],
          [IInt; IUInt; ILong; IULong; ILongLong; IULongLong])
  in
  (* Determine base *)
  let (s, base) =
    if has_prefix s "0X" then
      (chop_first s 2, 16)
    else if has_prefix s "0" then
      (chop_first s 1, 8)
    else
      (s, 10)
  in
  (* Parse digits *)
  let v =
    try parse_int base s
    with
    | Overflow ->
        error loc "integer literal '%s' is too large to be represented in any integer type" s0;
        0L
    | Bad_digit ->
        (*error loc "bad digit in integer literal '%s'" s0;*) (* Is caught earlier *)
        0L
  in
  (* Find smallest allowable type that fits *)
  let ty =
    try List.find (fun ty -> integer_representable v ty)
                  (if base = 10 then dec_kinds else hex_kinds)
    with Not_found ->
      error loc "integer literal '%s' cannot be represented" s0;
      IInt
  in
  (v, ty)

let elab_float_constant f =
  let ty = match f.suffix_FI with
    | Some ("l"|"L") -> FLongDouble
    | Some ("f"|"F") -> FFloat
    | None -> FDouble
    | _ -> assert false (* The lexer should not accept anything else. *)
  in
  let v = {
    hex=f.isHex_FI;
    intPart=begin match f.integer_FI with Some s -> s | None -> "0" end;
    fracPart=begin match f.fraction_FI with Some s -> s | None -> "0" end;
    exp=begin match f.exponent_FI with Some s -> s | None -> "0" end }
  in
  (v, ty)

let elab_char_constant loc wide chars =
  let len = List.length chars in
  let nbits = if wide then 8 * !config.sizeof_wchar else 8 in
  let max_digit = Int64.shift_left 1L nbits in
  (* Treat multi-character constants as a number in base 2^nbits.
     It must fit in type int for a normal constant and in type wchar_t
     for a wide constant. *)
  let v =
    if len > (if wide then 1 else !config.sizeof_int) then begin
      error loc "%d-character constant too long for its type" len;
      0L
    end else
      List.fold_left
        (fun acc d ->
          if d < 0L || d >= max_digit then
            error loc "escape sequence is out of range (code 0x%LX)" d;
          Int64.add (Int64.shift_left acc nbits) d)
        0L chars in
  (* C99 6.4.4.4 items 10 and 11:
       single-character constant -> represent at type char
       multi-character constant -> represent at type int
       wide character constant -> represent at type wchar_t *)
  Ceval.normalize_int v
    (if wide then wchar_ikind() else if len = 1 then IChar else IInt)

let elab_string_literal loc wide chars =
  let nbits = if wide then 8 * !config.sizeof_wchar else 8 in
  let char_max = Int64.shift_left 1L nbits in
  List.iter
    (fun c ->
      if c < 0L || c >= char_max
      then error loc "escape sequence is out of range (code 0x%LX)" c)
    chars;
  if wide then
    CWStr chars
  else begin
    let res = Bytes.create (List.length chars) in
    List.iteri
      (fun i c -> Bytes.set res i (Char.unsafe_chr (Int64.to_int c)))
      chars;
    CStr (Bytes.to_string res)
  end

let elab_constant loc = function
  | CONST_INT s ->
      let (v, ik) = elab_int_constant loc s in
      CInt(v, ik, s)
  | CONST_FLOAT f ->
      let (v, fk) = elab_float_constant f in
      CFloat(v, fk)
  | CONST_CHAR(wide, s) ->
      let ikind = if wide then wchar_ikind () else IInt in
      CInt(elab_char_constant loc wide s, ikind, "")
  | CONST_STRING(wide, s) ->
      elab_string_literal loc wide s

let elab_simple_string loc wide chars =
  match elab_string_literal loc wide chars with
  | CStr s -> s
  | _ -> error loc "cannot use wide string literal in 'asm'"; ""

(** Elaboration and checking of static assertions *)

let elab_static_assert env exp loc_exp msg loc_msg loc =
  let (exp, env) = !elab_expr_f loc_exp env exp in
  match Ceval.integer_expr env exp  with
  | None ->
      error loc_exp "expression in static assertion is not an integer constant"
  | Some n ->
      if n = 0L then begin
        match elab_constant loc_msg msg with
          | CStr s ->
              error loc "static assertion failed: \"%s\"" s
          | _ ->
              (* This can happen with a wide string literal *)
              error loc "static assertion failed (cannot display associated message)"
      end


(** * Elaboration of type expressions, type specifiers, name declarations *)

(* Elaboration of attributes *)

exception Wrong_attr_arg

let elab_attr_arg loc env a =
  match a with
  | VARIABLE s ->
      begin try
        match Env.lookup_ident env s with
        | (id, Env.II_ident(sto, ty)) ->  AIdent s
        | (id, Env.II_enum v) -> AInt v
      with Env.Error _ ->
        AIdent s
      end
  | _ ->
      let b,env = !elab_expr_f loc env a in
      match Ceval.constant_expr env b.etyp b with
      | Some(CInt(n, _, _)) -> AInt n
      | Some(CStr s) -> AString s
      | _ -> raise Wrong_attr_arg

let elab_gcc_attr_word = function
  | GCC_ATTR_IDENT s -> s
  | GCC_ATTR_CONST -> "const"
  | GCC_ATTR_PACKED -> "__packed__"

let elab_gcc_attr loc env = function
  | GCC_ATTR_EMPTY -> []
  | GCC_ATTR_NOARGS w ->
      let v = elab_gcc_attr_word w in
      [Attr(v, [])]
  | GCC_ATTR_ARGS (w, args) ->
      let v = elab_gcc_attr_word w in
      begin try
        [Attr(v, List.map (elab_attr_arg loc env) args)]
      with Wrong_attr_arg ->
        warning loc Unknown_attribute
          "unknown attribute '%s' ignored" v; []
      end

let is_power_of_two n = n > 0L && Int64.logand n (Int64.pred n) = 0L

(* Check alignment parameter *)
let check_alignment loc n =
  if not (is_power_of_two n || n = 0L) then begin
    error loc "requested alignment %Ld is not a power of 2" n; false
  end else
  if n <> Int64.of_int (Int64.to_int n) then begin
    error loc "requested alignment %Ld is too large" n; false
  end else
    true

(* Process GCC attributes that have special significance.  Currently we
   have two: "aligned" and "packed". *)
let enter_gcc_attr loc a =
  match a with
  | Attr(("aligned"|"__aligned__"), args) ->
      begin match args with
      | [AInt n] -> if check_alignment loc n then [a] else []
      | [_] -> error loc "requested alignment is not an integer constant"; []
      | [] -> [] (* Use default alignment, like gcc does *)
      | _ -> error loc "'aligned' attribute takes no more than 1 argument"; []
      end
  | Attr(("packed"|"__packed__"), args) ->
      begin match args with
      | [] -> [a]
      | [AInt n] -> if check_alignment loc n then [a] else []
      | [AInt n; AInt p] ->
          if check_alignment loc n && check_alignment loc p then [a] else []
      | [AInt n; AInt p; AInt q] when q = 0L || q = 1L ->
          if check_alignment loc n && check_alignment loc p then [a] else []
      | _ -> error loc "ill-formed 'packed' attribute"; []
      end
  | _ -> [a]

let elab_attribute env = function
  | GCC_ATTR (l, loc) ->
      List.fold_left add_attributes []
         (List.map (enter_gcc_attr loc)
            (List.flatten
               (List.map (elab_gcc_attr loc env) l)))
  | PACKED_ATTR (args, loc) ->
    begin try
      enter_gcc_attr loc
        (Attr("__packed__", List.map (elab_attr_arg loc env) args))
      with Wrong_attr_arg -> error loc "ill-formed 'packed' attribute"; []
    end
  | ALIGNAS_ATTR ([a], loc) ->
      warning loc Celeven_extension "'_Alignas' is a C11 extension";
      begin match elab_attr_arg loc env a with
      | AInt n ->
         if check_alignment loc n then [AAlignas (Int64.to_int n)] else []
      | _ -> error loc "requested alignment is not an integer constant"; []
      | exception Wrong_attr_arg -> error loc "bad _Alignas value"; []
      end
  | ALIGNAS_ATTR (_, loc) ->
      error loc "_Alignas takes no more than 1 argument"; []

let elab_attributes env al =
  List.fold_left add_attributes [] (List.map (elab_attribute env) al)

(* Warning for alignment requests that reduce the alignment below the
   natural alignment. *)

let warn_if_reduced_alignment loc ~actual ~natural =
  match actual, natural with
  | Some act, Some nat when act < nat ->
      warning loc Reduced_alignment
         "requested alignment (%d) is less than natural alignment (%d)"
         act nat
  | _, _ -> ()

let check_reduced_alignment loc env typ =
  warn_if_reduced_alignment loc
    ~actual: (wrap alignof loc env typ)
    ~natural: (wrap alignof loc env (erase_attributes_type env typ))

(* Auxiliary for typespec elaboration *)

let typespec_rank = function (* Don't change this *)
  | Cabs.Tvoid -> 0
  | Cabs.Tsigned -> 1
  | Cabs.Tunsigned -> 2
  | Cabs.Tchar -> 3
  | Cabs.Tshort -> 4
  | Cabs.Tlong -> 5
  | Cabs.Tint -> 6
  | Cabs.Tfloat -> 8
  | Cabs.Tdouble -> 9
  | Cabs.T_Bool -> 10
  | _ -> 11 (* There should be at most one of the others *)

let typespec_order t1 t2 = compare (typespec_rank t1) (typespec_rank t2)

(* Auxiliary for type declarator elaboration.  Remove the non-type-related
   attributes from the given type and return those attributes separately.
   If the type is a function type, keep function-related attributes
   attached to the type. *)

let get_nontype_attrs env ty =
  let to_be_removed a =
    match class_of_attribute a with
    | Attr_type -> false
    | Attr_function -> not (is_function_type env ty)
    | _ -> true in
  let nta = List.filter to_be_removed (attributes_of_type_no_expand ty) in
  (remove_attributes_type env nta ty, nta)

(* Auxiliary for elaborating bitfield declarations. *)

let check_bitfield loc env id ty ik n =
  let max = Int64.of_int(sizeof_ikind ik * 8) in
  if n < 0L then begin
    error loc "bit-field '%a' has negative width (%Ld)" pp_field id n;
    None
  end else if n >  max then begin
    error loc "size of bit-field '%a' (%Ld bits) exceeds its type (%Ld bits)" pp_field id n max;
    None
  end else if n = 0L && id <> "" then begin
    error loc "named bit-field '%a' has zero width" pp_field id;
    None
  end else begin
    begin match unroll env ty with
    | TEnum(eid, _) ->
      let info = wrap Env.find_enum loc env eid in
      let w = Int64.to_int n in
      let representable sg =
        List.for_all (fun (_, v, _) -> Cutil.int_representable v w sg)
                     info.Env.ei_members in
      if not (representable false || representable true) then
        warning loc Unnamed
          "not all values of type 'enum %s' can be represented in bit-field '%a' (%d bits are not enough)"
          eid.C.name pp_field id w
    | _ -> ()
    end;
    Some (Int64.to_int n)
  end

(* Elaboration of a type specifier.  Returns 6-tuple:
     (storage class, "inline" flag, "noreturn" flag, "typedef" flag,
      elaborated type, new env)
   Optional argument "only" is true if this is a standalone
   struct or union declaration, without variable names.
   C99 section 6.7.2.
*)

let rec elab_specifier ?(only = false) loc env specifier =
  (* We first divide the parts of the specifier as follows:
       - a storage class
       - a set of attributes (const, volatile, restrict)
       - a list of type specifiers *)
  let sto = ref Storage_default
  and inline = ref false
  and noreturn = ref false
  and restrict = ref false
  and attr = ref []
  and tyspecs = ref []
  and typedef = ref false in

  let do_specifier = function
  | SpecCV cv ->
      restrict := cv = CV_RESTRICT;
      attr := add_attributes (elab_cvspec env cv) !attr
  | SpecStorage st ->
      if !sto <> Storage_default && st <> TYPEDEF && st <> THREAD_LOCAL then
        error loc "multiple storage classes in declaration specifier";
      begin match st with
      | AUTO -> sto := Storage_auto
      | STATIC -> sto := Storage_static
      | EXTERN -> sto := Storage_extern
      | REGISTER -> sto := Storage_register
      | THREAD_LOCAL ->
         sto := (match !sto with
                 | Storage_static | Storage_thread_local_static ->
                    Storage_thread_local_static
                 | Storage_extern | Storage_thread_local_extern ->
                    Storage_thread_local_extern
                 | Storage_default | Storage_thread_local ->
                    Storage_thread_local
                 | Storage_auto|Storage_register ->
                    error loc "_Thread_local on auto or register variable";
                    !sto
                )

      | TYPEDEF ->
          if !typedef then
            error loc "multiple uses of 'typedef'";
          typedef := true
      end
  | SpecFunction INLINE -> inline := true
  | SpecFunction NORETURN -> noreturn := true
  | SpecType tys -> tyspecs := tys :: !tyspecs in

  let restrict_check ty =
    if !restrict then
      if not (is_pointer_type env ty) then
        error loc "restrict requires a pointer type (%a is invalid)" (print_typ env) ty
      else if is_function_pointer_type env ty then
        error loc "pointer to function type %a may not be 'restrict' qualified" (print_typ env) ty in

  List.iter do_specifier specifier;

  let simple ty =
    restrict_check ty;
    (!sto, !inline, !noreturn ,!typedef, add_attributes_type !attr ty, env) in

  (* Partition !attr into name- and struct-related attributes,
     which are returned, and other attributes, which are left in !attr.
     The returned name-or-struct-related attributes are applied to the
     struct/union/enum being defined.
     The leftover attributes (e.g. object attributes) will be applied
     to the variable being defined.
     If [optmembers] is [None], name-related attributes are not returned
     but left in !attr.  This corresponds to two use cases:
     - A use of an already-defined struct/union/enum.  In this case
       the name-related attributes should go to the name being declared.
       Sending them to the struct/union/enum would cause them to be ignored,
       with a warning.  The struct-related attributes go to the 
       struct/union/enum, are ignored, and cause a warning.
     - An incomplete declaration of a struct/union.  In this case
       the name- and struct-related attributes are just ignored,
       like GCC does.
  *)
  let get_definition_attrs optmembers =
    let (ta, nta) =
      List.partition
        (fun a -> match class_of_attribute a with
                  | Attr_struct -> true
                  | Attr_name -> optmembers <> None
                  | _ -> false)
        !attr in
    attr := nta;
    ta in

