aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/Prop/Fprop_plus_error.v
blob: 9bb5aee8fc50f37d2a9596297e3f3c99ed15eebb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2010-2013 Sylvie Boldo
#<br />#
Copyright (C) 2010-2013 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

(** * Error of the rounded-to-nearest addition is representable. *)

Require Import Psatz.
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_float_prop.
Require Import Fcore_generic_fmt.
Require Import Fcore_FIX.
Require Import Fcore_FLX.
Require Import Fcore_FLT.
Require Import Fcore_ulp.
Require Import Fcalc_ops.


Section Fprop_plus_error.

Variable beta : radix.
Notation bpow e := (bpow beta e).

Variable fexp : Z -> Z.
Context { valid_exp : Valid_exp fexp }.

Section round_repr_same_exp.

Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.

Theorem round_repr_same_exp :
  forall m e,
  exists m',
  round beta fexp rnd (F2R (Float beta m e)) = F2R (Float beta m' e).
Proof with auto with typeclass_instances.
intros m e.
set (e' := canonic_exp beta fexp (F2R (Float beta m e))).
unfold round, scaled_mantissa. fold e'.
destruct (Zle_or_lt e' e) as [He|He].
exists m.
unfold F2R at 2. simpl.
rewrite Rmult_assoc, <- bpow_plus.
rewrite <- Z2R_Zpower. 2: omega.
rewrite <- Z2R_mult, Zrnd_Z2R...
unfold F2R. simpl.
rewrite Z2R_mult.
rewrite Rmult_assoc.
rewrite Z2R_Zpower. 2: omega.
rewrite <- bpow_plus.
apply (f_equal (fun v => Z2R m * bpow v)%R).
ring.
exists ((rnd (Z2R m * bpow (e - e'))) * Zpower beta (e' - e))%Z.
unfold F2R. simpl.
rewrite Z2R_mult.
rewrite Z2R_Zpower. 2: omega.
rewrite 2!Rmult_assoc.
rewrite <- 2!bpow_plus.
apply (f_equal (fun v => _ * bpow v)%R).
ring.
Qed.

End round_repr_same_exp.

Context { monotone_exp : Monotone_exp fexp }.
Notation format := (generic_format beta fexp).

Variable choice : Z -> bool.

Lemma plus_error_aux :
  forall x y,
  (canonic_exp beta fexp x <= canonic_exp beta fexp y)%Z ->
  format x -> format y ->
  format (round beta fexp (Znearest choice) (x + y) - (x + y))%R.
Proof.
intros x y.
set (ex := canonic_exp beta fexp x).
set (ey := canonic_exp beta fexp y).
intros He Hx Hy.
destruct (Req_dec (round beta fexp (Znearest choice) (x + y) - (x + y)) R0) as [H0|H0].
rewrite H0.
apply generic_format_0.
set (mx := Ztrunc (scaled_mantissa beta fexp x)).
set (my := Ztrunc (scaled_mantissa beta fexp y)).
(* *)
assert (Hxy: (x + y)%R = F2R (Float beta (mx + my * beta ^ (ey - ex)) ex)).
rewrite Hx, Hy.
fold mx my ex ey.
rewrite <- F2R_plus.
unfold Fplus. simpl.
now rewrite Zle_imp_le_bool with (1 := He).
(* *)
rewrite Hxy.
destruct (round_repr_same_exp (Znearest choice) (mx + my * beta ^ (ey - ex)) ex) as (mxy, Hxy').
rewrite Hxy'.
assert (H: (F2R (Float beta mxy ex) - F2R (Float beta (mx + my * beta ^ (ey - ex)) ex))%R =
  F2R (Float beta (mxy - (mx + my * beta ^ (ey - ex))) ex)).
now rewrite <- F2R_minus, Fminus_same_exp.
rewrite H.
apply generic_format_F2R.
intros _.
apply monotone_exp.
rewrite <- H, <- Hxy', <- Hxy.
apply ln_beta_le_abs.
exact H0.
pattern x at 3 ; replace x with (-(y - (x + y)))%R by ring.
rewrite Rabs_Ropp.
now apply (round_N_pt beta _ choice (x + y)).
Qed.

