aboutsummaryrefslogtreecommitdiffstats
path: root/kvx/FPDivision32.v
blob: 5a7b536f1b0f14a708702e78119c54d1a496fd94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
From Flocq Require Import Core Digits Operations Round Bracket Sterbenz
                          Binary Round_odd Bits.
Require Archi.
Require Import Coqlib.
Require Import Compopts.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Op.
Require Import CminorSel.
Require Import OpHelpers.
Require Import ExtFloats.
Require Import DecBoolOps.
Require Import Chunks.
Require Import Builtins.
Require Import Values Globalenvs.
Require Compopts.
Require Import Psatz.
Require Import IEEE754_extra.

From Gappa Require Import Gappa_tactic.

Local Open Scope cminorsel_scope.
    
Definition approx_inv b :=
  let invb_s := Eop Oinvfs ((Eop Osingleofintu ((Eletvar 0%nat):::Enil)):::Enil) in
  let invb_d := Eop Ofloatofsingle (invb_s ::: Enil) in
  let b_d := Eop Ofloatoflongu ((Eop Ocast32unsigned ((Eletvar 1%nat):::Enil)):::Enil) in
  let invb_d_var := Eletvar (0%nat) in
  let one := Eop (Ofloatconst ExtFloat.one) Enil in
  let alpha := Eop Ofmsubf (one ::: invb_d_var ::: b_d ::: Enil) in
  let x := Eop Ofmaddf (invb_d_var ::: alpha ::: invb_d_var ::: Enil) in
  Elet b (Elet invb_d x).

Definition approx_inv_thresh := (1/17179869184)%R.

(*
Lemma BofZ_exact_zero:
  forall (prec emax : Z) (prec_gt_0_ : Prec_gt_0 prec)
         (Hmax : (prec < emax)%Z),
  B2R (BofZ prec emax 0%Z (Hmax := Hmax)) = 0%R /\
  is_finite (BofZ prec emax 0%Z (Hmax := Hmax)) = true /\
    Bsign prec emax (BofZ prec emax 0%Z (Hmax := Hmax)) = false.
Proof.
  intros.
  apply BofZ_exact.
  pose proof (Z.pow_nonneg 2 prec).
  lia.
Qed.
 *)

Lemma Rabs_relax:
  forall b b' (INEQ : (b < b')%R) x,
    (-b <= x <= b)%R -> (Rabs x < b')%R.
Proof.
  intros.
  apply Rabs_lt.
  lra.
Qed.

Theorem approx_inv_correct :
  forall (ge : genv)  (sp: val) cmenv memenv
         (le : letenv) (expr_b : expr) (b : int)
         (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vint b))
         (b_nz : ((Int.unsigned b) > 0)%Z),
    exists f : float,
      eval_expr ge sp cmenv memenv le (approx_inv expr_b) (Vfloat f) /\
        is_finite _ _ f = true /\ (Rabs((B2R _ _ f) - (1 / IZR (Int.unsigned b))) <= approx_inv_thresh)%R.
Proof.
  intros. unfold approx_inv.
  econstructor. constructor.
  { repeat econstructor.
    { eassumption. }
    { reflexivity. } }
  set (invb_d := (Float.of_single (ExtFloat32.inv (Float32.of_intu b)))).
  set (b' := Int.unsigned b) in *. 
  pose proof (Int.unsigned_range b) as RANGE.
  fold b' in RANGE.
  change  Int.modulus with  4294967296%Z in RANGE.
  assert (0 <= b' <= Int64.max_unsigned)%Z as b'RANGE.
  { change Int64.max_unsigned with 18446744073709551615%Z.
    lia. }
  assert (1 <= IZR b' <= 4294967295)%R as RANGE'.
  { split.
    { apply IZR_le. lia. }
    apply IZR_le. lia.
  }
  cbn.
  
  set (b_d := (Float.of_longu (Int64.repr b'))) in *.
  Local Transparent Float.of_longu.
  unfold Float.of_longu in b_d.

