aboutsummaryrefslogtreecommitdiffstats
path: root/driver/Compiler.vexpand
blob: 7503d3ed297105bf9b93885dcd19dd15d8648a79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** The whole compiler and its proof of semantic preservation *)

(** Libraries. *)
Require Import String.
Require Import Coqlib Errors.
Require Import AST Linking Smallstep.
(** Languages (syntax and semantics). *)
Require Ctypes Csyntax Csem Cstrategy Cexec.
Require Clight.
Require Csharpminor.
Require Cminor.
Require CminorSel.
Require RTL.
Require LTL.
Require Linear.
Require Mach.
Require Asm.
(** Translation passes. *)
Require Initializers.
Require SimplExpr.
Require SimplLocals.
Require Cshmgen.
Require Cminorgen.
Require Selection.
Require RTLgen.
Require Import Duplicatepasses.
EXPAND_RTL_REQUIRE
Require Asmgen.
(** Proofs of semantic preservation. *)
Require SimplExprproof.
Require SimplLocalsproof.
Require Cshmgenproof.
Require Cminorgenproof.
Require Selectionproof.
Require RTLgenproof.
EXPAND_RTL_REQUIRE_PROOF
Require Import Asmgenproof.
(** Command-line flags. *)
Require Import Compopts.

(** Pretty-printers (defined in Caml). *)
Parameter print_Clight: Clight.program -> unit.
Parameter print_Cminor: Cminor.program -> unit.
Parameter print_RTL: Z -> RTL.program -> unit.
Parameter print_LTL: Z -> LTL.program -> unit.
Parameter print_Mach: Mach.program -> unit.

Local Open Scope string_scope.

(** * Composing the translation passes *)

(** We first define useful monadic composition operators,
    along with funny (but convenient) notations. *)

Definition apply_total (A B: Type) (x: res A) (f: A -> B) : res B :=
  match x with Error msg => Error msg | OK x1 => OK (f x1) end.

Definition apply_partial (A B: Type)
                         (x: res A) (f: A -> res B) : res B :=
  match x with Error msg => Error msg | OK x1 => f x1 end.

Notation "a @@@ b" :=
   (apply_partial _ _ a b) (at level 50, left associativity).
Notation "a @@ b" :=
   (apply_total _ _ a b) (at level 50, left associativity).

Definition print {A: Type} (printer: A -> unit) (prog: A) : A :=
  let unused := printer prog in prog.

Definition time {A B: Type} (name: string) (f: A -> B) : A -> B := f.

Definition total_if {A: Type}
          (flag: unit -> bool) (f: A -> A) (prog: A) : A :=
  if flag tt then f prog else prog.

Definition partial_if {A: Type}
          (flag: unit -> bool) (f: A -> res A) (prog: A) : res A :=
  if flag tt then f prog else OK prog.

(** We define three translation functions for whole programs: one
  starting with a C program, one with a Cminor program, one with an
  RTL program.  The three translations produce Asm programs ready for
  pretty-printing and assembling. *)

Definition transf_rtl_program (f: RTL.program) : res Asm.program :=
   OK f
   @@ print (print_RTL 0)
EXPAND_RTL_TRANSF_PROGRAM
  @@@ time "Total Mach->Asm generation" Asmgen.transf_program.
   
Definition transf_cminor_program (p: Cminor.program) : res Asm.program :=
   OK p
   @@ print print_Cminor
  @@@ time "Instruction selection" Selection.sel_program
  @@@ time "RTL generation" RTLgen.transl_program
  @@@ transf_rtl_program.

Definition transf_clight_program (p: Clight.program) : res Asm.program :=
  OK p
   @@ print print_Clight
  @@@ time "Simplification of locals" SimplLocals.transf_program
  @@@ time "C#minor generation" Cshmgen.transl_program
  @@@ time "Cminor generation" Cminorgen.transl_program
  @@@ transf_cminor_program.

Definition transf_c_program (p: Csyntax.program) : res Asm.program :=
  OK p
  @@@ time "Clight generation" SimplExpr.transl_program
  @@@ transf_clight_program.

