aboutsummaryrefslogtreecommitdiffstats
path: root/kvx/Asmvliw.v
blob: 3fa184c625de8efcfb45d617ebcb0f0c85930fb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
(* *************************************************************)
(*                                                             *)
(*             The Compcert verified compiler                  *)
(*                                                             *)
(*           Sylvain Boulmé     Grenoble-INP, VERIMAG          *)
(*           Xavier Leroy       INRIA Paris-Rocquencourt       *)
(*           David Monniaux     CNRS, VERIMAG                  *)
(*           Cyril Six          Kalray                         *)
(*                                                             *)
(*  Copyright Kalray. Copyright VERIMAG. All rights reserved.  *)
(*  This file is distributed under the terms of the INRIA      *)
(*  Non-Commercial License Agreement.                          *)
(*                                                             *)
(* *************************************************************)

(** Abstract syntax and semantics for VLIW semantics of KVX assembly language. *)

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import ExtValues.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Locations.
Require Stacklayout.
Require Import Conventions.
Require Import Errors.
Require Import Sorting.Permutation.
Require Import Chunks.
Require Import Lia.

(** * Abstract syntax *)

(** A KVX program is syntactically given as a list of functions. 
    Each function is associated to a list of bundles of type [bblock] below.
    Hence, syntactically, we view each bundle as a basic block:
    this view induces our sequential semantics of bundles defined in [Asmblock].
*)

(** ** General Purpose registers. *)

Inductive gpreg: Type :=
  | GPR0:  gpreg | GPR1:  gpreg | GPR2:  gpreg | GPR3:  gpreg | GPR4:  gpreg
  | GPR5:  gpreg | GPR6:  gpreg | GPR7:  gpreg | GPR8:  gpreg | GPR9:  gpreg
  | GPR10: gpreg | GPR11: gpreg | GPR12: gpreg | GPR13: gpreg | GPR14: gpreg
  | GPR15: gpreg | GPR16: gpreg | GPR17: gpreg | GPR18: gpreg | GPR19: gpreg
  | GPR20: gpreg | GPR21: gpreg | GPR22: gpreg | GPR23: gpreg | GPR24: gpreg
  | GPR25: gpreg | GPR26: gpreg | GPR27: gpreg | GPR28: gpreg | GPR29: gpreg
  | GPR30: gpreg | GPR31: gpreg | GPR32: gpreg | GPR33: gpreg | GPR34: gpreg
  | GPR35: gpreg | GPR36: gpreg | GPR37: gpreg | GPR38: gpreg | GPR39: gpreg
  | GPR40: gpreg | GPR41: gpreg | GPR42: gpreg | GPR43: gpreg | GPR44: gpreg
  | GPR45: gpreg | GPR46: gpreg | GPR47: gpreg | GPR48: gpreg | GPR49: gpreg
  | GPR50: gpreg | GPR51: gpreg | GPR52: gpreg | GPR53: gpreg | GPR54: gpreg
  | GPR55: gpreg | GPR56: gpreg | GPR57: gpreg | GPR58: gpreg | GPR59: gpreg
  | GPR60: gpreg | GPR61: gpreg | GPR62: gpreg | GPR63: gpreg.

Definition ireg := gpreg.
Definition freg := gpreg.

Lemma gpreg_eq: forall (x y: gpreg), {x=y} + {x<>y}.
Proof. decide equality. Defined.

Lemma ireg_eq: forall (x y: ireg), {x=y} + {x<>y}.
Proof. decide equality. Defined.

Lemma freg_eq: forall (x y: freg), {x=y} + {x<>y}.
Proof. decide equality. Defined.

Inductive gpreg_q : Type :=
| R0R1 | R2R3 | R4R5 | R6R7 | R8R9
| R10R11 | R12R13 | R14R15 | R16R17 | R18R19
| R20R21 | R22R23 | R24R25 | R26R27 | R28R29
| R30R31 | R32R33 | R34R35 | R36R37 | R38R39
| R40R41 | R42R43 | R44R45 | R46R47 | R48R49
| R50R51 | R52R53 | R54R55 | R56R57 | R58R59
| R60R61 | R62R63.
                             
Lemma gpreg_q_eq : forall (x y : gpreg_q), {x=y} + {x<>y}.
Proof. decide equality. Defined.

Definition gpreg_q_expand (x : gpreg_q) : gpreg * gpreg :=
  match x with
  | R0R1 => (GPR0, GPR1)
  | R2R3 => (GPR2, GPR3)
  | R4R5 => (GPR4, GPR5)
  | R6R7 => (GPR6, GPR7)
  | R8R9 => (GPR8, GPR9)
  | R10R11 => (GPR10, GPR11)
  | R12R13 => (GPR12, GPR13)
  | R14R15 => (GPR14, GPR15)
  | R16R17 => (GPR16, GPR17)
  | R18R19 => (GPR18, GPR19)
  | R20R21 => (GPR20, GPR21)
  | R22R23 => (GPR22, GPR23)
  | R24R25 => (GPR24, GPR25)
  | R26R27 => (GPR26, GPR27)
  | R28R29 => (GPR28, GPR29)
  | R30R31 => (GPR30, GPR31)
  | R32R33 => (GPR32, GPR33)
  | R34R35 => (GPR34, GPR35)
  | R36R37 => (GPR36, GPR37)
  | R38R39 => (GPR38, GPR39)
  | R40R41 => (GPR40, GPR41)
  | R42R43 => (GPR42, GPR43)
  | R44R45 => (GPR44, GPR45)
  | R46R47 => (GPR46, GPR47)
  | R48R49 => (GPR48, GPR49)
  | R50R51 => (GPR50, GPR51)
  | R52R53 => (GPR52, GPR53)
  | R54R55 => (GPR54, GPR55)
  | R56R57 => (GPR56, GPR57)
  | R58R59 => (GPR58, GPR59)
  | R60R61 => (GPR60, GPR61)
  | R62R63 => (GPR62, GPR63)
  end.

Inductive gpreg_o : Type :=
| R0R1R2R3 | R4R5R6R7 | R8R9R10R11 | R12R13R14R15
| R16R17R18R19 | R20R21R22R23 | R24R25R26R27 | R28R29R30R31
| R32R33R34R35 | R36R37R38R39 | R40R41R42R43 | R44R45R46R47
| R48R49R50R51 | R52R53R54R55 | R56R57R58R59 | R60R61R62R63.

Definition gpreg_o_expand (x : gpreg_o) : gpreg * gpreg * gpreg * gpreg :=
  match x with
  | R0R1R2R3 => (GPR0, GPR1, GPR2, GPR3)
  | R4R5R6R7 => (GPR4, GPR5, GPR6, GPR7)
  | R8R9R10R11 => (GPR8, GPR9, GPR10, GPR11)
  | R12R13R14R15 => (GPR12, GPR13, GPR14, GPR15)
  | R16R17R18R19 => (GPR16, GPR17, GPR18, GPR19)
  | R20R21R22R23 => (GPR20, GPR21, GPR22, GPR23)
  | R24R25R26R27 => (GPR24, GPR25, GPR26, GPR27)
  | R28R29R30R31 => (GPR28, GPR29, GPR30, GPR31)
  | R32R33R34R35 => (GPR32, GPR33, GPR34, GPR35)
  | R36R37R38R39 => (GPR36, GPR37, GPR38, GPR39)
  | R40R41R42R43 => (GPR40, GPR41, GPR42, GPR43)
  | R44R45R46R47 => (GPR44, GPR45, GPR46, GPR47)
  | R48R49R50R51 => (GPR48, GPR49, GPR50, GPR51)
  | R52R53R54R55 => (GPR52, GPR53, GPR54, GPR55)
  | R56R57R58R59 => (GPR56, GPR57, GPR58, GPR59)
  | R60R61R62R63 => (GPR60, GPR61, GPR62, GPR63)
  end.

Lemma gpreg_o_eq : forall (x y : gpreg_o), {x=y} + {x<>y}.
Proof. decide equality. Defined.

Inductive preg: Type :=
  | IR: gpreg -> preg                   (**r integer general purpose registers *)
  | RA: preg
  | PC: preg
  .

Coercion IR: gpreg >-> preg.

Lemma preg_eq: forall (x y: preg), {x=y} + {x<>y}.
Proof. decide equality. apply ireg_eq. Defined.

Module PregEq.
  Definition t  := preg.
  Definition eq := preg_eq.
End PregEq.

(* FIXME - R16 and R32 are excluded *)
Definition preg_of (r: mreg) : preg :=
  match r with
  | R0  => GPR0  | R1  => GPR1  | R2  => GPR2  | R3  => GPR3  | R4  => GPR4
  | R5  => GPR5  | R6  => GPR6  | R7  => GPR7  | R8  => GPR8  | R9  => GPR9
  | R10 => GPR10 | R11 => GPR11 (* | R12 => GPR12 | R13 => GPR13 | R14  => GPR14 *)
  | R15 => GPR15 (* | R16 => GPR16 *) | R17 => GPR17 | R18 => GPR18 | R19  => GPR19
  | R20 => GPR20 | R21 => GPR21 | R22 => GPR22 | R23 => GPR23 | R24  => GPR24
  | R25 => GPR25 | R26 => GPR26 | R27 => GPR27 | R28 => GPR28 | R29  => GPR29
  | R30 => GPR30 | R31 => GPR31 (* | R32 => GPR32 *) | R33 => GPR33 | R34  => GPR34
  | R35 => GPR35 | R36 => GPR36 | R37 => GPR37 | R38 => GPR38 | R39  => GPR39
  | R40 => GPR40 | R41 => GPR41 | R42 => GPR42 | R43 => GPR43 | R44  => GPR44
  | R45 => GPR45 | R46 => GPR46 | R47 => GPR47 | R48 => GPR48 | R49  => GPR49
  | R50 => GPR50 | R51 => GPR51 | R52 => GPR52 | R53 => GPR53 | R54  => GPR54
  | R55 => GPR55 | R56 => GPR56 | R57 => GPR57 | R58 => GPR58 | R59  => GPR59
  | R60 => GPR60 | R61 => GPR61 | R62 => GPR62 | R63 => GPR63
  end.