  (* Now interpret the list of type specifiers.  Much of this code
     is stolen from CIL. *)
  match List.stable_sort typespec_order (List.rev !tyspecs) with
    | [Cabs.Tvoid] -> simple (TVoid [])

    | [Cabs.T_Bool] -> simple (TInt(IBool, []))
    | [Cabs.Tchar] -> simple (TInt(IChar, []))
    | [Cabs.Tsigned; Cabs.Tchar] -> simple (TInt(ISChar, []))
    | [Cabs.Tunsigned; Cabs.Tchar] -> simple (TInt(IUChar, []))

    | [Cabs.Tshort] -> simple (TInt(IShort, []))
    | [Cabs.Tsigned; Cabs.Tshort] -> simple (TInt(IShort, []))
    | [Cabs.Tshort; Cabs.Tint] -> simple (TInt(IShort, []))
    | [Cabs.Tsigned; Cabs.Tshort; Cabs.Tint] -> simple (TInt(IShort, []))

    | [Cabs.Tunsigned; Cabs.Tshort] -> simple (TInt(IUShort, []))
    | [Cabs.Tunsigned; Cabs.Tshort; Cabs.Tint] -> simple (TInt(IUShort, []))

    | [] -> simple (TInt(IInt, []))
    | [Cabs.Tint] -> simple (TInt(IInt, []))
    | [Cabs.Tsigned] -> simple (TInt(IInt, []))
    | [Cabs.Tsigned; Cabs.Tint] -> simple (TInt(IInt, []))

    | [Cabs.Tunsigned] -> simple (TInt(IUInt, []))
    | [Cabs.Tunsigned; Cabs.Tint] -> simple (TInt(IUInt, []))

    | [Cabs.Tlong] -> simple (TInt(ILong, []))
    | [Cabs.Tsigned; Cabs.Tlong] -> simple (TInt(ILong, []))
    | [Cabs.Tlong; Cabs.Tint] -> simple (TInt(ILong, []))
    | [Cabs.Tsigned; Cabs.Tlong; Cabs.Tint] -> simple (TInt(ILong, []))

    | [Cabs.Tunsigned; Cabs.Tlong] -> simple (TInt(IULong, []))
    | [Cabs.Tunsigned; Cabs.Tlong; Cabs.Tint] -> simple (TInt(IULong, []))

    | [Cabs.Tlong; Cabs.Tlong] -> simple (TInt(ILongLong, []))
    | [Cabs.Tsigned; Cabs.Tlong; Cabs.Tlong] -> simple (TInt(ILongLong, []))
    | [Cabs.Tlong; Cabs.Tlong; Cabs.Tint] -> simple (TInt(ILongLong, []))
    | [Cabs.Tsigned; Cabs.Tlong; Cabs.Tlong; Cabs.Tint] -> simple (TInt(ILongLong, []))

    | [Cabs.Tunsigned; Cabs.Tlong; Cabs.Tlong] -> simple (TInt(IULongLong, []))
    | [Cabs.Tunsigned; Cabs.Tlong; Cabs.Tlong; Cabs.Tint] -> simple (TInt(IULongLong, []))

    | [Cabs.Tfloat] -> simple (TFloat(FFloat, []))
    | [Cabs.Tdouble] -> simple (TFloat(FDouble, []))

    | [Cabs.Tlong; Cabs.Tdouble] -> simple (TFloat(FLongDouble, []))

    (* Now the other type specifiers *)

    | [Cabs.Tnamed id] ->
        let (id', info) = wrap Env.lookup_typedef loc env id in
        simple (TNamed(id', []))

    | [Cabs.Tstruct_union(STRUCT, id, optmembers, a)] ->
        let a' =
          add_attributes (get_definition_attrs optmembers)
                         (elab_attributes env a) in
        let (id', env') =
          elab_struct_or_union only Struct loc id optmembers a' env in
        let ty =  TStruct(id', !attr) in
        restrict_check ty;
        (!sto, !inline, !noreturn, !typedef, ty, env')

    | [Cabs.Tstruct_union(UNION, id, optmembers, a)] ->
        let a' =
          add_attributes (get_definition_attrs optmembers)
                         (elab_attributes env a) in
        let (id', env') =
          elab_struct_or_union only Union loc id optmembers a' env in
        let ty =  TUnion(id', !attr) in
        restrict_check ty;
        (!sto, !inline, !noreturn, !typedef, ty, env')

    | [Cabs.Tenum(id, optmembers, a)] ->
        let a' =
          add_attributes (get_definition_attrs optmembers)
                         (elab_attributes env a) in
        let (id', env') =
          elab_enum only loc id optmembers a' env in
        let ty = TEnum (id', !attr) in
        restrict_check ty;
        (!sto, !inline, !noreturn, !typedef, ty, env')

    (* Specifier doesn't make sense *)
    | _ ->
        fatal_error loc "illegal combination of type specifiers"

(* Elaboration of a type qualifier. *)

and elab_cvspec env = function
  | CV_CONST -> [AConst]
  | CV_VOLATILE -> [AVolatile]
  | CV_RESTRICT -> [ARestrict]
  | CV_ATTR attr -> elab_attribute env attr

and elab_cvspecs env cv_specs =
  List.fold_left add_attributes [] (List.map (elab_cvspec env) cv_specs)

(* Elaboration of a type declarator.  C99 section 6.7.5. *)
and elab_return_type loc env ty =
  match unroll env ty with
  | TArray _ ->
      error loc "function cannot return array type %a" (print_typ env) ty
  | TFun _ ->
      error loc "function cannot return function type %a" (print_typ env) ty
  | _ -> ()

(* The [?fundef] parameter is true if we're elaborating a function definition
   and false otherwise.  When [fundef = true], K&R function declarators
   are allowed, and the returned environment includes bindings for the
   function parameters and the struct/unions they may define.
   When [fundef = false], K&R function declarators are rejected
   and declarations in parameters are not returned. *)

and elab_type_declarator ?(fundef = false) loc env ty = function
  | Cabs.JUSTBASE ->
      ((ty, None), env)
  | Cabs.ARRAY(d, cv_specs, sz) ->
      let (ty, a) = get_nontype_attrs env ty in
      let a = add_attributes a (elab_cvspecs env cv_specs) in
      if wrap incomplete_type loc env ty then
        error loc "array type has incomplete element type %a" (print_typ env) ty;
      if wrap contains_flex_array_mem loc env ty then
        warning loc Flexible_array_extensions "%a may not be used as an array element due to flexible array member" (print_typ env) ty;
      let sz' =
        match sz with
        | None ->
            None
        | Some sz ->
            let expr,env = (!elab_expr_f loc env sz) in
            match Ceval.integer_expr env expr  with
            | Some n ->
                if n < 0L then error loc "size of array is negative";
                if n = 0L then warning loc Zero_length_array
                    "zero size arrays are an extension";
                if not (Cutil.valid_array_size env ty n) then error loc "size of array is too large";
                Some n
            | None ->
                error loc "size of array is not a compile-time constant";
                Some 1L in (* produces better error messages later *)
       elab_type_declarator ~fundef loc env (TArray(ty, sz', a)) d
  | Cabs.PTR(cv_specs, d) ->
      let (ty, a) = get_nontype_attrs env ty in
      let a = add_attributes a (elab_cvspecs env cv_specs) in
      if is_function_type env ty && incl_attributes [ARestrict] a then
        error loc "pointer to function type %a may not be 'restrict' qualified" (print_typ env) ty;
      elab_type_declarator ~fundef loc env (TPtr(ty, a)) d
  | Cabs.PROTO(d, (params, vararg)) ->
      elab_return_type loc env ty;
      let (ty, a) = get_nontype_attrs env ty in
      let (params', env') = elab_parameters loc env params in
      (* For a function declaration (fundef = false), the scope introduced
         to treat parameters ends here, so we discard the extended
         environment env' returned by elab_parameters.
         For a function definition (fundef = true) we return the
         extended environment env' so that it can serve as the basis
         to elaborating the function body. *)
      let env'' = if fundef then env' else env in
      elab_type_declarator ~fundef loc env'' (TFun(ty, Some params', vararg, a)) d
  | Cabs.PROTO_OLD(d, params) ->
      elab_return_type loc env ty;
      let (ty, a) = get_nontype_attrs env ty in
      (* For consistency with the PROTO case above, for a function definition
         (fundef = true) we open a new scope, even though we do not
         add any bindings for the parameters. *)
      let env'' = if fundef then Env.new_scope env else env in
      match params with
      | [] ->
        elab_type_declarator ~fundef loc env'' (TFun(ty, None, false, a)) d
      | _ ->
        if not fundef || d <> Cabs.JUSTBASE then
          fatal_error loc "illegal old-style K&R function definition";
        ((TFun(ty, None, false, a), Some params), env'')

(* Elaboration of parameters in a prototype *)

and elab_parameters loc env params =
  (* Prototype introduces a new scope *)
  let (vars, env) = mmap elab_parameter (Env.new_scope env) params in
  (* Catch special case f(t) where t is void or a typedef to void *)
  match vars with
    | [ ( {C.name=""}, t) ] when is_void_type env t -> [],env
    | _ -> if List.exists (fun (id, t) -> id.C.name = "" && is_void_type env t) vars then
        error loc "'void' must be the only parameter";
      (vars, env)

(* Elaboration of a function parameter *)

and elab_parameter env (PARAM (spec, id, decl, attr, loc)) =
  let (sto, inl, noret, tydef, bty, env1) = elab_specifier loc env spec in
  if tydef then
    error loc "'typedef' used in function parameter";
  let ((ty, _), _) = elab_type_declarator loc env1 bty decl in
  let ty = add_attributes_type (elab_attributes env attr) ty in
  if sto <> Storage_default && sto <> Storage_register then
    error loc                               (* NB: 'auto' not allowed *)
      "invalid storage class %s for function parameter"
      (name_of_storage_class sto);
  if inl then
    error loc "'inline' can only appear on functions";
  if noret then
    error loc "'_Noreturn' can only appear on functions";
  let id = match id with None -> "" | Some id -> id in
  if id <> "" && is_void_type env1 ty then
    error loc "argument '%s' may not have 'void' type" id;
  if id <> "" && redef Env.lookup_ident env id then
    error loc "redefinition of parameter '%s'" id;
  (* replace array and function types by pointer types *)
  let ty1 = argument_conversion env1 ty in
  if is_qualified_array ty1 then
    error loc "type qualifier used in non-outermost array type derivation";
  if has_std_alignas env ty then begin
    if id <> "" then
      error loc "alignment specified for parameter '%s'" id
    else
      error loc "alignment specified for unnamed parameter"
  end;
  let (id', env2) = Env.enter_ident env1 id sto ty1 in
  ( (id', ty1) , env2)

(* Elaboration of a (specifier, Cabs "name") pair as found in a function
   definition.  Returns two environments: the first is [env]
   enriched with struct/union definitions from the return type,
   as usual; the second is like the first, plus a new scope.
   For a prototyped function ([kr_params = None]) the new scope
   includes bindings for the function parameters and the struct/unions
   they may define.  For a K&R function ([kr_params <> None]) the new
   scope is empty. *)

and elab_fundef_name env spec (Name (s, decl, attr, loc)) =
  let (sto, inl, noret, tydef, bty, env') = elab_specifier loc env spec in
  if tydef then
    error loc "'typedef' is forbidden here";
  let id = Env.fresh_ident s in
  let ((ty, kr_params), env'') =
    elab_type_declarator ~fundef:true loc env' bty decl in
  let a = elab_attributes env attr in
  (id, sto, inl, noret, add_attributes_type a ty, kr_params, env', env'')

(* Elaboration of a name group.  C99 section 6.7.6 *)

and elab_name_group loc env  (spec, namelist) =
  let (sto, inl, noret, tydef, bty, env') =
    elab_specifier loc env spec in
  if tydef then
    error loc "'typedef' is forbidden here";
  if inl then
    error loc "'inline' is forbidden here";
  if noret then
    error loc "'_Noreturn' is forbidden here";
  let elab_one_name env (Name (id, decl, attr, loc)) =
    let ((ty, _), env1) =
      elab_type_declarator loc env bty decl in
    let a = elab_attributes env attr in
    ((id, add_attributes_type a ty), env1) in
  (mmap elab_one_name env' namelist, sto)



(* Elaboration of a field group *)

and elab_field_group env = function

| Field_group (spec, fieldlist, loc) ->

  let fieldlist = List.map
    (function (None, x) -> (Name ("", JUSTBASE, [], loc), x)
            | (Some n, x) -> (n, x))
    fieldlist
  in

  let ((names, env'), sto) =
    elab_name_group loc env  (spec, List.map fst fieldlist) in

  if sto <> Storage_default then
    (* This should actually never be triggered, catched by pre-parser *)
    error loc "non-default storage in struct or union";
  if fieldlist = [] then
      (* This should actually never be triggered, empty structs are captured earlier *)
      warning loc Missing_declarations "declaration does not declare anything";

  let elab_bitfield env (Name (_, _, _, loc), optbitsize) (id, ty) =
    let optbitsize',env' =
      match optbitsize with
      | None -> None,env
      | Some sz ->
          let ik =
            match unroll env' ty with
            | TInt(ik, _) -> ik
            | TEnum(_, _) -> enum_ikind
            | _ -> ILongLong (* trigger next error message *) in
          if sizeof_ikind ik > sizeof_ikind IInt then begin
            error loc
              "the type of bit-field '%a' must be an integer type no bigger than 'int'" pp_field id;
            None,env
          end else if has_std_alignas env' ty then begin
            error loc "alignment specified for bit-field '%a'" pp_field id;
            None, env
          end else begin
            let expr,env' = !elab_expr_f loc env sz in
            match Ceval.integer_expr env' expr with
            | Some n ->
                let bf = check_bitfield loc env' id ty ik n in
                bf,env'
            | None ->
                error loc "bit-field '%a' width not an integer constant" pp_field id;
                None,env
          end in
    if is_qualified_array ty then
      error loc "type qualifier used in array declarator outside of function prototype";
    let anon_composite = is_anonymous_composite ty in
    if id = "" && not anon_composite && optbitsize = None  then begin
      warning loc Missing_declarations "declaration does not declare anything";
      None, env'
    end else
      Some { fld_name = id; fld_typ = ty; fld_bitfield = optbitsize';
             fld_anonymous = id = "" && anon_composite},
      env'
  in
  (mmap2_filter elab_bitfield env' fieldlist names)

| Field_group_static_assert(exp, loc_exp, msg, loc_msg, loc) ->
    elab_static_assert env exp loc_exp msg loc_msg loc;
    ([], env)
  