(** Force [Initializers] and [Cexec] to be extracted as well. *)

Definition transl_init := Initializers.transl_init.
Definition cexec_do_step := Cexec.do_step.

(** The following lemmas help reason over compositions of passes. *)

Lemma print_identity:
  forall (A: Type) (printer: A -> unit) (prog: A),
  print printer prog = prog.
Proof.
  intros; unfold print. destruct (printer prog); auto.
Qed.

Lemma compose_print_identity:
  forall (A: Type) (x: res A) (f: A -> unit),
  x @@ print f = x.
Proof.
  intros. destruct x; simpl. rewrite print_identity. auto. auto.
Qed.

(** * Relational specification of compilation *)

Definition match_if {A: Type} (flag: unit -> bool) (R: A -> A -> Prop): A -> A -> Prop :=
  if flag tt then R else eq.

Lemma total_if_match:
  forall (A: Type) (flag: unit -> bool) (f: A -> A) (rel: A -> A -> Prop) (prog: A),
  (forall p, rel p (f p)) ->
  match_if flag rel prog (total_if flag f prog).
Proof.
  intros. unfold match_if, total_if. destruct (flag tt); auto.
Qed.

Lemma partial_if_match:
  forall (A: Type) (flag: unit -> bool) (f: A -> res A) (rel: A -> A -> Prop) (prog tprog: A),
  (forall p tp, f p = OK tp -> rel p tp) ->
  partial_if flag f prog = OK tprog ->
  match_if flag rel prog tprog.
Proof.
  intros. unfold match_if, partial_if in *. destruct (flag tt). auto. congruence.
Qed.

Global Instance TransfIfLink {A: Type} {LA: Linker A}
                      (flag: unit -> bool) (transf: A -> A -> Prop) (TL: TransfLink transf)
                      : TransfLink (match_if flag transf).
Proof.
  unfold match_if. destruct (flag tt).
- auto.
- red; intros. subst tp1 tp2. exists p; auto.
Qed.

(** This is the list of compilation passes of CompCert in relational style.
  Each pass is characterized by a [match_prog] relation between its
  input code and its output code.  The [mkpass] and [:::] combinators,
  defined in module [Linking], ensure that the passes are composable
  (the output language of a pass is the input language of the next pass)
  and that they commute with linking (property [TransfLink], inferred
  by the type class mechanism of Coq). *)

Local Open Scope linking_scope.

Definition CompCert's_passes :=
      mkpass SimplExprproof.match_prog
  ::: mkpass SimplLocalsproof.match_prog
  ::: mkpass Cshmgenproof.match_prog
  ::: mkpass Cminorgenproof.match_prog
  ::: mkpass Selectionproof.match_prog
  ::: mkpass RTLgenproof.match_prog
EXPAND_RTL_MKPASS
  ::: mkpass Asmgenproof.match_prog
  ::: pass_nil _.

(** Composing the [match_prog] relations above, we obtain the relation
  between CompCert C sources and Asm code that characterize CompCert's
  compilation. *)

Definition match_prog: Csyntax.program -> Asm.program -> Prop :=
  pass_match (compose_passes CompCert's_passes).

(** The [transf_c_program] function, when successful, produces
  assembly code that is in the [match_prog] relation with the source C program. *)

