aboutsummaryrefslogtreecommitdiffstats
path: root/kvx/Asmblockgenproof.v
blob: 6e3029d803344181dc4a286688a91beec829135f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
(* *************************************************************)
(*                                                             *)
(*             The Compcert verified compiler                  *)
(*                                                             *)
(*           Sylvain Boulmé     Grenoble-INP, VERIMAG          *)
(*           Xavier Leroy       INRIA Paris-Rocquencourt       *)
(*           David Monniaux     CNRS, VERIMAG                  *)
(*           Cyril Six          Kalray                         *)
(*                                                             *)
(*  Copyright Kalray. Copyright VERIMAG. All rights reserved.  *)
(*  This file is distributed under the terms of the INRIA      *)
(*  Non-Commercial License Agreement.                          *)
(*                                                             *)
(* *************************************************************)

(** Correctness proof for kvx/Asmblock generation: main proof. *)

Require Import Coqlib Errors.
Require Import Integers Floats AST Linking.
Require Import Values Memory Events Globalenvs Smallstep.
Require Import Op Locations Machblock Conventions Asmblock.
Require Import Asmblockgen Asmblockgenproof0 Asmblockgenproof1 Asmblockprops.
Require Import Axioms.
Require Import Lia.

Module MB := Machblock.
Module AB := Asmvliw.

Definition match_prog (p: Machblock.program) (tp: Asmvliw.program) :=
  match_program (fun _ f tf => transf_fundef f = OK tf) eq p tp.

Lemma transf_program_match:
  forall p tp, transf_program p = OK tp -> match_prog p tp.
Proof.
  intros. eapply match_transform_partial_program; eauto.
Qed.

Section PRESERVATION.

Variable prog: Machblock.program.
Variable tprog: Asmvliw.program.
Hypothesis TRANSF: match_prog prog tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.

Lemma symbols_preserved:
  forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof (Genv.find_symbol_match TRANSF).

Lemma senv_preserved:
  Senv.equiv ge tge.
Proof (Genv.senv_match TRANSF).

Lemma functions_translated:
  forall b f,
  Genv.find_funct_ptr ge b = Some f ->
  exists tf,
  Genv.find_funct_ptr tge b = Some tf /\ transf_fundef f = OK tf.
Proof (Genv.find_funct_ptr_transf_partial TRANSF).

Lemma functions_transl:
  forall fb f tf,
  Genv.find_funct_ptr ge fb = Some (Internal f) ->
  transf_function f = OK tf ->
  Genv.find_funct_ptr tge fb = Some (Internal tf).
Proof.
  intros. exploit functions_translated; eauto. intros [tf' [A B]].
  monadInv B. rewrite H0 in EQ; inv EQ; auto.
Qed.

Lemma transf_function_no_overflow:
  forall f tf,
  transf_function f = OK tf -> size_blocks tf.(fn_blocks) <= Ptrofs.max_unsigned.
Proof.
  intros. monadInv H. destruct (zlt Ptrofs.max_unsigned (size_blocks x.(fn_blocks))); inv EQ0.
  lia.
Qed.

Section TRANSL_LABEL. (* Lemmas on translation of MB.is_label into AB.is_label *)

Lemma gen_bblocks_label:
  forall hd bdy ex tbb tc,
  gen_bblocks hd bdy ex = tbb::tc ->
  header tbb = hd.
Proof.
  intros until tc. intros GENB. unfold gen_bblocks in GENB.
  destruct (extract_ctl ex); try destruct c; try destruct i; try destruct bdy.
  all: inv GENB; simpl; auto.
Qed.

Lemma gen_bblocks_label2:
  forall hd bdy ex tbb1 tbb2,
  gen_bblocks hd bdy ex = tbb1::tbb2::nil ->
  header tbb2 = nil.
Proof.
  intros until tbb2. intros GENB. unfold gen_bblocks in GENB.
  destruct (extract_ctl ex); try destruct c; try destruct i; try destruct bdy.
  all: inv GENB; simpl; auto.
Qed.

Remark in_dec_transl:
  forall lbl hd,
  (if in_dec lbl hd then true else false) = (if MB.in_dec lbl hd then true else false).
Proof.
  intros. destruct (in_dec lbl hd), (MB.in_dec lbl hd). all: tauto.
Qed.

Lemma transl_is_label:
  forall lbl bb tbb f ep tc,
  transl_block f bb ep = OK (tbb::tc) ->
  is_label lbl tbb = MB.is_label lbl bb.
Proof.
  intros until tc. intros TLB.
  destruct tbb as [thd tbdy tex]; simpl in *.
  monadInv TLB.
  unfold is_label. simpl.
  apply gen_bblocks_label in H0. simpl in H0. subst.
  rewrite in_dec_transl. auto.
Qed.

Lemma transl_is_label_false2:
  forall lbl bb f ep tbb1 tbb2,
  transl_block f bb ep = OK (tbb1::tbb2::nil) ->
  is_label lbl tbb2 = false.
Proof.
  intros until tbb2. intros TLB.
  destruct tbb2 as [thd tbdy tex]; simpl in *.
  monadInv TLB. apply gen_bblocks_label2 in H0. simpl in H0. subst.
  apply is_label_correct_false. simpl. auto.
Qed.

Lemma transl_is_label2:
  forall f bb ep tbb1 tbb2 lbl,
  transl_block f bb ep = OK (tbb1::tbb2::nil) ->
     is_label lbl tbb1 = MB.is_label lbl bb
  /\ is_label lbl tbb2 = false.
Proof.
  intros. split. eapply transl_is_label; eauto. eapply transl_is_label_false2; eauto.
Qed.

Lemma transl_block_nonil:
  forall f c ep tc,
  transl_block f c ep = OK tc ->
  tc <> nil.
Proof.
  intros. monadInv H. unfold gen_bblocks.
  destruct (extract_ctl x0); try destruct c0; try destruct x; try destruct i.
  all: discriminate.
Qed.

Lemma transl_block_limit: forall f bb ep tbb1 tbb2 tbb3 tc,
  ~transl_block f bb ep = OK (tbb1 :: tbb2 :: tbb3 :: tc).
Proof.
  intros. intro. monadInv H.
  unfold gen_bblocks in H0.
  destruct (extract_ctl x0); try destruct x; try destruct c; try destruct i.
  all: discriminate.
Qed.

Lemma find_label_transl_false:
  forall x f lbl bb ep x',
  transl_block f bb ep = OK x ->
  MB.is_label lbl bb = false ->
  find_label lbl (x++x') = find_label lbl x'.
Proof.
  intros until x'. intros TLB MBis; simpl; auto.
  destruct x as [|x0 x1]; simpl; auto.
  destruct x1 as [|x1 x2]; simpl; auto.
  - erewrite <- transl_is_label in MBis; eauto. rewrite MBis. auto.
  - destruct x2 as [|x2 x3]; simpl; auto.
    + erewrite <- transl_is_label in MBis; eauto. rewrite MBis.
      erewrite transl_is_label_false2; eauto.
    + apply transl_block_limit in TLB. destruct TLB.
Qed.

Lemma transl_blocks_label:
  forall lbl f c tc ep,
  transl_blocks f c ep = OK tc ->
  match MB.find_label lbl c with
  | None => find_label lbl tc = None
  | Some c' => exists tc', find_label lbl tc = Some tc' /\ transl_blocks f c' false = OK tc'
  end.
Proof.
  induction c; simpl; intros.
  inv H. auto.
  monadInv H.
  destruct (MB.is_label lbl a) eqn:MBis.
  - destruct x as [|tbb tc]. { apply transl_block_nonil in EQ. contradiction. }
    simpl find_label. exploit transl_is_label; eauto. intros ABis. rewrite MBis in ABis.
    rewrite ABis.
    eexists. eexists. split; eauto. simpl transl_blocks.
    assert (MB.header a <> nil).
    { apply MB.is_label_correct_true in MBis.
      destruct (MB.header a). contradiction. discriminate. }
    destruct (MB.header a); try contradiction.
    rewrite EQ. simpl. rewrite EQ1. simpl. auto.
  - apply IHc in EQ1. destruct (MB.find_label lbl c).
    + destruct EQ1 as (tc' & FIND & TLBS). exists tc'; eexists; auto.
      erewrite find_label_transl_false; eauto.
    + erewrite find_label_transl_false; eauto.
Qed.

Lemma find_label_nil:
  forall bb lbl c,
  header bb = nil ->
  find_label lbl (bb::c) = find_label lbl c.
Proof.
  intros. destruct bb as [hd bdy ex]; simpl in *. subst.
  assert (is_label lbl {| AB.header := nil; AB.body := bdy; AB.exit := ex; AB.correct := correct |} = false).
  { erewrite <- is_label_correct_false. simpl. auto. }
  rewrite H. auto.
Qed.

Theorem transl_find_label:
  forall lbl f tf,
  transf_function f = OK tf ->
  match MB.find_label lbl f.(MB.fn_code) with
  | None => find_label lbl tf.(fn_blocks) = None
  | Some c => exists tc, find_label lbl tf.(fn_blocks) = Some tc /\ transl_blocks f c false = OK tc
  end.
Proof.
  intros. monadInv H. destruct (zlt Ptrofs.max_unsigned (size_blocks (fn_blocks x))); inv EQ0. clear g.
  monadInv EQ. unfold make_prologue. simpl fn_blocks. repeat (rewrite find_label_nil); simpl; auto.
  eapply transl_blocks_label; eauto.
Qed.

End TRANSL_LABEL.

(** A valid branch in a piece of Machblock code translates to a valid ``go to''
  transition in the generated Asmblock code. *)

Lemma find_label_goto_label:
  forall f tf lbl rs m c' b ofs,
  Genv.find_funct_ptr ge b = Some (Internal f) ->
  transf_function f = OK tf ->
  rs PC = Vptr b ofs ->
  MB.find_label lbl f.(MB.fn_code) = Some c' ->
  exists tc', exists rs',
    goto_label tf lbl rs m = Next rs' m
  /\ transl_code_at_pc ge (rs' PC) b f c' false tf tc'
  /\ forall r, r <> PC -> rs'#r = rs#r.
Proof.
  intros. exploit (transl_find_label lbl f tf); eauto. rewrite H2.
  intros (tc & A & B).
  exploit label_pos_code_tail; eauto. instantiate (1 := 0).
  intros [pos' [P [Q R]]].
  exists tc; exists (rs#PC <- (Vptr b (Ptrofs.repr pos'))).
  split. unfold goto_label. unfold par_goto_label. rewrite P. rewrite H1. auto.
  split. rewrite Pregmap.gss. constructor; auto.
  rewrite Ptrofs.unsigned_repr. replace (pos' - 0) with pos' in Q.
  auto. lia.
  generalize (transf_function_no_overflow _ _ H0). lia.
  intros. apply Pregmap.gso; auto.
Qed.

(** Existence of return addresses *)

Lemma return_address_exists:
  forall b f c, is_tail (b :: c) f.(MB.fn_code) ->
  exists ra, return_address_offset f c ra.
Proof.
  intros. eapply Asmblockgenproof0.return_address_exists; eauto.

- intros. monadInv H0.
  destruct (zlt Ptrofs.max_unsigned (size_blocks x.(fn_blocks))); inv EQ0. monadInv EQ. simpl.
  exists x; exists true; split; auto.
  repeat constructor.
- exact transf_function_no_overflow.
Qed.