(* Elaboration of a struct or union. C99 section 6.7.2.1 *)

and elab_struct_or_union_info kind loc env members attrs =
  let (m, env') = mmap elab_field_group env members in
  let m = List.flatten m in
  let m,_ = mmap (fun c fld  ->
      if fld.fld_anonymous then
        let name = Printf.sprintf "<anon>_%d" c in
        {fld with fld_name = name},c+1
      else
        fld,c) 0 m in
  let rec duplicate acc = function
    | [] -> ()
    | fld::rest ->
       if fld.fld_anonymous then begin
         let rest = match unroll env fld.fld_typ with
           | TStruct (id,_) ->
             warning loc Celeven_extension "anonymous structs/unions are a C11 extension";
             let str = Env.find_struct env' id in
             str.Env.ci_members@rest
           | TUnion (id,_) ->
             warning loc Celeven_extension "anonymous structs/unions are a C11 extension";
             let union = Env.find_union env' id in
             union.Env.ci_members@rest
           | _ -> rest in
         duplicate acc rest
       end else if fld.fld_name <> "" then begin
         if List.exists ((=) fld.fld_name) acc then
           error loc "duplicate member '%a'" pp_field fld.fld_name;
         duplicate (fld.fld_name::acc) rest
       end else
         duplicate acc rest in
  duplicate [] m;
  (* Check for incomplete types *)
  let rec check_incomplete only = function
  | [] -> ()
  | [ { fld_typ = TArray(ty_elt, None, _) as typ; fld_name = name } ] when kind = Struct ->
    (* C99: ty[] allowed as last field of a struct, provided this is not the only field *)
      if only then
        error loc "flexible array member '%a' not allowed in otherwise empty struct" pp_field name;
      check_reduced_alignment loc env' typ
  | fld :: rem ->
      if wrap incomplete_type loc env' fld.fld_typ then
        (* Must be fatal otherwise we get problems constructing the init *)
        fatal_error loc "member '%a' has incomplete type %a" pp_field fld.fld_name (print_typ env) fld.fld_typ;
      if wrap contains_flex_array_mem loc env' fld.fld_typ && kind = Struct then
        warning loc Flexible_array_extensions "%a may not be used as a struct member due to flexible array member" (print_typ env) fld.fld_typ;
      check_reduced_alignment loc env' fld.fld_typ;
      check_incomplete false rem in
  check_incomplete true m;
  (* Warn for empty structs or unions *)
  if m = [] then
    if kind = Struct then begin
      warning loc Gnu_empty_struct "empty struct is a GNU extension"
    end else begin
      fatal_error loc "empty union is a GNU extension"
    end;
  let ci = composite_info_def env' kind attrs m in
  (* Warn for reduced alignment *)
  if attrs <> [] then begin
    let ci_nat = composite_info_def env' kind [] m in
    warn_if_reduced_alignment loc
           ~actual:ci.Env.ci_alignof ~natural:ci_nat.Env.ci_alignof
  end;
  (* Final result *)
  (composite_info_def env' kind attrs m, env')

and elab_struct_or_union only kind loc tag optmembers attrs env =
  let warn_attrs () =
    if attrs <> [] then
      warning loc Ignored_attributes "attribute declaration must precede definition" in
  let optbinding, tag =
    match tag with
      | None -> None, ""
      | Some s ->
          if redef Env.lookup_enum env s then
            error loc "'%s' redeclared as different kind of symbol" s;
          Env.lookup_composite env s, s
  in
  match optbinding, optmembers with
  | Some(tag', ci), None
    when (not only) || Env.in_current_scope env tag' ->
      (* Reference to an already declared struct or union.
         Special case: if this is an "only" declaration (without variable names)
         and the composite was bound in another scope,
         create a new incomplete composite instead via the case
         "_, None" below. *)
      if ci.Env.ci_kind <> kind then
        fatal_error loc "use of '%s' with tag type that does not match previous declaration" tag;
      warn_attrs();
      (tag', env)
  | Some(tag', ({Env.ci_sizeof = None} as ci)), Some members
    when Env.in_current_scope env tag' ->
      if ci.Env.ci_kind <> kind then
        fatal_error loc "use of '%s' with tag type that does not match previous declaration" tag;
      (* finishing the definition of an incomplete struct or union *)
      let (ci', env') = elab_struct_or_union_info kind loc env members attrs in
      (* Emit a global definition for it *)
      emit_elab env' loc (Gcompositedef(kind, tag', attrs, ci'.Env.ci_members));
      (* Replace infos but keep same ident *)
      (tag', Env.add_composite env' tag' ci')
  | Some(tag', {Env.ci_sizeof = Some _}), Some _
    when Env.in_current_scope env tag' ->
      fatal_error loc "redefinition of struct or union '%s'" tag
  | _, None ->
      (* declaration of an incomplete struct or union *)
      if tag = "" then
        error loc "anonymous, incomplete struct or union";
      let ci = composite_info_decl kind attrs in
      (* enter it with a new name *)
      let (tag', env') = Env.enter_composite env tag ci in
      (* emit it *)
      emit_elab env' loc (Gcompositedecl(kind, tag', attrs));
      (tag', env')
  | _, Some members ->
      (* definition of a complete struct or union *)
      let ci1 = composite_info_decl kind attrs in
      (* enter it, incomplete, with a new name *)
      let (tag', env') = Env.enter_composite env tag ci1 in
      (* emit a declaration so that inner structs and unions can refer to it *)
      emit_elab env' loc (Gcompositedecl(kind, tag', attrs));
      (* elaborate the members *)
      let (ci2, env'') =
        elab_struct_or_union_info kind loc env' members attrs in
      (* emit a definition *)
      emit_elab env'' loc (Gcompositedef(kind, tag', attrs, ci2.Env.ci_members));
      (* Replace infos but keep same ident *)
      (tag', Env.add_composite env'' tag' ci2)

(* Elaboration of an enum item.  C99 section 6.7.2.2 *)

and elab_enum_item env ((s, exp), loc) nextval =
  let (v, exp') =
    match exp with
    | None ->
        (nextval, None)
    | Some exp ->
        let exp',env = !elab_expr_f loc env exp in
        match Ceval.integer_expr env exp' with
        | Some n -> (n, Some exp')
        | None ->
            error loc
              "value of enumerator '%s' is not an integer constant" s;
            (nextval, Some exp') in
  if redef Env.lookup_ident env s then
    error loc "'%s' redeclared as different kind of symbol" s;
  if redef Env.lookup_typedef env s then
    error loc "'%s' redeclared as different kind of symbol" s;
  if not (int_representable v (8 * sizeof_ikind enum_ikind) (is_signed_ikind enum_ikind)) then
    warning loc Constant_conversion "integer literal '%Ld' is too large to be represented in the enumeration integer type"
      v;
  let (id, env') = Env.enter_enum_item env s v in
  ((id, v, exp'), Int64.succ v, env')

(* Elaboration of an enumeration declaration.   C99 section 6.7.2.2  *)

and elab_enum only loc tag optmembers attrs env =
  let tag = match tag with
    | None -> ""
    | Some s ->
      if redef Env.lookup_struct env s || redef Env.lookup_union env s then
        error loc "'%s' redeclared as different kind of symbol" s;
      s in
  match optmembers with
  | None ->
    if only && not (redef Env.lookup_enum env tag) then
      fatal_error loc
         "forward declaration of 'enum %s' is not allowed in ISO C" tag;
      let (tag', info) = wrap Env.lookup_enum loc env tag in (tag', env)
  | Some members ->
      if tag <> "" && redef Env.lookup_enum env tag then
        error loc "redefinition of 'enum %s'" tag;
      let rec elab_members env nextval = function
      | [] -> ([], env)
      | hd :: tl ->
          let (dcl1, nextval1, env1) = elab_enum_item env hd nextval in
          let (dcl2, env2) = elab_members env1 nextval1 tl in
          (dcl1 :: dcl2, env2) in
      let (dcls, env') = elab_members env 0L members in
      let info = { Env.ei_members = dcls; ei_attr = attrs } in
      let (tag', env'') = Env.enter_enum env' tag info in
      emit_elab env' loc (Genumdef(tag', attrs, dcls));
      (tag', env'')

(* Elaboration of a naked type, e.g. in a cast *)

let elab_type loc env spec decl =
  let (sto, inl, noret, tydef, bty, env') = elab_specifier loc env spec in
  let ((ty, _), env'') = elab_type_declarator loc env' bty decl in
  (* NB: it seems the parser doesn't accept any of the specifiers below.
     We keep the error message as extra safety. *)
  if sto <> Storage_default || inl || noret || tydef then
    error loc "'typedef', 'extern', 'static', 'auto', 'register' and 'inline' are meaningless in cast";
  (ty, env'')


(* Elaboration of initializers. C99 section 6.7.8 *)

let init_char_array_string opt_size s =
  let len = Int64.of_int (String.length s) in
  let size =
    match opt_size with
    | Some sz -> sz
    | None -> Int64.succ len  (* include final 0 character *) in
  let rec add_chars i init =
    if i < 0L then init else begin
      let c =
        if i < len then Int64.of_int (Char.code s.[Int64.to_int i]) else 0L in
      add_chars (Int64.pred i) (Init_single (intconst c IInt) :: init)
    end in
  Init_array (add_chars (Int64.pred size) [])

let init_int_array_wstring opt_size s =
  let a = Array.of_list s in
  let len = Int64.of_int (Array.length a) in
  let size =
    match opt_size with
    | Some sz -> sz
    | None -> Int64.succ len  (* include final 0 character *) in
  let rec add_chars i init =
    if i < 0L then init else begin
      let c = if i < len then a.(Int64.to_int i) else 0L in
      add_chars (Int64.pred i) (Init_single (intconst c IInt) :: init)
    end in
  Init_array (add_chars (Int64.pred size) [])

let check_init_type loc env a ty =
  if wrap2 valid_assignment loc env a ty then ()
  else if wrap2 valid_cast loc env a.etyp ty then
    if wrap2 int_pointer_conversion loc env a.etyp ty then
      warning loc Int_conversion
        "incompatible integer-pointer conversion: initializer has type %a instead of the expected type %a"
         (print_typ env) a.etyp (print_typ env) ty
    else
      warning loc Unnamed
        "incompatible conversion: initializer has type %a instead of the expected type %a"
        (print_typ env) a.etyp (print_typ env) ty
  else
    error loc
      "initializer has type %a instead of the expected type %a"
      (print_typ env) a.etyp (print_typ env) ty

(* Representing initialization state using zippers *)

module I = struct

  type zipinit =
    | Ztop of string * typ

    | Zarray of zipinit                 (* ancestor *)
              * typ                     (* type of elements *)
              * int64 option            (* size *)
              * init                    (* default initializer *)
              * init list               (* elements before point, reversed *)
              * int64                   (* position of point *)
              * init list               (* elements after point *)

    | Zstruct of zipinit                (* ancestor *)
               * ident                  (* struct type *)
               * (field * init) list    (* elements before current, reversed *)
               * field                  (* current field *)
               * (field * init) list    (* elements after current *)

    | Zunion of zipinit                 (* ancestor *)
              * ident                   (* union type *)
              * field                   (* current member *)

  type 'a result =
    | OK of 'a
    | NotFound
    | Unsupported

  (* The initial state: default initialization, current point at top *)
  let top env name ty = (Ztop(name, ty), default_init env ty)

  (* Change the initializer for the current point *)
  let set (z, i) i' = (z, i')

  (* Is the current point at top? *)
  let at_top = function Ztop(_, _), _ -> true | _, _ -> false

  (* Put the current point back to the top *)
  let rec to_top = function
    | Ztop(name, ty), i as zi -> zi
    | Zarray(z, ty, sz, dfl, before, idx, after), i ->
        to_top (z, Init_array (List.rev_append before (i :: after)))
    | Zstruct(z, id, before, fld, after), i ->
        to_top (z, Init_struct(id, List.rev_append before ((fld, i) :: after)))
    | Zunion(z, id, fld), i ->
        to_top (z, Init_union(id, fld, i))

  (* Extract the initializer corresponding to the current state *)
  let to_init zi = snd (to_top zi)

  (* The type of the current point *)
  let typeof = function
    | Ztop(name, ty), i -> ty
    | Zarray(z, ty, sz, dfl, before, idx, after), i -> ty
    | Zstruct(z, id, before, fld, after), i -> fld.fld_typ
    | Zunion(z, id, fld), i -> fld.fld_typ

  (* The name of the path leading to the current point, for error reporting *)
  let rec zipname = function
    | Ztop(name, ty) -> name
    | Zarray(z, ty, sz, dfl, before, idx, after) ->
        Printf.sprintf "%s[%Ld]" (zipname z) idx
    | Zstruct(z, id, before, fld, after) ->
        Printf.sprintf "%s.%s" (zipname z) fld.fld_name
    | Zunion(z, id, fld) ->
        Printf.sprintf "%s.%s" (zipname z) fld.fld_name

  let name (z, i) = zipname z

  (* Auxiliary functions to deal with arrays *)
  let index_below (idx: int64) (sz: int64 option) =
    match sz with None -> true | Some sz -> idx < sz

  let il_head dfl = function [] -> dfl | i1 :: il -> i1
  let il_tail = function [] -> [] | i1 :: il -> il

  (* Advance the current point to the next point in right-up order.
     Return NotFound if no next point, i.e. we are at top *)
  let rec next = function
    | Ztop(name, ty), i -> NotFound
    | Zarray(z, ty, sz, dfl, before, idx, after), i ->
        let idx' = Int64.succ idx in
        if index_below idx' sz
        then OK(Zarray(z, ty, sz, dfl, i :: before, idx', il_tail after),
                il_head dfl after)
        else next (z, Init_array (List.rev_append before (i :: after)))
    | Zstruct(z, id, before, fld, []), i ->
        next (z, Init_struct(id, List.rev_append before [(fld, i)]))
    | Zstruct(z, id, before, fld, (fld1, i1) :: after), i ->
        OK(Zstruct(z, id, (fld, i) :: before, fld1, after), i1)
    | Zunion(z, id, fld), i ->
        next (z, Init_union(id, fld, i))

  (* Move the current point "down" to the first component of an array,
     struct, or union.  No effect if the current point is a scalar. *)
  let first env (z, i as zi) =
    let ty = typeof zi in
    match unroll env ty, i with
    | TArray(ty, sz, _), Init_array il ->
        if index_below 0L sz then begin
          let dfl = default_init env ty in
          OK(Zarray(z, ty, sz, dfl, [], 0L, il_tail il), il_head dfl il)
        end
        else NotFound
    | TStruct(id, _), Init_struct(id', []) ->
        NotFound
    | TStruct(id, _), Init_struct(id', (fld1, i1) :: flds) ->
        OK(Zstruct(z, id, [], fld1, flds), i1)
    | TUnion(id, _), Init_union(id', fld, i) ->
      let rec first_named = function
        | [] -> NotFound
        | fld1 :: fl ->
          if fld1.fld_name = "" then
            first_named fl
          else begin
            OK(Zunion(z, id, fld1),
               if fld.fld_name = fld1.fld_name
               then i
               else default_init env fld1.fld_typ)
          end in
      first_named (Env.find_union env id).Env.ci_members
    | (TStruct _ | TUnion _), Init_single a ->
        (* This is a previous whole-struct initialization that we
           are going to overwrite.  Hard to support correctly
           and without code duplication, so turn it into an error. *)
        Unsupported
    | _ ->
        OK (z, i)

  (* Move to the [n]-th element of the current point, which must be
     an array. *)
  let index env (z, i as zi) n =
    match unroll env (typeof zi), i with
    | TArray(ty, sz, _), Init_array il ->
        if n >= 0L && index_below n sz then begin
          let dfl = default_init env ty in
          let rec loop p before after =
            if p = n then
              OK (Zarray(z, ty, sz, dfl, before, n, il_tail after),
                  il_head dfl after)
            else
              loop (Int64.succ p)
                   (il_head dfl after :: before)
                   (il_tail after)
          in loop 0L [] il
        end else
          NotFound
    | _, _ ->
      NotFound

  let has_member env name ty =
    let mem f id =
      try
        ignore(f env (id,name)); true
      with Env.Error _ -> false in
    match ty with
    | TStruct (id,_) ->
      mem Env.find_struct_member id
    | TUnion (id,_) ->
      mem Env.find_union_member id
    | _ -> false