Definition ireg_of (r: mreg) : res ireg :=
  match preg_of r with IR mr => OK mr | _ => Error(msg "Asmgenblock.ireg_of") end.

Definition freg_of (r: mreg) : res freg :=
  match preg_of r with IR mr => OK mr | _ => Error(msg "Asmgenblock.freg_of") end.

Module Pregmap := EMap(PregEq).

(** ** Conventional names for stack pointer ([SP]), return address ([RA]), frame pointer ([FP]) and other temporaries used *)

Notation "'SP'" := GPR12 (only parsing) : asm.
Notation "'FP'" := GPR17 (only parsing) : asm.
Notation "'MFP'" := R17 (only parsing) : asm.
Notation "'GPRA'" := GPR16 (only parsing) : asm.
Notation "'RTMP'" := GPR32 (only parsing) : asm.

(** ** Names of tests in comparisons *)

Inductive btest: Type :=
  | BTdnez                              (**r Double Not Equal to Zero *)
  | BTdeqz                              (**r Double Equal to Zero *)
  | BTdltz                              (**r Double Less Than Zero *)
  | BTdgez                              (**r Double Greater Than or Equal to Zero *)
  | BTdlez                              (**r Double Less Than or Equal to Zero *)
  | BTdgtz                              (**r Double Greater Than Zero *)
  | BTwnez                              (**r Word Not Equal to Zero *)
  | BTweqz                              (**r Word Equal to Zero *)
  | BTwltz                              (**r Word Less Than Zero *)
  | BTwgez                              (**r Word Greater Than or Equal to Zero *)
  | BTwlez                              (**r Word Less Than or Equal to Zero *)
  | BTwgtz                              (**r Word Greater Than Zero *)
  .

Inductive itest: Type :=
  | ITne                                (**r Not Equal *)
  | ITeq                                (**r Equal *)
  | ITlt                                (**r Less Than *)
  | ITge                                (**r Greater Than or Equal *)
  | ITle                                (**r Less Than or Equal *)
  | ITgt                                (**r Greater Than *)
  | ITneu                               (**r Unsigned Not Equal *)
  | ITequ                               (**r Unsigned Equal *)
  | ITltu                               (**r Less Than Unsigned *)
  | ITgeu                               (**r Greater Than or Equal Unsigned *)
  | ITleu                               (**r Less Than or Equal Unsigned *)
  | ITgtu                               (**r Greater Than Unsigned *)
  .

Inductive ftest: Type :=
  | FTone                               (**r Ordered and Not Equal *)
  | FTueq                               (**r Unordered or Equal *)
  | FToeq                               (**r Ordered and Equal *)
  | FTune                               (**r Unordered or Not Equal *)
  | FTolt                               (**r Ordered and Less Than *)
  | FTuge                               (**r Unordered or Greater Than or Equal *)
  | FToge                               (**r Ordered and Greater Than or Equal *)
  | FTult                               (**r Unordered or Less Than *)
  .

(** *** Offsets for load and store instructions. *)

Definition offset : Type := ptrofs.

(** *** Labels for goto (in the current function) *)

Definition label := positive.

(** ** Instructions *)

(** We model a subset of the KVX instruction set.

-  Although it is possible to use the 32-bits mode, for now we don't support it. When mapping to actual instructions, the OCaml code in TargetPrinter.ml
  throws an error if we are not in 64-bits mode.

- We follow a design close to the one used for the Risc-V port: one set of
  pseudo-instructions for 32-bit integer arithmetic, with suffix W, another
  set for 64-bit integer arithmetic, with suffix L.

- With respect to other CompCert assemblies, we define a type hierarchy of instructions (instead of a flat type).
  This helps us to factorize similar cases for the scheduling verifier.

*)

(** *** Instructions to be expanded in control-flow *)
Inductive ex_instruction : Type :=
  (* Pseudo-instructions *)
  | Pbuiltin: external_function -> list (builtin_arg preg)
              -> builtin_res preg -> ex_instruction   (**r built-in function (pseudo) *)
.

(** Similarly to other CompCert assembly languages, the pseudo-instructions are the following:

- [Ploadsymbol]: load the address of a symbol in an integer register.

- [Pallocframe sz pos]: in the formal semantics, this
  pseudo-instruction allocates a memory block with bounds [0] and
  [sz], stores the value of the stack pointer at offset [pos] in this
  block, and sets the stack pointer to the address of the bottom of
  this block.

  This cannot be expressed in our memory model, which does not reflect
  the fact that stack frames are adjacent and allocated/freed
  following a stack discipline.

- [Pfreeframe sz pos]: in the formal semantics, this pseudo-instruction
  reads the word at [pos] of the block pointed by the stack pointer,
  frees this block, and sets the stack pointer to the value read.
  Again, our memory model cannot comprehend that this operation
  frees (logically) the current stack frame.

- [Pbtbl reg table]: this is a N-way branch, implemented via a jump table
*)

(** *** Control Flow instructions *)
Inductive cf_instruction : Type :=
  | Pret                                            (**r return *)
  | Pcall   (l: label)                              (**r function call *)
  | Picall  (r: ireg)                               (**r function call on register value *)
  | Pjumptable (r: ireg) (labels: list label) (**r N-way branch through a jump table (pseudo) *)

  (* Pgoto is for tailcalls, Pj_l is for jumping to a particular label *)
  | Pgoto   (l: label)                              (**r goto *)
  | Pigoto  (r: ireg)                               (**r goto from register *)
  | Pj_l    (l: label)                              (**r jump to label *)

  (* Conditional branches *)
  | Pcb     (bt: btest) (r: ireg) (l: label)        (**r branch based on btest *)
  | Pcbu    (bt: btest) (r: ireg) (l: label)        (**r branch based on btest with unsigned semantics *)
.

(** *** Loads *)

(* What follows was the original spec, but is subtly incorrect.
   Our definition of the assembly-level memory model is already an abstraction of the real world.
   In particular, we consider that a load is incorrect when it points outside of CompCert's visible memory, whereas this memory could be correct at the assembly level.
   This means that CompCert would believe an incorrect load would yield 0 whereas it would yield another value.
  match chunk with
  | Mint8signed | Mint8unsigned | Mint16signed | Mint16unsigned
  | Mint32 => Vint Int.zero
  | Mint64 => Vlong Int64.zero
  | Many32 | Many64 => Vundef
  | Mfloat32 => Vsingle Float32.zero
  | Mfloat64 => Vfloat Float.zero
  end. *)

Inductive load_name : Type :=
  | Plb                                             (**r load byte *)
  | Plbu                                            (**r load byte unsigned *)
  | Plh                                             (**r load half word *)
  | Plhu                                            (**r load half word unsigned *)
  | Plw                                             (**r load int32 *)
  | Plw_a                                           (**r load any32 *)
  | Pld                                             (**r load int64 *)
  | Pld_a                                           (**r load any64 *)
  | Pfls                                            (**r load float *)
  | Pfld                                            (**r load 64-bit float *)
.

Inductive ld_instruction : Type :=
  | PLoadRRO   (trap: trapping_mode) (i: load_name) (rd: ireg) (ra: ireg) (ofs: offset)
  | PLoadRRR   (trap: trapping_mode) (i: load_name) (rd: ireg) (ra: ireg) (rofs: ireg)
  | PLoadRRRXS (trap: trapping_mode) (i: load_name) (rd: ireg) (ra: ireg) (rofs: ireg)
  | PLoadQRRO  (rd: gpreg_q) (ra: ireg) (ofs: offset)
  | PLoadORRO  (rd: gpreg_o) (ra: ireg) (ofs: offset)
.

(** *** Stores *)
Inductive store_name : Type :=
  | Psb                                             (**r store byte *)
  | Psh                                             (**r store half byte *)
  | Psw                                             (**r store int32 *)
  | Psw_a                                           (**r store any32 *)
  | Psd                                             (**r store int64 *)
  | Psd_a                                           (**r store any64 *)
  | Pfss                                            (**r store float *)
  | Pfsd                                            (**r store 64-bit float *)
.

Inductive st_instruction : Type :=
  | PStoreRRO  (i: store_name) (rs: ireg) (ra: ireg) (ofs: offset)
  | PStoreRRR  (i: store_name) (rs: ireg) (ra: ireg) (rofs: ireg)
  | PStoreRRRXS(i: store_name) (rs: ireg) (ra: ireg) (rofs: ireg)
  | PStoreQRRO (rs: gpreg_q) (ra: ireg) (ofs: offset)
  | PStoreORRO (rs: gpreg_o) (ra: ireg) (ofs: offset)
.

(** *** Arithmetic instructions *)
Inductive arith_name_r : Type :=
  | Ploadsymbol (id: ident) (ofs: ptrofs)           (**r load the address of a symbol *)
.