(** * Proof of semantic preservation *)

(** Semantic preservation is proved using a complex simulation diagram
  of the following form.
<<
                                     MB.step
                      ---------------------------------------->
                      header      body          exit
                  st1 -----> st2 -----> st3 ------------------> st4
                   |          |          |                       |
                   |   (A)    |   (B)    |         (C)           |
   match_codestate |          |          |                       |
                   |  header  |   body1  |  body2                |  match_states
                  cs1 -----> cs2 -----> cs3 ------> cs4          |
                   |                  /                \  exit   |
   match_asmstate  |   ---------------                  --->---  |
                   |  /   match_asmstate                       \ |
                  st'1 ---------------------------------------> st'2
                                     AB.step                  *
>>
  The invariant between each MB.step/AB.step is the [match_states] predicate below.
  However, we also need to introduce an intermediary state [Codestate] which allows
  us to reason on a finer grain, executing header, body and exit separately.

  This [Codestate] consists in a state like [Asmblock.State], except that the
  code is directly stored in the state, much like [Machblock.State]. It also features
  additional useful elements to keep track of while executing a bblock.
*)

Remark preg_of_not_FP: forall r, negb (mreg_eq r MFP) = true -> IR FP <> preg_of r.
Proof.
  intros. change (IR FP) with (preg_of MFP). red; intros.
  exploit preg_of_injective; eauto. intros; subst r; discriminate.
Qed.

Inductive match_states: Machblock.state -> Asmvliw.state -> Prop :=
  | match_states_intro:
      forall s fb sp c ep ms m m' rs f tf tc
        (STACKS: match_stack ge s)
        (FIND: Genv.find_funct_ptr ge fb = Some (Internal f))
        (MEXT: Mem.extends m m')
        (AT: transl_code_at_pc ge (rs PC) fb f c ep tf tc)
        (AG: agree ms sp rs)
        (DXP: ep = true -> rs#FP = parent_sp s),
      match_states (Machblock.State s fb sp c ms m)
                   (Asmvliw.State rs m')
  | match_states_call:
      forall s fb ms m m' rs
        (STACKS: match_stack ge s)
        (MEXT: Mem.extends m m')
        (AG: agree ms (parent_sp s) rs)
        (ATPC: rs PC = Vptr fb Ptrofs.zero)
        (ATLR: rs RA = parent_ra s),
      match_states (Machblock.Callstate s fb ms m)
                   (Asmvliw.State rs m')
  | match_states_return:
      forall s ms m m' rs
        (STACKS: match_stack ge s)
        (MEXT: Mem.extends m m')
        (AG: agree ms (parent_sp s) rs)
        (ATPC: rs PC = parent_ra s),
      match_states (Machblock.Returnstate s ms m)
                   (Asmvliw.State rs m').

Record codestate :=
  Codestate {     pstate: state;        (**r projection to Asmblock.state *)
                  pheader: list label;
                  pbody1: list basic;   (**r list of basic instructions coming from the translation of the Machblock body *)
                  pbody2: list basic;   (**r list of basic instructions coming from the translation of the Machblock exit *)
                  pctl: option control; (**r exit instruction, coming from the translation of the Machblock exit *)
                  ep: bool;             (**r reflects the [ep] variable used in the translation *)
                  rem: list AB.bblock;  (**r remaining bblocks to execute *)
                  cur: bblock           (**r current bblock to execute - to keep track of its size when incrementing PC *)
            }.

(* The part that deals with Machblock <-> Codestate agreement
 * Note about DXP: the property of [ep] only matters if the current block doesn't have a header, hence the condition *)
Inductive match_codestate fb: Machblock.state -> codestate -> Prop :=
  | match_codestate_intro:
      forall s sp ms m rs0 m0 f tc ep c bb tbb tbc tbi
        (STACKS: match_stack ge s)
        (FIND: Genv.find_funct_ptr ge fb = Some (Internal f))
        (MEXT: Mem.extends m m0)
        (TBC: transl_basic_code f (MB.body bb) (if MB.header bb then ep else false) = OK tbc)
        (TIC: transl_instr_control f (MB.exit bb) = OK tbi)
        (TBLS: transl_blocks f c false = OK tc)
        (AG: agree ms sp rs0)
        (DXP: (if MB.header bb then ep else false) = true -> rs0#FP = parent_sp s)
        ,
      match_codestate fb (Machblock.State s fb sp (bb::c) ms m)
        {|  pstate := (Asmvliw.State rs0 m0);
            pheader := (MB.header bb);
            pbody1 := tbc;
            pbody2 := extract_basic tbi;
            pctl := extract_ctl tbi;
            ep := ep;
            rem := tc;
            cur := tbb
        |}
.

(* The part ensuring that the code in Codestate actually resides at [rs PC] *)
Inductive match_asmstate fb: codestate -> Asmvliw.state -> Prop :=
  | match_asmstate_some:
      forall rs f tf tc m tbb ofs ep tbdy tex lhd
        (FIND: Genv.find_funct_ptr ge fb = Some (Internal f))
        (TRANSF: transf_function f = OK tf)
        (PCeq: rs PC = Vptr fb ofs)
        (TAIL: code_tail (Ptrofs.unsigned ofs) (fn_blocks tf) (tbb::tc))
        ,
      match_asmstate fb 
        {|  pstate := (Asmvliw.State rs m);
            pheader := lhd;
            pbody1 := tbdy;
            pbody2 := extract_basic tex;
            pctl := extract_ctl tex;
            ep := ep;
            rem := tc;
            cur := tbb |}
        (Asmvliw.State rs m)
.

(* Useful for dealing with the many cases in some proofs *)
Ltac exploreInst :=
  repeat match goal with
  | [ H : match ?var with | _ => _ end = _ |- _ ] => destruct var
  | [ H : OK _ = OK _ |- _ ] => monadInv H
  | [ |- context[if ?b then _ else _] ] => destruct b
  | [ |- context[match ?m with | _ => _ end] ] => destruct m
  | [ |- context[match ?m as _ return _ with | _ => _ end]] => destruct m
  | [ H : bind _ _ = OK _ |- _ ] => monadInv H
  | [ H : Error _ = OK _ |- _ ] => inversion H
  end.

(** Some translation properties *)

Lemma transl_blocks_nonil:
  forall f bb c tc ep,
  transl_blocks f (bb::c) ep = OK tc ->
  exists tbb tc', tc = tbb :: tc'.
Proof.
  intros until ep0. intros TLBS. monadInv TLBS. monadInv EQ. unfold gen_bblocks.
  destruct (extract_ctl x2).
  - destruct c0; destruct i; simpl; eauto. destruct x1; simpl; eauto.
  - destruct x1; simpl; eauto.
Qed.

Lemma no_builtin_preserved:
  forall f ex x2,
  (forall ef args res, ex <> Some (MBbuiltin ef args res)) ->
  transl_instr_control f ex = OK x2 ->
  (exists i, extract_ctl x2 = Some (PCtlFlow i))
    \/ extract_ctl x2 = None.
Proof.
  intros until x2. intros Hbuiltin TIC.
  destruct ex.
  - destruct c.
    (* MBcall *)
    + simpl in TIC. exploreInst; simpl; eauto.
    (* MBtailcall *)
    + simpl in TIC. exploreInst; simpl; eauto.
    (* MBbuiltin *)
    + assert (H: Some (MBbuiltin e l b) <>  Some (MBbuiltin e l b)).
        apply Hbuiltin. contradict H; auto.
    (* MBgoto *)
    + simpl in TIC. exploreInst; simpl; eauto.
    (* MBcond *)
    + simpl in TIC. unfold transl_cbranch in TIC. exploreInst; simpl; eauto.
      * unfold transl_opt_compuimm. exploreInst; simpl; eauto.
      * unfold transl_opt_compluimm. exploreInst; simpl; eauto.
      * unfold transl_comp_float64. exploreInst; simpl; eauto.
      * unfold transl_comp_notfloat64. exploreInst; simpl; eauto.
      * unfold transl_comp_float32. exploreInst; simpl; eauto.
      * unfold transl_comp_notfloat32. exploreInst; simpl; eauto.
    (* MBjumptable *)
    + simpl in TIC. exploreInst; simpl; eauto.
    (* MBreturn *)
    + simpl in TIC. monadInv TIC. simpl. eauto.
  - monadInv TIC. simpl; auto.
Qed.

Lemma transl_blocks_distrib:
  forall c f bb tbb tc ep,
  transl_blocks f (bb::c) ep = OK (tbb::tc)
  -> (forall ef args res, MB.exit bb <> Some (MBbuiltin ef args res))
  -> transl_block f bb (if MB.header bb then ep else false) = OK (tbb :: nil)
  /\ transl_blocks f c false = OK tc.
Proof.
  intros until ep0. intros TLBS Hbuiltin.
  destruct bb as [hd bdy ex].
  monadInv TLBS. monadInv EQ.
  exploit no_builtin_preserved; eauto. intros Hectl. destruct Hectl.
  - destruct H as [i Hectl].
  unfold gen_bblocks in H0. rewrite Hectl in H0. inv H0.
  simpl in *. unfold transl_block; simpl. rewrite EQ0. rewrite EQ. simpl.
  unfold gen_bblocks. rewrite Hectl. auto.
  - unfold gen_bblocks in H0. rewrite H in H0.
    destruct x1 as [|bi x1].
    + simpl in H0. inv H0. simpl in *. unfold transl_block; simpl. rewrite EQ0. rewrite EQ. simpl.
      unfold gen_bblocks. rewrite H. auto.
    + simpl in H0. inv H0. simpl in *. unfold transl_block; simpl. rewrite EQ0. rewrite EQ. simpl.
      unfold gen_bblocks. rewrite H. auto.
Qed.

Lemma gen_bblocks_nobuiltin:
  forall thd tbdy tex tbb,
  (tbdy <> nil \/ extract_ctl tex <> None) ->
  (forall ef args res, extract_ctl tex <> Some (PExpand (Pbuiltin ef args res))) ->
  gen_bblocks thd tbdy tex = tbb :: nil ->
     header tbb = thd
  /\ body tbb = tbdy ++ extract_basic tex
  /\ exit tbb = extract_ctl tex.
Proof.
  intros until tbb. intros Hnonil Hnobuiltin GENB. unfold gen_bblocks in GENB.
  destruct (extract_ctl tex) eqn:ECTL.
  - destruct c.
    + destruct i; try (inv GENB; simpl; auto; fail).
      assert False. eapply Hnobuiltin. eauto. destruct H.
    + inv GENB. simpl. auto.
  - inversion Hnonil.
    + destruct tbdy as [|bi tbdy]; try (contradict H; simpl; auto; fail). inv GENB. auto.
    + contradict H; simpl; auto.
Qed.