  assert(SILLY : (- 2 ^ 24 <= 1 <= 2 ^ 24)%Z) by lia.
  destruct (BofZ_exact 24 128 (@eq_refl Datatypes.comparison Lt) (@eq_refl Datatypes.comparison Lt) 1 SILLY) as (C0E & C0F & _).
  clear SILLY.

  assert(SILLY : (- 2 ^ 53 <= 1 <= 2 ^ 53)%Z) by lia.
  destruct (BofZ_exact 53 1024 (@eq_refl Datatypes.comparison Lt) (@eq_refl Datatypes.comparison Lt) 1 SILLY) as (C9E & C9F & _).
  clear SILLY.
  
  pose proof (BofZ_correct 24 128 (@eq_refl Datatypes.comparison Lt) (@eq_refl Datatypes.comparison Lt) b') as C1.
  rewrite Rlt_bool_true in C1; cycle 1.
  { clear C1. cbn.
    eapply (Rabs_relax (IZR 4294967296)).
    lra.
    gappa.
  }
  rewrite Zlt_bool_false in C1 by lia.
  destruct C1 as (C1E & C1F & _).
  
  Local Transparent Float32.of_intu Float32.of_int Float32.div.
  unfold ExtFloat32.inv, ExtFloat32.one, Float32.of_intu, Float32.of_int, Float32.div in invb_d.
  fold b' in invb_d.
  change (Int.signed (Int.repr 1%Z)) with 1%Z in invb_d.
  pose proof (Bdiv_correct 24 128 (@eq_refl Datatypes.comparison Lt) (@eq_refl Datatypes.comparison Lt) Float32.binop_nan mode_NE
                      (BofZ 24 128 (@eq_refl Datatypes.comparison Lt) (@eq_refl Datatypes.comparison Lt) 1)
                      (BofZ 24 128 (@eq_refl Datatypes.comparison Lt) (@eq_refl Datatypes.comparison Lt) b')) as C2.
  rewrite Rlt_bool_true in C2; cycle 1.
  { clear C2. rewrite C1E.
    apply (Rabs_relax (bpow radix2 10)).
    { cbn; lra. }
    unfold F2R. cbn. unfold F2R. cbn.
    gappa.
  }
  assert (B2R 24 128 (BofZ 24 128 (@eq_refl Datatypes.comparison Lt) (@eq_refl Datatypes.comparison Lt) b') <> 0%R) as NONZ.
  { clear C2.
    rewrite C1E.
    cbn.
    assert (1 <= round radix2 (FLT_exp (-149) 24) ZnearestE (IZR b'))%R by gappa.
    lra.
  }
  destruct (C2 NONZ) as (C2E & C2F & _).
  clear C2 NONZ.
  Local Transparent Float.of_single.
  unfold Float.of_single in invb_d.
  pose proof (Bconv_correct 24 128 53 1024 (@eq_refl Datatypes.comparison Lt)
              (@eq_refl Datatypes.comparison Lt) Float.of_single_nan mode_NE
              (Bdiv 24 128 (@eq_refl Datatypes.comparison Lt)
                 (@eq_refl Datatypes.comparison Lt) Float32.binop_nan mode_NE
                 (BofZ 24 128 (@eq_refl Datatypes.comparison Lt)
                    (@eq_refl Datatypes.comparison Lt) 1)
                 (BofZ 24 128 (@eq_refl Datatypes.comparison Lt)
                       (@eq_refl Datatypes.comparison Lt) b'))) as C3.
  fold invb_d in C3.
  rewrite Rlt_bool_true in C3; cycle 1.
  { clear C3.
    rewrite C2E.
    rewrite C1E.
    rewrite C0E.
    apply (Rabs_relax (bpow radix2 10)).
    { apply bpow_lt; lia. }
    cbn.
    gappa.
  }
  change (is_finite 24 128 (BofZ 24 128 (@eq_refl Datatypes.comparison Lt) (@eq_refl Datatypes.comparison Lt) 1)) with true in C2F.
  destruct (C3 C2F) as (C3E & C3F & _).
  clear C3.
  unfold Float.fma.
  assert (is_finite _ _ (Float.neg invb_d) = true) as invb_d_F.
  { Local Transparent Float.neg.
    unfold Float.neg.
    rewrite is_finite_Bopp.
    assumption.
  }

  assert(SILLY : (- 2 ^ 53 <= b' <= 2 ^ 53)%Z) by lia.
  destruct (BofZ_exact 53 1024 (@eq_refl Datatypes.comparison Lt) (@eq_refl Datatypes.comparison Lt) b' SILLY) as (C4E & C4F & _).
  clear SILLY.