  (* Move to the member named [name] of the current point, which must be
     a struct or a union. *)
  let rec member env (z, i as zi) name =
    let ty = typeof zi in
    match unroll env ty, i with
    | TStruct(id, _), Init_struct(id', flds) ->
        let rec find before = function
          | [] -> NotFound
          | (fld, i as f_i) :: after ->
              if fld.fld_name = name then
                OK(Zstruct(z, id, before, fld, after), i)
              else if fld.fld_anonymous && has_member env name fld.fld_typ then
                let zi = (Zstruct(z, id, before, fld, after), i) in
                member env zi name
              else
                find (f_i :: before) after
        in find [] flds
    | TUnion(id, _), Init_union(id', fld, i) ->
        if fld.fld_name = name then
          OK(Zunion(z, id, fld), i)
        else begin
          let rec find = function
            | [] -> NotFound
            | fld1 :: rem ->
                if fld1.fld_name = name then
                  OK(Zunion(z, id, fld1), default_init env fld1.fld_typ)
                else if fld.fld_anonymous && has_member env name fld.fld_typ then
                  let zi = (Zunion(z, id, fld1),i) in
                  member env zi name
                else
                  find rem
           in find (Env.find_union env id).Env.ci_members
         end
    | (TStruct _ | TUnion _), Init_single a ->
        (* This is a previous whole-struct initialization that we
           are going to overwrite.  Hard to support correctly
           and without code duplication, so turn it into an error. *)
        Unsupported
    | _, _ ->
        NotFound
end

(* Interpret the given designator, moving the initialization state [zi]
   "down" accordingly. *)

let rec elab_designator loc env zi desig =
  match desig with
  | [] ->
      zi
  | INFIELD_INIT name :: desig' ->
      begin match I.member env zi name with
      | I.OK zi' ->
          elab_designator loc env zi' desig'
      | I.NotFound ->
          error loc "%s has no member named %s" (I.name zi) name;
          raise Exit
      | I.Unsupported ->
          error loc "unsupported reinitialization of %s that was previously initialized as a whole" (I.name zi);
          raise Exit
      end
  | ATINDEX_INIT a :: desig' ->
      let expr,env = (!elab_expr_f loc env a) in
      begin match Ceval.integer_expr env expr with
      | None ->
          error loc "array element designator for %s is not an integer constant expression" (I.name zi);
          raise Exit
      | Some n ->
          match I.index env zi n with
          | I.OK zi' ->
              elab_designator loc env zi' desig'
          | I.NotFound ->
              error loc "array index %Ld within %s exceeds array bounds" n (I.name zi);
            raise Exit
          | I.Unsupported -> assert false
      end

(* Elaboration of an initialization expression.  Return the corresponding
   initializer. *)

let elab_init loc env root ty_root ie =

(* Perform the initializations described by the list [il] over
   the initialization state [zi].  [first] is true if we are at the
   beginning of a braced initializer.  Returns the final initializer. *)

let rec elab_list zi il first =
  match il with
  | [] ->
      (* All initialization items consumed. *)
      I.to_init zi
  | (desig, item) :: il' ->
      if desig = [] then begin
        match (if first then I.first env zi else I.next zi)
        with
        | I.NotFound ->
            warning loc Unnamed "excess elements in initializer for %s"
                        (I.name zi);
            I.to_init zi
        | I.OK zi' ->
            elab_item zi' item il'
        | I.Unsupported ->
            error loc "unsupported reinitialization of %s that was previously initialized as a whole" (I.name zi);
            raise Exit
      end else
        elab_item (elab_designator loc env (I.to_top zi) desig) item il'

(* Perform the initialization described by [item] for the current
   subobject of state [zi].  Continue initializing with the list [il]. *)

and elab_item zi item il =
  let ty = I.typeof zi in
  match item, unroll env ty with
  (* Special case char array = "string literal"
               or wchar array = L"wide string literal" *)
  | (SINGLE_INIT (CONSTANT (CONST_STRING(w, s)))
     | COMPOUND_INIT [_, SINGLE_INIT(CONSTANT (CONST_STRING(w, s)))]),
    TArray(ty_elt, sz, _)
    when is_integer_type env ty_elt ->
      begin match elab_string_literal loc w s, unroll env ty_elt with
      | CStr s, TInt((IChar | ISChar | IUChar), _) ->
          if not (I.index_below (Int64.of_int(String.length s - 1)) sz) then
            warning loc Unnamed "initializer string for array of chars %s is too long" (I.name zi);
          elab_list (I.set zi (init_char_array_string sz s)) il false
      | CStr _, _ ->
          error loc "initialization of an array of non-char elements with a string literal";
          elab_list zi il false
      | CWStr s, TInt(_, _) when compatible_types AttrIgnoreTop env ty_elt (TInt(wchar_ikind(), [])) ->
          if not (I.index_below (Int64.of_int(List.length s - 1)) sz) then
            warning loc Unnamed "initializer string for array of wide chars %s is too long" (I.name zi);
          elab_list (I.set zi (init_int_array_wstring sz s)) il false
      | CWStr _, _ ->
          error loc "initialization of an array of non-wchar_t elements with a wide string literal";
          elab_list zi il false
      | _ -> assert false
      end
  (* Brace-enclosed compound initializer *)
  | COMPOUND_INIT il', _ ->
      (* Process the brace-enclosed stuff, obtaining its initializer *)
      let ini' = elab_list (I.top env (I.name zi) ty) il' true in
      (* Initialize current subobject with this state, and continue *)
      elab_list (I.set zi ini') il false
  (* Single expression *)
  | SINGLE_INIT a, _ ->
      let a',_ = !elab_expr_f loc env a in
      elab_single zi a' il
  (* No initializer: can this happen? *)
  | NO_INIT, _ ->
      elab_list zi il false

(* Perform initialization by a single expression [a] for the current
   subobject of state [zi],  Continue initializing with the list [il']. *)

and elab_single zi a il =
  let ty = I.typeof zi in
  match unroll env ty with
  | TInt _ | TEnum _ | TFloat _ | TPtr _ ->
      (* This is a scalar: do direct initialization and continue *)
      check_init_type loc env a ty;
      elab_list (I.set zi (Init_single a)) il false
  | TStruct _ | TUnion _ when compatible_types AttrIgnoreTop env ty a.etyp ->
      (* This is a composite that can be initialized directly
         from the expression: do as above *)
      elab_list (I.set zi (Init_single a)) il false
  | TStruct _ | TUnion _ | TArray _ ->
      (* This is an aggregate.
         At top, explicit { } are required. *)
      if I.at_top zi then begin
        error loc "invalid initializer, an initializer list was expected";
        raise Exit
      end;
      (* Otherwise we need to drill into the aggregate, recursively *)
      begin match I.first env zi with
      | I.OK zi' ->
          elab_single zi' a il
      | I.NotFound ->
          error loc "initializer for aggregate %s with no elements requires explicit braces"
                    (I.name zi);
          raise Exit
      | I.Unsupported ->
          error loc "unsupported reinitialization of %s that was previously initialized as a whole" (I.name zi);
          raise Exit
      end
  | _ ->
      error loc "impossible to initialize %s of type %a"
                (I.name zi) (print_typ env) ty;
      raise Exit

(* Start with top-level object initialized to default *)

in
if is_function_type env ty_root then begin
  error loc "illegal initializer (only variables can be initialized)";
  raise Exit
end;
try
  elab_item (I.top env root ty_root) ie []
with No_default_init ->
  error loc "variable has incomplete type %a" (print_typ env) ty_root;
  raise Exit

(* Elaboration of a top-level initializer *)

let elab_initial loc env root ty ie =
  match ie with
  | NO_INIT -> None
  | _ ->
    try
      Some (elab_init loc env root ty ie)
    with
    | Exit -> None  (* error was already reported *)
    | Env.Error msg -> error loc "%s" (Env.error_message msg); None

(* Complete an array type with the size obtained from the initializer:
   "int x[] = { 1, 2, 3 }" becomes "int x[3] = ..." *)

let fixup_typ loc env ty init =
  match unroll env ty, init with
  | TArray(ty_elt, None, attr), Init_array il ->
      if il = [] then warning loc Zero_length_array "zero size arrays are an extension";
      TArray(ty_elt, Some(Int64.of_int(List.length il)), attr)
  | _ -> ty

(* Entry point *)

let elab_initializer loc env root ty ie =
  match elab_initial loc env root ty ie with
  | None ->
      (ty, None)
  | Some init ->
      (fixup_typ loc env ty init, Some init)


(* Contexts for elaborating statements and expressions *)

type elab_context = {
  ctx_return_typ: typ;          (**r return type for the function *)
  ctx_labels: StringSet.t;      (**r all labels defined in the function *)
  ctx_break: bool;              (**r is 'break' allowed? *)
  ctx_continue: bool;           (**r is 'continue' allowed? *)
  ctx_in_switch: bool;          (**r are 'case' and 'default' allowed? *)
  ctx_vararg: bool;             (**r is this a vararg function? *)
  ctx_nonstatic_inline: bool    (**r is this a nonstatic inline function? *)
}

(* Context for evaluating compile-time constant expressions.
   Only the [ctx_vararg] and [ctx_nonstatic_inline] fields matter. *)
let ctx_constexp = {
  ctx_return_typ = TVoid [];
  ctx_labels = StringSet.empty;
  ctx_break = false; ctx_continue = false; ctx_in_switch = false;
  ctx_vararg = false; ctx_nonstatic_inline = false
}


(* Elaboration of expressions *)

let elab_expr ctx loc env a =

  let error fmt = error loc fmt in
  let fatal_error fmt = fatal_error loc fmt in
  let warning t fmt = warning loc t fmt in

  let check_ptr_arith env ty s =
    match unroll env ty with
    | TVoid _ ->
        error "illegal arithmetic on a pointer to void in %s" s
    | TFun _ ->
        error "illegal arithmetic on a pointer to the function type %a in %s" (print_typ env) ty s
    | _ ->
        if incomplete_type env ty then
          error "arithmetic on a pointer to an incomplete type %a in %s" (print_typ env) ty s
  in

  let check_static_var env id sto ty =
    if ctx.ctx_nonstatic_inline
    && sto = Storage_static
    && List.mem AConst (attributes_of_type env ty)
    then warning Static_in_inline "static variable '%s' is used in an inline function with external linkage" id.C.name
  in

  let rec elab env = function

(* 6.5.1 Primary expressions *)

  | VARIABLE s ->
      begin match wrap Env.lookup_ident loc env s with
        | (id, Env.II_ident(sto, ty)) ->
          check_static_var env id sto ty;
          { edesc = EVar id; etyp = ty },env
      | (id, Env.II_enum v) ->
          { edesc = EConst(CEnum(id, v)); etyp = TInt(enum_ikind, []) },env
      end

  | CONSTANT cst ->
      let cst' = elab_constant loc cst in
      { edesc = EConst cst'; etyp = type_of_constant cst' },env

(* 6.5.2 Postfix expressions *)

  | INDEX(a1, a2) ->            (* e1[e2] *)
      let b1,env = elab env a1 in
      let b2,env = elab env a2 in
      let tres =
        match (unroll env b1.etyp, unroll env b2.etyp) with
        | (TPtr(t, _) | TArray(t, _, _)), (TInt _ | TEnum _) -> t
        | (TInt _ | TEnum _), (TPtr(t, _) | TArray(t, _, _)) -> t
        | t1, t2 -> fatal_error "subscripted value is neither an array nor pointer" in
      { edesc = EBinop(Oindex, b1, b2, TPtr(tres, [])); etyp = tres },env

  | MEMBEROF(a1, fieldname) ->
      let b1,env = elab env a1 in
      let (fld, attrs) =
        match unroll env b1.etyp with
        | TStruct(id, attrs) ->
            (wrap Env.find_struct_member loc env (id, fieldname), attrs)
        | TUnion(id, attrs) ->
            (wrap Env.find_union_member loc env (id, fieldname), attrs)
        | _ ->
            fatal_error "request for member '%s' in something not a structure or union" fieldname in
      (* A field of a const/volatile struct or union is itself const/volatile *)
      let rec access = function
         | [] -> b1
         | fld::rest ->
             let b1 = access rest in
             { edesc = EUnop(Odot fld.fld_name, b1);
               etyp = add_attributes_type (List.filter attr_inherited_by_members attrs)
                 (type_of_member env fld) } in
       access fld,env

  | MEMBEROFPTR(a1, fieldname) ->
      let b1,env = elab env a1 in
      let (fld, attrs) =
        match unroll env b1.etyp with
        | TPtr(t, _) | TArray(t,_,_) ->
            begin match unroll env t with
            | TStruct(id, attrs) ->
                (wrap Env.find_struct_member loc env (id, fieldname), attrs)
            | TUnion(id, attrs) ->
                (wrap Env.find_union_member loc env (id, fieldname), attrs)
            | _ ->
                fatal_error "request for member '%s' in something not a structure or union" fieldname
            end
        | _ ->
            fatal_error "member reference type %a is not a pointer" (print_typ env) b1.etyp in
       let rec access =  function
         | [] -> assert false
         | [fld] ->
           { edesc = EUnop(Oarrow fld.fld_name, b1);
               etyp = add_attributes_type (List.filter attr_inherited_by_members attrs)
                (type_of_member env fld) }
         | fld::rest ->
             let b1 = access rest in
             { edesc = EUnop(Odot fld.fld_name, b1);
               etyp = add_attributes_type (List.filter attr_inherited_by_members attrs)
                (type_of_member env fld) } in
            access fld,env