Theorem transf_c_program_match:
  forall p tp,
  transf_c_program p = OK tp ->
  match_prog p tp.
Proof.
  intros p tp T.
  unfold transf_c_program, time in T. cbn in T.
  destruct (SimplExpr.transl_program p) as [p1|e] eqn:P1; cbn in T; try discriminate.
  unfold transf_clight_program, time in T. rewrite ! compose_print_identity in T. cbn in T.
  destruct (SimplLocals.transf_program p1) as [p2|e] eqn:P2; cbn in T; try discriminate.
  destruct (Cshmgen.transl_program p2) as [p3|e] eqn:P3; cbn in T; try discriminate.
  destruct (Cminorgen.transl_program p3) as [p4|e] eqn:P4; cbn in T; try discriminate.
  unfold transf_cminor_program, time in T. rewrite ! compose_print_identity in T. cbn in T.
  destruct (Selection.sel_program p4) as [p5|e] eqn:P5; cbn in T; try discriminate.
  destruct (RTLgen.transl_program p5) as [p6|e] eqn:P6; cbn in T; try discriminate.
  unfold transf_rtl_program, time in T. rewrite ! compose_print_identity in T.
  cbn in T.
EXPAND_RTL_PROOF
  unfold match_prog; simpl.
  exists p1; split. apply SimplExprproof.transf_program_match; auto.
  exists p2; split. apply SimplLocalsproof.match_transf_program; auto.
  exists p3; split. apply Cshmgenproof.transf_program_match; auto.
  exists p4; split. apply Cminorgenproof.transf_program_match; auto.
  exists p5; split. apply Selectionproof.transf_program_match; auto.
  exists p6; split. apply RTLgenproof.transf_program_match; auto.
EXPAND_RTL_PROOF2
  exists tp; split. apply Asmgenproof.transf_program_match; auto.
  reflexivity.
Qed.

(** * Semantic preservation *)

(** We now prove that the whole CompCert compiler (as characterized by the
  [match_prog] relation) preserves semantics by constructing
  the following simulations:
- Forward simulations from [Cstrategy] to [Asm]
  (composition of the forward simulations for each pass).
- Backward simulations for the same languages
  (derived from the forward simulation, using receptiveness of the source
  language and determinacy of [Asm]).
- Backward simulation from [Csem] to [Asm]
  (composition of two backward simulations).
*)

Remark forward_simulation_identity:
  forall sem, forward_simulation sem sem.
Proof.
  intros. apply forward_simulation_step with (fun s1 s2 => s2 = s1); intros.
- auto.
- exists s1; auto.
- subst s2; auto.
- subst s2. exists s1'; auto.
Qed.

Lemma match_if_simulation:
  forall (A: Type) (sem: A -> semantics) (flag: unit -> bool) (transf: A -> A -> Prop) (prog tprog: A),
  match_if flag transf prog tprog ->
  (forall p tp, transf p tp -> forward_simulation (sem p) (sem tp)) ->
  forward_simulation (sem prog) (sem tprog).
Proof.
  intros. unfold match_if in *. destruct (flag tt). eauto. subst. apply forward_simulation_identity.
Qed.

Theorem cstrategy_semantic_preservation:
  forall p tp,
  match_prog p tp ->
  forward_simulation (Cstrategy.semantics p) (Asm.semantics tp)
  /\ backward_simulation (atomic (Cstrategy.semantics p)) (Asm.semantics tp).
Proof.
  intros p tp M. unfold match_prog, pass_match in M; simpl in M.
Ltac DestructM :=
  match goal with
    [ H: exists p, _ /\ _ |- _ ] =>
      let p := fresh "p" in let M := fresh "M" in let MM := fresh "MM" in
      destruct H as (p & M & MM); clear H
  end.
  repeat DestructM. subst tp.
  assert (F: forward_simulation (Cstrategy.semantics p)
EXPAND_ASM_SEMANTICS
         ).
  {
  eapply compose_forward_simulations.
    eapply SimplExprproof.transl_program_correct; eassumption.
  eapply compose_forward_simulations.
    eapply SimplLocalsproof.transf_program_correct; eassumption.
  eapply compose_forward_simulations.
    eapply Cshmgenproof.transl_program_correct; eassumption.
  eapply compose_forward_simulations.
    eapply Cminorgenproof.transl_program_correct; eassumption.
  eapply compose_forward_simulations.
    eapply Selectionproof.transf_program_correct; eassumption.
  eapply compose_forward_simulations.
    eapply RTLgenproof.transf_program_correct; eassumption.
EXPAND_RTL_FORWARD_SIMULATIONS
  eapply compose_forward_simulations.
    eapply RTLtoBTLproof.transf_program_correct; eassumption.
  eapply compose_forward_simulations.
    eapply BTL_Schedulerproof.transf_program_correct; eassumption.
  eapply compose_forward_simulations.
    eapply BTLtoRTLproof.transf_program_correct; eassumption.
  eapply compose_forward_simulations.
    eapply Allocationproof.transf_program_correct; eassumption.
  eapply compose_forward_simulations.
    eapply LTLTunnelingproof.transf_program_correct; eassumption.
  eapply compose_forward_simulations.
    eapply Linearizeproof.transf_program_correct; eassumption.
  eapply compose_forward_simulations.
    eapply CleanupLabelsproof.transf_program_correct; eassumption.
  eapply compose_forward_simulations.
    eapply match_if_simulation. eassumption. exact Debugvarproof.transf_program_correct.
  eapply compose_forward_simulations.
    eapply Stackingproof.transf_program_correct with (return_address_offset := Asmgenproof0.return_address_offset).
    exact Asmgenproof.return_address_exists.
    eassumption.
  eapply Asmgenproof.transf_program_correct; eassumption.
  }
  split. auto.
  apply forward_to_backward_simulation.
  apply factor_forward_simulation. auto. eapply sd_traces. eapply Asm.semantics_determinate.
  apply atomic_receptive. apply Cstrategy.semantics_strongly_receptive.
  apply Asm.semantics_determinate.
Qed.