Lemma transl_instr_basic_nonil:
  forall k f bi ep x,
  transl_instr_basic f bi ep k = OK x ->
  x <> nil.
Proof.
  intros until x. intros TIB.
  destruct bi.
  - simpl in TIB. unfold loadind in TIB. exploreInst; try discriminate.
  - simpl in TIB. unfold storeind in TIB. exploreInst; try discriminate.
  - simpl in TIB. monadInv TIB. unfold loadind in EQ. exploreInst; try discriminate.
  - simpl in TIB. unfold transl_op in TIB. exploreInst; try discriminate.
    unfold transl_cond_op in EQ0. exploreInst; try discriminate.
    unfold transl_cond_float64. exploreInst; try discriminate.
    unfold transl_cond_notfloat64. exploreInst; try discriminate.
    unfold transl_cond_float32. exploreInst; try discriminate.
    unfold transl_cond_notfloat32. exploreInst; try discriminate.
  - simpl in TIB. unfold transl_load in TIB. exploreInst; try discriminate.
    all: monadInv TIB; unfold transl_memory_access in EQ0; unfold transl_memory_access2 in EQ0; unfold transl_memory_access2XS in EQ0; exploreInst; try discriminate.
  - simpl in TIB. unfold transl_store in TIB. exploreInst; try discriminate.
    all: monadInv TIB; unfold transl_memory_access in EQ0; unfold transl_memory_access2 in EQ0; unfold transl_memory_access2XS in EQ0; exploreInst; try discriminate. 
Qed.

Lemma transl_basic_code_nonil:
  forall bdy f x ep,
  bdy <> nil ->
  transl_basic_code f bdy ep = OK x ->
  x <> nil.
Proof.
  induction bdy as [|bi bdy].
    intros. contradict H0; auto.
  destruct bdy as [|bi2 bdy].
  - clear IHbdy. intros f x b _ TBC. simpl in TBC. eapply transl_instr_basic_nonil; eauto.
  - intros f x b Hnonil TBC. remember (bi2 :: bdy) as bdy'.
    monadInv TBC. 
    assert (x0 <> nil).
      eapply IHbdy; eauto. subst bdy'. discriminate.
    eapply transl_instr_basic_nonil; eauto.
Qed.

Lemma transl_instr_control_nonil:
  forall ex f x,
  ex <> None ->
  transl_instr_control f ex = OK x ->
  extract_ctl x <> None.
Proof.
  intros ex f x Hnonil TIC.
  destruct ex as [ex|].
  - clear Hnonil. destruct ex.
    all: try (simpl in TIC; exploreInst; discriminate).
    + simpl in TIC. unfold transl_cbranch in TIC. exploreInst; try discriminate.
      * unfold transl_opt_compuimm. exploreInst; try discriminate.
      * unfold transl_opt_compluimm. exploreInst; try discriminate.
      * unfold transl_comp_float64. exploreInst; try discriminate.
      * unfold transl_comp_notfloat64. exploreInst; try discriminate.
      * unfold transl_comp_float32. exploreInst; try discriminate.
      * unfold transl_comp_notfloat32. exploreInst; try discriminate.
  - contradict Hnonil; auto.
Qed.

Lemma transl_instr_control_nobuiltin:
  forall f ex x,
  (forall ef args res, ex <> Some (MBbuiltin ef args res)) ->
  transl_instr_control f ex = OK x ->
  (forall ef args res, extract_ctl x <> Some (PExpand (Pbuiltin ef args res))).
Proof.
  intros until x. intros Hnobuiltin TIC. intros until res.
  unfold transl_instr_control in TIC. exploreInst.
  all: try discriminate.
  - assert False. eapply Hnobuiltin; eauto. destruct H.
  - unfold transl_cbranch in TIC. exploreInst.
    all: try discriminate.
    * unfold transl_opt_compuimm. exploreInst. all: try discriminate.
    * unfold transl_opt_compluimm. exploreInst. all: try discriminate.
    * unfold transl_comp_float64. exploreInst; try discriminate.
    * unfold transl_comp_notfloat64. exploreInst; try discriminate.
    * unfold transl_comp_float32. exploreInst; try discriminate.
    * unfold transl_comp_notfloat32. exploreInst; try discriminate.
Qed.

(* Proving that one can decompose a [match_state] relation into a [match_codestate]
   and a [match_asmstate], along with some helpful properties tying both relations together *)

Theorem match_state_codestate:
  forall mbs abs s fb sp bb c ms m,
  (forall ef args res, MB.exit bb <> Some (MBbuiltin ef args res)) ->
  (MB.body bb <> nil \/ MB.exit bb <> None) ->
  mbs = (Machblock.State s fb sp (bb::c) ms m) ->
  match_states mbs abs ->
  exists cs fb f tbb tc ep,
    match_codestate fb mbs cs /\ match_asmstate fb cs abs
    /\ Genv.find_funct_ptr ge fb = Some (Internal f)
    /\ transl_blocks f (bb::c) ep = OK (tbb::tc)
    /\ body tbb = pbody1 cs ++ pbody2 cs
    /\ exit tbb = pctl cs
    /\ cur cs = tbb /\ rem cs = tc
    /\ pstate cs = abs.
Proof.
  intros until m. intros Hnobuiltin Hnotempty Hmbs MS. subst. inv MS.
  inv AT. clear H0. exploit transl_blocks_nonil; eauto. intros (tbb & tc' & Htc). subst.
  exploit transl_blocks_distrib; eauto. intros (TLB & TLBS). clear H2.
  monadInv TLB. exploit gen_bblocks_nobuiltin; eauto.
    { inversion Hnotempty.
      - destruct (MB.body bb) as [|bi bdy]; try (contradict H0; simpl; auto; fail).
        left. eapply transl_basic_code_nonil; eauto.
      - destruct (MB.exit bb) as [ei|]; try (contradict H0; simpl; auto; fail).
        right. eapply transl_instr_control_nonil; eauto. }
    eapply transl_instr_control_nobuiltin; eauto.
  intros (Hth & Htbdy & Htexit).
  exists {| pstate := (State rs m'); pheader := (Machblock.header bb); pbody1 := x; pbody2 := extract_basic x0;
            pctl := extract_ctl x0; ep := ep0; rem := tc'; cur := tbb |}, fb, f, tbb, tc', ep0.
  repeat split. 1-2: econstructor; eauto.
  { destruct (MB.header bb). eauto. discriminate. } eauto.
  unfold transl_blocks. fold transl_blocks. unfold transl_block. rewrite EQ. simpl. rewrite EQ1; simpl.
  rewrite TLBS. simpl. rewrite H2.
  all: simpl; auto.
Qed.

Definition mb_remove_body (bb: MB.bblock) := 
  {| MB.header := MB.header bb; MB.body := nil; MB.exit := MB.exit bb |}.

Lemma exec_straight_pnil:
  forall c rs1 m1 rs2 m2,
  exec_straight tge c rs1 m1 (Pnop ::g nil) rs2 m2 ->
  exec_straight tge c rs1 m1 nil rs2 m2.
Proof.
  intros. eapply exec_straight_trans. eapply H. econstructor; eauto.
Qed.

Lemma transl_block_nobuiltin:
  forall f bb ep tbb,
  (MB.body bb <> nil \/ MB.exit bb <> None) ->
  (forall ef args res, MB.exit bb <> Some (MBbuiltin ef args res)) ->
  transl_block f bb ep = OK (tbb :: nil) ->
  exists c c',
     transl_basic_code f (MB.body bb) ep = OK c
  /\ transl_instr_control f (MB.exit bb) = OK c'
  /\ body tbb = c ++ extract_basic c'
  /\ exit tbb = extract_ctl c'.
Proof.
  intros until tbb. intros Hnonil Hnobuiltin TLB. monadInv TLB. destruct Hnonil.
  - eexists. eexists. split; eauto. split; eauto. eapply gen_bblocks_nobuiltin; eauto.
    left. eapply transl_basic_code_nonil; eauto. eapply transl_instr_control_nobuiltin; eauto.
  - eexists. eexists. split; eauto. split; eauto. eapply gen_bblocks_nobuiltin; eauto.
    right. eapply transl_instr_control_nonil; eauto. eapply transl_instr_control_nobuiltin; eauto.
Qed.

Lemma nextblock_preserves: 
  forall rs rs' bb r,
  rs' = nextblock bb rs ->
  data_preg r = true ->
  rs r = rs' r.
Proof.
  intros. destruct r; try discriminate.
  subst. Simpl.
Qed.

Remark cons3_app {A: Type}:
  forall a b c (l: list A),
  a :: b :: c :: l = (a :: b :: c :: nil) ++ l.
Proof.
  intros. simpl. auto.
Qed.

Lemma exec_straight_opt_body2:
  forall c rs1 m1 c' rs2 m2,
  exec_straight_opt tge c rs1 m1 c' rs2 m2 ->
  exists body,
     exec_body tge body rs1 m1 = Next rs2 m2
  /\ (basics_to_code body) ++g c' = c.
Proof.
  intros until m2. intros EXES.
  inv EXES.
  - exists nil. split; auto.
  - eapply exec_straight_body2. auto.
Qed.

Lemma extract_basics_to_code:
  forall lb c,
  extract_basic (basics_to_code lb ++ c) = lb ++ extract_basic c.
Proof.
  induction lb; intros; simpl; congruence.
Qed.

Lemma extract_ctl_basics_to_code:
  forall lb c,
  extract_ctl (basics_to_code lb ++ c) = extract_ctl c.
Proof.
  induction lb; intros; simpl; congruence.
Qed.

(* See (C) in the diagram. The proofs are mostly adapted from the previous Mach->Asm proofs, but are
   unfortunately quite cumbersome. To reproduce them, it's best to have a Coq IDE with you and see by
   yourself the steps *)
Theorem step_simu_control:
  forall bb' fb fn s sp c ms' m' rs2 m2 t S'' rs1 m1 tbb tbdy2 tex cs2,
  MB.body bb' = nil ->
  (forall ef args res, MB.exit bb' <> Some (MBbuiltin ef args res)) ->
  Genv.find_funct_ptr tge fb = Some (Internal fn) ->
  pstate cs2 = (Asmvliw.State rs2 m2) ->
  pbody1 cs2 = nil -> pbody2 cs2 = tbdy2 -> pctl cs2 = tex ->
  cur cs2 = tbb ->
  match_codestate fb (MB.State s fb sp (bb'::c) ms' m') cs2 ->
  match_asmstate fb cs2 (Asmvliw.State rs1 m1) ->
  exit_step return_address_offset ge (MB.exit bb') (MB.State s fb sp (bb'::c) ms' m') t S'' ->
  (exists rs3 m3 rs4 m4,
      exec_body tge tbdy2 rs2 m2 = Next rs3 m3
  /\  exec_control_rel tge fn tex tbb rs3 m3 rs4 m4
  /\  match_states S'' (State rs4 m4)).
Proof.
  intros until cs2. intros Hbody Hbuiltin FIND Hpstate Hpbody1 Hpbody2 Hpctl Hcur MCS MAS ESTEP.
  inv ESTEP.
  - inv MCS. inv MAS. simpl in *.
    inv Hpstate.
    destruct ctl.
    + (* MBcall *)
      destruct bb' as [mhd' mbdy' mex']; simpl in *. subst.
      inv TBC. inv TIC. inv H0.

      assert (f0 = f) by congruence. subst f0.
      assert (NOOV: size_blocks tf.(fn_blocks) <= Ptrofs.max_unsigned).
        eapply transf_function_no_overflow; eauto.
      destruct s1 as [rf|fid]; simpl in H7.
      * (* Indirect call *)
        monadInv H1.
        assert (ms' rf = Vptr f' Ptrofs.zero).
        { unfold find_function_ptr in H14. destruct (ms' rf); try discriminate.
          revert H14; predSpec Ptrofs.eq Ptrofs.eq_spec i Ptrofs.zero; intros; congruence. }
        assert (rs2 x = Vptr f' Ptrofs.zero).
        { exploit ireg_val; eauto. rewrite H; intros LD; inv LD; auto. }
        generalize (code_tail_next_int _ _ _ _ NOOV TAIL). intro CT1.
        remember (Ptrofs.add _ _) as ofs'.
        assert (TCA: transl_code_at_pc ge (Vptr fb ofs') fb f c false tf tc).
        { econstructor; eauto. }
        assert (f1 = f) by congruence. subst f1.
        exploit return_address_offset_correct; eauto. intros; subst ra.

        repeat eexists.
          rewrite H6. econstructor; eauto.
          rewrite H7. econstructor; eauto.
        econstructor; eauto.
          econstructor; eauto. eapply agree_sp_def; eauto. simpl. eapply agree_exten; eauto. intros. Simpl.
        simpl. Simpl. rewrite PCeq. rewrite Heqofs'. simpl. auto.