Inductive arith_name_rr : Type :=
  | Pmv                                             (**r register move *)
  | Pnegw                                           (**r negate word *)
  | Pnegl                                           (**r negate long *)
  | Pcvtl2w                                         (**r Convert Long to Word *)
  | Psxwd                                           (**r Sign Extend Word to Double Word *)
  | Pzxwd                                           (**r Zero Extend Word to Double Word *)
  | Pextfz (stop : Z) (start : Z)               (**r extract bit field, unsigned *)
  | Pextfs (stop : Z) (start : Z)               (**r extract bit field, signed *)
  | Pextfzl (stop : Z) (start : Z)              (**r extract bit field, unsigned *)
  | Pextfsl (stop : Z) (start : Z)              (**r extract bit field, signed *)
          
  | Pfabsd                                          (**r float absolute double *)
  | Pfabsw                                          (**r float absolute word *)
  | Pfnegd                                          (**r float negate double *)
  | Pfnegw                                          (**r float negate word *)
  | Pfinvw                                          (**r float invert word *)
  | Pfnarrowdw                                      (**r float narrow 64 -> 32 bits *)
  | Pfwidenlwd                                      (**r Floating Point widen from 32 bits to 64 bits *)
  | Pfloatwrnsz                                     (**r Floating Point conversion from integer (int -> SINGLE) *)
  | Pfloatuwrnsz                                    (**r Floating Point conversion from integer (unsigned int -> SINGLE) *)
  | Pfloatudrnsz                                    (**r Floating Point Conversion from integer (unsigned long -> float) *)
  | Pfloatdrnsz                                     (**r Floating Point Conversion from integer (long -> float) *)
  | Pfixedwrzz                                      (**r Integer conversion from floating point (single -> int) *)
  | Pfixeduwrzz                                     (**r Integer conversion from floating point (single -> unsigned int) *)
  | Pfixeddrzz                                      (**r Integer conversion from floating point (float -> long) *)
  | Pfixedudrzz                                      (**r Integer conversion from floating point (float -> unsigned long) *)
  | Pfixeddrzz_i32                                  (**r Integer conversion from floating point (float -> int) *)
  | Pfixedudrzz_i32                                  (**r Integer conversion from floating point (float -> unsigned int) *)
  | Pfixedwrne                        (**r Integer conversion from floating point *)
  | Pfixeduwrne                        (**r Integer conversion from floating point (f32 -> 32 bits unsigned *)
  | Pfixeddrne                         (**r Integer conversion from floating point (i64 -> 64 bits) *)
  | Pfixedudrne.                        (**r unsigned Integer conversion from floating point (u64 -> 64 bits) *)

Inductive arith_name_ri32 : Type :=
  | Pmake                                           (**r load immediate *)
.

Inductive arith_name_ri64 : Type :=
  | Pmakel                                          (**r load immediate long *)
.

Inductive arith_name_rf32 : Type :=
  | Pmakefs                                         (**r load immediate single *)
.

Inductive arith_name_rf64 : Type :=
  | Pmakef                                          (**r load immediate float *)
.

Inductive arith_name_rrr : Type :=
  | Pcompw  (it: itest)                             (**r comparison word *)
  | Pcompl  (it: itest)                             (**r comparison long *)
  | Pfcompw (ft: ftest)                             (**r comparison float32 *)
  | Pfcompl (ft: ftest)                             (**r comparison float64 *)

  | Paddw                                           (**r add word *)
  | Paddxw (shift : shift1_4)                              (**r add shift *)
  | Psubw                                           (**r sub word word *)
  | Prevsubxw (shift : shift1_4)                              (**r sub shift word *)
  | Pmulw                                           (**r mul word *)
  | Pandw                                           (**r and word *)
  | Pnandw                                          (**r nand word *)
  | Porw                                            (**r or word *)
  | Pnorw                                           (**r nor word *)
  | Pxorw                                           (**r xor word *)
  | Pnxorw                                          (**r nxor word *)
  | Pandnw                                          (**r andn word *)
  | Pornw                                           (**r orn word *)
  | Psraw                                           (**r shift right arithmetic word *)
  | Psrxw                                           (**r shift right arithmetic word round to 0*)
  | Psrlw                                           (**r shift right logical word *)
  | Psllw                                           (**r shift left logical word *)

  | Paddl                                           (**r add long *)
  | Paddxl (shift : shift1_4)                              (**r add shift long *)
  | Psubl                                           (**r sub long *)
  | Prevsubxl (shift : shift1_4)                              (**r sub shift long *)
  | Pandl                                           (**r and long *)
  | Pnandl                                          (**r nand long *)
  | Porl                                            (**r or long *)
  | Pnorl                                           (**r nor long *)
  | Pxorl                                           (**r xor long *)
  | Pnxorl                                          (**r nxor long *)
  | Pandnl                                          (**r andn long *)
  | Pornl                                           (**r orn long *)
  | Pmull                                           (**r mul long (low part) *)
  | Pslll                                           (**r shift left logical long *)
  | Psrll                                           (**r shift right logical long *)
  | Psrxl                                           (**r shift right logical long round to 0*)
  | Psral                                           (**r shift right arithmetic long *)

  | Pfaddd                                          (**r float add double *)
  | Pfaddw                                          (**r float add word *)
  | Pfsbfd                                          (**r float sub double *)
  | Pfsbfw                                          (**r float sub word *)
  | Pfmuld                                          (**r float multiply double *)
  | Pfmulw                                          (**r float multiply word *)
  | Pfmind                                          (**r float min double *)
  | Pfminw                                          (**r float min word *)
  | Pfmaxd                                          (**r float max double *)
  | Pfmaxw                                          (**r float max word *)

  | Pabdw                          (**r absolute value of difference *)
  | Pabdl                          (**r absolute value of difference *)
.

Inductive arith_name_rri32 : Type :=
  | Pcompiw (it: itest)                             (**r comparison imm word *)

  | Paddiw                                          (**r add imm word *)
  | Paddxiw (shift : shift1_4)
  | Prevsubiw                                          (**r add imm word *)
  | Prevsubxiw (shift : shift1_4)
  | Pmuliw                                          (**r add imm word *)
  | Pandiw                                          (**r and imm word *)
  | Pnandiw                                         (**r nand imm word *)
  | Poriw                                           (**r or imm word *)
  | Pnoriw                                          (**r nor imm word *)
  | Pxoriw                                          (**r xor imm word *)
  | Pnxoriw                                         (**r nxor imm word *)
  | Pandniw                                         (**r andn word *)
  | Porniw                                          (**r orn word *)
  | Psraiw                                          (**r shift right arithmetic imm word *)
  | Psrxiw                                          (**r shift right arithmetic imm word round to 0*)
  | Psrliw                                          (**r shift right logical imm word *)
  | Pslliw                                          (**r shift left logical imm word *)
  | Proriw                                          (**r rotate right imm word *)
  | Psllil                                          (**r shift left logical immediate long *)
  | Psrlil                                          (**r shift right logical immediate long *)
  | Psrail                                          (**r shift right arithmetic immediate long *)
  | Psrxil                                          (**r shift right arithmetic immediate long round to 0*)
  | Pabdiw                          (**r absolute value of difference *)
.

Inductive arith_name_rri64 : Type :=
  | Pcompil (it: itest)                             (**r comparison imm long *)
  | Paddil                                          (**r add immediate long *) 
  | Paddxil (shift : shift1_4)
  | Prevsubil
  | Prevsubxil (shift : shift1_4)
  | Pmulil                                          (**r mul immediate long *) 
  | Pandil                                          (**r and immediate long *) 
  | Pnandil                                         (**r nand immediate long *) 
  | Poril                                           (**r or immediate long *) 
  | Pnoril                                          (**r nor immediate long *) 
  | Pxoril                                          (**r xor immediate long *) 
  | Pnxoril                                         (**r nxor immediate long *) 
  | Pandnil                                         (**r andn immediate long *)
  | Pornil                                          (**r orn immediate long *)
  | Pabdil                          (**r absolute value of difference *)
.

Inductive arith_name_arrr : Type :=
  | Pmaddw                                           (**r multiply add word *)
  | Pmaddl                                           (**r multiply add long *)
  | Pmsubw                                           (**r multiply subtract word *)
  | Pmsubl                                           (**r multiply subtract long *)
  | Pcmove (bt: btest)                               (**r conditional move *)
  | Pcmoveu (bt: btest)                              (**r conditional move, test on unsigned semantics *)
  | Pfmaddfw                                         (**r float fused multiply add word *)
  | Pfmaddfl                                         (**r float fused multiply add long *)
  | Pfmsubfw                                         (**r float fused multiply subtract word *)
  | Pfmsubfl                                         (**r float fused multiply subtract long *)
.

Inductive arith_name_arri32 : Type :=
  | Pmaddiw                                           (**r multiply add word *)
  | Pcmoveiw (bt: btest)
  | Pcmoveuiw (bt: btest)
.

Inductive arith_name_arri64 : Type :=
  | Pmaddil                                           (**r multiply add long *)
  | Pcmoveil (bt: btest)
  | Pcmoveuil (bt: btest)
.

Inductive arith_name_arr : Type :=
  | Pinsf (stop : Z) (start : Z)                (**r insert bit field *)
  | Pinsfl (stop : Z) (start : Z)               (**r insert bit field *)
.

Inductive ar_instruction : Type :=
  | PArithR     (i: arith_name_r)     (rd: ireg)
  | PArithRR    (i: arith_name_rr)    (rd rs: ireg)
  | PArithRI32  (i: arith_name_ri32)  (rd: ireg) (imm: int)
  | PArithRI64  (i: arith_name_ri64)  (rd: ireg) (imm: int64)
  | PArithRF32  (i: arith_name_rf32)  (rd: ireg) (imm: float32)
  | PArithRF64  (i: arith_name_rf64)  (rd: ireg) (imm: float)
  | PArithRRR   (i: arith_name_rrr)   (rd rs1 rs2: ireg)
  | PArithRRI32 (i: arith_name_rri32) (rd rs: ireg) (imm: int)
  | PArithRRI64 (i: arith_name_rri64) (rd rs: ireg) (imm: int64)
  | PArithARRR   (i: arith_name_arrr)   (rd rs1 rs2: ireg)
  | PArithARR   (i: arith_name_arr) (rd rs: ireg)
  | PArithARRI32 (i: arith_name_arri32) (rd rs: ireg) (imm: int)
  | PArithARRI64 (i: arith_name_arri64) (rd rs: ireg) (imm: int64)
.

Module PArithCoercions.