(* Hack to treat vararg.h functions the GCC way.  Helps with testing.
    va_start(ap,n)
      (preprocessing) --> __builtin_va_start(ap, arg)
      (elaboration)   --> __builtin_va_start(ap)
    va_arg(ap, ty)
      (preprocessing) --> __builtin_va_arg(ap, ty)
      (elaboration)   --> __builtin_va_arg(ap, sizeof(ty))
*)
  | CALL((VARIABLE "__builtin_va_start" as a1), args) ->
      if not ctx.ctx_vararg then
        error "'va_start' used in function with fixed args";
      let b1, env = elab env a1 in
      begin match args with
        | [a2; a3] ->
          let b2,env = elab env a2 in
          let _b3,env = elab env a3 in
          { edesc = ECall(b1, [b2]);
            etyp = TVoid [] },env
        | _ -> fatal_error "'__builtin_va_start' expects 2 arguments"
      end

  | BUILTIN_VA_ARG (a2, a3) ->
      let ident =
        match wrap Env.lookup_ident loc env "__builtin_va_arg" with
          | (id, Env.II_ident(sto, ty)) -> { edesc = EVar id; etyp = ty }
          | _ -> assert false
      in
      let b2,env = elab env a2 in
      let b3,env = elab env (TYPE_SIZEOF a3) in
      let ty = match b3.edesc with ESizeof ty -> ty | _ -> assert false in
      let ty' = default_argument_conversion env ty in
      if not (compatible_types AttrIgnoreTop env ty ty') then
        warning Varargs "%a is promoted to %a when passed through '...'. You should pass %a, not %a, to 'va_arg'"
          (print_typ env) ty (print_typ env) ty'  (print_typ env) ty'  (print_typ env) ty;
      { edesc = ECall(ident, [b2; b3]); etyp = ty },env

  | CALL(VARIABLE "__builtin_constant_p", al) ->
      begin match al with
      | [a1] ->
          let b1,env = elab env a1 in
          let v = if Ceval.is_constant_expr env b1 then 1L else 0L in
          intconst v IInt, env
      | _ ->
          fatal_error "'__builtin_constant_p' expects one argument"
      end

  | CALL((VARIABLE "__builtin_sel" as a0), al) ->
      begin match al with
      | [a1; a2; a3] ->
          let b0,env = elab env a0 in
          let b1,env = elab env a1 in
          let b2,env = elab env a2 in
          let b3,env = elab env a3 in
          if not (is_scalar_type env b1.etyp) then
            error "first argument of '__builtin_sel' is not a scalar type (invalid %a)"
               (print_typ env) b1.etyp;
          let tyres =
            match pointer_decay env b2.etyp, pointer_decay env b3.etyp with
            | (TInt _ | TFloat _ | TEnum _), (TInt _ | TFloat _ | TEnum _) ->
                binary_conversion env b2.etyp b3.etyp
            | (TPtr(ty1, a1) as pty1), (TPtr(ty2, a2)  as pty2) ->
                if is_void_type env ty1 || is_void_type env ty2 then
                  TPtr(TVoid (add_attributes a1 a2), [])
                else begin
                  match combine_types AttrIgnoreAll env pty1 pty2 with
                  | None ->
                      warning Pointer_type_mismatch "the second and third arguments of '__builtin_sel' have incompatible pointer types (%a and %a)"
                     (print_typ env) pty1  (print_typ env) pty2;
                     (* tolerance *)
                     TPtr(TVoid (add_attributes a1 a2), [])
                  | Some ty -> ty
                end
            | _, _ ->
                fatal_error "wrong types (%a and %a) for the second and third arguments of '__builtin_sel'"
                  (print_typ env) b2.etyp (print_typ env) b3.etyp

            in
          { edesc = ECall(b0, [b1; b2; b3]); etyp = tyres }, env
      | _ ->
          fatal_error "'__builtin_sel' expect 3 arguments"
      end

  | CALL(a1, al) ->
      let b1,env =
        (* Catch the old-style usage of calling a function without
           having declared it *)
        match a1 with
        | VARIABLE n when not (Env.ident_is_bound env n) ->
            let is_builtin = String.length n > 10
                           && String.sub n 0 10 = "__builtin_" in
            if is_builtin then
              error "use of unknown builtin '%s'" n
            else
              warning Implicit_function_declaration "implicit declaration of function '%s' is invalid in C99" n;
            let ty = TFun(TInt(IInt, []), None, false, []) in
            (* Check against other definitions and enter in env *)
            let (id, sto, env, ty, linkage) =
              enter_or_refine_ident true loc env n Storage_extern ty in
            (* Emit an extern declaration for it *)
            emit_elab ~linkage env loc (Gdecl(sto, id, ty, None));
            { edesc = EVar id; etyp = ty },env
        | _ -> elab env a1 in
      let (bl, env) = mmap elab env al in
      (* Extract type information *)
      let (res, args, vararg) =
        match unroll env b1.etyp with
        | TFun(res, args, vararg, a) -> (res, args, vararg)
        | TPtr(ty, a) ->
            begin match unroll env ty with
            | TFun(res, args, vararg, a) -> (res, args, vararg)
            | _ -> fatal_error "called object type %a is neither a function nor function pointer" (print_typ env) b1.etyp
            end
        | _ -> fatal_error "called object type %a is neither a function nor function pointer" (print_typ env) b1.etyp
      in
      (* Type-check the arguments against the prototype *)
      let bl',env =
        match args with
        | None ->
          List.iter (fun arg ->
              let arg_typ = argument_conversion env arg.etyp in
              if incomplete_type env arg_typ then
                error "argument type %a is incomplete" (print_typ env) arg.etyp;
            ) bl; (bl,env)
        | Some proto -> elab_arguments 1 (bl, env) proto vararg in
      { edesc = ECall(b1, bl'); etyp = res },env

  | UNARY(POSINCR, a1) ->
      elab_pre_post_incr_decr env Opostincr "increment" a1
  | UNARY(POSDECR, a1) ->
      elab_pre_post_incr_decr env Opostdecr "decrement" a1

(* 6.5.4 Cast operators *)

  | CAST ((spec, dcl), SINGLE_INIT a1) ->
      let (ty, env) = elab_type loc env spec dcl in
      let b1,env = elab env a1 in
      if not (wrap2 valid_cast loc env b1.etyp ty) then
        begin match unroll env b1.etyp, unroll env ty with
        | _, (TStruct _|TUnion _ | TVoid _) ->
            error "used type %a where arithmetic or pointer type is required"
              (print_typ env) ty
        | (TStruct _| TUnion _ | TVoid _),_ ->
            error "operand of type %a where arithmetic or pointer type is required"
              (print_typ env) b1.etyp
        | TFloat _, TPtr _  ->
            error "operand of type %a cannot be cast to a pointer type"
              (print_typ env) b1.etyp
        | TPtr _ , TFloat _ ->
            error "pointer cannot be cast to type %a" (print_typ env) ty
        | _ ->
            error "illegal cast from %a to %a" (print_typ env) b1.etyp (print_typ env) ty
        end;
      { edesc = ECast(ty, b1); etyp = ty },env

(* 6.5.2.5 Compound literals *)

  | CAST ((spec, dcl), ie) ->
      let (ty, env) = elab_type loc env spec dcl in
      if not (is_array_type env ty) && incomplete_type env ty then
        fatal_error "ill-formed compound literal with incomplete type %a" (print_typ env) ty;
      begin match elab_initializer loc env "<compound literal>" ty ie with
      | (ty', Some i) -> { edesc = ECompound(ty', i); etyp = ty' },env
      | (ty', None)   -> fatal_error "ill-formed compound literal"
      end

(* 6.5.3 Unary expressions *)

  | EXPR_SIZEOF a1 ->
      let b1,env = elab env a1 in
      if wrap incomplete_type loc env b1.etyp then
        fatal_error "invalid application of 'sizeof' to an incomplete type %a" (print_typ env) b1.etyp;
      if wrap is_bitfield loc env b1 then
        fatal_error "invalid application of 'sizeof' to a bit-field";
      { edesc = ESizeof b1.etyp; etyp = TInt(size_t_ikind(), []) },env

  | TYPE_SIZEOF (spec, dcl) ->
      let (ty, env') = elab_type loc env spec dcl in
      if wrap incomplete_type loc env' ty then
        fatal_error "invalid application of 'sizeof' to an incomplete type %a" (print_typ env) ty;
      { edesc = ESizeof ty; etyp = TInt(size_t_ikind(), []) },env'

  | ALIGNOF (spec, dcl) ->
      let (ty, env') = elab_type loc env spec dcl in
      warning Celeven_extension "'_Alignof' is a C11 extension";
      if wrap incomplete_type loc env' ty then
        fatal_error "invalid application of 'alignof' to an incomplete type %a" (print_typ env) ty;
      { edesc = EAlignof ty; etyp =  TInt(size_t_ikind(), []) },env'

  | BUILTIN_OFFSETOF ((spec,dcl), mem) ->
    let (ty,env) = elab_type loc env spec dcl in
    if  incomplete_type env ty then
      fatal_error "offsetof of incomplete type %a" (print_typ env) ty;
    let members env ty mem =
      match ty with
      | TStruct (id,_) -> wrap Env.find_struct_member loc env (id,mem)
      | TUnion (id,_) -> wrap Env.find_union_member loc env (id,mem)
      | _ -> fatal_error "request for member '%s' in something not a structure or union" mem in
    let rec offset_of_list acc env ty = function
      | [] -> acc,ty
      | fld::rest -> 
        if fld.fld_bitfield <> None then
          fatal_error "cannot compute offset of bit-field '%s'" fld.fld_name;
        let off = offsetof env ty fld in
        offset_of_list (acc+off) env fld.fld_typ rest in
    let offset_of_member (env,off_accu,ty) mem =
      match mem,unroll env ty with
      | INFIELD_INIT mem,ty ->
        let flds = members env ty mem in
        let flds = List.rev flds in
        let off,ty = offset_of_list 0 env ty flds in
        env,off_accu + off,ty
      | ATINDEX_INIT e,TArray (sub_ty,_,_) ->
        let e,env = elab env e in
        let e = match Ceval.integer_expr env e with
          | None -> fatal_error "array element designator is not an integer constant expression"
          | Some n-> n in
        let size = match sizeof env sub_ty with
          | None -> assert false (* We expect only complete types *)
          | Some s -> s in
        let off_accu = match cautious_mul e size with
          | None -> fatal_error "'offsetof' overflows"
          | Some s -> off_accu + s in
        env,off_accu,sub_ty
      | ATINDEX_INIT _,_ -> fatal_error "subscripted value is not an array" in
    let env,offset,_ = List.fold_left offset_of_member (env,0,ty) mem in
    let size_t = size_t_ikind () in
    let offset = Ceval.normalize_int (Int64.of_int offset) size_t in
    let offsetof_const = EConst (CInt(offset,size_t,"")) in
    { edesc = offsetof_const; etyp = TInt(size_t, []) },env

  | UNARY(PLUS, a1) ->
      let b1,env = elab env a1 in
      if not (is_arith_type env b1.etyp) then
        fatal_error "invalid argument type %a to unary '+'" (print_typ env) b1.etyp;
      { edesc = EUnop(Oplus, b1); etyp = unary_conversion env b1.etyp },env

  | UNARY(MINUS, a1) ->
      let b1,env = elab env a1 in
      if not (is_arith_type env b1.etyp) then
        fatal_error "invalid argument type %a to unary '-'" (print_typ env) b1.etyp;
      { edesc = EUnop(Ominus, b1); etyp = unary_conversion env b1.etyp },env

  | UNARY(BNOT, a1) ->
      let b1,env = elab env a1 in
      if not (is_integer_type env b1.etyp) then
        fatal_error "invalid argument type %a to unary '~'" (print_typ env) b1.etyp;
      { edesc = EUnop(Onot, b1); etyp = unary_conversion env b1.etyp },env

  | UNARY(NOT, a1) ->
      let b1,env = elab env a1 in
      if not (is_scalar_type env b1.etyp) then
        fatal_error "invalid argument type %a to unary '!'" (print_typ env) b1.etyp;
      { edesc = EUnop(Olognot, b1); etyp = TInt(IInt, []) },env

  | UNARY(ADDROF, a1) ->
      let b1,env = elab env a1 in
      if not (is_lvalue b1 || is_function_type env b1.etyp) then
        error "argument of '&' is not an lvalue (invalid %a)" (print_typ env) b1.etyp;
      begin match b1.edesc with
      | EVar id ->
          begin match wrap Env.find_ident loc env id with
          | Env.II_ident(Storage_register, _) ->
              error "address of register variable '%s' requested" id.C.name
          | _ -> ()
          end
      | EUnop(Odot f, b2) ->
          let fld = wrap2 field_of_dot_access loc env b2.etyp f in
          if fld.fld_bitfield <> None then
            error "address of bit-field '%s' requested" f
      | EUnop(Oarrow f, b2) ->
          let fld = wrap2 field_of_arrow_access loc env b2.etyp f in
          if fld.fld_bitfield <> None then
            error "address of bit-field '%s' requested" f
      | _ -> ()
      end;
      { edesc = EUnop(Oaddrof, b1); etyp = TPtr(b1.etyp, []) },env

  | UNARY(MEMOF, a1) ->
      let b1,env = elab env a1 in
      begin match unroll env b1.etyp with
      (* '*' applied to a function type has no effect *)
      | TFun _ -> b1,env
      | TPtr(ty, _) | TArray(ty, _, _) ->
          { edesc = EUnop(Oderef, b1); etyp = ty },env
      | _ ->
          fatal_error "argument of unary '*' is not a pointer (%a invalid)"
            (print_typ env) b1.etyp
      end

  | UNARY(PREINCR, a1) ->
      elab_pre_post_incr_decr env Opreincr "increment" a1
  | UNARY(PREDECR, a1) ->
      elab_pre_post_incr_decr env Opredecr "decrement" a1

(* 6.5.5 to 6.5.12  Binary operator expressions *)

  | BINARY(MUL, a1, a2) ->
      elab_binary_arithmetic env "*" Omul a1 a2

  | BINARY(DIV, a1, a2) ->
      elab_binary_arithmetic env "/" Odiv a1 a2

  | BINARY(MOD, a1, a2) ->
      elab_binary_integer env "%" Omod a1 a2

  | BINARY(ADD, a1, a2) ->
      let b1,env = elab env a1 in
      let b2,env = elab env a2 in
      let tyres =
        if is_arith_type env b1.etyp && is_arith_type env b2.etyp then
          binary_conversion env b1.etyp b2.etyp
        else begin
          let ty =
            match unroll env b1.etyp, unroll env b2.etyp with
            | (TPtr(ty, a) | TArray(ty, _, a)), (TInt _ | TEnum _) -> ty
            | (TInt _ | TEnum _), (TPtr(ty, a) | TArray(ty, _, a)) -> ty
            | _, _ -> fatal_error "invalid operands to binary '+' (%a and %a)"
                  (print_typ env) b1.etyp (print_typ env) b2.etyp
          in
          check_ptr_arith env ty "binary '+'";
          TPtr(ty, [])
        end in
      { edesc = EBinop(Oadd, b1, b2, tyres); etyp = tyres },env

  | BINARY(SUB, a1, a2) ->
      let b1,env = elab env a1 in
      let b2,env = elab env a2 in
      let (tyop, tyres) =
        if is_arith_type env b1.etyp && is_arith_type env b2.etyp then begin
          let tyres = binary_conversion env b1.etyp b2.etyp in
          (tyres, tyres)
        end else begin
          match wrap unroll loc env b1.etyp, wrap  unroll loc env b2.etyp with
          | (TPtr(ty, a) | TArray(ty, _, a)), (TInt _ | TEnum _) ->
              check_ptr_arith env ty "binary '-'";
              (TPtr(ty, []), TPtr(ty, []))
          | (TPtr(ty1, a1) | TArray(ty1, _, a1)),
            (TPtr(ty2, a2) | TArray(ty2, _, a2)) ->
              if not (compatible_types AttrIgnoreAll env ty1 ty2) then
                error "%a and %a are not pointers to compatible types"
                   (print_typ env) b1.etyp (print_typ env) b1.etyp;
              check_ptr_arith env ty1 "binary '-'";
              check_ptr_arith env ty2 "binary '-'";
              if wrap sizeof loc env ty1 = Some 0 then
                error "subtraction between two pointers to zero-sized objects";
              (TPtr(ty1, []), TInt(ptrdiff_t_ikind(), []))
          | _, _ ->
              fatal_error "invalid operands to binary '-' (%a and %a)"
                (print_typ env) b1.etyp (print_typ env) b2.etyp
        end in
      { edesc = EBinop(Osub, b1, b2, tyop); etyp = tyres },env

  | BINARY(SHL, a1, a2) ->
      elab_shift env "<<" Oshl a1 a2

  | BINARY(SHR, a1, a2) ->
      elab_shift env ">>" Oshr a1 a2

  | BINARY(EQ, a1, a2) ->
      elab_comparison env Oeq a1 a2
  | BINARY(NE, a1, a2) ->
      elab_comparison env One a1 a2
  | BINARY(LT, a1, a2) ->
      elab_comparison env Olt a1 a2
  | BINARY(GT, a1, a2) ->
      elab_comparison env Ogt a1 a2
  | BINARY(LE, a1, a2) ->
      elab_comparison env Ole a1 a2
  | BINARY(GE, a1, a2) ->
      elab_comparison env Oge a1 a2

  | BINARY(BAND, a1, a2) ->
     elab_binary_integer env "&" Oand a1 a2
  | BINARY(BOR, a1, a2) ->
     elab_binary_integer env "|" Oor a1 a2
  | BINARY(XOR, a1, a2) ->
     elab_binary_integer env "^" Oxor a1 a2