      * (* Direct call *)
        monadInv H1.
        generalize (code_tail_next_int _ _ _ _ NOOV TAIL). intro CT1.
        remember (Ptrofs.add _ _) as ofs'.
        assert (TCA: transl_code_at_pc ge (Vptr fb ofs') fb f c false tf tc).
          econstructor; eauto.
        assert (f1 = f) by congruence. subst f1.
        exploit return_address_offset_correct; eauto. intros; subst ra.
        repeat eexists.
          rewrite H6. econstructor; eauto.
          rewrite H7. econstructor; eauto.
        econstructor; eauto.
          econstructor; eauto. eapply agree_sp_def; eauto. simpl. eapply agree_exten; eauto. intros. Simpl.
        Simpl. unfold Genv.symbol_address. rewrite symbols_preserved. simpl in H14. rewrite H14. auto.
        Simpl. simpl. subst. Simpl. simpl. unfold Val.offset_ptr. rewrite PCeq. auto.
    + (* MBtailcall *)
      destruct bb' as [mhd' mbdy' mex']; simpl in *. subst.
      inv TBC. inv TIC. inv H0.

      assert (f0 = f) by congruence.  subst f0.
      assert (NOOV: size_blocks tf.(fn_blocks) <= Ptrofs.max_unsigned).
        eapply transf_function_no_overflow; eauto.
      exploit Mem.loadv_extends. eauto. eexact H15. auto. simpl. intros [parent' [A B]].
      destruct s1 as [rf|fid]; simpl in H13. 
      * monadInv H1.
        assert (ms' rf = Vptr f' Ptrofs.zero).
          { destruct (ms' rf); try discriminate. revert H13. predSpec Ptrofs.eq Ptrofs.eq_spec i Ptrofs.zero; intros; congruence. }
        assert (rs2 x = Vptr f' Ptrofs.zero).
          { exploit ireg_val; eauto. rewrite H; intros LD; inv LD; auto. }

        assert (f = f1) by congruence. subst f1. clear FIND1. clear H14.
        exploit make_epilogue_correct; eauto. intros (rs1 & m1 & U & V & W & X & Y & Z).
        exploit exec_straight_body; eauto.
          { simpl. eauto. }
        intros EXEB.
        repeat eexists.
          rewrite H6. simpl extract_basic. eauto.
          rewrite H7. simpl extract_ctl. simpl. reflexivity.
        econstructor; eauto.
          { apply agree_set_other.
            - econstructor; auto with asmgen.
              + apply V.
              + intro r. destruct r; apply V; auto.
            - eauto with asmgen. }
        assert (IR x <> IR GPR12 /\ IR x <> IR GPR32 /\ IR x <> IR GPR16).
          { clear - EQ. destruct x; repeat split; try discriminate.
            all: unfold ireg_of in EQ; destruct rf; try discriminate. }
        Simpl. inv H1. inv H3. rewrite Z; auto; try discriminate.
      * monadInv H1. assert (f = f1) by congruence. subst f1. clear FIND1. clear H14.
        exploit make_epilogue_correct; eauto. intros (rs1 & m1 & U & V & W & X & Y & Z).
        exploit exec_straight_body; eauto.
          simpl. eauto.
        intros EXEB.
        repeat eexists.
          rewrite H6. simpl extract_basic. eauto.
          rewrite H7. simpl extract_ctl. simpl. reflexivity.
        econstructor; eauto.
        { apply agree_set_other.
          - econstructor; auto with asmgen.
            + apply V.
            + intro r. destruct r; apply V; auto.
          - eauto with asmgen. }
        { Simpl. unfold Genv.symbol_address. rewrite symbols_preserved. rewrite H13. auto. }
    + (* MBbuiltin (contradiction) *)
      assert (MB.exit bb' <> Some (MBbuiltin e l b)) by (apply Hbuiltin).
      rewrite <- H in H1. contradict H1; auto.
    + (* MBgoto *)
      destruct bb' as [mhd' mbdy' mex']; simpl in *. subst.
      inv TBC. inv TIC. inv H0.

      assert (f0 = f) by congruence. subst f0. assert (f1 = f) by congruence. subst f1. clear H11.
      remember (nextblock tbb rs2) as rs2'.
      exploit functions_transl. eapply FIND0. eapply TRANSF0. intros FIND'.
      assert (tf = fn) by congruence. subst tf.
      exploit find_label_goto_label.
        eauto. eauto.
        instantiate (2 := rs2').
        { subst. unfold nextblock, incrPC. Simpl. unfold Val.offset_ptr. rewrite PCeq. eauto. }
        eauto.
      intros (tc' & rs' & GOTO & AT2 & INV).

      eexists. eexists. repeat eexists. repeat split.
        rewrite H6. simpl extract_basic. simpl. eauto.
        rewrite H7. simpl extract_ctl. simpl. rewrite <- Heqrs2'. eauto.
      econstructor; eauto.
        rewrite Heqrs2' in INV. unfold nextblock, incrPC in INV.
        eapply agree_exten; eauto with asmgen.
        assert (forall r : preg, r <> PC -> rs' r = rs2 r).
        { intros. destruct r.
          - destruct g. all: rewrite INV; Simpl; auto.
          - rewrite INV; Simpl; auto.
          - contradiction. }
        eauto with asmgen.
        congruence.
    + (* MBcond *)
      destruct bb' as [mhd' mbdy' mex']; simpl in *. subst.
      inv TBC. inv TIC. inv H0.

      * (* MBcond true *)
        assert (f0 = f) by congruence. subst f0.
        exploit eval_condition_lessdef.
          eapply preg_vals; eauto.
          all: eauto.
        intros EC.
        exploit transl_cbranch_correct_true; eauto. intros (rs' & jmp & A & B & C).
        exploit exec_straight_opt_body2. eauto. intros (bdy & EXEB & BTC).
        assert (PCeq': rs2 PC = rs' PC). { inv A; auto. erewrite <- exec_straight_pc. 2: eapply H. eauto. }
        rewrite PCeq' in PCeq.
        assert (f1 = f) by congruence. subst f1.
        exploit find_label_goto_label.
          4: eapply H16. 1-2: eauto. instantiate (2 := (nextblock tbb rs')). rewrite nextblock_pc.
          unfold Val.offset_ptr. rewrite PCeq. eauto.
        intros (tc' & rs3 & GOTOL & TLPC & Hrs3).
        exploit functions_transl. eapply FIND1. eapply TRANSF0. intros FIND'.
        assert (tf = fn) by congruence. subst tf.

        repeat eexists.
          rewrite H6. rewrite <- BTC. rewrite extract_basics_to_code. simpl. rewrite app_nil_r. eauto.
          rewrite H7. rewrite <- BTC. rewrite extract_ctl_basics_to_code. simpl extract_ctl. rewrite B. eauto.

        econstructor; eauto.
          eapply agree_exten with rs2; eauto with asmgen.
          { intros. destruct r; try destruct g; try discriminate.
            all: rewrite Hrs3; try discriminate; unfold nextblock, incrPC; Simpl. }
        intros. discriminate.

      * (* MBcond false *)
        assert (f0 = f) by congruence. subst f0.
        exploit eval_condition_lessdef.
          eapply preg_vals; eauto.
          all: eauto.
        intros EC.

        exploit transl_cbranch_correct_false; eauto. intros (rs' & jmp & A & B & C).
        exploit exec_straight_opt_body2. eauto. intros (bdy & EXEB & BTC).
        assert (PCeq': rs2 PC = rs' PC). { inv A; auto. erewrite <- exec_straight_pc. 2: eapply H. eauto. }
        rewrite PCeq' in PCeq.
        exploit functions_transl. eapply FIND1. eapply TRANSF0. intros FIND'.
        assert (tf = fn) by congruence. subst tf.

        assert (NOOV: size_blocks fn.(fn_blocks) <= Ptrofs.max_unsigned).
          eapply transf_function_no_overflow; eauto.
        generalize (code_tail_next_int _ _ _ _ NOOV TAIL). intro CT1.

        repeat eexists.
          rewrite H6. rewrite <- BTC. rewrite extract_basics_to_code. simpl. rewrite app_nil_r. eauto.
          rewrite H7. rewrite <- BTC. rewrite extract_ctl_basics_to_code. simpl extract_ctl. rewrite B. eauto.

        econstructor; eauto.
          unfold nextblock, incrPC. Simpl. unfold Val.offset_ptr. rewrite PCeq. econstructor; eauto.
          eapply agree_exten with rs2; eauto with asmgen.
          { intros. destruct r; try destruct g; try discriminate.
            all: rewrite <- C; try discriminate; unfold nextblock, incrPC; Simpl. }
        intros. discriminate.
    + (* MBjumptable *)
      destruct bb' as [mhd' mbdy' mex']; simpl in *. subst.
      inv TBC. inv TIC. inv H0.

      assert (f0 = f) by congruence. subst f0.
      monadInv H1.
      generalize (transf_function_no_overflow _ _ TRANSF0); intro NOOV.
      assert (f1 = f) by congruence. subst f1.
      exploit find_label_goto_label. 4: eapply H16. 1-2: eauto. instantiate (2 := (nextblock tbb rs2) # GPR62 <- Vundef # GPR63 <- Vundef).
        unfold nextblock, incrPC. Simpl. unfold Val.offset_ptr. rewrite PCeq. reflexivity.
      exploit functions_transl. eapply FIND0. eapply TRANSF0. intros FIND3. assert (fn = tf) by congruence. subst fn.

      intros [tc' [rs' [A [B C]]]].
      exploit ireg_val; eauto. rewrite H13. intros LD; inv LD.
      
      repeat eexists.
        rewrite H6. simpl extract_basic. simpl. eauto.
        rewrite H7. simpl extract_ctl. simpl. Simpl. rewrite <- H1. unfold Mach.label in H14. unfold label. rewrite H14. eapply A.
      econstructor; eauto.
        eapply agree_undef_regs; eauto. intros. rewrite C; auto with asmgen.
        { assert (destroyed_by_jumptable = R62 :: R63 :: nil) by auto. rewrite H2 in H0. simpl in H0. inv H0.
          destruct (preg_eq r' GPR63). subst. contradiction.
          destruct (preg_eq r' GPR62). subst. contradiction.
          destruct r'; Simpl. }
        discriminate.
    + (* MBreturn *)
      destruct bb' as [mhd' mbdy' mex']; simpl in *. subst.
      inv TBC. inv TIC. inv H0.

      assert (f0 = f) by congruence. subst f0.
      assert (NOOV: size_blocks tf.(fn_blocks) <= Ptrofs.max_unsigned).
        eapply transf_function_no_overflow; eauto.
      exploit make_epilogue_correct; eauto. intros (rs1 & m1 & U & V & W & X & Y & Z).
      exploit exec_straight_body; eauto.
        simpl. eauto.
      intros EXEB.
      assert (f1 = f) by congruence. subst f1.
      
      repeat eexists.
        rewrite H6. simpl extract_basic. eauto.
        rewrite H7. simpl extract_ctl. simpl. reflexivity.
      econstructor; eauto.
        unfold nextblock, incrPC. repeat apply agree_set_other; auto with asmgen.