(** Error of the addition *)
Theorem plus_error :
  forall x y,
  format x -> format y ->
  format (round beta fexp (Znearest choice) (x + y) - (x + y))%R.
Proof.
intros x y Hx Hy.
destruct (Zle_or_lt (canonic_exp beta fexp x) (canonic_exp beta fexp y)).
now apply plus_error_aux.
rewrite Rplus_comm.
apply plus_error_aux ; try easy.
now apply Zlt_le_weak.
Qed.

End Fprop_plus_error.

Section Fprop_plus_zero.

Variable beta : radix.
Notation bpow e := (bpow beta e).

Variable fexp : Z -> Z.
Context { valid_exp : Valid_exp fexp }.
Context { exp_not_FTZ : Exp_not_FTZ fexp }.
Notation format := (generic_format beta fexp).

Section round_plus_eq_zero_aux.

Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.

Lemma round_plus_eq_zero_aux :
  forall x y,
  (canonic_exp beta fexp x <= canonic_exp beta fexp y)%Z ->
  format x -> format y ->
  (0 <= x + y)%R ->
  round beta fexp rnd (x + y) = 0%R ->
  (x + y = 0)%R.
Proof with auto with typeclass_instances.
intros x y He Hx Hy Hp Hxy.
destruct (Req_dec (x + y) 0) as [H0|H0].
exact H0.
destruct (ln_beta beta (x + y)) as (exy, Hexy).
simpl.
specialize (Hexy H0).
destruct (Zle_or_lt exy (fexp exy)) as [He'|He'].
(* . *)
assert (H: (x + y)%R = F2R (Float beta (Ztrunc (x * bpow (- fexp exy)) +
  Ztrunc (y * bpow (- fexp exy))) (fexp exy))).
rewrite (subnormal_exponent beta fexp exy x He' Hx) at 1.
rewrite (subnormal_exponent beta fexp exy y He' Hy) at 1.
now rewrite <- F2R_plus, Fplus_same_exp.
rewrite H in Hxy.
rewrite round_generic in Hxy...
now rewrite <- H in Hxy.
apply generic_format_F2R.
intros _.
rewrite <- H.
unfold canonic_exp.
rewrite ln_beta_unique with (1 := Hexy).
apply Zle_refl.
(* . *)
elim Rle_not_lt with (1 := round_le beta _ rnd _ _ (proj1 Hexy)).
rewrite (Rabs_pos_eq _ Hp).
rewrite Hxy.
rewrite round_generic...
apply bpow_gt_0.
apply generic_format_bpow.
apply Zlt_succ_le.
now rewrite (Zsucc_pred exy) in He'.
Qed.

End round_plus_eq_zero_aux.

Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.

(** rnd(x+y)=0 -> x+y = 0 provided this is not a FTZ format *)
Theorem round_plus_eq_zero :
  forall x y,
  format x -> format y ->
  round beta fexp rnd (x + y) = 0%R ->
  (x + y = 0)%R.
Proof with auto with typeclass_instances.
intros x y Hx Hy.
destruct (Rle_or_lt 0 (x + y)) as [H1|H1].
(* . *)
revert H1.
destruct (Zle_or_lt (canonic_exp beta fexp x) (canonic_exp beta fexp y)) as [H2|H2].
now apply round_plus_eq_zero_aux.
rewrite Rplus_comm.
apply round_plus_eq_zero_aux ; try easy.
now apply Zlt_le_weak.
(* . *)
revert H1.
rewrite <- (Ropp_involutive (x + y)), Ropp_plus_distr, <- Ropp_0.
intros H1.
rewrite round_opp.
intros Hxy.
apply f_equal.
cut (round beta fexp (Zrnd_opp rnd) (- x + - y) = 0)%R.
cut (0 <= -x + -y)%R.
destruct (Zle_or_lt (canonic_exp beta fexp (-x)) (canonic_exp beta fexp (-y))) as [H2|H2].
apply round_plus_eq_zero_aux ; try apply generic_format_opp...
rewrite Rplus_comm.
apply round_plus_eq_zero_aux ; try apply generic_format_opp...
now apply Zlt_le_weak.
apply Rlt_le.
now apply Ropp_lt_cancel.
rewrite <- (Ropp_involutive (round _ _ _ _)).
rewrite Hxy.
apply Ropp_involutive.
Qed.