Coercion PArithR:       arith_name_r        >-> Funclass.
Coercion PArithRR:      arith_name_rr       >-> Funclass.
Coercion PArithRI32:    arith_name_ri32     >-> Funclass.
Coercion PArithRI64:    arith_name_ri64     >-> Funclass.
Coercion PArithRF32:    arith_name_rf32     >-> Funclass.
Coercion PArithRF64:    arith_name_rf64     >-> Funclass.
Coercion PArithRRR:     arith_name_rrr      >-> Funclass.
Coercion PArithRRI32:   arith_name_rri32    >-> Funclass.
Coercion PArithRRI64:   arith_name_rri64    >-> Funclass.
Coercion PArithARRR:    arith_name_arrr     >-> Funclass.
Coercion PArithARR:     arith_name_arr      >-> Funclass.
Coercion PArithARRI32:   arith_name_arri32    >-> Funclass.
Coercion PArithARRI64:   arith_name_arri64    >-> Funclass.

End PArithCoercions.

(** ** Basic instructions *)

Inductive basic : Type :=
  | PArith          (i: ar_instruction)
  | PLoad           (i: ld_instruction)
  | PStore          (i: st_instruction)
  | Pallocframe (sz: Z) (pos: ptrofs)               (**r allocate new stack frame *)
  | Pfreeframe  (sz: Z) (pos: ptrofs)               (**r deallocate stack frame and restore previous frame *)
  | Pget    (rd: ireg) (rs: preg)                   (**r get system register *)
  | Pset    (rd: preg) (rs: ireg)                   (**r set system register *)
  | Pnop                                            (**r virtual instruction that does nothing *)
.

Coercion PLoad:         ld_instruction >-> basic.
Coercion PStore:        st_instruction >-> basic.
Coercion PArith:        ar_instruction >-> basic.

(** ** Control-flow instructions *)

Inductive control : Type :=
  | PExpand         (i: ex_instruction)
  | PCtlFlow        (i: cf_instruction)
.

Coercion PExpand:   ex_instruction >-> control.
Coercion PCtlFlow:  cf_instruction >-> control.


(** * Definition of a bblock (ie a bundle) *)

(** A bundle/bblock must contain at least one instruction.

This choice simplifies the definition of [find_bblock] below:
indeed, each address of a code block identifies at most one bundle
(which depends on the number of instructions in the bundles of lower addresses).

*)

Definition non_empty_body (body: list basic): bool :=
  match body with
  | nil => false
  | _ => true
  end.

Definition non_empty_exit (exit: option control): bool :=
  match exit with
  | None => false
  | _ => true
  end.

Definition non_empty_bblockb (body: list basic) (exit: option control): bool := non_empty_body body || non_empty_exit exit.


(** For now, we consider a builtin is alone in a bundle (and a basic block).
    Is there a way to avoid that ? (TODO)
 *)
Definition builtin_aloneb (body: list basic) (exit: option control) :=
  match exit with
  | Some (PExpand (Pbuiltin _ _ _)) =>
    match body with
    | nil => true
    | _ => false
    end
  | _ => true
  end.

Definition wf_bblockb (body: list basic) (exit: option control) :=
  (non_empty_bblockb body exit) && (builtin_aloneb body exit).

(** A bblock is well-formed if he contains at least one instruction,
    and if there is a builtin then it must be alone in this bblock. *)

Record bblock := mk_bblock {
  header: list label;
  body: list basic;
  exit: option control;
  correct: Is_true (wf_bblockb body exit)
}.

(* FIXME? redundant with definition in Machblock *)
Definition length_opt {A} (o: option A) : nat :=
  match o with
  | Some o => 1
  | None => 0
  end.

(** The notion of size induces the notion of "valid" code address given by [find_bblock]
    The result is in Z to be compatible with operations on PC. 

    WARNING: this notion of size is not the same than in Machblock !
    We ignore labels here...

*)
Definition size (b:bblock): Z := Z.of_nat (length (body b) + length_opt (exit b)).

Definition bblocks := list bblock.

Fixpoint size_blocks (l: bblocks): Z :=
  match l with
  | nil => 0
  | b :: l =>
     (size b) + (size_blocks l)
  end
  .

Record function : Type := mkfunction { fn_sig: signature; fn_blocks: bblocks }.
Definition fundef := AST.fundef function.
Definition program := AST.program fundef unit.

(** * Parallel Semantics of bundles *)

(** The semantics operates over a single mapping from registers
  (type [preg]) to values.  We maintain
  the convention that integer registers are mapped to values of
  type [Tint] or [Tlong] (in 64 bit mode),
  and float registers to values of type [Tsingle] or [Tfloat]. *)

Definition regset := Pregmap.t val.

Definition genv := Genv.t fundef unit.

Notation "a # b" := (a b) (at level 1, only parsing) : asm.
Notation "a # b <- c" := (Pregmap.set b c a) (at level 1, b at next level) : asm.

Open Scope asm.

(** *** Undefining some registers *)

Fixpoint undef_regs (l: list preg) (rs: regset) : regset :=
  match l with
  | nil => rs
  | r :: l' => undef_regs l' (rs#r <- Vundef)
  end.


(** *** Assigning a register pair *)
Definition set_pair (p: rpair preg) (v: val) (rs: regset) : regset :=
  match p with
  | One r => rs#r <- v
  | Twolong rhi rlo => rs#rhi <- (Val.hiword v) #rlo <- (Val.loword v)
  end.


(** *** Assigning the result of a builtin *)

Fixpoint set_res (res: builtin_res preg) (v: val) (rs: regset) : regset :=
  match res with
  | BR r => rs#r <- v
  | BR_none => rs
  | BR_splitlong hi lo => set_res lo (Val.loword v) (set_res hi (Val.hiword v) rs)
  end.

Local Open Scope asm.

Section RELSEM.

Variable ge: genv.

(** The parallel semantics on bundles is purely small-step and defined as a relation
  from the current state (a register set + a memory state) to either [Next rs' m']
  where [rs'] and [m'] are the updated register set and memory state after execution
  of the instruction at [rs#PC], or [Stuck] if the processor is stuck.
 
  The parallel semantics of each instructions handles two states in input:
   - the actual input state of the bundle which is only read
   - and the other on which every "write" is performed:
     it represents a temporary "writes" buffer, from which the final state
     of the bundle is computed.

  NB: the sequential semantics defined in [Asmblock] is derived
  from the parallel semantics of each instruction by identifying
  the read state and the write state.

*)

Inductive outcome: Type :=
  | Next (rs:regset) (m:mem)
  | Stuck
.

(** *** Arithmetic Expressions (including comparisons) *)

Inductive signedness: Type := Signed | Unsigned.

Inductive intsize: Type := Int | Long.

Definition itest_for_cmp (c: comparison) (s: signedness) :=
  match c, s with
  | Cne, Signed => ITne
  | Ceq, Signed => ITeq
  | Clt, Signed => ITlt
  | Cge, Signed => ITge
  | Cle, Signed => ITle
  | Cgt, Signed => ITgt
  | Cne, Unsigned => ITneu
  | Ceq, Unsigned => ITequ
  | Clt, Unsigned => ITltu
  | Cge, Unsigned => ITgeu
  | Cle, Unsigned => ITleu
  | Cgt, Unsigned => ITgtu
  end.

Inductive oporder_ftest :=
  | Normal (ft: ftest)
  | Reversed (ft: ftest)
.

Definition ftest_for_cmp (c: comparison) :=
  match c with
  | Ceq => Normal FToeq
  | Cne => Normal FTune
  | Clt => Normal FTolt
  | Cle => Reversed FToge
  | Cgt => Reversed FTolt
  | Cge => Normal FToge
  end.

Definition notftest_for_cmp (c: comparison) :=
  match c with
  | Ceq => Normal FTune
  | Cne => Normal FToeq
  | Clt => Normal FTuge
  | Cle => Reversed FTult
  | Cgt => Reversed FTuge
  | Cge => Normal FTult
  end.

(* **** CoMPare Signed Words to Zero *)
Definition btest_for_cmpswz (c: comparison) :=
  match c with
  | Cne => BTwnez
  | Ceq => BTweqz
  | Clt => BTwltz
  | Cge => BTwgez
  | Cle => BTwlez
  | Cgt => BTwgtz
  end.

(* **** CoMPare Signed Doubles to Zero *)
Definition btest_for_cmpsdz (c: comparison) :=
  match c with
  | Cne => BTdnez
  | Ceq => BTdeqz
  | Clt => BTdltz
  | Cge => BTdgez
  | Cle => BTdlez
  | Cgt => BTdgtz
  end.

Definition cmp_for_btest (bt: btest) :=
  match bt with
  | BTwnez => (Some Cne, Int)
  | BTweqz => (Some Ceq, Int)
  | BTwltz => (Some Clt, Int)
  | BTwgez => (Some Cge, Int)
  | BTwlez => (Some Cle, Int)
  | BTwgtz => (Some Cgt, Int)

  | BTdnez => (Some Cne, Long)
  | BTdeqz => (Some Ceq, Long)
  | BTdltz => (Some Clt, Long)
  | BTdgez => (Some Cge, Long)
  | BTdlez => (Some Cle, Long)
  | BTdgtz => (Some Cgt, Long)
  end.

Definition cmpu_for_btest (bt: btest) :=
  match bt with
  | BTwnez => (Some Cne, Int)
  | BTweqz => (Some Ceq, Int)
  | BTdnez => (Some Cne, Long)
  | BTdeqz => (Some Ceq, Long)
  | _ => (None, Int)
  end.


(** **** Comparing integers *)
Definition compare_int (t: itest) (v1 v2: val): val :=
  match t with
  | ITne  => Val.cmp Cne v1 v2
  | ITeq  => Val.cmp Ceq v1 v2
  | ITlt  => Val.cmp Clt v1 v2
  | ITge  => Val.cmp Cge v1 v2
  | ITle  => Val.cmp Cle v1 v2
  | ITgt  => Val.cmp Cgt v1 v2
  | ITneu => Val.mxcmpu Cne v1 v2
  | ITequ => Val.mxcmpu Ceq v1 v2
  | ITltu => Val.mxcmpu Clt v1 v2
  | ITgeu => Val.mxcmpu Cge v1 v2
  | ITleu => Val.mxcmpu Cle v1 v2
  | ITgtu => Val.mxcmpu Cgt v1 v2
  end.