  assert (is_finite 53 1024 b_d = true) as b_d_F.
  { unfold b_d.
    rewrite Int64.unsigned_repr by lia.
    assumption.
  }
  
  assert (is_finite 53 1024 ExtFloat.one = true) as one_F by reflexivity.
  
  pose proof (Bfma_correct 53 1024 (@eq_refl Datatypes.comparison Lt)
          (@eq_refl Datatypes.comparison Lt) Float.fma_nan mode_NE
          (Float.neg invb_d) b_d ExtFloat.one invb_d_F b_d_F one_F) as C5.
  
  rewrite Rlt_bool_true in C5; cycle 1.
  { clear C5.
    unfold Float.neg.
    rewrite B2R_Bopp.
    rewrite C3E.
    rewrite C2E.
    rewrite C0E.
    rewrite C1E.
    unfold ExtFloat.one.
    change  (Float.of_int (Int.repr 1)) with (BofZ 53 1024 (@eq_refl Datatypes.comparison Lt) (@eq_refl Datatypes.comparison Lt) 1).
    rewrite C9E.
    unfold b_d.
    rewrite Int64.unsigned_repr by lia.
    rewrite C4E.
    apply (Rabs_relax (bpow radix2 10)).
    { apply bpow_lt; lia. }
    cbn.
    gappa.
  }  
  destruct C5 as (C5E & C5F & _).

  pose proof (Bfma_correct 53 1024 (@eq_refl Datatypes.comparison Lt) (@eq_refl Datatypes.comparison Lt) Float.fma_nan mode_NE
       (Bfma 53 1024 (@eq_refl Datatypes.comparison Lt) (@eq_refl Datatypes.comparison Lt) Float.fma_nan mode_NE 
             (Float.neg invb_d) b_d ExtFloat.one) invb_d invb_d C5F C3F C3F) as C6.
  rewrite Rlt_bool_true in C6; cycle 1.
  { clear C6.
    rewrite C3E.
    rewrite C2E.
    rewrite C1E.
    rewrite C0E.
    rewrite C5E.
    unfold Float.neg.
    rewrite B2R_Bopp.
    rewrite C3E.
    rewrite C2E.
    rewrite C0E.
    rewrite C1E.
    unfold b_d.
    rewrite Int64.unsigned_repr by lia.
    rewrite C4E.
    unfold ExtFloat.one.
    change  (Float.of_int (Int.repr 1)) with (BofZ 53 1024 (@eq_refl Datatypes.comparison Lt) (@eq_refl Datatypes.comparison Lt) 1).
    rewrite C9E.
    apply (Rabs_relax (bpow radix2 10)).
    { apply bpow_lt; lia. }
    cbn.
    gappa.
  }
  destruct C6 as (C6E & C6F & _).
  split.
  { exact C6F. }
  rewrite C6E.
  rewrite C5E.
  rewrite C3E.
  rewrite C2E.
  rewrite C1E.
  rewrite C0E.
  unfold Float.neg.
  rewrite B2R_Bopp.
  unfold ExtFloat.one.
  Local Transparent Float.of_int.
  unfold Float.of_int.
  rewrite (Int.signed_repr 1) by (cbn ; lia).
  rewrite C9E.
  rewrite C3E.
  rewrite C2E.
  rewrite C0E.
  rewrite C1E.
  unfold b_d.
  rewrite Int64.unsigned_repr by lia.
  rewrite C4E.
  cbn.
  set (rd := round radix2 (FLT_exp (-1074) 53) ZnearestE) in *.
  set (rs := round radix2 (FLT_exp (-149) 24) ZnearestE) in *.
  set (bi := IZR b') in *.
  set (invb0 := rd (rs (1/ rs bi))%R) in *.
  set (alpha := (- invb0 * bi + 1)%R) in *.
  set (alpha' := ((1/bi - rd (rs (1/ rs bi)))/(1/bi))%R) in *.
  assert (alpha = alpha')%R as expand_alpha.
  {
    unfold alpha, alpha', invb0.
    field.
    lra.
  }
  assert(-1/2097152 <= alpha' <= 1/2097152)%R as alpha_BOUND.
  { unfold alpha', rd, rs.
    gappa.
  }
  set (delta := (rd (rd alpha * invb0 + invb0) - (alpha * invb0 + invb0))%R).
  assert(-1/1125899906842624 <= delta <= 1/1125899906842624)%R as delta_BOUND.
  { unfold delta, invb0. rewrite expand_alpha. unfold rd, rs.
    gappa.
  }
  replace (rd (rd alpha * invb0 + invb0) - 1/bi)%R with
    (delta + ((alpha * invb0 + invb0)-1/bi))%R by (unfold delta; ring).
  replace (alpha * invb0 + invb0 - 1 / bi)%R with (alpha * (invb0 - 1/bi) + (alpha * (1/bi) + invb0 - 1 / bi))%R by ring.
  replace (alpha * (1 / bi) + invb0 - 1 / bi)%R with 0%R; cycle 1.
  { unfold alpha.
    field.
    lra.
  }
  rewrite expand_alpha.
  unfold invb0, rd, rs, approx_inv_thresh.
  apply Rabs_le.
  gappa.
Qed.