End Fprop_plus_zero.

Section Fprop_plus_FLT.
Variable beta : radix.

Notation bpow e := (bpow beta e).

Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.

Theorem FLT_format_plus_small: forall x y,
  generic_format beta (FLT_exp emin prec) x ->
  generic_format beta (FLT_exp emin prec) y ->
   (Rabs (x+y) <= bpow (prec+emin))%R ->
    generic_format beta (FLT_exp emin prec) (x+y).
Proof with auto with typeclass_instances.
intros x y Fx Fy H.
apply generic_format_FLT_FIX...
rewrite Zplus_comm; assumption.
apply generic_format_FIX_FLT, FIX_format_generic in Fx.
apply generic_format_FIX_FLT, FIX_format_generic in Fy.
destruct Fx as (nx,(H1x,H2x)).
destruct Fy as (ny,(H1y,H2y)).
apply generic_format_FIX.
exists (Float beta (Fnum nx+Fnum ny)%Z emin).
split;[idtac|reflexivity].
rewrite H1x,H1y; unfold F2R; simpl.
rewrite H2x, H2y.
rewrite Z2R_plus; ring.
Qed.

End Fprop_plus_FLT.

Section Fprop_plus_mult_ulp.

Variable beta : radix.
Notation bpow e := (bpow beta e).

Variable fexp : Z -> Z.
Context { valid_exp : Valid_exp fexp }.
Context { monotone_exp : Monotone_exp fexp }.
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.

Notation format := (generic_format beta fexp).
Notation cexp := (canonic_exp beta fexp).

Lemma ex_shift :
  forall x e, format x -> (e <= cexp x)%Z ->
  exists m, (x = Z2R m * bpow e)%R.
Proof with auto with typeclass_instances.
intros x e Fx He.
exists (Ztrunc (scaled_mantissa beta fexp x)*Zpower beta (cexp x -e))%Z.
rewrite Fx at 1; unfold F2R; simpl.
rewrite Z2R_mult, Rmult_assoc.
f_equal.
rewrite Z2R_Zpower.
2: omega.
rewrite <- bpow_plus; f_equal; ring.
Qed.

Lemma ln_beta_minus1 :
  forall z, z <> 0%R ->
  (ln_beta beta z - 1)%Z = ln_beta beta (z / Z2R beta).
Proof.
intros z Hz.
unfold Zminus.
rewrite <- ln_beta_mult_bpow with (1 := Hz).
now rewrite bpow_opp, bpow_1.
Qed.