(* 6.5.13 and 6.5.14 Logical operator expressions *)

  | BINARY(AND, a1, a2) ->
      elab_logical_operator env "&&" Ologand a1 a2
  | BINARY(OR, a1, a2) ->
      elab_logical_operator env "||" Ologor a1 a2

(* 6.5.15 Conditional expressions *)
  | QUESTION(a1, a2, a3) ->
      let b1,env = elab env a1 in
      let b2,env = elab env a2 in
      let b3,env = elab env a3 in
      if not (is_scalar_type env b1.etyp) then
        error "first argument of '?:' is not a scalar type (invalid %a)"
           (print_typ env) b1.etyp;
      begin match pointer_decay env b2.etyp, pointer_decay env b3.etyp with
      | (TInt _ | TFloat _ | TEnum _), (TInt _ | TFloat _ | TEnum _) ->
          { edesc = EConditional(b1, b2, b3);
            etyp = binary_conversion env b2.etyp b3.etyp },env
      | (TPtr(ty1, a1) as pty1), (TPtr(ty2, a2)  as pty2) ->
          let tyres =
            if is_void_type env ty1 || is_void_type env ty2 then
              TPtr(TVoid (add_attributes a1 a2), [])
            else
              match combine_types AttrIgnoreAll env
                                  (TPtr(ty1, a1)) (TPtr(ty2, a2)) with
              | None ->
                  warning Pointer_type_mismatch "the second and third argument of '?:' have incompatible pointer types (%a and %a)"
                     (print_typ env) pty1  (print_typ env) pty2;
                  (* tolerance *)
                  TPtr(TVoid (add_attributes a1 a2), [])
              | Some ty -> ty
            in
          { edesc = EConditional(b1, b2, b3); etyp = tyres },env
      | TPtr(ty1, a1), TInt _ when is_literal_0 b3 ->
          { edesc = EConditional(b1, b2, nullconst); etyp = TPtr(ty1, []) },env
      | TInt _, TPtr(ty2, a2) when is_literal_0 b2 ->
          { edesc = EConditional(b1, nullconst, b3); etyp = TPtr(ty2, []) },env
      | ty1, ty2 ->
          match combine_types AttrIgnoreAll env ty1 ty2 with
          | None ->
              fatal_error "the second and third argument of '?:' incompatible types (%a and %a)"
                 (print_typ env) ty1  (print_typ env) ty2
          | Some tyres ->
              { edesc = EConditional(b1, b2, b3); etyp = tyres },env
      end

(* 6.5.16 Assignment expressions *)

  | BINARY(ASSIGN, a1, a2) ->
      let b1,env = elab env a1 in
      let b2,env = elab env a2 in
      if List.mem AConst (attributes_of_type env b1.etyp) then
        error "left-hand side of assignment has 'const' type";
      if not (is_modifiable_lvalue env b1) then
        error "expression is not assignable";
      if not (wrap2 valid_assignment loc env b2 b1.etyp) then begin
        if wrap2 valid_cast loc env b2.etyp b1.etyp then
          if wrap2 int_pointer_conversion loc env b2.etyp b1.etyp then
            warning Int_conversion
              "incompatible integer-pointer conversion: assigning to %a from %a"
              (print_typ env) b1.etyp (print_typ env) b2.etyp
          else
            warning Unnamed
              "incompatible conversion: assigning to %a from %a"
               (print_typ env) b1.etyp (print_typ env) b2.etyp
        else
          error "assigning to %a from incompatible type %a"
            (print_typ env) b1.etyp  (print_typ env) b2.etyp;
      end;
      { edesc = EBinop(Oassign, b1, b2, b1.etyp); etyp = b1.etyp },env

  | BINARY((ADD_ASSIGN | SUB_ASSIGN | MUL_ASSIGN | DIV_ASSIGN | MOD_ASSIGN
            | BAND_ASSIGN | BOR_ASSIGN | XOR_ASSIGN | SHL_ASSIGN | SHR_ASSIGN
            as op), a1, a2) ->
      let (sop, top) =
        match op with
        | ADD_ASSIGN -> (ADD, Oadd_assign)
        | SUB_ASSIGN -> (SUB, Osub_assign)
        | MUL_ASSIGN -> (MUL, Omul_assign)
        | DIV_ASSIGN -> (DIV, Odiv_assign)
        | MOD_ASSIGN -> (MOD, Omod_assign)
        | BAND_ASSIGN -> (BAND, Oand_assign)
        | BOR_ASSIGN -> (BOR, Oor_assign)
        | XOR_ASSIGN -> (XOR, Oxor_assign)
        | SHL_ASSIGN -> (SHL, Oshl_assign)
        | SHR_ASSIGN -> (SHR, Oshr_assign)
        | _ -> assert false in
      begin match elab env (BINARY(sop, a1, a2)) with
      | ({ edesc = EBinop(_, b1, b2, _); etyp = ty } as b),env  ->
          if List.mem AConst (attributes_of_type env b1.etyp) then
            error "left-hand side of assignment has 'const' type";
          if not (is_modifiable_lvalue env b1) then
            error "expression is not assignable";
          if not (wrap2 valid_assignment loc env b b1.etyp) then begin
            if wrap2 valid_cast loc env ty b1.etyp then
              if wrap2 int_pointer_conversion loc env ty b1.etyp then
                warning Int_conversion
                  "incompatible integer-pointer conversion: assigning to %a from %a"
                   (print_typ env) b1.etyp  (print_typ env) ty
              else
                warning Unnamed
                  "incompatible conversion: assigning to %a from %a"
                  (print_typ env) b1.etyp (print_typ env) ty
            else
              error "assigning to %a from incompatible type %a"
                 (print_typ env) b1.etyp (print_typ env) ty;
          end;
          { edesc = EBinop(top, b1, b2, ty); etyp = b1.etyp },env
      | _ -> assert false
      end

(* 6.5.17 Sequential expressions *)

  | BINARY(COMMA, a1, a2) ->
      let b1,env = elab env a1 in
      let b2,env = elab env a2 in
      let  ty2 = pointer_decay env b2.etyp in
      { edesc = EBinop (Ocomma, b1, b2, ty2); etyp = ty2 },env

(* Elaboration of pre- or post- increment/decrement *)
  and elab_pre_post_incr_decr env op msg a1 =
    let b1,env = elab env a1 in
    if not (is_modifiable_lvalue env b1) then
      error "expression is not assignable";
    if not (is_scalar_type env b1.etyp) then
      error "cannot %s value of type %a" msg (print_typ env) b1.etyp;
    begin match unroll env b1.etyp with
    | TPtr (ty, _) | TArray (ty, _ , _) ->
      check_ptr_arith env ty ("unary " ^ msg)
    | _ -> ()
    end;
    { edesc = EUnop(op, b1); etyp = b1.etyp },env

(* Elaboration of binary operators over integers *)
  and elab_binary_integer env msg op a1 a2 =
    let b1,env = elab env a1 in
    let b2,env = elab env a2 in
    if not ((is_integer_type env b1.etyp) && (is_integer_type env b2.etyp)) then
      fatal_error "invalid operands to binary '%s' (%a and %a)" msg
        (print_typ env) b1.etyp (print_typ env) b2.etyp;
    let tyres = binary_conversion env b1.etyp b2.etyp in
    { edesc = EBinop(op, b1, b2, tyres); etyp = tyres },env

(* Elaboration of binary operators over arithmetic types *)
  and elab_binary_arithmetic env msg op a1 a2 =
    let b1,env = elab env a1 in
    let b2,env = elab env a2 in
    if not ((is_arith_type env b1.etyp) && (is_arith_type env b2.etyp)) then
      fatal_error "invalid operands to binary '%s' (%a and %a)" msg
        (print_typ env) b1.etyp (print_typ env) b2.etyp;
    let tyres = binary_conversion env b1.etyp b2.etyp in
    { edesc = EBinop(op, b1, b2, tyres); etyp = tyres },env

(* Elaboration of shift operators *)
  and elab_shift env msg op a1 a2 =
    let b1,env = elab env a1 in
    let b2,env = elab env a2 in
    if not ((is_integer_type env b1.etyp) && (is_integer_type env b2.etyp)) then
      fatal_error "invalid operands to '%s' (%a and %a)" msg
        (print_typ env) b1.etyp (print_typ env) b2.etyp;
    let tyres = unary_conversion env b1.etyp in
    { edesc = EBinop(op, b1, b2, tyres); etyp = tyres },env

(* Elaboration of comparisons *)
  and elab_comparison env op a1 a2 =
      let b1,env = elab env a1 in
      let b2,env = elab env a2 in
      let resdesc =
        match pointer_decay env b1.etyp, pointer_decay env b2.etyp with
        | (TInt _ | TFloat _ | TEnum _), (TInt _ | TFloat _ | TEnum _) ->
            EBinop(op, b1, b2, binary_conversion env b1.etyp b2.etyp)
        | TInt _, TPtr(ty, _) when is_literal_0 b1 ->
            EBinop(op, nullconst, b2, TPtr(ty, []))
        | TPtr(ty, _), TInt _ when is_literal_0 b2 ->
            EBinop(op, b1, nullconst, TPtr(ty, []))
        | TPtr(ty1, _), TPtr(ty2, _)
          when is_void_type env ty1 ->
            EBinop(op, b1, b2, TPtr(ty2, []))
        | TPtr(ty1, _), TPtr(ty2, _)
          when is_void_type env ty2 ->
            EBinop(op, b1, b2, TPtr(ty1, []))
        | TPtr(ty1, _), TPtr(ty2, _) ->
            if not (compatible_types AttrIgnoreAll env ty1 ty2) then
              warning Compare_distinct_pointer_types "comparison of distinct pointer types (%a and %a)"
                (print_typ env) b1.etyp (print_typ env) b2.etyp;
            let incomp_ty1 = wrap incomplete_type loc env ty1
            and incomp_ty2 = wrap incomplete_type loc env ty2 in
            if incomp_ty1 <> incomp_ty2 then
              warning Unnamed "comparison of complete and incomplete pointers";
            EBinop(op, b1, b2, TPtr(ty1, []))
        | TPtr _, (TInt _ | TEnum _)
        | (TInt _ | TEnum _), TPtr _ ->
            warning Unnamed "comparison between pointer and integer (%a and %a)"
              (print_typ env) b1.etyp (print_typ env) b2.etyp;
            EBinop(op, b1, b2, TPtr(TVoid [], []))
        | ty1, ty2 ->
            fatal_error "illegal comparison between types@ %a@ and %a"
              (print_typ env) b1.etyp (print_typ env) b2.etyp; in
      { edesc = resdesc; etyp = TInt(IInt, []) },env

(* Elaboration of && and || *)
  and elab_logical_operator env msg op a1 a2 =
    let b1,env = elab env a1 in
    let b2,env = elab env a2 in
    if not ((is_scalar_type env b1.etyp) && (is_scalar_type env b2.etyp)) then
      fatal_error "invalid operands to binary '%s' (%a and %a)" msg
        (print_typ env) b1.etyp (print_typ env) b2.etyp;
    { edesc = EBinop(op, b1, b2, TInt(IInt, [])); etyp = TInt(IInt, []) },env

(* Type-checking of function arguments *)
  and elab_arguments argno args params vararg =
    match args, params with
    | ([],env), [] -> [],env
    | ([],env), _::_ ->
       let found = argno - 1 in
       let expected = List.length params + found in
       let vararg = if vararg then "at least " else "" in
       error "too few arguments to function call, expected %s%d, have %d" vararg expected found; [],env
   | (_::_,env), [] ->
        if vararg
        then args
        else
          let expected = argno - 1 in
          let found = List.length (fst args) + expected in
          (error "too many arguments to function call, expected %d, have %d" expected found; args)
    | (arg1 :: argl,env), (_, ty_p) :: paraml ->
        let ty_a = argument_conversion env arg1.etyp in
        if not (wrap2 valid_assignment loc env {arg1 with etyp = ty_a} ty_p)
        then begin
          if wrap2 valid_cast loc env ty_a ty_p then begin
            if wrap2 int_pointer_conversion loc env ty_a ty_p then
              warning Int_conversion
                "incompatible integer-pointer conversion: passing %a to parameter %d of type %a"
                (print_typ env) ty_a argno (print_typ env) ty_p
            else
              warning Unnamed
                "incompatible conversion: passing %a to parameter %d of type %a"
                (print_typ env) ty_a argno (print_typ env) ty_p end
          else
            error
              "passing %a to parameter %d of incompatible type %a"
              (print_typ env) ty_a argno (print_typ env) ty_p
        end;
        let rest,env = elab_arguments (argno + 1) (argl,env) paraml vararg in
        arg1 :: rest,env
  in elab env a

(* Filling in forward declaration *)
let _ = elab_expr_f := (elab_expr ctx_constexp)

let elab_opt_expr ctx loc env = function
  | None -> None,env
  | Some a -> let a,env = (elab_expr ctx loc env a) in
    Some a,env

let elab_for_expr ctx loc env = function
  | None -> { sdesc = Sskip; sloc = elab_loc loc },env
  | Some a -> let a,env = elab_expr ctx loc env a in
    { sdesc = Sdo a; sloc = elab_loc loc },env

(* Handling of __func__ (section 6.4.2.2) *)

let __func__type_and_init s =
  (TArray(TInt(IChar, [AConst]), Some(Int64.of_int (String.length s + 1)), []),
   init_char_array_string None s)