Definition compare_long (t: itest) (v1 v2: val): val :=
  let res := match t with
  | ITne  => Val.cmpl Cne v1 v2
  | ITeq  => Val.cmpl Ceq v1 v2
  | ITlt  => Val.cmpl Clt v1 v2
  | ITge  => Val.cmpl Cge v1 v2
  | ITle  => Val.cmpl Cle v1 v2
  | ITgt  => Val.cmpl Cgt v1 v2
  | ITneu => Some (Val.mxcmplu Cne v1 v2)
  | ITequ => Some (Val.mxcmplu Ceq v1 v2)
  | ITltu => Some (Val.mxcmplu Clt v1 v2)
  | ITgeu => Some (Val.mxcmplu Cge v1 v2)
  | ITleu => Some (Val.mxcmplu Cle v1 v2)
  | ITgtu => Some (Val.mxcmplu Cgt v1 v2)
  end in 
  match res with
  | Some v => v
  | None => Vundef
  end
  .

Definition compare_single (t: ftest) (v1 v2: val): val :=
  match t with
  | FTone | FTueq => Vundef (* unused *)
  | FToeq => Val.cmpfs Ceq v1 v2
  | FTune => Val.cmpfs Cne v1 v2
  | FTolt => Val.cmpfs Clt v1 v2
  | FTuge => Val.notbool (Val.cmpfs Clt v1 v2)
  | FToge => Val.cmpfs Cge v1 v2
  | FTult => Val.notbool (Val.cmpfs Cge v1 v2)
  end.

Definition compare_float (t: ftest) (v1 v2: val): val :=
  match t with
  | FTone | FTueq => Vundef (* unused *)
  | FToeq => Val.cmpf Ceq v1 v2
  | FTune => Val.cmpf Cne v1 v2
  | FTolt => Val.cmpf Clt v1 v2
  | FTuge => Val.notbool (Val.cmpf Clt v1 v2)
  | FToge => Val.cmpf Cge v1 v2
  | FTult => Val.notbool (Val.cmpf Cge v1 v2)
  end.

(** **** Arithmetic evaluators *)

Definition arith_eval_r n :=
  match n with
  | Ploadsymbol s ofs => Genv.symbol_address ge s ofs
  end
.

Definition arith_eval_rr n v :=
  match n with
  | Pmv => v
  | Pnegw => Val.neg v
  | Pnegl => Val.negl v
  | Pcvtl2w => Val.loword v
  | Psxwd => Val.longofint v
  | Pzxwd => Val.longofintu v
  | Pextfz stop start => extfz stop start v
  | Pextfs stop start => extfs stop start v
  | Pextfzl stop start => extfzl stop start v
  | Pextfsl stop start => extfsl stop start v
  | Pfnegd => Val.negf v
  | Pfnegw => Val.negfs v
  | Pfabsd => Val.absf v
  | Pfabsw => Val.absfs v
  | Pfinvw => ExtValues.invfs v
  | Pfnarrowdw => Val.singleoffloat v
  | Pfwidenlwd => Val.floatofsingle v
  | Pfloatwrnsz => Val.maketotal (Val.singleofint v)
  | Pfloatuwrnsz => Val.maketotal (Val.singleofintu v)
  | Pfloatudrnsz => Val.maketotal (Val.floatoflongu v)
  | Pfloatdrnsz => Val.maketotal (Val.floatoflong v)
  | Pfixedwrzz => Val.maketotal (Val.intofsingle v)
  | Pfixeduwrzz => Val.maketotal (Val.intuofsingle v)
  | Pfixeddrzz => Val.maketotal (Val.longoffloat v)
  | Pfixedudrzz => Val.maketotal (Val.longuoffloat v)
  | Pfixeddrzz_i32 => Val.maketotal (Val.intoffloat v)
  | Pfixedudrzz_i32 => Val.maketotal (Val.intuoffloat v)
  | Pfixedudrne => Val.maketotal (Val.longuoffloat_ne v)
  | Pfixeddrne => Val.maketotal (Val.longoffloat_ne v)
  | Pfixeduwrne => Val.maketotal (Val.intuofsingle_ne v)
  | Pfixedwrne => Val.maketotal (Val.intofsingle_ne v)
  end.

Definition arith_eval_ri32 n i :=
  match n with
  | Pmake => Vint i
  end.

Definition arith_eval_ri64 n i :=
  match n with
  | Pmakel => Vlong i
  end.

Definition arith_eval_rf32 n i :=
  match n with
  | Pmakefs => Vsingle i
  end.

Definition arith_eval_rf64 n i :=
  match n with
  | Pmakef => Vfloat i
  end.

Definition arith_eval_rrr n v1 v2 :=
  match n with
  | Pcompw c => compare_int c v1 v2
  | Pcompl c => compare_long c v1 v2
  | Pfcompw c => compare_single c v1 v2
  | Pfcompl c => compare_float c v1 v2

  | Paddw  => Val.add  v1 v2
  | Psubw  => Val.sub  v1 v2
  | Pmulw  => Val.mul  v1 v2
  | Pandw  => Val.and  v1 v2
  | Pnandw => Val.notint (Val.and v1 v2)
  | Porw   => Val.or   v1 v2
  | Pnorw  => Val.notint (Val.or v1 v2)
  | Pxorw  => Val.xor  v1 v2
  | Pnxorw => Val.notint (Val.xor v1 v2)
  | Pandnw => Val.and (Val.notint v1) v2
  | Pornw  => Val.or (Val.notint v1) v2
  | Psrlw  => Val.shru v1 v2
  | Psraw  => Val.shr  v1 v2
  | Psllw  => Val.shl  v1 v2
  | Psrxw  => ExtValues.val_shrx  v1 v2

  | Paddl => Val.addl v1 v2
  | Psubl => Val.subl v1 v2
  | Pandl => Val.andl v1 v2
  | Pnandl => Val.notl (Val.andl v1 v2)
  | Porl  => Val.orl  v1 v2
  | Pnorl  => Val.notl (Val.orl  v1 v2)
  | Pxorl  => Val.xorl  v1 v2
  | Pnxorl  => Val.notl (Val.xorl  v1 v2)
  | Pandnl => Val.andl (Val.notl v1) v2
  | Pornl  => Val.orl (Val.notl v1) v2
  | Pmull => Val.mull v1 v2
  | Pslll => Val.shll v1 v2
  | Psrll => Val.shrlu v1 v2
  | Psral => Val.shrl v1 v2
  | Psrxl  => ExtValues.val_shrxl v1 v2

  | Pfaddd => Val.addf v1 v2
  | Pfaddw => Val.addfs v1 v2
  | Pfsbfd => Val.subf v1 v2
  | Pfsbfw => Val.subfs v1 v2
  | Pfmuld => Val.mulf v1 v2
  | Pfmulw => Val.mulfs v1 v2

  | Pfmind => ExtValues.minf v1 v2
  | Pfminw => ExtValues.minfs v1 v2
  | Pfmaxd => ExtValues.maxf v1 v2
  | Pfmaxw => ExtValues.maxfs v1 v2

  | Paddxw shift => ExtValues.addx (int_of_shift1_4 shift) v1 v2
  | Paddxl shift => ExtValues.addxl (int_of_shift1_4 shift) v1 v2

  | Prevsubxw shift => ExtValues.revsubx (int_of_shift1_4 shift) v1 v2
  | Prevsubxl shift => ExtValues.revsubxl (int_of_shift1_4 shift) v1 v2

  | Pabdw => ExtValues.absdiff v1 v2
  | Pabdl => ExtValues.absdiffl v1 v2
  end.

Definition arith_eval_rri32 n v i :=
  match n with
  | Pcompiw c => compare_int c v (Vint i)
  | Paddiw  => Val.add   v (Vint i)
  | Prevsubiw  => Val.sub (Vint i) v
  | Pmuliw  => Val.mul   v (Vint i)
  | Pandiw  => Val.and   v (Vint i)
  | Pnandiw => Val.notint (Val.and  v (Vint i))
  | Poriw   => Val.or    v (Vint i)
  | Pnoriw  => Val.notint (Val.or v (Vint i))
  | Pxoriw  => Val.xor   v (Vint i)
  | Pnxoriw => Val.notint (Val.xor v (Vint i))
  | Pandniw => Val.and (Val.notint v) (Vint i)
  | Porniw  => Val.or (Val.notint v) (Vint i)
  | Psraiw  => Val.shr   v (Vint i)
  | Psrxiw  => ExtValues.val_shrx v (Vint i)
  | Psrliw  => Val.shru  v (Vint i)
  | Pslliw  => Val.shl   v (Vint i)
  | Proriw  => Val.ror   v (Vint i)
  | Psllil  => Val.shll  v (Vint i)
  | Psrxil  => ExtValues.val_shrxl v (Vint i)
  | Psrlil  => Val.shrlu v (Vint i)
  | Psrail  => Val.shrl  v (Vint i)
  | Paddxiw shift => ExtValues.addx (int_of_shift1_4 shift) v (Vint i)
  | Prevsubxiw shift => ExtValues.revsubx (int_of_shift1_4 shift) v (Vint i)
  | Pabdiw => ExtValues.absdiff v (Vint i)
  end.