Theorem round_plus_mult_ulp :
  forall x y, format x -> format y -> (x <> 0)%R ->
  exists m, (round beta fexp rnd (x+y) = Z2R m * ulp beta fexp (x/Z2R beta))%R.
Proof with auto with typeclass_instances.
intros x y Fx Fy Zx.
case (Zle_or_lt (ln_beta beta (x/Z2R beta)) (ln_beta beta y)); intros H1.
pose (e:=cexp (x / Z2R beta)).
destruct (ex_shift x e) as (nx, Hnx); try exact Fx.
apply monotone_exp.
rewrite <- (ln_beta_minus1 x Zx); omega.
destruct (ex_shift y e) as (ny, Hny); try assumption.
apply monotone_exp...
destruct (round_repr_same_exp beta fexp rnd (nx+ny) e) as (n,Hn).
exists n.
apply trans_eq with (F2R (Float beta n e)).
rewrite <- Hn; f_equal.
rewrite Hnx, Hny; unfold F2R; simpl; rewrite Z2R_plus; ring.
unfold F2R; simpl.
rewrite ulp_neq_0; try easy.
apply Rmult_integral_contrapositive_currified; try assumption.
apply Rinv_neq_0_compat.
apply Rgt_not_eq.
apply radix_pos.
(* *)
destruct (ex_shift (round beta fexp rnd (x + y)) (cexp (x/Z2R beta))) as (n,Hn).
apply generic_format_round...
apply Zle_trans with (cexp (x+y)).
apply monotone_exp.
rewrite <- ln_beta_minus1 by easy.
rewrite <- (ln_beta_abs beta (x+y)).
(* . *)
assert (U: (Rabs (x+y) = Rabs x + Rabs y)%R \/ (y <> 0 /\ Rabs (x+y) = Rabs x - Rabs y)%R).
assert (V: forall x y, (Rabs y <= Rabs x)%R ->
   (Rabs (x+y) = Rabs x + Rabs y)%R \/ (y <> 0 /\ Rabs (x+y) = Rabs x - Rabs y)%R).
clear; intros x y.
case (Rle_or_lt 0 y); intros Hy.
case Hy; intros Hy'.
case (Rle_or_lt 0 x); intros Hx.
intros _; rewrite (Rabs_pos_eq y) by easy.
rewrite (Rabs_pos_eq x) by easy.
left; apply Rabs_pos_eq.
now apply Rplus_le_le_0_compat.
rewrite (Rabs_pos_eq y) by easy.
rewrite (Rabs_left x) by easy.
intros H; right; split.
now apply Rgt_not_eq.
rewrite Rabs_left1.
ring.
apply Rplus_le_reg_l with (-x)%R; ring_simplify; assumption.
intros _; left.
now rewrite <- Hy', Rabs_R0, 2!Rplus_0_r.
case (Rle_or_lt 0 x); intros Hx.
rewrite (Rabs_left y) by easy.
rewrite (Rabs_pos_eq x) by easy.
intros H; right; split.
now apply Rlt_not_eq.
rewrite Rabs_pos_eq.
ring.
apply Rplus_le_reg_l with (-y)%R; ring_simplify; assumption.
intros _; left.
rewrite (Rabs_left y) by easy.
rewrite (Rabs_left x) by easy.
rewrite Rabs_left1.
ring.
lra.
apply V; left.
apply ln_beta_lt_pos with beta.
now apply Rabs_pos_lt.
rewrite <- ln_beta_minus1 in H1; try assumption.
rewrite 2!ln_beta_abs; omega.
(* . *)
destruct U as [U|U].
rewrite U; apply Zle_trans with (ln_beta beta x).
omega.
rewrite <- ln_beta_abs.
apply ln_beta_le.
now apply Rabs_pos_lt.
apply Rplus_le_reg_l with (-Rabs x)%R; ring_simplify.
apply Rabs_pos.
destruct U as (U',U); rewrite U.
rewrite <- ln_beta_abs.
apply ln_beta_minus_lb.
now apply Rabs_pos_lt.
now apply Rabs_pos_lt.
rewrite 2!ln_beta_abs.
assert (ln_beta beta y < ln_beta beta x - 1)%Z.
now rewrite (ln_beta_minus1 x Zx).
omega.
apply canonic_exp_round_ge...
intros K.
apply round_plus_eq_zero in K...
contradict H1; apply Zle_not_lt.
rewrite <- (ln_beta_minus1 x Zx).
replace y with (-x)%R.
rewrite ln_beta_opp; omega.
lra.
exists n.
rewrite ulp_neq_0.
assumption.
apply Rmult_integral_contrapositive_currified; try assumption.
apply Rinv_neq_0_compat.
apply Rgt_not_eq.
apply radix_pos.
Qed.

Context {exp_not_FTZ : Exp_not_FTZ fexp}.