(* Elaboration of top-level and local definitions *)

let enter_typedef loc env sto (s, ty, init) =
  if init <> NO_INIT then
    error loc "initializer in typedef";
  if has_std_alignas env ty then
    error loc "alignment specified for typedef '%s'" s;
  List.iter
    (fun a -> match class_of_attribute a with
       | Attr_object | Attr_struct ->
         error loc "attribute '%s' not allowed in 'typedef'"
           (name_of_attribute a)
       | _ -> ())
    (attributes_of_type_no_expand ty);
  match previous_def Env.lookup_typedef env s with
  | Some (s',ty') when Env.in_current_scope env s' ->
    if equal_types env ty ty' then begin
      warning loc Celeven_extension "redefinition of typedef '%s' is a C11 extension" s;
      env
    end
    else begin
      error loc "redefinition of typedef '%s' with different type (%a vs %a)"
        s (print_typ env) ty (print_typ env) ty';
      env
    end
  | _ ->
    if redef Env.lookup_ident env s then
      error loc "redefinition of '%s' as different kind of symbol" s;
    let (id, env') = Env.enter_typedef env s ty in
    check_reduced_alignment loc env' ty;
    emit_elab env loc (Gtypedef(id, ty));
    env'

let enter_decdef local nonstatic_inline loc sto (decls, env) (s, ty, init) =
  let isfun = is_function_type env ty in
  let has_init = init <> NO_INIT in
  if sto = Storage_register && has_std_alignas env ty then
    error loc "alignment specified for 'register' object '%s'" s;
  if sto = Storage_extern && has_init then
    error loc "'extern' declaration variable has an initializer";
  if local && isfun then begin
    match sto with
    | Storage_static ->
      error loc "function declared in block scope cannot have 'static' storage class"
    | Storage_auto | Storage_register ->
      error loc "illegal storage class %s on function"
        (name_of_storage_class sto)
    | _ -> ()
  end;
  if is_qualified_array ty then
    error loc "type qualifier used in array declarator outside of function prototype";
  (* Local variable declarations with default storage are treated as 'auto'.
     Local function declarations with default storage remain with
     default storage. *)
  let sto1 =
    if local && sto = Storage_default && not isfun
    then Storage_auto
    else sto in
  (* enter ident in environment with declared type, because
     initializer can refer to the ident *)
  let (id, sto', env1, ty, linkage) =
    enter_or_refine_ident local loc env s sto1 ty in
  if has_init && not local then
    add_global_define loc s;
  (* check if the type is void or incomplete and the declaration is initialized *)
  if not isfun then begin
    let incomplete_init = not (is_array_type env1 ty) && wrap incomplete_type loc env1 ty && has_init in
    if is_void_type env1 ty || incomplete_init then
      fatal_error loc "variable '%s' has incomplete type %a" s (print_typ env) ty;
  end;
  (* process the initializer *)
  let (ty', init') = elab_initializer loc env1 s ty init in
  (* update environment with refined type *)
  let env2 = Env.add_ident env1 id sto' ty' in
  (* check for incomplete type *)
  if not isfun && wrap incomplete_type loc env ty' then
    if not local && sto' = Storage_static then begin
      warning loc Tentative_incomplete_static "tentative static definition with incomplete type";
    end
    else if local && sto' <> Storage_extern then
      error loc "variable '%s' has incomplete type %a" s (print_typ env) ty';
  (* check if alignment is reduced *)
  check_reduced_alignment loc env ty';
  (* check for static variables in nonstatic inline functions *)
  if local && nonstatic_inline
     && sto' = Storage_static
     && not (List.mem AConst (attributes_of_type env ty')) then
    warning loc Static_in_inline "non-constant static local variable '%s' in inline function may be different in different files" s;
  if local && not isfun && sto' <> Storage_extern && sto' <> Storage_static then
    (* Local definition *)
    ((sto', id, ty', init') :: decls, env2)
  else begin
    (* Global definition *)
    emit_elab ~linkage env2 loc (Gdecl(sto', id, ty', init'));
    (* Make sure the initializer is constant. *)
    begin match init' with
      | Some i when not (Ceval.is_constant_init env2 i) ->
        error loc "initializer is not a compile-time constant"
      | _ -> ()
    end;
    (decls, env2)
  end

(* Processing of K&R-style function definitions.  Synopsis:
      T f(X1, ..., Xn)
          T1 Y1; ...; Tm Ym;
      { ... }
  "params" is the list [X1; ...; Xn]
  "defs" is the list of declarations [T1 Y1; ... Tm Ym]
  We need to match the names Xi's with the Yj's so as to find the types Ti'
  of the Xi and produce a typed argument list in prototyped style.
  Owing to default argument promotion, the types Ti' and Tj may not match,
  in which case we need to declare a local variable with the correct type.
  Consider:
      float f(x)  float x;  { return x; }
  Since float arguments are promoted by default to double, this must
  be converted as
      float f(double x)  { float x1 = x; return x1; }
*)

let elab_KR_function_parameters env params defs loc =
  (* Check that the parameters have unique names *)
  List.iter (fun id ->
    if List.length (List.filter ((=) id) params) > 1 then
      fatal_error loc "redefinition of parameter '%s'" id)
    params;
  (* Check that the declarations only declare parameters *)
  let extract_name (Init_name(Name(s, dty, attrs, loc') as name, ie)) =
    if not (List.mem s params) then
      error loc' "declaration of '%s' which is not a function parameter" s;
    if ie <> NO_INIT then
      error loc' "illegal initialization of parameter '%s'" s;
    name
  in
  (* Extract names and types from the declarations *)
  let elab_param_def env = function
  | DECDEF((spec', name_init_list), loc') ->
      let name_list = List.map extract_name name_init_list in
      if name_list = [] then
        error loc' "declaration does not declare a parameter";
      let (paramsenv, sto) = elab_name_group loc' env (spec', name_list) in
      if sto <> Storage_default && sto <> Storage_register then
        error loc'                               (* NB: 'auto' not allowed *)
           "invalid storage class %s for function parameter"
           (name_of_storage_class sto);
      paramsenv
  | d -> (* Should never be produced by the parser *)
      fatal_error (Cabshelper.get_definitionloc d)
                      "illegal declaration of function parameter" in
  let kr_params_defs,paramsenv =
    let params,paramsenv = mmap elab_param_def env defs in
    List.concat params,paramsenv in
  (* Find the type of a parameter *)
  let type_of_param param =
    match List.filter (fun (p, _) -> p = param) kr_params_defs with
    | [] ->
        (* Parameter is not declared, defaults to "int" in ISO C90,
           is an error in ISO C99.  Just emit a warning. *)
        warning loc Implicit_int "type of '%s' defaults to 'int'" param;
        TInt (IInt, [])
    | (_, ty) :: rem ->
        if rem <> [] then
          error loc "redefinition of parameter '%s'" param;
        ty in
  (* Match parameters against declarations *)
  let rec match_params params' extra_decls = function
    | [] ->
        (List.rev params', List.rev extra_decls)
    | p :: ps ->
        let ty = type_of_param p in
        let ty_var = argument_conversion env ty
        and ty_param = default_argument_conversion env ty in
        if compatible_types AttrIgnoreTop env ty_var ty_param then begin
          (* No need for an extra conversion *)
          let id = Env.fresh_ident p in
          match_params ((id, ty_var) :: params') extra_decls ps
        end else begin
          (* Local variable of type ty_var is to be initialized from
             the parameter of type ty_param *)
          let id_param = Env.fresh_ident p in
          let id_var = Env.fresh_ident p in
          let init = Init_single { edesc = EVar id_param; etyp = ty_param } in
          match_params ((id_param, ty_param) :: params')
                       ((Storage_default, id_var, ty_var, Some init)
                                                           :: extra_decls)
                       ps
        end
  in
  let a,b = match_params [] [] params in
  a,b,paramsenv


(* Look for varargs flag in previous definitions of a function *)

let inherit_vararg env s sto ty =
  match previous_def Env.lookup_ident env s with
  | Some(id, Env.II_ident(_, old_ty))
    when sto = Storage_extern || Env.in_current_scope env id ->
    begin
      match old_ty, ty with
      | TFun(_, _, true, _), TFun(_, _, _, _) -> true
      | _, _ -> false
    end
  | _ -> false


(* Function definitions *)

let elab_fundef genv spec name defs body loc =
  (* We maintain two environments:
     - genv is the "global", file-scope environment.  It is enriched
       with the declaration of the function, and also with
       structs and unions defined as part of its return type.
     - lenv is the "local" environment used to elaborate the function body.
       It contains everything that genv contains, including
       a declaration for the function, so as to support recursive calls.
       In addition, it contains declarations for function parameters
       and structs and unions defined in the parameter list. *)
  let (fun_id, sto, inline, noret, ty, kr_params, genv, lenv) =
    elab_fundef_name genv spec name in
  if Env.is_builtin fun_id.C.name then
    error loc "definition of builtin function '%s'" fun_id.C.name;
  let s = fun_id.C.name in
  if sto = Storage_auto || sto = Storage_register then
    fatal_error loc "invalid storage class %s on function"
                    (name_of_storage_class sto);
  begin match kr_params, defs with
  | None, d::_ ->
    error (Cabshelper.get_definitionloc d)
      "old-style parameter declarations in prototyped function definition"
  | _ -> ()
  end;
  (* Process the parameters and the K&R declarations, if any, to obtain:
      - [ty]: the full, prototyped type of the function
      - [extra_decls]: extra declarations to be inserted at the
        beginning of the function
      - [lenv]: a first cut at the local environment, containing in particular
        the structs and unions defined in the parameter list. *)
  let (ty, extra_decls, lenv) =
    match ty, kr_params with
    | TFun(ty_ret, None, vararg, attr), None ->
        (TFun(ty_ret, Some [], vararg, attr), [], lenv)
    | ty, None ->
        (ty, [], lenv)
    | TFun(ty_ret, None, false, attr), Some params ->
        warning loc CompCert_conformance "non-prototype, pre-standard function definition, converting to prototype form";
        let (params', extra_decls, lenv) =
          elab_KR_function_parameters lenv params defs loc in
        (TFun(ty_ret, Some params', inherit_vararg genv s sto ty, attr), extra_decls, lenv)
    | _, Some params ->
        assert false
  in
  (* Extract infos from the type of the function.
     Checks on the return type must be done in the global environment. *)
  let (ty_ret, params, vararg, attr) =
    match ty with
    | TFun(ty_ret, Some params, vararg, attr) ->
         if has_std_alignas genv ty then
           error loc "alignment specified for function '%s'" s;
         if wrap incomplete_type loc genv ty_ret && not (is_void_type genv ty_ret) then
           fatal_error loc "incomplete result type %a in function definition"
             (print_typ genv) ty_ret;
        (ty_ret, params, vararg, attr)
    | _ -> fatal_error loc "wrong type for function definition" in
  (* Enter function in the global environment *)
  let (fun_id, sto1, genv, new_ty, _) =
    enter_or_refine_function loc genv fun_id sto ty in
  add_global_define loc s;
  (* Also enter it in the local environment, for recursive references *)
  let lenv = Env.add_ident lenv fun_id sto new_ty in
  (* Take into account attributes from previous declarations of the function *)
  let attr = attributes_of_type genv new_ty in
  (* Additional checks on function parameters. They should have a complete type
     and additionally they should have an identifier. In both cases a fatal
     error is raised in order to avoid problems at later places. *)
  let add_param env (id, ty) =
    if id.C.name = "" then
      fatal_error loc "parameter name omitted";
    if wrap incomplete_type loc env ty then
      fatal_error loc "parameter '%s' has incomplete type %a" id.C.name (print_typ env) ty;
    Env.add_ident env id Storage_default ty
  in
  (* Enter parameters and extra declarations in the local environment.
     For K&R functions this hasn't been done yet.
     For prototyped functions this has been done by [elab_fundef_name]
     already, but some parameter may have been shadowed by the
     function name, while it should be the other way around, e.g.
     [int f(int f) { return f+1; }], with [f] referring to the
     parameter [f] and not to the function [f] within the body of the
     function. *)
  let lenv =
    List.fold_left add_param lenv params in
  let lenv =
    List.fold_left (fun e (sto, id, ty, init) -> Env.add_ident e id sto ty)
                   lenv extra_decls in
  (* Define "__func__" and enter it in the local environment *)
  let (func_ty, func_init) = __func__type_and_init s in
  let (func_id, _, lenv, func_ty, _) =
    enter_or_refine_ident true loc lenv "__func__" Storage_static func_ty in
  emit_elab ~debuginfo:false lenv loc
                  (Gdecl(Storage_static, func_id, func_ty, Some func_init));
  (* Elaborate function body *)
  let body1 = !elab_funbody_f ty_ret vararg (inline && sto <> Storage_static)
                              lenv body in
  (* Analyse it for returns *)
  let (can_return, can_fallthrough) = Cflow.function_returns lenv body1 in
  (* Special treatment of the "main" function. *)
  let body2 =
    if s = "main" then begin
      if inline then
        error loc "'main' is not allowed to be declared inline";
      if noret then
        warning loc Unnamed "'main' is not allowed to be declared _Noreturn";
      match unroll genv ty_ret with
      | TInt(IInt, []) ->
          (* Add implicit "return 0;" at end of function body.
             If we trusted the return analysis, we would do this only if
             this control point is reachable, i.e if can_fallthrough is true. *)
          sseq no_loc body1
               {sdesc = Sreturn(Some(intconst 0L IInt)); sloc = no_loc}
      | _ ->
          warning loc Main_return_type "return type of 'main' should be 'int'";
          body1
    end else begin
      (* For non-"main" functions, warn if the body can fall through
         and the return type is not "void". *)
      if can_fallthrough && not (is_void_type genv ty_ret) then
        warning loc Return_type "control reaches end of non-void function";
      body1
    end in
  (* Add the extra declarations if any *)
  let body3 =
    if extra_decls = [] then body2 else begin
      let mkdecl d = { sdesc = Sdecl d; sloc = no_loc } in
      { sdesc = Sblock (List.map mkdecl extra_decls @ [body2]);
        sloc = no_loc }
    end in
  (* Handling of _Noreturn and of attribute("noreturn") *)
  if noret then
    warning loc Celeven_extension "_Noreturn functions are a C11 extension";
  if (noret || find_custom_attributes ["noreturn"; "__noreturn__"] attr <> [])
  && can_return then
    warning loc Invalid_noreturn "function '%s' declared 'noreturn' should not return" s;
  (* Build and emit function definition *)
  let fn =
    { fd_storage = sto1;
      fd_inline = inline;
      fd_name = fun_id;
      fd_attrib = if noret then add_attributes [Attr("noreturn",[])] attr
                           else attr;
      fd_ret = ty_ret;
      fd_params = params;
      fd_vararg = vararg;
      fd_locals = [];
      fd_body = body3 } in
  emit_elab ~linkage:true genv loc (Gfundef fn);
  genv