Definition arith_eval_rri64 n v i :=
  match n with
  | Pcompil c => compare_long c v (Vlong i)
  | Paddil  => Val.addl v (Vlong i)
  | Prevsubil  => Val.subl (Vlong i) v
  | Pmulil  => Val.mull v (Vlong i)
  | Pandil  => Val.andl v (Vlong i)
  | Pnandil  => Val.notl (Val.andl v (Vlong i))
  | Poril   => Val.orl  v (Vlong i)
  | Pnoril   => Val.notl (Val.orl  v (Vlong i))
  | Pxoril  => Val.xorl  v (Vlong i)
  | Pnxoril  => Val.notl (Val.xorl  v (Vlong i))
  | Pandnil => Val.andl (Val.notl v) (Vlong i)
  | Pornil  => Val.orl (Val.notl v) (Vlong i)
  | Paddxil shift => ExtValues.addxl (int_of_shift1_4 shift) v (Vlong i)
  | Prevsubxil shift => ExtValues.revsubxl (int_of_shift1_4 shift) v (Vlong i)
  | Pabdil => ExtValues.absdiffl v (Vlong i)
  end.

Definition cmove bt v1 v2 v3 :=
  match cmp_for_btest bt with
  | (Some c, Int)  =>
    match Val.cmp_bool c v2 (Vint Int.zero) with
    | None => Vundef
    | Some true => v3
    | Some false => v1
    end
  | (Some c, Long) =>
    match Val.cmpl_bool c v2 (Vlong Int64.zero) with
    | None => Vundef
    | Some true => v3
    | Some false => v1
    end
  | (None, _) => Vundef
  end.

Definition cmoveu bt v1 v2 v3 :=
  match cmpu_for_btest bt with
  | (Some c, Int)  =>
    match Val.mxcmpu_bool c v2 (Vint Int.zero) with
    | None => Vundef
    | Some true => v3
    | Some false => v1
    end
  | (Some c, Long) =>
    match Val.mxcmplu_bool c v2 (Vlong Int64.zero) with
    | None => Vundef
    | Some true => v3
    | Some false => v1
    end
  | (None, _) => Vundef
  end.

Definition arith_eval_arrr n v1 v2 v3 :=
  match n with
  | Pmaddw => Val.add v1 (Val.mul v2 v3)
  | Pmaddl => Val.addl v1 (Val.mull v2 v3)
  | Pmsubw => Val.sub v1 (Val.mul v2 v3)
  | Pmsubl => Val.subl v1 (Val.mull v2 v3)
  | Pcmove bt => cmove bt v1 v2 v3
  | Pcmoveu bt => cmoveu bt v1 v2 v3
  | Pfmaddfw => ExtValues.fmaddfs v1 v2 v3
  | Pfmaddfl => ExtValues.fmaddf v1 v2 v3
  | Pfmsubfw => ExtValues.fmsubfs v1 v2 v3
  | Pfmsubfl => ExtValues.fmsubf v1 v2 v3
  end.

Definition arith_eval_arr n v1 v2 :=
  match n with
  | Pinsf stop start => ExtValues.insf stop start v1 v2
  | Pinsfl stop start => ExtValues.insfl stop start v1 v2
  end.

Definition arith_eval_arri32 n v1 v2 v3 :=
  match n with
  | Pmaddiw => Val.add v1 (Val.mul v2 (Vint v3))
  | Pcmoveiw bt => cmove bt v1 v2 (Vint v3)
  | Pcmoveuiw bt => cmoveu bt v1 v2 (Vint v3)
  end.

Definition arith_eval_arri64 n v1 v2 v3 :=
  match n with
  | Pmaddil => Val.addl v1 (Val.mull v2 (Vlong v3))
  | Pcmoveil bt => cmove bt v1 v2 (Vlong v3)
  | Pcmoveuil bt => cmoveu bt v1 v2 (Vlong v3)
  end.

Definition parexec_arith_instr (ai: ar_instruction) (rsr rsw: regset): regset :=
  match ai with
  | PArithR n d => rsw#d <- (arith_eval_r n)

  | PArithRR n d s => rsw#d <- (arith_eval_rr n rsr#s)

  | PArithRI32 n d i => rsw#d <- (arith_eval_ri32 n i)
  | PArithRI64 n d i => rsw#d <- (arith_eval_ri64 n i)
  | PArithRF32 n d i => rsw#d <- (arith_eval_rf32 n i)
  | PArithRF64 n d i => rsw#d <- (arith_eval_rf64 n i)

  | PArithRRR n d s1 s2 => rsw#d <- (arith_eval_rrr n rsr#s1 rsr#s2)
  | PArithRRI32 n d s i => rsw#d <- (arith_eval_rri32 n rsr#s i)
  | PArithRRI64 n d s i => rsw#d <- (arith_eval_rri64 n rsr#s i)

  | PArithARRR n d s1 s2 => rsw#d <- (arith_eval_arrr n rsr#d rsr#s1 rsr#s2)
  | PArithARR n d s => rsw#d <- (arith_eval_arr n rsr#d rsr#s)
  | PArithARRI32 n d s i => rsw#d <- (arith_eval_arri32 n rsr#d rsr#s i)
  | PArithARRI64 n d s i => rsw#d <- (arith_eval_arri64 n rsr#d rsr#s i)
  end.

Definition eval_offset (ofs: offset) : res ptrofs := OK ofs.

(** *** load/store instructions *)

Definition parexec_incorrect_load trap d rsw mw :=
  match trap with
  | TRAP => Stuck
  | NOTRAP => Next (rsw#d <- Vundef) mw
  end.

Definition parexec_load_offset (trap: trapping_mode) (chunk: memory_chunk) (rsr rsw: regset) (mr mw: mem) (d a: ireg) (ofs: offset) :=
  match (eval_offset ofs) with
  | OK ptr => match Mem.loadv chunk mr (Val.offset_ptr (rsr a) ptr) with
              | None => parexec_incorrect_load trap d rsw mw
              | Some v => Next (rsw#d <- v) mw
              end
  | _ => Stuck
  end.

Definition parexec_load_q_offset (rsr rsw: regset) (mr mw: mem) (d : gpreg_q) (a: ireg) (ofs: offset) :=
  let (rd0, rd1) := gpreg_q_expand d in
(* NB: By construction of [gpreg_q], register rd0 and rd1 are distinct, thus, the register writes cannot overlap.
       But we do not need to express/prove this in the semantics.
*)
    match Mem.loadv Many64 mr (Val.offset_ptr (rsr a) ofs) with
    | None => Stuck
    | Some v0 =>
      match Mem.loadv Many64 mr (Val.offset_ptr (rsr a) (Ptrofs.add ofs (Ptrofs.repr 8))) with
      | None => Stuck
      | Some v1 => Next (rsw#rd0 <- v0 #rd1 <- v1) mw
      end
    end.

Definition parexec_load_o_offset (rsr rsw: regset) (mr mw: mem) (d : gpreg_o) (a: ireg) (ofs: offset) :=
  match gpreg_o_expand d with
  | (rd0, rd1, rd2, rd3) =>
(* NB: By construction of [gpreg_o], the four destination registers are pairwise distinct, thus, the register writes cannot overlap.
       But we do not need to express/prove this in the semantics.
*)
   match Mem.loadv Many64 mr (Val.offset_ptr (rsr a) ofs) with
    | None => Stuck
    | Some v0 =>
      match Mem.loadv Many64 mr (Val.offset_ptr (rsr a) (Ptrofs.add ofs (Ptrofs.repr 8))) with
      | None => Stuck
      | Some v1 =>
        match Mem.loadv Many64 mr (Val.offset_ptr (rsr a) (Ptrofs.add ofs (Ptrofs.repr 16))) with
        | None => Stuck
        | Some v2 =>
          match Mem.loadv Many64 mr (Val.offset_ptr (rsr a) (Ptrofs.add ofs (Ptrofs.repr 24))) with
          | None => Stuck
          | Some v3 =>
            Next (rsw#rd0 <- v0 #rd1 <- v1 #rd2 <- v2 #rd3 <- v3) mw
          end
        end
      end
    end
  end.

Definition parexec_load_reg (trap: trapping_mode) (chunk: memory_chunk) (rsr rsw: regset) (mr mw: mem) (d a ro: ireg) :=
  match Mem.loadv chunk mr (Val.addl (rsr a) (rsr ro)) with
  | None => parexec_incorrect_load trap d rsw mw
  | Some v => Next (rsw#d <- v) mw
  end.

Definition parexec_load_regxs (trap: trapping_mode) (chunk: memory_chunk) (rsr rsw: regset) (mr mw: mem) (d a ro: ireg) :=
  match Mem.loadv chunk mr (Val.addl (rsr a) (Val.shll (rsr ro) (scale_of_chunk chunk))) with
  | None => parexec_incorrect_load trap d rsw mw
  | Some v => Next (rsw#d <- v) mw
  end.

Definition parexec_store_offset (chunk: memory_chunk) (rsr rsw: regset) (mr mw: mem) (s a: ireg) (ofs: offset) :=
  match (eval_offset ofs) with
  | OK ptr => match Mem.storev chunk mr (Val.offset_ptr (rsr a) ptr) (rsr s) with
              | None => Stuck
              | Some m' => Next rsw m'
              end
  | _ => Stuck
  end.

Definition parexec_store_reg
           (chunk: memory_chunk) (rsr rsw: regset) (mr mw: mem) (s a ro: ireg) :=
  match Mem.storev chunk mr (Val.addl (rsr a) (rsr ro)) (rsr s) with
  | None => Stuck
  | Some m' => Next rsw m'
  end.

Definition parexec_store_regxs (chunk: memory_chunk) (rsr rsw: regset) (mr mw: mem) (s a ro: ireg) :=
  match Mem.storev chunk mr (Val.addl (rsr a) (Val.shll (rsr ro) (scale_of_chunk chunk))) (rsr s) with
  | None => Stuck
  | Some m' => Next rsw m'
  end.

Definition parexec_store_q_offset (rsr rsw: regset) (mr mw: mem) (s : gpreg_q) (a: ireg) (ofs: offset) :=
  let (s0, s1) := gpreg_q_expand s in
  match Mem.storev Many64 mr (Val.offset_ptr (rsr a) ofs) (rsr s0) with
  | None => Stuck
  | Some m1 =>
    match Mem.storev Many64 m1 (Val.offset_ptr (rsr a) (Ptrofs.add ofs (Ptrofs.repr 8))) (rsr s1) with
    | None => Stuck
    | Some m2 => Next rsw m2
    end
  end.
  