Theorem c_semantic_preservation:
  forall p tp,
  match_prog p tp ->
  backward_simulation (Csem.semantics p) (Asm.semantics tp).
Proof.
  intros.
  apply compose_backward_simulation with (atomic (Cstrategy.semantics p)).
  eapply sd_traces; eapply Asm.semantics_determinate.
  apply factor_backward_simulation.
  apply Cstrategy.strategy_simulation.
  apply Csem.semantics_single_events.
  eapply ssr_well_behaved; eapply Cstrategy.semantics_strongly_receptive.
  exact (proj2 (cstrategy_semantic_preservation _ _ H)).
Qed.

(** * Correctness of the CompCert compiler *)

(** Combining the results above, we obtain semantic preservation for two
  usage scenarios of CompCert: compilation of a single monolithic program,
  and separate compilation of multiple source files followed by linking.

  In the monolithic case, we have a whole C program [p] that is
  compiled in one run of CompCert to a whole Asm program [tp].
  Then, [tp] preserves the semantics of [p], in the sense that there
  exists a backward simulation of the dynamic semantics of [p]
  by the dynamic semantics of [tp]. *)

Theorem transf_c_program_correct:
  forall p tp,
  transf_c_program p = OK tp ->
  backward_simulation (Csem.semantics p) (Asm.semantics tp).
Proof.
  intros. apply c_semantic_preservation. apply transf_c_program_match; auto.
Qed.

(** Here is the separate compilation case.  Consider a nonempty list [c_units]
  of C source files (compilation units), [C1 ,,, Cn].  Assume that every
  C compilation unit [Ci] is successfully compiled by CompCert, obtaining
  an Asm compilation unit [Ai].  Let [asm_unit] be the nonempty list
  [A1 ... An].  Further assume that the C units [C1 ... Cn] can be linked
  together to produce a whole C program [c_program].  Then, the generated
  Asm units can be linked together, producing a whole Asm program
  [asm_program].  Moreover, [asm_program] preserves the semantics of
  [c_program], in the sense that there exists a backward simulation of
  the dynamic semantics of [asm_program] by the dynamic semantics of [c_program].
*)

Theorem separate_transf_c_program_correct:
  forall c_units asm_units c_program,
  nlist_forall2 (fun cu tcu => transf_c_program cu = OK tcu) c_units asm_units ->
  link_list c_units = Some c_program ->
  exists asm_program,
      link_list asm_units = Some asm_program
   /\ backward_simulation (Csem.semantics c_program) (Asm.semantics asm_program).
Proof.
  intros.
  assert (nlist_forall2 match_prog c_units asm_units).
  { eapply nlist_forall2_imply. eauto. simpl; intros. apply transf_c_program_match; auto. }
  assert (exists asm_program, link_list asm_units = Some asm_program /\ match_prog c_program asm_program).
  { eapply link_list_compose_passes; eauto. }
  destruct H2 as (asm_program & P & Q).
  exists asm_program; split; auto. apply c_semantic_preservation; auto.
Qed.