(* Definitions *)
let elab_decdef (for_loop: bool) (local: bool) (nonstatic_inline: bool)
                (env: Env.t) ((spec, namelist): Cabs.init_name_group)
                (loc: Cabs.loc) : decl list * Env.t =
  let (sto, inl, noret, tydef, bty, env') =
    elab_specifier ~only:(namelist=[]) loc env spec in
  (* Sanity checks on storage class *)
  if tydef then begin
    if sto <> Storage_default then
      error loc "non-default storage class on 'typedef' definition";
    if namelist = [] then
      warning loc Missing_declarations "typedef requires a name";
  end else begin
    if (sto = Storage_auto || sto = Storage_register) && not local then
      fatal_error loc "illegal storage class %s on file-scoped variable"
        (name_of_storage_class sto);
    if sto <> Storage_default && namelist = [] then
      warning loc Missing_declarations "declaration does not declare anything";
  end;
  let elab_one_name (decls, env) (Init_name (Name (id, decl, attr, loc), init)) =
    let ((ty, _), env1) =
      elab_type_declarator loc env bty decl in
    let a = elab_attributes env attr in
    let has_fun_typ = is_function_type env ty in
    if for_loop && (has_fun_typ || sto = Storage_extern || sto = Storage_static || tydef) then
      error loc "declaration of non-local variable in 'for' loop" ;
    if has_fun_typ then begin
      if noret then
        warning loc Celeven_extension "_Noreturn functions are a C11 extension";
    end else begin
      if inl then
        error loc "'inline' can only appear on functions";
      if noret then
        error loc "'_Noreturn' can only appear on functions";
    end;
    let a' = if noret then add_attributes [Attr ("noreturn", [])] a else a in
    if has_std_alignas env ty && has_fun_typ then
      error loc "alignment specified for function '%s'" id;
    let decl = (id, add_attributes_type a' ty, init) in
    if tydef then
      (decls, enter_typedef loc env1 sto decl)
    else
      enter_decdef local nonstatic_inline loc sto (decls, env1) decl
  in
  let (decls, env') = List.fold_left elab_one_name ([],env') namelist in
  (List.rev decls, env')

let elab_definition (for_loop: bool) (local: bool) (nonstatic_inline: bool)
                    (env: Env.t) (def: Cabs.definition)
                    : decl list * Env.t =
  match def with
  (* "int f(int x) { ... }" *)
  (* "int f(x, y) double y; { ... }" *)
  | FUNDEF(spec, name, defs, body, loc) ->
      (* This should actually never be triggered, catched by pre-parser *)
      if local then error loc "function definition is not allowed here";
      let env1 = elab_fundef env spec name defs body loc in
      ([], env1)

  (* "int x = 12, y[10], *z" *)
  | DECDEF(init_name_group, loc) ->
    elab_decdef for_loop local nonstatic_inline env init_name_group loc

  (* pragma *)
  | PRAGMA(s, loc) ->
      if local then
        warning loc Unnamed "pragmas are ignored inside functions"
      else
        emit_elab env loc (Gpragma s);
      ([], env)

  (* static assertion *)
  | STATIC_ASSERT(exp, loc_exp, msg, loc_msg, loc) ->
      elab_static_assert env exp loc_exp msg loc_msg loc;
      ([], env)

(* Extended asm *)

let elab_asm_operand ctx loc env (ASMOPERAND(label, wide, chars, e)) =
  let s = elab_simple_string loc wide chars in
  let e',env = elab_expr ctx loc env e in
  (label, s, e'),env


(* Operations over contexts *)

let stmt_labels stmt =
  let lbls = ref StringSet.empty in
  let rec do_stmt = function
  | BLOCK(b, _) -> do_block b
  | If(_, s1, Some s2, _) -> do_stmt s1; do_stmt s2
  | If(_, s1, None, _) -> do_stmt s1
  | WHILE(_, s1, _) -> do_stmt s1
  | DOWHILE(_, s1, _) -> do_stmt s1
  | FOR(_, _, _, s1, _) -> do_stmt s1
  | SWITCH(_, s1, _) -> do_stmt s1
  | CASE(_, s1, _) -> do_stmt s1
  | DEFAULT(s1, _) -> do_stmt s1
  | LABEL(lbl, s1, loc) ->
      if StringSet.mem lbl !lbls then
        error loc "redefinition of label '%s'\n" lbl;
      lbls := StringSet.add lbl !lbls;
      do_stmt s1
  | _ -> ()
  and do_block b = List.iter do_stmt b
  in do_stmt stmt; !lbls

let ctx_loop ctx = { ctx with ctx_break = true; ctx_continue = true }

let ctx_switch ctx = { ctx with ctx_break = true; ctx_in_switch = true }

(* Check the uniqueness of 'case' and 'default' in a 'switch' *)

module Int64Set = Set.Make(Int64)

let check_switch_cases switch_body =
  let cases = ref Int64Set.empty
  and default = ref false in
  let rec check s =
    match s.sdesc with
    | Sskip -> ()
    | Sdo _ -> ()
    | Sseq(s1, s2) -> check s1; check s2
    | Sif(_, s1, s2) -> check s1; check s2
    | Swhile(_, s1) -> check s1
    | Sdowhile(s1, _) -> check s1
    | Sfor(s1, _, s2, s3) -> check s1; check s2; check s3
    | Sbreak -> ()
    | Scontinue -> ()
    | Sswitch(_, _) -> () (* already checked during elaboration of this switch *)
    | Slabeled(lbl, s1) ->
        begin match lbl with
        | Slabel _ -> ()
        | Scase(_, n) ->
            if Int64Set.mem n !cases then
              Diagnostics.error s.sloc "duplicate case value '%Ld'" n
            else
              cases := Int64Set.add n !cases
        | Sdefault ->
            if !default then
              Diagnostics.error s.sloc "multiple default labels in one switch"
            else
              default := true
        end;
        check s1
    | Sgoto _ -> ()
    | Sreturn _ -> ()
    | Sblock sl -> List.iter check sl
    | Sdecl _ -> ()
    | Sasm _ -> ()
  in check switch_body

(* Elaboration of statements *)

let rec elab_stmt env ctx s =

  match s with

(* 6.8.3 Expression statements *)

  | COMPUTATION(a, loc) ->
      let a,env =  elab_expr ctx loc env a in
      { sdesc = Sdo a; sloc = elab_loc loc },env

(* 6.8.1 Labeled statements *)

  | LABEL(lbl, s1, loc) ->
      let s1,env = elab_stmt env ctx s1 in
      { sdesc = Slabeled(Slabel lbl, s1); sloc = elab_loc loc },env

  | CASE(a, s1, loc) ->
      if not ctx.ctx_in_switch then
        error loc "'case' statement not in switch statement";
      let a',env = elab_expr ctx loc env a in
      let n =
        match Ceval.integer_expr env a' with
        | None ->
            error loc "expression of 'case' label is not an integer constant expression"; 0L
        | Some n -> n in
      let s1,env = elab_stmt env ctx s1 in
      { sdesc = Slabeled(Scase(a', n), s1); sloc = elab_loc loc },env

  | DEFAULT(s1, loc) ->
      if not ctx.ctx_in_switch then
        error loc "'case' statement not in switch statement";
      let s1,env = elab_stmt env ctx s1 in
      { sdesc = Slabeled(Sdefault, s1); sloc = elab_loc loc },env

(* 6.8.2 Compound statements *)

  | BLOCK(b, loc) ->
      elab_block loc env ctx b

(* 6.8.4 Conditional statements *)

  | If(a, s1, s2, loc) ->
      let a',env' = elab_expr ctx loc (Env.new_scope env) a in
      if not (is_scalar_type env' a'.etyp) then
        error loc "controlling expression of 'if' does not have scalar type (%a invalid)"
          (print_typ env') a'.etyp;
      let s1' = elab_stmt_new_scope env' ctx s1 in
      let s2' =
        match s2 with
          | None -> sskip
          | Some s2 -> elab_stmt_new_scope env' ctx s2
      in
      { sdesc = Sif(a', s1', s2'); sloc = elab_loc loc },env

(* 6.8.5 Iterative statements *)

  | WHILE(a, s1, loc) ->
      let a',env' = elab_expr ctx loc (Env.new_scope env) a in
      if not (is_scalar_type env' a'.etyp) then
        error loc "controlling expression of 'while' does not have scalar type (%a invalid)"
          (print_typ env') a'.etyp;
      let s1' = elab_stmt_new_scope env' (ctx_loop ctx) s1 in
      { sdesc = Swhile(a', s1'); sloc = elab_loc loc },env

  | DOWHILE(a, s1, loc) ->
      let s1' = elab_stmt_new_scope env (ctx_loop ctx) s1 in
      let a',env' = elab_expr ctx loc (Env.new_scope env) a in
      if not (is_scalar_type env' a'.etyp) then
        error loc "controlling expression of 'while' does not have scalar type (%a invalid)"
          (print_typ env') a'.etyp;
      { sdesc = Sdowhile(s1', a'); sloc = elab_loc loc },env

  | FOR(fc, a2, a3, s1, loc) ->
      let env' = Env.new_scope env in
      let (a1', env_decls, decls') =
        match fc with
        | Some (FC_EXP a1) ->
            let a1,env = elab_for_expr ctx loc env' (Some a1) in
            (a1, env, None)
        | None ->
            let a1,env = elab_for_expr ctx loc env' None in
            (a1, env, None)
        | Some (FC_DECL def) ->
            let (dcl, env') = elab_definition true true ctx.ctx_nonstatic_inline
                                              env' def in
            let loc = elab_loc (Cabshelper.get_definitionloc def) in
            (sskip, env',
             Some(List.map (fun d -> {sdesc = Sdecl d; sloc = loc}) dcl)) in
      let a2',env_test =
        match a2 with
          | None -> intconst 1L IInt,env_decls
          | Some a2 -> elab_expr ctx loc env_decls a2
      in
      if not (is_scalar_type env_test a2'.etyp) then
        error loc "controlling expression of 'for' does not have scalar type (%a invalid)" (print_typ env) a2'.etyp;
      let a3',env_for = elab_for_expr ctx loc env_test a3 in
      let s1' = elab_stmt_new_scope env_for (ctx_loop ctx) s1 in
      let sfor = { sdesc = Sfor(a1', a2', a3', s1'); sloc = elab_loc loc } in
      begin match decls' with
      | None -> sfor,env
      | Some sl -> { sdesc = Sblock (sl @ [sfor]); sloc = elab_loc loc },env
      end

(* 6.8.4 Switch statement *)
  | SWITCH(a, s1, loc) ->
      let a',env' = elab_expr ctx loc (Env.new_scope env) a in
      if not (is_integer_type env' a'.etyp) then
        error loc "controlling expression of 'switch' does not have integer type (%a invalid)"
          (print_typ env') a'.etyp;
      let s1' = elab_stmt_new_scope env' (ctx_switch ctx) s1 in
      check_switch_cases s1';
      { sdesc = Sswitch(a', s1'); sloc = elab_loc loc },env

(* 6.8.6 Break and continue statements *)
  | BREAK loc ->
      if not ctx.ctx_break then
        error loc "'break' statement not in loop or switch statement";
      { sdesc = Sbreak; sloc = elab_loc loc },env
  | CONTINUE loc ->
      if not ctx.ctx_continue then
        error loc "'continue' statement not in loop statement";
      { sdesc = Scontinue; sloc = elab_loc loc },env

(* 6.8.6 Return statements *)
  | RETURN(a, loc) ->
      let a',env = elab_opt_expr ctx loc env a in
      begin match (unroll env ctx.ctx_return_typ, a') with
      | TVoid _, None -> ()
      | TVoid _, Some _ ->
          error loc
            "'return' with a value in a function returning void"
      | _, None ->
          warning loc Return_type
            "'return' with no value, in a function returning non-void"
      | _, Some b ->
          if not (wrap2 valid_assignment loc env b ctx.ctx_return_typ)
          then begin
            if wrap2 valid_cast loc env b.etyp ctx.ctx_return_typ then
              if wrap2 int_pointer_conversion loc env b.etyp ctx.ctx_return_typ then
                warning loc Int_conversion
                  "incompatible integer-pointer conversion: returning %a from a function with result type %a"
                  (print_typ env) b.etyp (print_typ env) ctx.ctx_return_typ
              else
                warning loc Unnamed
                  "incompatible conversion: returning %a from a function with result type %a"
                  (print_typ env) b.etyp (print_typ env) ctx.ctx_return_typ
            else
              error loc
                "returning %a from a function with incompatible result type %a"
                (print_typ env) b.etyp (print_typ env) ctx.ctx_return_typ
          end
      end;
      { sdesc = Sreturn a'; sloc = elab_loc loc },env

(* 6.8.6 Goto statements *)
  | GOTO(lbl, loc) ->
      if not (StringSet.mem lbl ctx.ctx_labels) then
        error loc "use of undeclared label '%s'" lbl;
      { sdesc = Sgoto lbl; sloc = elab_loc loc },env

(* 6.8.3 Null statements *)
  | NOP loc ->
      { sdesc = Sskip; sloc = elab_loc loc },env

(* Traditional extensions *)
  | ASM(cv_specs, wide, chars, outputs, inputs, flags, loc) ->
      let a = elab_cvspecs env cv_specs in
      let s = elab_simple_string loc wide chars in
      let outputs,env = mmap (elab_asm_operand ctx loc) env outputs in
      List.iter
        (fun (lbl, cst, e) ->
           if not (is_modifiable_lvalue env e) then
             error loc "asm output is not a modifiable l-value";)
        outputs;
      let inputs ,env= mmap (elab_asm_operand ctx loc) env inputs in
      let flags = List.map (fun (w,c) -> elab_simple_string loc w c) flags in
      { sdesc = Sasm(a, s, outputs, inputs, flags);
        sloc = elab_loc loc },env

(* Unsupported *)
  | DEFINITION def ->
      error (Cabshelper.get_definitionloc def) "ill-placed definition";
      sskip,env
(* Elaborate a statement as a block whose scope is a strict subset of the scope
   of its enclosing block. *)
and elab_stmt_new_scope env ctx s =
  fst (elab_stmt (Env.new_scope env) ctx s)

and elab_block loc env ctx b =
  let b',_ = elab_block_body (Env.new_scope env) ctx b in
  { sdesc = Sblock b'; sloc = elab_loc loc },env

and elab_block_body env ctx sl =
  match sl with
  | [] ->
      [],env
  | DEFINITION def :: sl1 ->
      let (dcl, env') =
        elab_definition false true ctx.ctx_nonstatic_inline env def in
      let loc = elab_loc (Cabshelper.get_definitionloc def) in
      let dcl = List.map (fun ((sto,id,ty,_) as d) ->
        Debug.insert_local_declaration sto id ty loc;
        {sdesc = Sdecl d; sloc = loc}) dcl in
      let sl1',env' = elab_block_body env' ctx sl1 in
      dcl @ sl1',env'
  | s :: sl1 ->
      let s',env = elab_stmt env ctx s in
      let sl1',env = elab_block_body env ctx sl1 in
      s' :: sl1',env

(* Elaboration of a function body.  Return the corresponding C statement. *)

let elab_funbody return_typ vararg nonstatic_inline env b =
  let ctx =
    { ctx_return_typ = return_typ;
      ctx_labels = stmt_labels b;
      ctx_break = false;
      ctx_continue = false;
      ctx_in_switch = false;
      ctx_vararg = vararg;
      ctx_nonstatic_inline = nonstatic_inline } in
  (* The function body appears as a block in the AST but should not create
     a new scope.  Instead, the scope used for function parameters must be
     used for the body. *)
  match b with
  | BLOCK (b,loc) ->
      let b',_ = elab_block_body env ctx b in
      { sdesc = Sblock b'; sloc = elab_loc loc }
  | _ ->
      assert false

(* Filling in forward declaration *)
let _ = elab_funbody_f := elab_funbody


(** * Entry point *)

let elab_file prog =
  reset();
  let env = Env.initial () in
  let elab_def env d = snd (elab_definition false false false env d) in
  ignore (List.fold_left elab_def env prog);
  let p = elaborated_program () in
  Checks.unused_variables p;
  Checks.unknown_attrs_program p;
  Checks.non_linear_conditional p;
  p