Definition parexec_store_o_offset (rsr rsw: regset) (mr mw: mem) (s : gpreg_o) (a: ireg) (ofs: offset) :=
  match gpreg_o_expand s with
  | (s0, s1, s2, s3) =>
    match Mem.storev Many64 mr (Val.offset_ptr (rsr a) ofs) (rsr s0) with
    | None => Stuck
    | Some m1 =>
      match Mem.storev Many64 m1 (Val.offset_ptr (rsr a) (Ptrofs.add ofs (Ptrofs.repr 8))) (rsr s1) with
      | None => Stuck
      | Some m2 =>
        match Mem.storev Many64 m2 (Val.offset_ptr (rsr a) (Ptrofs.add ofs (Ptrofs.repr 16))) (rsr s2) with
        | None => Stuck
        | Some m3 =>
          match Mem.storev Many64 m3 (Val.offset_ptr (rsr a) (Ptrofs.add ofs (Ptrofs.repr 24))) (rsr s3) with
          | None => Stuck
          | Some m4 => Next rsw m4
          end
        end
      end
    end
  end.
  

Definition load_chunk n :=
  match n with
  | Plb => Mint8signed
  | Plbu => Mint8unsigned
  | Plh => Mint16signed
  | Plhu => Mint16unsigned
  | Plw => Mint32
  | Plw_a => Many32
  | Pld => Mint64
  | Pld_a => Many64
  | Pfls => Mfloat32
  | Pfld => Mfloat64
  end.
              
Definition store_chunk n :=
  match n with
  | Psb => Mint8unsigned
  | Psh => Mint16unsigned
  | Psw => Mint32
  | Psw_a => Many32
  | Psd => Mint64
  | Psd_a => Many64
  | Pfss => Mfloat32
  | Pfsd => Mfloat64
  end.

(** ** Basic (instruction) step *)

Definition bstep (bi: basic) (rsr rsw: regset) (mr mw: mem) :=
  match bi with
  | PArith ai => Next (parexec_arith_instr ai rsr rsw) mw

  | PLoad (PLoadRRO trap n d a ofs) => parexec_load_offset trap (load_chunk n) rsr rsw mr mw d a ofs
  | PLoad (PLoadRRR trap n d a ro) => parexec_load_reg trap (load_chunk n) rsr rsw mr mw d a ro
  | PLoad (PLoadRRRXS trap n d a ro) => parexec_load_regxs trap (load_chunk n) rsr rsw mr mw d a ro
  | PLoad (PLoadQRRO d a ofs) => 
    parexec_load_q_offset rsr rsw mr mw d a ofs
  | PLoad (PLoadORRO d a ofs) => 
    parexec_load_o_offset rsr rsw mr mw d a ofs

  | PStoreRRO n s a ofs => parexec_store_offset (store_chunk n) rsr rsw mr mw s a ofs
  | PStoreRRR n s a ro => parexec_store_reg (store_chunk n) rsr rsw mr mw s a ro
  | PStoreRRRXS n s a ro => parexec_store_regxs (store_chunk n) rsr rsw mr mw s a ro
  | PStoreQRRO s a ofs => 
    parexec_store_q_offset rsr rsw mr mw s a ofs
  | PStoreORRO s a ofs => 
    parexec_store_o_offset rsr rsw mr mw s a ofs

  | Pallocframe sz pos =>
      let (mw, stk) := Mem.alloc mr 0 sz in
      let sp := (Vptr stk Ptrofs.zero) in
      match Mem.storev Mptr mw (Val.offset_ptr sp pos) rsr#SP with
      | None => Stuck
      | Some mw => Next (rsw #FP <- (rsr SP) #SP <- sp #RTMP <- Vundef) mw
      end

  | Pfreeframe sz pos =>
      match Mem.loadv Mptr mr (Val.offset_ptr rsr#SP pos) with
      | None => Stuck
      | Some v =>
          match rsr SP with
          | Vptr stk ofs =>
              match Mem.free mr stk 0 sz with
              | None => Stuck
              | Some mw => Next (rsw#SP <- v #RTMP <- Vundef) mw
              end
          | _ => Stuck
          end
      end
  | Pget rd ra =>
    match ra with
    | RA => Next (rsw#rd <- (rsr#ra)) mw
    | _  => Stuck
    end
  | Pset ra rd =>
    match ra with
    | RA => Next (rsw#ra <- (rsr#rd)) mw
    | _  => Stuck
    end
  | Pnop => Next rsw mw
end.

(** *** parexec with writes-in-order *)
Fixpoint parexec_wio_body (body: list basic) (rsr rsw: regset) (mr mw: mem) :=
  match body with
  | nil => Next rsw mw
  | bi::body' => 
     match bstep bi rsr rsw mr mw with
     | Next rsw mw => parexec_wio_body body' rsr rsw mr mw
     | Stuck => Stuck
     end
  end.

(* TODO: redundant w.r.t Machblock ?? *)
Lemma in_dec (lbl: label) (l: list label):  { List.In lbl l } + { ~(List.In lbl l) }.
Proof.
  apply List.in_dec.
  apply Pos.eq_dec.
Qed.



(* Note: copy-paste from Machblock *)
Definition is_label (lbl: label) (bb: bblock) : bool :=
  if in_dec lbl (header bb) then true else false.

Lemma is_label_correct_true lbl bb:
  List.In lbl (header bb) <-> is_label lbl bb = true. 
Proof.
  unfold is_label; destruct (in_dec lbl (header bb)); cbn; intuition.
Qed.

Lemma is_label_correct_false lbl bb:
  ~(List.In lbl (header bb)) <-> is_label lbl bb = false. 
Proof.
  unfold is_label; destruct (in_dec lbl (header bb)); cbn; intuition.
Qed.



(** **** convert a label into a position in the code *)
Fixpoint label_pos (lbl: label) (pos: Z) (lb: bblocks) {struct lb} : option Z :=
  match lb with
  | nil => None
  | b :: lb' => if is_label lbl b then Some pos else label_pos lbl (pos + (size b)) lb'
  end.

Definition par_goto_label (f: function) (lbl: label) (rsr rsw: regset) (mw: mem) :=
  match label_pos lbl 0 (fn_blocks f) with
  | None => Stuck
  | Some pos =>
      match rsr#PC with
      | Vptr b ofs => Next (rsw#PC <- (Vptr b (Ptrofs.repr pos))) mw
      | _          => Stuck
      end
  end.

(** **** Parallel Evaluation of a branch *)

(** Warning: PC is assumed to be already pointing on the next bundle ! *)

Definition par_eval_branch (f: function) (l: label) (rsr rsw: regset) (mw: mem) (res: option bool) :=
  match res with
    | Some true  => par_goto_label f l rsr rsw mw
    | Some false => Next (rsw # PC <- (rsr PC)) mw
    | None => Stuck
  end.


(** **** Parallel execution of a control-flow instruction  *)

(**  As above: PC is assumed to be incremented on the next block before the control-flow instruction
*)

Definition parexec_control (f: function) (oc: option control) (rsr rsw: regset) (mw: mem) :=
  match oc with
  | None => Next (rsw#PC <- (rsr#PC)) mw
  | Some ic => (**r Branch Control Unit instructions *)
    match ic with
    | Pret =>
      Next (rsw#PC <- (rsr#RA)) mw
    | Pcall s =>
      Next (rsw#RA <- (rsr#PC) #PC <- (Genv.symbol_address ge s Ptrofs.zero)) mw
    | Picall r =>
      Next (rsw#RA <- (rsr#PC) #PC <- (rsr#r)) mw
    | Pjumptable r tbl =>
      match rsr#r with
      | Vint n =>
        match list_nth_z tbl (Int.unsigned n) with
        | None => Stuck
        | Some lbl => par_goto_label f lbl rsr (rsw #GPR62 <- Vundef #GPR63 <- Vundef) mw
        end
      | _ => Stuck
      end
    | Pgoto s =>
      Next (rsw#PC <- (Genv.symbol_address ge s Ptrofs.zero)) mw
    | Pigoto r =>
      Next (rsw#PC <- (rsr#r)) mw
    | Pj_l l =>
      par_goto_label f l rsr rsw mw
    | Pcb bt r l =>
      match cmp_for_btest bt with
      | (Some c, Int)  => par_eval_branch f l rsr rsw mw (Val.cmp_bool c rsr#r (Vint (Int.repr 0)))
      | (Some c, Long) => par_eval_branch f l rsr rsw mw (Val.cmpl_bool c rsr#r (Vlong (Int64.repr 0)))
      | (None, _) => Stuck
      end
    | Pcbu bt r l => 
      match cmpu_for_btest bt with
      | (Some c, Int) => par_eval_branch f l rsr rsw mw (Val.mxcmpu_bool c rsr#r (Vint (Int.repr 0)))
      | (Some c, Long) => par_eval_branch f l rsr rsw mw (Val.mxcmplu_bool c rsr#r (Vlong (Int64.repr 0)))
      | (None, _) => Stuck
      end
    (**r Pseudo-instructions *)
    | Pbuiltin ef args res =>
      Stuck (**r treated specially below *)
    end
  end.


Definition incrPC size_b (rs: regset) :=
  rs#PC <- (Val.offset_ptr rs#PC size_b).

(** parallel execution of the exit instruction of a bundle *)
Definition estep (f: function) ext size_b (rsr rsw: regset) (mw: mem) 
  := parexec_control f ext (incrPC size_b rsr) rsw mw.

Definition parexec_wio f bdy ext size_b (rs: regset) (m: mem): outcome :=
  match parexec_wio_body bdy rs rs m m with
  | Next rsw mw => estep f ext size_b rs rsw mw
  | Stuck => Stuck
  end.