  - inv MCS. inv MAS. simpl in *. subst. inv Hpstate.
    destruct bb' as [hd' bdy' ex']; simpl in *. subst.
    monadInv TBC. monadInv TIC. simpl in *. rewrite H5. rewrite H6.
    simpl. repeat eexists.
    econstructor. 4: instantiate (3 := false). all:eauto.
      unfold nextblock, incrPC. Simpl. unfold Val.offset_ptr. rewrite PCeq.
      assert (NOOV: size_blocks tf.(fn_blocks) <= Ptrofs.max_unsigned).
        eapply transf_function_no_overflow; eauto.
      assert (f = f0) by congruence. subst f0. econstructor; eauto.
      generalize (code_tail_next_int _ _ _ _ NOOV TAIL). intro CT1. eauto.
    eapply agree_exten; eauto. intros. Simpl.
    discriminate.
Qed.

Definition mb_remove_first (bb: MB.bblock) := 
  {| MB.header := MB.header bb; MB.body := tail (MB.body bb); MB.exit := MB.exit bb |}.

Lemma exec_straight_body:
  forall c c' lc rs1 m1 rs2 m2,
  exec_straight tge c rs1 m1 c' rs2 m2 ->
  code_to_basics c = Some lc ->
  exists l ll,
     c = l ++ c'
  /\ code_to_basics l = Some ll
  /\ exec_body tge ll rs1 m1 = Next rs2 m2.
Proof.
  induction c; try (intros; inv H; fail).
  intros until m2. intros EXES CTB. inv EXES.
  - exists (i1 ::g nil),(i1::nil). repeat (split; simpl; auto). rewrite H6. auto.
  - inv CTB. destruct (code_to_basics c); try discriminate. inv H0.
    eapply IHc in H7; eauto. destruct H7 as (l' & ll & Hc & CTB & EXECB). subst.
    exists (i ::g l'),(i::ll). repeat (split; simpl; auto).
      rewrite CTB. auto.
      rewrite H1. auto.
Qed.

Lemma basics_to_code_app:
  forall c l x ll,
  basics_to_code c = l ++ basics_to_code x ->
  code_to_basics l = Some ll ->
  c = ll ++ x.
Proof.
  intros. apply (f_equal code_to_basics) in H.
  erewrite code_to_basics_dist in H; eauto. 2: eapply code_to_basics_id.
  rewrite code_to_basics_id in H. inv H. auto.
Qed.

Lemma basics_to_code_app2:
  forall i c l x ll,
  (PBasic i) :: basics_to_code c = l ++ basics_to_code x ->
  code_to_basics l = Some ll ->
  i :: c = ll ++ x.
Proof.
  intros until ll. intros.
  exploit basics_to_code_app. instantiate (3 := (i::c)). simpl.
  all: eauto.
Qed.

(* Handling the individual instructions of theorem (B) in the above diagram. A bit less cumbersome, but still tough *)
Theorem step_simu_basic:
  forall bb bb' s fb sp c ms m rs1 m1 ms' m' bi cs1 tbdy bdy,
  MB.header bb = nil -> MB.body bb = bi::(bdy) -> (forall ef args res, MB.exit bb <> Some (MBbuiltin ef args res)) ->
  bb' = {| MB.header := nil; MB.body := bdy; MB.exit := MB.exit bb |} ->
  basic_step ge s fb sp ms m bi ms' m' ->
  pstate cs1 = (State rs1 m1) -> pbody1 cs1 = tbdy ->
  match_codestate fb (MB.State s fb sp (bb::c) ms m) cs1 ->
  (exists rs2 m2 l cs2 tbdy',
       cs2 = {| pstate := (State rs2 m2); pheader := nil; pbody1 := tbdy'; pbody2 := pbody2 cs1;
                pctl := pctl cs1; ep := fp_is_parent (ep cs1) bi; rem := rem cs1; cur := cur cs1 |}
    /\ tbdy = l ++ tbdy'
    /\ exec_body tge l rs1 m1 = Next rs2 m2
    /\ match_codestate fb (MB.State s fb sp (bb'::c) ms' m') cs2).
Proof.
  intros until bdy. intros Hheader Hbody Hnobuiltin (* Hnotempty *) Hbb' BSTEP Hpstate Hpbody1 MCS. inv MCS.
  simpl in *. inv Hpstate.
  rewrite Hbody in TBC. monadInv TBC.
  inv BSTEP.

  - (* MBgetstack *)
    simpl in EQ0.
    unfold Mach.load_stack in H.
    exploit Mem.loadv_extends; eauto. intros [v' [A B]].
    rewrite (sp_val _ _ _ AG) in A.
    exploit loadind_correct; eauto with asmgen.
    intros (rs2 & EXECS & Hrs'1 & Hrs'2).
    eapply exec_straight_body in EXECS.
      2: eapply code_to_basics_id; eauto.
    destruct EXECS as (l & Hlbi & BTC & CTB & EXECB).
    exists rs2, m1, Hlbi.
    eexists. eexists. split. instantiate (1 := x). eauto.
    repeat (split; auto).
      eapply basics_to_code_app; eauto.
    remember {| MB.header := _; MB.body := _; MB.exit := _ |} as bb'.
    assert (Hheadereq: MB.header bb' = MB.header bb). { subst. simpl. auto. }
    subst. simpl in Hheadereq.

    eapply match_codestate_intro; eauto.
      { simpl. simpl in EQ. rewrite <- Hheadereq in EQ. assumption. }
    eapply agree_set_mreg; eauto with asmgen.
    intro Hep. simpl in Hep. 
    destruct (andb_prop _ _ Hep). clear Hep.
    rewrite <- Hheadereq in DXP. subst. rewrite <- DXP. rewrite Hrs'2. reflexivity.
    discriminate. apply preg_of_not_FP; assumption. reflexivity.

  - (* MBsetstack *)
    simpl in EQ0.
    unfold Mach.store_stack in H.
    assert (Val.lessdef (ms src) (rs1 (preg_of src))). { eapply preg_val; eauto. }
    exploit Mem.storev_extends; eauto. intros [m2' [A B]].
    exploit storeind_correct; eauto with asmgen.
    rewrite (sp_val _ _ _ AG) in A. eauto. intros [rs' [P Q]].

    eapply exec_straight_body in P.
      2: eapply code_to_basics_id; eauto.
    destruct P as (l & ll & TBC & CTB & EXECB).
    exists rs', m2', ll.
    eexists. eexists. split. instantiate (1 := x). eauto.
    repeat (split; auto).
      eapply basics_to_code_app; eauto.
    remember {| MB.header := _; MB.body := _; MB.exit := _ |} as bb'.
    subst.
    eapply match_codestate_intro; eauto. simpl. simpl in EQ. rewrite Hheader in EQ. auto.

    eapply agree_undef_regs; eauto with asmgen.
    simpl; intros. rewrite Q; auto with asmgen. rewrite Hheader in DXP. auto.
  - (* MBgetparam *)
    simpl in EQ0.

    assert (f0 = f) by congruence; subst f0.
    unfold Mach.load_stack in *.
    exploit Mem.loadv_extends. eauto. eexact H0. auto.
    intros [parent' [A B]]. rewrite (sp_val _ _ _ AG) in A.
    exploit lessdef_parent_sp; eauto. clear B; intros B; subst parent'.
    exploit Mem.loadv_extends. eauto. eexact H1. auto.
    intros [v' [C D]].

    monadInv EQ0. rewrite Hheader. rewrite Hheader in DXP.
    destruct ep0 eqn:EPeq.

  (* RTMP contains parent *)
    + exploit loadind_correct. eexact EQ1.
      instantiate (2 := rs1). rewrite DXP; eauto.
      intros [rs2 [P [Q R]]].

      eapply exec_straight_body in P.
        2: eapply code_to_basics_id; eauto.
      destruct P as (l & ll & BTC & CTB & EXECB).
      exists rs2, m1, ll. eexists.
      eexists. split. instantiate (1 := x). eauto.
      repeat (split; auto).
      { eapply basics_to_code_app; eauto. }
      remember {| MB.header := _; MB.body := _; MB.exit := _ |} as bb'.
      assert (Hheadereq: MB.header bb' = MB.header bb). { subst. simpl. auto. }
      subst.
      eapply match_codestate_intro; eauto.

      eapply agree_set_mreg. eapply agree_set_mreg; eauto. congruence. auto with asmgen.
      simpl; intros. rewrite R; auto with asmgen.
      apply preg_of_not_FP; auto.

  (* RTMP does not contain parent *)
    + rewrite chunk_of_Tptr in A. 
      exploit loadind_ptr_correct. eexact A. intros [rs2 [P [Q R]]].
      exploit loadind_correct. eexact EQ1. instantiate (2 := rs2). rewrite Q. eauto.
      intros [rs3 [S [T U]]].

      exploit exec_straight_trans.
        eapply P.
        eapply S.
      intros EXES.

      eapply exec_straight_body in EXES.
        2: simpl. 2: erewrite code_to_basics_id; eauto.
      destruct EXES as (l & ll & BTC & CTB & EXECB).
      exists rs3, m1, ll.
      eexists. eexists. split. instantiate (1 := x). eauto.
      repeat (split; auto).
        eapply basics_to_code_app2; eauto.
      remember {| MB.header := _; MB.body := _; MB.exit := _ |} as bb'.
      assert (Hheadereq: MB.header bb' = MB.header bb). { subst. auto. }
      subst.
      eapply match_codestate_intro; eauto.
      eapply agree_set_mreg. eapply agree_set_mreg. eauto. eauto.
      instantiate (1 := rs2#FP <- (rs3#FP)). intros.
      rewrite Pregmap.gso; auto with asmgen.
      congruence.
      intros. unfold Pregmap.set. destruct (PregEq.eq r' FP). congruence. auto with asmgen.
      simpl; intros. rewrite U; auto with asmgen.
      apply preg_of_not_FP; auto.
  - (* MBop *)
    simpl in EQ0. rewrite Hheader in DXP.
    
    assert (eval_operation tge sp op (map ms args) m' = Some v).
      rewrite <- H. apply eval_operation_preserved. exact symbols_preserved.
    exploit eval_operation_lessdef.
      eapply preg_vals; eauto.
      2: eexact H0.
      all: eauto.
    intros [v' [A B]]. rewrite (sp_val _ _ _ AG) in A.
    exploit transl_op_correct; eauto. intros [rs2 [P [Q R]]].

    eapply exec_straight_body in P.
      2: eapply code_to_basics_id; eauto.
    destruct P as (l & ll & TBC & CTB & EXECB).
    exists rs2, m1, ll.
    eexists. eexists. split. instantiate (1 := x). eauto.
    repeat (split; auto).
      eapply basics_to_code_app; eauto.
    remember {| MB.header := _; MB.body := _; MB.exit := _ |} as bb'.
    subst.
    eapply match_codestate_intro; eauto. simpl. simpl in EQ. rewrite Hheader in EQ. auto.
    apply agree_set_undef_mreg with rs1; auto. 
    apply Val.lessdef_trans with v'; auto.
    simpl; intros. destruct (andb_prop _ _ H1); clear H1.
    rewrite R; auto. apply preg_of_not_FP; auto.
Local Transparent destroyed_by_op.
    destruct op; simpl; auto; congruence.
  - (* MBload *)
    simpl in EQ0. rewrite Hheader in DXP.

    assert (eval_addressing tge sp addr (map ms args) = Some a).
      rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved.
    exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1.
    intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A.
    exploit Mem.loadv_extends; eauto. intros [v' [C D]].
    exploit transl_load_correct; eauto.
    intros [rs2 [P [Q R]]].

    eapply exec_straight_body in P.
      2: eapply code_to_basics_id; eauto.
    destruct P as (l & ll & TBC & CTB & EXECB).
    exists rs2, m1, ll.
    eexists. eexists. split. instantiate (1 := x). eauto.
    repeat (split; auto).
      eapply basics_to_code_app; eauto.
    remember {| MB.header := _; MB.body := _; MB.exit := _ |} as bb'.
    assert (Hheadereq: MB.header bb' = MB.header bb). { subst. auto. }
    subst.
    eapply match_codestate_intro; eauto. simpl. simpl in EQ.
    rewrite <- Hheadereq in EQ. assumption.
    eapply agree_set_mreg; eauto with asmgen.
    intro Hep. simpl in Hep. 
    destruct (andb_prop _ _ Hep). clear Hep.
    subst. rewrite <- DXP. rewrite R; try discriminate. reflexivity.
    apply preg_of_not_FP; assumption. reflexivity.