Theorem round_plus_ge_ulp :
  forall x y, format x -> format y ->
  round beta fexp rnd (x+y) = 0%R \/
  (ulp beta fexp (x/Z2R beta) <= Rabs (round beta fexp rnd (x+y)))%R.
Proof with auto with typeclass_instances.
intros x y Fx Fy.
case (Req_dec x 0); intros Zx.
(* *)
rewrite Zx, Rplus_0_l.
rewrite round_generic...
unfold Rdiv; rewrite Rmult_0_l.
rewrite Fy at 2.
unfold F2R; simpl; rewrite Rabs_mult.
rewrite (Rabs_pos_eq (bpow _)) by apply bpow_ge_0.
case (Z.eq_dec (Ztrunc (scaled_mantissa beta fexp y)) 0); intros Hm.
left.
rewrite Fy, Hm; unfold F2R; simpl; ring.
right.
apply Rle_trans with (1*bpow (cexp y))%R.
rewrite Rmult_1_l.
rewrite <- ulp_neq_0.
apply ulp_ge_ulp_0...
intros K; apply Hm.
rewrite K, scaled_mantissa_0.
apply (Ztrunc_Z2R 0).
apply Rmult_le_compat_r.
apply bpow_ge_0.
rewrite <- Z2R_abs.
apply (Z2R_le 1).
apply (Zlt_le_succ 0).
now apply Z.abs_pos.
(* *)
destruct (round_plus_mult_ulp x y Fx Fy Zx) as (m,Hm).
case (Z.eq_dec m 0); intros Zm.
left.
rewrite Hm, Zm; simpl; ring.
right.
rewrite Hm, Rabs_mult.
rewrite (Rabs_pos_eq (ulp _ _ _)) by apply ulp_ge_0.
apply Rle_trans with (1*ulp beta fexp (x/Z2R beta))%R.
right; ring.
apply Rmult_le_compat_r.
apply ulp_ge_0.
rewrite <- Z2R_abs.
apply (Z2R_le 1).
apply (Zlt_le_succ 0).
now apply Z.abs_pos.
Qed.

End Fprop_plus_mult_ulp.

Section Fprop_plus_ge_ulp.

Variable beta : radix.
Notation bpow e := (bpow beta e).

Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.

Theorem round_plus_ge_ulp_FLT : forall x y e,
  generic_format beta (FLT_exp emin prec) x -> generic_format beta (FLT_exp emin prec) y ->
  (bpow e <= Rabs x)%R ->
  round beta (FLT_exp emin prec) rnd (x+y) = 0%R \/
  (bpow (e - prec) <= Rabs (round beta (FLT_exp emin prec) rnd (x+y)))%R.
Proof with auto with typeclass_instances.
intros x y e Fx Fy He.
assert (Zx: x <> 0%R).
  contradict He.
  apply Rlt_not_le; rewrite He, Rabs_R0.
  apply bpow_gt_0.
case round_plus_ge_ulp with beta (FLT_exp emin prec) rnd x y...
intros H; right.
apply Rle_trans with (2:=H).
rewrite ulp_neq_0.
unfold canonic_exp.
rewrite <- ln_beta_minus1 by easy.
unfold FLT_exp; apply bpow_le.
apply Zle_trans with (2:=Z.le_max_l _ _).
destruct (ln_beta beta x) as (n,Hn); simpl.
assert (e < n)%Z; try omega.
apply lt_bpow with beta.
apply Rle_lt_trans with (1:=He).
now apply Hn.
apply Rmult_integral_contrapositive_currified; try assumption.
apply Rinv_neq_0_compat.
apply Rgt_not_eq.
apply radix_pos.
Qed.

Theorem round_plus_ge_ulp_FLX : forall x y e,
  generic_format beta (FLX_exp prec) x -> generic_format beta (FLX_exp prec) y ->
  (bpow e <= Rabs x)%R ->
  round beta (FLX_exp prec) rnd (x+y) = 0%R \/
  (bpow (e - prec) <= Rabs (round beta (FLX_exp prec) rnd (x+y)))%R.
Proof with auto with typeclass_instances.
intros x y e Fx Fy He.
assert (Zx: x <> 0%R).
  contradict He.
  apply Rlt_not_le; rewrite He, Rabs_R0.
  apply bpow_gt_0.
case round_plus_ge_ulp with beta (FLX_exp prec) rnd x y...
intros H; right.
apply Rle_trans with (2:=H).
rewrite ulp_neq_0.
unfold canonic_exp.
rewrite <- ln_beta_minus1 by easy.
unfold FLX_exp; apply bpow_le.
destruct (ln_beta beta x) as (n,Hn); simpl.
assert (e < n)%Z; try omega.
apply lt_bpow with beta.
apply Rle_lt_trans with (1:=He).
now apply Hn.
apply Rmult_integral_contrapositive_currified; try assumption.
apply Rinv_neq_0_compat.
apply Rgt_not_eq.
apply radix_pos.
Qed.

End Fprop_plus_ge_ulp.