(** *** non-deterministic (out-of-order writes) parallel execution of bundles *)
Definition parexec_bblock (f: function) (bundle: bblock) (rs: regset) (m: mem) (o: outcome): Prop :=
   exists bdy1 bdy2, Permutation (bdy1++bdy2) (body bundle) /\ 
      o=match parexec_wio f bdy1 (exit bundle) (Ptrofs.repr (size bundle)) rs m with
      | Next rsw mw => parexec_wio_body bdy2 rs rsw m mw
      | Stuck => Stuck
      end.

(** *** deterministic parallel (out-of-order writes) execution of bundles *)
Definition det_parexec (f: function) (bundle: bblock) (rs: regset) (m: mem) rs' m': Prop :=
   forall o, parexec_bblock f bundle rs m o -> o = Next rs' m'.


(** *** Translation of the LTL/Linear/Mach view of machine registers to
  the assembly view.  Note that no LTL register maps to [X31].  This
  register is reserved as temporary, to be used by the generated RV32G
  code.  *)


(** **** Undefine all registers except SP and callee-save registers *)

Definition undef_caller_save_regs (rs: regset) : regset :=
  fun r =>
    if preg_eq r SP
    || In_dec preg_eq r (List.map preg_of (List.filter is_callee_save all_mregs))
    then rs r
    else Vundef.

(** **** Extract the values of the arguments of an external call.
    We exploit the calling conventions from module [Conventions], except that
    we use assembly registers instead of locations. *)

Inductive extcall_arg (rs: regset) (m: mem): loc -> val -> Prop :=
  | extcall_arg_reg: forall r,
      extcall_arg rs m (R r) (rs (preg_of r))
  | extcall_arg_stack: forall ofs ty bofs v,
      bofs = Stacklayout.fe_ofs_arg + 4 * ofs ->
      Mem.loadv (chunk_of_type ty) m
                (Val.offset_ptr rs#SP (Ptrofs.repr bofs)) = Some v ->
      extcall_arg rs m (S Outgoing ofs ty) v.

Inductive extcall_arg_pair (rs: regset) (m: mem): rpair loc -> val -> Prop :=
  | extcall_arg_one: forall l v,
      extcall_arg rs m l v ->
      extcall_arg_pair rs m (One l) v
  | extcall_arg_twolong: forall hi lo vhi vlo,
      extcall_arg rs m hi vhi ->
      extcall_arg rs m lo vlo ->
      extcall_arg_pair rs m (Twolong hi lo) (Val.longofwords vhi vlo).

Definition extcall_arguments
    (rs: regset) (m: mem) (sg: signature) (args: list val) : Prop :=
  list_forall2 (extcall_arg_pair rs m) (loc_arguments sg) args.


Definition loc_external_result (sg: signature) : rpair preg :=
  map_rpair preg_of (loc_result sg).


(** ** Looking up bblocks in a code sequence by position. *)
Fixpoint find_bblock (pos: Z) (lb: bblocks) {struct lb} : option bblock :=
  match lb with
  | nil => None
  | b :: il => 
    if zlt pos 0 then None  (*r NOTE: It is impossible to branch inside a block *)
    else if zeq pos 0 then Some b
    else find_bblock (pos - (size b)) il
  end.


Inductive state: Type :=
  | State: regset -> mem -> state.

Definition nextblock (b:bblock) (rs: regset) :=
  incrPC (Ptrofs.repr (size b)) rs.

Inductive step: state -> trace -> state -> Prop :=
  | exec_step_internal:
      forall b ofs f bundle rs m rs' m',
      rs PC = Vptr b ofs ->
      Genv.find_funct_ptr ge b = Some (Internal f) ->
      find_bblock (Ptrofs.unsigned ofs) (fn_blocks f) = Some bundle ->
      det_parexec f bundle rs m rs' m' ->
      step (State rs m) E0 (State rs' m')
  | exec_step_builtin:
      forall b ofs f ef args res rs m vargs t vres rs' m' bi,
      rs PC = Vptr b ofs ->
      Genv.find_funct_ptr ge b = Some (Internal f) ->
      find_bblock (Ptrofs.unsigned ofs) f.(fn_blocks) = Some bi ->
      exit bi = Some (PExpand (Pbuiltin ef args res)) ->
      eval_builtin_args ge rs (rs SP) m args vargs ->
      external_call ef ge vargs m t vres m' ->
      rs' = nextblock bi
              (set_res res vres
                (undef_regs (map preg_of (destroyed_by_builtin ef))
                   (rs#RTMP <- Vundef))) ->
      step (State rs m) t (State rs' m')
  | exec_step_external:
      forall b ef args res rs m t rs' m',
      rs PC = Vptr b Ptrofs.zero ->
      Genv.find_funct_ptr ge b = Some (External ef) ->
      external_call ef ge args m t res m' ->
      extcall_arguments rs m (ef_sig ef) args ->
      rs' = (set_pair (loc_external_result (ef_sig ef) ) res (undef_caller_save_regs rs))#PC <- (rs RA) ->
      step (State rs m) t (State rs' m')
  .


(** parallel in-order writes execution of bundles *)
Definition parexec_wio_bblock (f: function) (b: bblock) (rs: regset) (m: mem): outcome :=
  parexec_wio f (body b) (exit b) (Ptrofs.repr (size b)) rs m.


Lemma parexec_bblock_write_in_order f b rs m:
   parexec_bblock f b rs m (parexec_wio_bblock f b rs m).
Proof.
   exists (body b). exists nil.
   constructor 1.
   - rewrite app_nil_r; auto.
   - unfold parexec_wio_bblock.
     destruct (parexec_wio f _ _ _); cbn; auto.
Qed.


Local Hint Resolve parexec_bblock_write_in_order: core.

Lemma det_parexec_write_in_order f b rs m rs' m':
   det_parexec f b rs m rs' m' -> parexec_wio_bblock f b rs m = Next rs' m'.
Proof.
   unfold det_parexec; auto.
Qed.

End RELSEM.

(** ** Execution of whole programs. *)

Inductive initial_state (p: program): state -> Prop :=
  | initial_state_intro: forall m0,
      let ge := Genv.globalenv p in
      let rs0 :=
        (Pregmap.init Vundef)
        # PC <- (Genv.symbol_address ge p.(prog_main) Ptrofs.zero)
        # SP <- Vnullptr
        # RA <- Vnullptr in
      Genv.init_mem p = Some m0 ->
      initial_state p (State rs0 m0).

Inductive final_state: state -> int -> Prop :=
  | final_state_intro: forall rs m r,
      rs PC = Vnullptr ->
      rs GPR0 = Vint r ->
      final_state (State rs m) r.

Definition semantics (p: program) :=
  Semantics step (initial_state p) final_state (Genv.globalenv p).

Remark extcall_arguments_determ:
  forall rs m sg args1 args2,
  extcall_arguments rs m sg args1 -> extcall_arguments rs m sg args2 -> args1 = args2.
Proof.
  intros until m.
  assert (A: forall l v1 v2,
             extcall_arg rs m l v1 -> extcall_arg rs m l v2 -> v1 = v2).
  { intros. inv H; inv H0; congruence. }
  assert (B: forall p v1 v2,
             extcall_arg_pair rs m p v1 -> extcall_arg_pair rs m p v2 -> v1 = v2).
  { intros. inv H; inv H0. 
    eapply A; eauto.
    f_equal; eapply A; eauto. }
  assert (C: forall ll vl1, list_forall2 (extcall_arg_pair rs m) ll vl1 ->
             forall vl2, list_forall2 (extcall_arg_pair rs m) ll vl2 -> vl1 = vl2).
  {
    induction 1; intros vl2 EA; inv EA.
    auto.
    f_equal; eauto. }
  intros. eapply C; eauto.
Qed.

Lemma semantics_determinate p: determinate (semantics p).
Proof.
Ltac Equalities :=
  match goal with
  | [ H1: ?a = ?b, H2: ?a = ?c |- _ ] =>
      rewrite H1 in H2; inv H2; Equalities
  | _ => idtac
  end.
Ltac Det_WIO X :=
  match goal with
  | [ H: det_parexec _ _ _ _ _ _ _ |- _ ] =>
      exploit det_parexec_write_in_order; [ eapply H | idtac]; clear H; intro X
  | _ => idtac
  end.
  intros; constructor; cbn.
- (* determ *) intros s t1 s1 t2 s2 H H0. inv H; Det_WIO X1;
  inv H0; Det_WIO X2; Equalities.
  + split. constructor. auto. 
  + unfold parexec_wio_bblock, parexec_wio in X1. destruct (parexec_wio_body _ _ _ _ _ _); try discriminate.
    rewrite H8 in X1. discriminate.
  + unfold parexec_wio_bblock, parexec_wio in X2. destruct (parexec_wio_body _ _ _ _ _ _); try discriminate.
    rewrite H4 in X2. discriminate.
  + assert (vargs0 = vargs) by (eapply eval_builtin_args_determ; eauto). subst vargs0.
    exploit external_call_determ. eexact H6. eexact H13. intros [A B].
    split. auto. intros. destruct B; auto. subst. auto.
  + assert (args0 = args) by (eapply extcall_arguments_determ; eauto). subst args0.
    exploit external_call_determ. eexact H3. eexact H8. intros [A B].
    split. auto. intros. destruct B; auto. subst. auto.
- (* trace length *)
  red; intros. inv H; cbn.
  lia.
  eapply external_call_trace_length; eauto.
  eapply external_call_trace_length; eauto.
- (* initial states *)
  intros s1 s2 H H0; inv H; inv H0; f_equal; congruence.
- (* final no step *)
  intros s r H; assert (NOTNULL: forall b ofs, Vnullptr <> Vptr b ofs).
  { intros; unfold Vnullptr; destruct Archi.ptr64; congruence. }
  inv H. red; intros; red; intros.
  inv H; rewrite H0 in *; eelim NOTNULL; eauto.
- (* final states *)
  intros s r1 r2 H H0; inv H; inv H0. congruence.
Qed.