  - (* notrap1 cannot happen *)
    simpl in EQ0. unfold transl_load in EQ0.
    destruct addr; simpl in H.
    all: unfold transl_load_rrrXS, transl_load_rrr, transl_load_rro in EQ0;
    monadInv EQ0; unfold transl_memory_access2XS, transl_memory_access2, transl_memory_access in EQ2;
    destruct args as [|h0 t0]; try discriminate;
    destruct t0 as [|h1 t1]; try discriminate;
    destruct t1 as [|h2 t2]; try discriminate.
    
  - (* MBload notrap2 TODO *)
    simpl in EQ0. rewrite Hheader in DXP.

    assert (eval_addressing tge sp addr (map ms args) = Some a).
      rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved.
    exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1.
    intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A.

    destruct (Mem.loadv chunk m1 a') as [v' | ] eqn:Hload.
    {
    exploit transl_load_correct; eauto.
    intros [rs2 [P [Q R]]].

    eapply exec_straight_body in P.
      2: eapply code_to_basics_id; eauto.
    destruct P as (l & ll & TBC & CTB & EXECB).
    exists rs2, m1, ll.
    eexists. eexists. split. instantiate (1 := x). eauto.
    repeat (split; auto).
    eapply basics_to_code_app; eauto.
    eapply match_codestate_intro; eauto. simpl. rewrite Hheader in *.
    simpl in EQ. assumption.

    eapply agree_set_undef_mreg; eauto. intros; auto with asmgen.

    simpl. intro.
    rewrite R; try congruence.
    apply DXP.
    destruct ep0; simpl in *; congruence.
    apply preg_of_not_FP.
    destruct ep0; simpl in *; congruence.
    }
    { 
    exploit transl_load_correct_notrap2; eauto.
    intros [rs2 [P [Q R]]].

    eapply exec_straight_body in P.
      2: eapply code_to_basics_id; eauto.
    destruct P as (l & ll & TBC & CTB & EXECB).
    exists rs2, m1, ll.
    eexists. eexists. split. instantiate (1 := x). eauto.
    repeat (split; auto).
      eapply basics_to_code_app; eauto.
    remember {| MB.header := _; MB.body := _; MB.exit := _ |} as bb'.
(*     assert (Hheadereq: MB.header bb' = MB.header bb). { subst. auto. }
    rewrite <- Hheadereq. *) subst.
    eapply match_codestate_intro; eauto. simpl. rewrite Hheader in *. simpl in EQ. assumption.

    eapply agree_set_undef_mreg; eauto. intros; auto with asmgen.
    simpl. intro.
    rewrite R; try congruence.
    apply DXP.
    destruct ep0; simpl in *; congruence.
    apply preg_of_not_FP.
    destruct ep0; simpl in *; congruence.
    }
  - (* MBstore *)
    simpl in EQ0. rewrite Hheader in DXP.

    assert (eval_addressing tge sp addr (map ms args) = Some a).
      rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved.
    exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1.
    intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A.
    assert (Val.lessdef (ms src) (rs1 (preg_of src))). eapply preg_val; eauto.
    exploit Mem.storev_extends; eauto. intros [m2' [C D]].
    exploit transl_store_correct; eauto. intros [rs2 [P Q]].

    eapply exec_straight_body in P.
      2: eapply code_to_basics_id; eauto.
    destruct P as (l & ll & TBC & CTB & EXECB).
    exists rs2, m2', ll.
    eexists. eexists. split. instantiate (1 := x). eauto.
    repeat (split; auto).
      eapply basics_to_code_app; eauto.
    remember {| MB.header := _; MB.body := _; MB.exit := _ |} as bb'.
    assert (Hheadereq: MB.header bb' = MB.header bb). { subst. auto. }
    subst.
    eapply match_codestate_intro; eauto. simpl. simpl in EQ.
    rewrite <- Hheadereq in EQ. assumption.
    eapply agree_undef_regs; eauto with asmgen.
    intro Hep. simpl in Hep.
    subst. rewrite <- DXP. rewrite Q; try discriminate. reflexivity. reflexivity.
Qed.

Lemma exec_body_trans:
  forall l l' rs0 m0 rs1 m1 rs2 m2,
  exec_body tge l rs0 m0 = Next rs1 m1 ->
  exec_body tge l' rs1 m1 = Next rs2 m2 ->
  exec_body tge (l++l') rs0 m0 = Next rs2 m2.
Proof.
  induction l.
  - simpl. congruence.
  - intros until m2. intros EXEB1 EXEB2.
    inv EXEB1. destruct (exec_basic_instr _) eqn:EBI; try discriminate.
    simpl. rewrite EBI. eapply IHl; eauto.
Qed.

Definition mb_remove_header bb := {| MB.header := nil; MB.body := MB.body bb; MB.exit := MB.exit bb |}.

Program Definition remove_header tbb := {| header := nil; body := body tbb; exit := exit tbb |}.
Next Obligation.
  destruct tbb. simpl. auto.
Qed.

Inductive exec_header: codestate -> codestate -> Prop :=
  | exec_header_cons: forall cs1,
      exec_header cs1 {| pstate := pstate cs1; pheader := nil; pbody1 := pbody1 cs1; pbody2 := pbody2 cs1;
                          pctl := pctl cs1; ep := (if pheader cs1 then ep cs1 else false); rem := rem cs1;
                          cur := cur cs1 |}.

(* Theorem (A) in the diagram, the easiest of all *)
Theorem step_simu_header:
  forall bb s fb sp c ms m rs1 m1 cs1,
  pstate cs1 = (State rs1 m1) ->
  match_codestate fb (MB.State s fb sp (bb::c) ms m) cs1 ->
  (exists cs1',
       exec_header cs1 cs1'
    /\ match_codestate fb (MB.State s fb sp (mb_remove_header bb::c) ms m) cs1').
Proof.
  intros until cs1. intros Hpstate MCS.
  eexists. split; eauto.
  econstructor; eauto.
  inv MCS. simpl in *. inv Hpstate.
  econstructor; eauto.
Qed.

Lemma step_matchasm_header:
  forall fb cs1 cs1' s1,
  match_asmstate fb cs1 s1 ->
  exec_header cs1 cs1' ->
  match_asmstate fb cs1' s1.
Proof.
  intros until s1. intros MAS EXH.
  inv MAS. inv EXH.
  simpl. econstructor; eauto.
Qed.

(* Theorem (B) in the diagram, using step_simu_basic + induction on the Machblock body *)
Theorem step_simu_body:
  forall bb s fb sp c ms m rs1 m1 ms' cs1 m',
  MB.header bb = nil ->
  (forall ef args res, MB.exit bb <> Some (MBbuiltin ef args res)) ->
  body_step ge s fb sp (MB.body bb) ms m ms' m' ->
  pstate cs1 = (State rs1 m1) ->
  match_codestate fb (MB.State s fb sp (bb::c) ms m) cs1 ->
  (exists rs2 m2 cs2 ep,
       cs2 = {| pstate := (State rs2 m2); pheader := nil; pbody1 := nil; pbody2 := pbody2 cs1;
                pctl := pctl cs1; ep := ep; rem := rem cs1; cur := cur cs1 |}
    /\ exec_body tge (pbody1 cs1) rs1 m1 = Next rs2 m2
    /\ match_codestate fb (MB.State s fb sp ({| MB.header := nil; MB.body := nil; MB.exit := MB.exit bb |}::c) ms' m') cs2).
Proof.
  intros bb. destruct bb as [hd bdy ex]; simpl; auto. induction bdy as [|bi bdy].
  - intros until m'. intros Hheader Hnobuiltin BSTEP Hpstate MCS.
    inv BSTEP.
    exists rs1, m1, cs1, (ep cs1).
    inv MCS. inv Hpstate. simpl in *. monadInv TBC. repeat (split; simpl; auto).
    econstructor; eauto.
  - intros until m'. intros Hheader Hnobuiltin BSTEP Hpstate MCS. inv BSTEP.
    rename ms' into ms''. rename m' into m''. rename rs' into ms'. rename m'0 into m'.
    exploit (step_simu_basic); eauto. simpl. eauto. simpl; auto. simpl; auto.
    intros (rs2 & m2 & l & cs2 & tbdy' & Hcs2 & Happ & EXEB & MCS').
    simpl in *.
    exploit IHbdy. auto. 2: eapply H6. 3: eapply MCS'. all: eauto. subst; eauto. simpl; auto.
    intros (rs3 & m3 & cs3 & ep & Hcs3 & EXEB' & MCS'').
    exists rs3, m3, cs3, ep.
    repeat (split; simpl; auto). subst. simpl in *. auto.
    rewrite Happ. eapply exec_body_trans; eauto. rewrite Hcs2 in EXEB'; simpl in EXEB'. auto.
Qed.

Lemma exec_body_control:
  forall b rs1 m1 rs2 m2 rs3 m3 fn,
  exec_body tge (body b) rs1 m1 = Next rs2 m2 ->
  exec_control_rel tge fn (exit b) b rs2 m2 rs3 m3 ->
  exec_bblock_rel tge fn b rs1 m1 rs3 m3.
Proof.
  intros until fn. intros EXEB EXECTL.
  econstructor; eauto. inv EXECTL.
  unfold exec_bblock. rewrite EXEB. auto.
Qed.

Definition mbsize (bb: MB.bblock) := (length (MB.body bb) + length_opt (MB.exit bb))%nat.

Lemma mbsize_eqz:
  forall bb, mbsize bb = 0%nat -> MB.body bb = nil /\ MB.exit bb = None.
Proof.
  intros. destruct bb as [hd bdy ex]; simpl in *. unfold mbsize in H.
  remember (length _) as a. remember (length_opt _) as b.
  assert (a = 0%nat) by lia. assert (b = 0%nat) by lia. subst. clear H.
  inv H0. inv H1. destruct bdy; destruct ex; auto.
  all: try discriminate.
Qed.

Lemma mbsize_neqz:
  forall bb, mbsize bb <> 0%nat -> (MB.body bb <> nil \/ MB.exit bb <> None).
Proof.
  intros. destruct bb as [hd bdy ex]; simpl in *.
  destruct bdy; destruct ex; try (right; discriminate); try (left; discriminate).
  contradict H. unfold mbsize. simpl. auto.
Qed.

(* Bringing theorems (A), (B) and (C) together, for the case of the absence of builtin instruction *)
(* This more general form is easier to prove, but the actual theorem is step_simulation_bblock further below *)
Lemma step_simulation_bblock':
  forall sf f sp bb bb' bb'' rs m rs' m' s'' c S1,
  bb' = mb_remove_header bb ->
  body_step ge sf f sp (Machblock.body bb') rs m rs' m' ->
  bb'' = mb_remove_body bb' ->
  (forall ef args res, MB.exit bb'' <> Some (MBbuiltin ef args res)) ->
  exit_step return_address_offset ge (Machblock.exit bb'') (Machblock.State sf f sp (bb'' :: c) rs' m') E0 s'' ->
  match_states (Machblock.State sf f sp (bb :: c) rs m) S1 ->
  exists S2 : state, plus step tge S1 E0 S2 /\ match_states s'' S2.
Proof.
  intros until S1. intros Hbb' BSTEP Hbb'' Hbuiltin ESTEP MS.
  destruct (mbsize bb) eqn:SIZE.
  - apply mbsize_eqz in SIZE. destruct SIZE as (Hbody & Hexit).
    destruct bb as [hd bdy ex]; simpl in *; subst.
    inv MS. inv AT. exploit transl_blocks_nonil; eauto. intros (tbb & tc' & Htc). subst. rename tc' into tc.
    monadInv H2. simpl in *. inv ESTEP. inv BSTEP.
    eexists. split. eapply plus_one.
    exploit functions_translated; eauto. intros (tf0 & FIND' & TRANSF'). monadInv TRANSF'.
    assert (x = tf) by congruence. subst x.
    eapply exec_step_internal; eauto. eapply find_bblock_tail; eauto.
    unfold exec_bblock. simpl. eauto.
    econstructor. eauto. eauto. eauto.
    unfold nextblock, incrPC. Simpl. unfold Val.offset_ptr. rewrite <- H.
    assert (NOOV: size_blocks tf.(fn_blocks) <= Ptrofs.max_unsigned).
      eapply transf_function_no_overflow; eauto.
    econstructor; eauto.
      generalize (code_tail_next_int _ _ _ _ NOOV H3). intro CT1. eauto.
    eapply agree_exten; eauto. intros. Simpl.
    intros. discriminate.
  - subst. exploit mbsize_neqz. { instantiate (1 := bb). rewrite SIZE. discriminate. }
    intros Hnotempty.

    (* initial setting *)
    exploit match_state_codestate.
      2: eapply Hnotempty.
      all: eauto.
    intros (cs1 & fb & f0 & tbb & tc & ep & MCS & MAS & FIND & TLBS & Hbody & Hexit & Hcur & Hrem & Hpstate).

    (* step_simu_header part *)
    assert (exists rs1 m1, pstate cs1 = State rs1 m1). { inv MAS. simpl. eauto. }
    destruct H as (rs1 & m1 & Hpstate2). subst.
    assert (f = fb). { inv MCS. auto. } subst fb.
    exploit step_simu_header.
      2: eapply MCS.
      all: eauto.
    intros (cs1' & EXEH & MCS2).

    (* step_simu_body part *)
    assert (Hpstate': pstate cs1' = pstate cs1). { inv EXEH; auto. }
    exploit step_simu_body.
      3: eapply BSTEP.
      4: eapply MCS2.
      all: eauto. rewrite Hpstate'. eauto.
    intros (rs2 & m2 & cs2 & ep' & Hcs2 & EXEB & MCS').

    (* step_simu_control part *)
    assert (exists tf, Genv.find_funct_ptr tge f = Some (Internal tf)).
    { exploit functions_translated; eauto. intros (tf & FIND' & TRANSF'). monadInv TRANSF'. eauto. }
    destruct H as (tf & FIND').
    assert (exists tex, pbody2 cs1 = extract_basic tex /\ pctl cs1 = extract_ctl tex).
    { inv MAS. simpl in *. eauto. }
    destruct H as (tex & Hpbody2 & Hpctl).
    inv EXEH. simpl in *.
    subst. exploit step_simu_control.
      9: eapply MCS'. all: simpl.
      10: eapply ESTEP.
      all: simpl; eauto.
      rewrite Hpbody2. rewrite Hpctl.
      { inv MAS; simpl in *. inv Hpstate2. eapply match_asmstate_some; eauto.
        erewrite exec_body_pc; eauto. }
    intros (rs3 & m3 & rs4 & m4 & EXEB' & EXECTL' & MS').

    (* bringing the pieces together *)
    exploit exec_body_trans.
      eapply EXEB.
      eauto.
    intros EXEB2.
    exploit exec_body_control; eauto.
    rewrite <- Hpbody2 in EXEB2. rewrite <- Hbody in EXEB2. eauto.
    rewrite Hexit. rewrite Hpctl. eauto.
    intros EXECB. inv EXECB.
    exists (State rs4 m4).
    split; auto. eapply plus_one. rewrite Hpstate2.
    assert (exists ofs, rs1 PC = Vptr f ofs).
    { rewrite Hpstate2 in MAS. inv MAS. simpl in *. eauto. }
    destruct H0 as (ofs & Hrs1pc).
    eapply exec_step_internal; eauto.

    (* proving the initial find_bblock *)
    rewrite Hpstate2 in MAS. inv MAS. simpl in *. 
    assert (f1 = f0) by congruence. subst f0.
    rewrite PCeq in Hrs1pc. inv Hrs1pc.
    exploit functions_translated; eauto. intros (tf1 & FIND'' & TRANS''). rewrite FIND' in FIND''.
    inv FIND''. monadInv TRANS''. rewrite TRANSF0 in EQ. inv EQ.
    eapply find_bblock_tail; eauto.
Qed.

Theorem step_simulation_bblock:
  forall sf f sp bb ms m ms' m' S2 c,
  body_step ge sf f sp (Machblock.body bb) ms m ms' m' ->
  (forall ef args res, MB.exit bb <> Some (MBbuiltin ef args res)) ->
  exit_step return_address_offset ge (Machblock.exit bb) (Machblock.State sf f sp (bb :: c) ms' m') E0 S2 ->
  forall S1', match_states (Machblock.State sf f sp (bb :: c) ms m) S1' ->
  exists S2' : state, plus step tge S1' E0 S2' /\ match_states S2 S2'.
Proof.
  intros until c. intros BSTEP Hbuiltin ESTEP S1' MS.
  eapply step_simulation_bblock'; eauto.
  all: destruct bb as [hd bdy ex]; simpl in *; eauto.
  inv ESTEP.
  - econstructor. inv H; try (econstructor; eauto; fail).
  - econstructor.
Qed.

(** Dealing now with the builtin case *)

Definition split (c: MB.code) :=
  match c with
  | nil => nil
  | bb::c => {| MB.header := MB.header bb; MB.body := MB.body bb; MB.exit := None |}
              :: {| MB.header := nil; MB.body := nil; MB.exit := MB.exit bb |} :: c
  end.

Lemma cons_ok_eq3 {A: Type} :
  forall (x:A) y z x' y' z',
  x = x' -> y = y' -> z = z' ->
  OK (x::y::z) = OK (x'::y'::z').
Proof.
  intros. subst. auto.
Qed.

Lemma transl_blocks_split_builtin:
  forall bb c ep f ef args res,
  MB.exit bb = Some (MBbuiltin ef args res) -> MB.body bb <> nil ->
  transl_blocks f (split (bb::c)) ep = transl_blocks f (bb::c) ep.
Proof.
  intros until res. intros Hexit Hbody. simpl split.
  unfold transl_blocks. fold transl_blocks. unfold transl_block.
  simpl. remember (transl_basic_code _ _ _) as tbc. remember (transl_instr_control _ _) as tbi.
  remember (transl_blocks _ _ _) as tlbs.
  destruct tbc; destruct tbi; destruct tlbs.
  all: try simpl; auto.
  - simpl. rewrite Hexit in Heqtbi. simpl in Heqtbi. monadInv Heqtbi. simpl.
    unfold gen_bblocks. simpl. destruct l.
    + exploit transl_basic_code_nonil; eauto. intro. destruct H.
    + simpl. rewrite app_nil_r. apply cons_ok_eq3. all: try eapply bblock_equality. all: simpl; auto.
Qed.

Lemma transl_code_at_pc_split_builtin:
  forall rs f f0 bb c ep tf tc ef args res,
  MB.body bb <> nil -> MB.exit bb = Some (MBbuiltin ef args res) ->
  transl_code_at_pc ge (rs PC) f f0 (bb :: c) ep tf tc ->
  transl_code_at_pc ge (rs PC) f f0 (split (bb :: c)) ep tf tc.
Proof.
  intros until res. intros Hbody Hexit AT. inv AT.
  econstructor; eauto. erewrite transl_blocks_split_builtin; eauto.
Qed.

Theorem match_states_split_builtin:
  forall sf f sp bb c rs m ef args res S1,
  MB.body bb <> nil -> MB.exit bb = Some (MBbuiltin ef args res) ->
  match_states (Machblock.State sf f sp (bb :: c) rs m) S1 ->
  match_states (Machblock.State sf f sp (split (bb::c)) rs m) S1.
Proof.
  intros until S1. intros Hbody Hexit MS.
  inv MS.
  econstructor; eauto.
  eapply transl_code_at_pc_split_builtin; eauto.
Qed.

Theorem step_simulation_builtin:
  forall ef args res bb sf f sp c ms m t S2,
  MB.body bb = nil -> MB.exit bb = Some (MBbuiltin ef args res) ->
  exit_step return_address_offset ge (MB.exit bb) (Machblock.State sf f sp (bb :: c) ms m) t S2 ->
  forall S1', match_states (Machblock.State sf f sp (bb :: c) ms m) S1' ->
  exists S2' : state, plus step tge S1' t S2' /\ match_states S2 S2'.
Proof.
  intros until S2. intros Hbody Hexit ESTEP S1' MS.
  inv MS. inv AT. monadInv H2. monadInv EQ.
  rewrite Hbody in EQ0. monadInv EQ0.
  rewrite Hexit in EQ. monadInv EQ.
  rewrite Hexit in ESTEP. inv ESTEP. inv H4.

  exploit functions_transl; eauto. intro FN.
  generalize (transf_function_no_overflow _ _ H1); intro NOOV.
  exploit builtin_args_match; eauto. intros [vargs' [P Q]].
  exploit external_call_mem_extends; eauto.
  intros [vres' [m2' [A [B [C D]]]]].
  econstructor; split. apply plus_one.
  simpl in H3.
  eapply exec_step_builtin. eauto. eauto.
    eapply find_bblock_tail; eauto.
    simpl. eauto.
    erewrite <- sp_val by eauto.
    eapply eval_builtin_args_preserved with (ge1 := ge); eauto. exact symbols_preserved.
    eapply external_call_symbols_preserved; eauto. apply senv_preserved.
    eauto.
  econstructor; eauto.
    instantiate (2 := tf); instantiate (1 := x0).
    unfold nextblock, incrPC. rewrite Pregmap.gss.
    rewrite set_res_other. rewrite undef_regs_other_2. rewrite Pregmap.gso by congruence. 
    rewrite <- H. simpl. econstructor; eauto.
    eapply code_tail_next_int; eauto.
    rewrite preg_notin_charact. intros. auto with asmgen.
    auto with asmgen.
    apply agree_nextblock. eapply agree_set_res; auto.
    eapply agree_undef_regs; eauto. intros. rewrite undef_regs_other_2; auto.
    apply Pregmap.gso; auto with asmgen.
    congruence.
Qed.

Lemma next_sep:
  forall rs m rs' m', rs = rs' -> m = m' -> Next rs m = Next rs' m'.
Proof.
  congruence.
Qed.

(* Measure to prove finite stuttering, see the other backends *)
Definition measure (s: MB.state) : nat :=
  match s with
  | MB.State _ _ _ _ _ _ => 0%nat
  | MB.Callstate _ _ _ _ => 0%nat
  | MB.Returnstate _ _ _ => 1%nat
  end.

(* The actual MB.step/AB.step simulation, using the above theorems, plus extra proofs
   for the internal and external function cases *)
Theorem step_simulation:
  forall S1 t S2, MB.step return_address_offset ge S1 t S2 ->
  forall S1' (MS: match_states S1 S1'),
  (exists S2', plus step tge S1' t S2' /\ match_states S2 S2')
  \/ (measure S2 < measure S1 /\ t = E0 /\ match_states S2 S1')%nat.
Proof.
  induction 1; intros.

- (* bblock *)
  left. destruct (Machblock.exit bb) eqn:MBE; try destruct c0.
  all: try(inversion H0; subst; inv H2; eapply step_simulation_bblock; 
            try (rewrite MBE; try discriminate); eauto).
  + (* MBbuiltin *)
    destruct (MB.body bb) eqn:MBB.
    * inv H. eapply step_simulation_builtin; eauto. rewrite MBE. eauto.
    * eapply match_states_split_builtin in MS; eauto.
        2: rewrite MBB; discriminate.
      simpl split in MS.
      rewrite <- MBB in H.
      remember {| MB.header := _; MB.body := _; MB.exit := _ |} as bb1.
      assert (MB.body bb = MB.body bb1). { subst. simpl. auto. }
      rewrite H1 in H. subst.
      exploit step_simulation_bblock. eapply H.
        discriminate.
        simpl. constructor.
        eauto.
      intros (S2' & PLUS1 & MS').
      rewrite MBE in MS'.
      assert (exit_step return_address_offset ge (Some (MBbuiltin e l b)) 
              (MB.State sf f sp ({| MB.header := nil; MB.body := nil; MB.exit := Some (MBbuiltin e l b) |}::c) 
                rs' m') t s').
      { inv H0. inv H3. econstructor. econstructor; eauto. }
      exploit step_simulation_builtin.
        4: eapply MS'.
        all: simpl; eauto.
      intros (S3' & PLUS'' & MS'').
      exists S3'. split; eauto.
      eapply plus_trans. eapply PLUS1. eapply PLUS''. eauto.
  + inversion H0. subst. eapply step_simulation_bblock; try (rewrite MBE; try discriminate); eauto.

- (* internal function *)
  inv MS.
  exploit functions_translated; eauto. intros [tf [A B]]. monadInv B.
  generalize EQ; intros EQ'. monadInv EQ'.
  destruct (zlt Ptrofs.max_unsigned (size_blocks x0.(fn_blocks))); inversion EQ1. clear EQ1. subst x0.
  unfold Mach.store_stack in *.
  exploit Mem.alloc_extends. eauto. eauto. apply Z.le_refl. apply Z.le_refl.
  intros [m1' [C D]].
  exploit Mem.storev_extends. eexact D. eexact H1. eauto. eauto.
  intros [m2' [F G]].
  simpl chunk_of_type in F.
  exploit Mem.storev_extends. eexact G. eexact H2. eauto. eauto.
  intros [m3' [P Q]].
  (* Execution of function prologue *)
  monadInv EQ0.
  set (tfbody := make_prologue f x0) in *.
  set (tf := {| fn_sig := MB.fn_sig f; fn_blocks := tfbody |}) in *.
  set (rs2 := rs0#FP <- (parent_sp s) #SP <- sp #RTMP <- Vundef).
  exploit (Pget_correct tge GPRA RA nil rs2 m2'); auto.
  intros (rs' & U' & V').
  exploit (storeind_ptr_correct tge SP (fn_retaddr_ofs f) GPRA nil rs' m2').
  { rewrite chunk_of_Tptr in P.
    assert (rs' GPRA = rs0 RA). { apply V'. }
    assert (rs' SP = rs2 SP). { apply V'; discriminate. }
    rewrite H4. rewrite H3.
    rewrite ATLR.
    change (rs2 SP) with sp. eexact P. }
  intros (rs3 & U & V).
  assert (EXEC_PROLOGUE: exists rs3',
            exec_straight_blocks tge tf
              tf.(fn_blocks) rs0 m'
              x0 rs3' m3'
          /\ forall r, r <> PC -> rs3' r = rs3 r).
  { eexists. split.
    - change (fn_blocks tf) with tfbody; unfold tfbody.
      econstructor; eauto. unfold exec_bblock. simpl exec_body.
      rewrite C. fold sp. rewrite <- (sp_val _ _ _ AG). rewrite chunk_of_Tptr in F. simpl in F. rewrite F.
      Simpl. unfold parexec_store_offset. rewrite Ptrofs.of_int64_to_int64. unfold eval_offset.
      rewrite chunk_of_Tptr in P. Simpl. rewrite ATLR. unfold Mptr in P. assert (Archi.ptr64 = true) by auto. 2: auto. rewrite H3 in P. rewrite P.
      simpl. apply next_sep; eauto. reflexivity.
    - intros. destruct V' as (V'' & V'). destruct r.
      + Simpl.
        destruct (gpreg_eq g0 GPR16). { subst. Simpl. rewrite V; try discriminate. rewrite V''. subst rs2. Simpl. }
        destruct (gpreg_eq g0 GPR32). { subst. Simpl. rewrite V; try discriminate. rewrite V'; try discriminate. subst rs2. Simpl. }
        destruct (gpreg_eq g0 GPR12). { subst. Simpl. rewrite V; try discriminate. rewrite V'; try discriminate. subst rs2. Simpl. }
        destruct (gpreg_eq g0 GPR17). { subst. Simpl. rewrite V; try discriminate. rewrite V'; try discriminate. subst rs2. Simpl. }
        Simpl. rewrite V; try discriminate. rewrite V'; try discriminate. subst rs2. Simpl. { destruct g0; try discriminate. contradiction. }
      + Simpl. rewrite V; try discriminate. rewrite V'; try discriminate. subst rs2. Simpl.
      + contradiction.
  } destruct EXEC_PROLOGUE as (rs3' & EXEC_PROLOGUE & Heqrs3').
  exploit exec_straight_steps_2; eauto using functions_transl.
  simpl fn_blocks. simpl fn_blocks in g. lia. constructor.
  intros (ofs' & X & Y).                    
  left; exists (State rs3' m3'); split.
  eapply exec_straight_steps_1; eauto.
  simpl fn_blocks. simpl fn_blocks in g. lia.
  constructor.
  econstructor; eauto.
  rewrite X; econstructor; eauto. 
  apply agree_exten with rs2; eauto with asmgen.
  unfold rs2. 
  apply agree_set_other; auto with asmgen.
  apply agree_change_sp with (parent_sp s). 
  apply agree_undef_regs with rs0. auto.
Local Transparent destroyed_at_function_entry.
  simpl; intros; Simpl.
  unfold sp; congruence.

  intros.
  assert (r <> RTMP). { contradict H3; rewrite H3; unfold data_preg; auto. }
  rewrite Heqrs3'. Simpl. rewrite V. inversion V'. rewrite H6. auto.
  assert (r <> GPRA). { contradict H3; rewrite H3; unfold data_preg; auto. }
  assert (forall r : preg, r <> PC -> r <> GPRA -> rs' r = rs2 r). { apply V'. }
  contradict H3; rewrite H3; unfold data_preg; auto.
  contradict H3; rewrite H3; unfold data_preg; auto.
  contradict H3; rewrite H3; unfold data_preg; auto.
  contradict H3; rewrite H3; unfold data_preg; auto.
  intros. rewrite Heqrs3'. rewrite V by auto with asmgen.
  assert (forall r : preg, r <> PC -> r <> GPRA -> rs' r = rs2 r). { apply V'. }
  rewrite H4 by auto with asmgen. reflexivity. discriminate.

- (* external function *)
  inv MS.
  exploit functions_translated; eauto.
  intros [tf [A B]]. simpl in B. inv B.
  exploit extcall_arguments_match; eauto.
  intros [args' [C D]].
  exploit external_call_mem_extends; eauto.
  intros [res' [m2' [P [Q [R S]]]]].
  left; econstructor; split.
  apply plus_one. eapply exec_step_external; eauto.
  eapply external_call_symbols_preserved; eauto. apply senv_preserved.
  econstructor; eauto.
  unfold loc_external_result.
  apply agree_set_other; auto.
  apply agree_set_pair; auto.
  apply agree_undef_caller_save_regs; auto.

- (* return *) 
  inv MS.
  inv STACKS. simpl in *.
  right. split. lia. split. auto.
  rewrite <- ATPC in H5.
  econstructor; eauto. congruence.
Qed.

Lemma transf_initial_states:
  forall st1, MB.initial_state prog st1 ->
  exists st2, AB.initial_state tprog st2 /\ match_states st1 st2.
Proof.
  intros. inversion H. unfold ge0 in *.
  econstructor; split.
  econstructor.
  eapply (Genv.init_mem_transf_partial TRANSF); eauto.
  replace (Genv.symbol_address (Genv.globalenv tprog) (prog_main tprog) Ptrofs.zero)
     with (Vptr fb Ptrofs.zero).
  econstructor; eauto.
  constructor.
  apply Mem.extends_refl.
  split. auto. simpl. unfold Vnullptr; destruct Archi.ptr64; congruence.
  intros. rewrite Mach.Regmap.gi. auto.
  unfold Genv.symbol_address.
  rewrite (match_program_main TRANSF).
  rewrite symbols_preserved.
  unfold ge; rewrite H1. auto.
Qed.

Lemma transf_final_states:
  forall st1 st2 r,
  match_states st1 st2 -> MB.final_state st1 r -> AB.final_state st2 r.
Proof.
  intros. inv H0. inv H. constructor. assumption.
  compute in H1. inv H1.
  generalize (preg_val _ _ _ R0 AG). rewrite H2. intros LD; inv LD. auto.
Qed.

Definition return_address_offset : Machblock.function -> Machblock.code -> ptrofs -> Prop := 
  Asmblockgenproof0.return_address_offset.

Theorem transf_program_correct:
  forward_simulation (MB.semantics return_address_offset prog) (Asmblock.semantics tprog).
Proof.
  eapply forward_simulation_star with (measure := measure).
  - apply senv_preserved.
  - eexact transf_initial_states.
  - eexact transf_final_states.
  - exact step_simulation.
Qed.

End PRESERVATION.