Definition fp_divu32 a b :=
  let a_var := Eletvar (1%nat) in
  let b_var := Eletvar (0%nat) in
  let a_d := Eop Ofloatoflongu ((Eop Ocast32unsigned (a_var ::: Enil)) ::: Enil) in
  let qr := Eop Olonguoffloat_ne ((Eop Omulf (a_d:::(approx_inv b_var):::Enil)):::Enil) in
  let qr_var := Eletvar 0%nat in
  let rem := Eop Omsubl ((Eop Ocast32unsigned ((Eletvar (2%nat)):::Enil)):::
                         qr_var :::
                         (Eop Ocast32unsigned ((Eletvar (1%nat)):::Enil)):::Enil) in
  let qr_m1 := Eop (Oaddlimm (Int64.repr (-1)%Z)) (qr_var:::Enil) in
  let cases := Eop (Osel (Ccompl0 Clt) Tlong)
                   (qr_m1 ::: qr_var ::: rem ::: Enil) in (* (Elet qr cases) *)
  Eop Olowlong ((Elet a (Elet (lift b) (Elet qr cases))) ::: Enil).

Open Scope Z.

Definition div_approx_reals (a b : Z) (x : R) :=
    let q:=ZnearestE x in
    let r:=a-q*b in
    if r <? 0
    then q-1
    else q.

Lemma floor_ball1:
  forall x : R, forall y : Z,
    (Rabs (x - IZR y) < 1)%R -> Zfloor x = (y-1)%Z \/ Zfloor x = y.
Proof.
  intros x y BALL.
  apply Rabs_lt_inv in BALL.
  case (Rcompare_spec x (IZR y)); intro CMP.
  - left. apply Zfloor_imp.
    ring_simplify (y-1+1).
    rewrite minus_IZR. lra.
  - subst.
    rewrite Zfloor_IZR. right. reflexivity.
  - right. apply Zfloor_imp.
    rewrite plus_IZR. lra.
Qed.

Theorem div_approx_reals_correct:
  forall a b : Z, forall x : R,
    b > 0 ->
    (Rabs (x - IZR a/ IZR b) < 1/2)%R ->
    div_approx_reals a b x = (a/b)%Z.
Proof.                    
  intros a b x bPOS GAP.
  assert (0 < IZR b)%R by (apply IZR_lt ; lia).
  unfold div_approx_reals.
  pose proof (Znearest_imp2 (fun x => negb (Z.even x)) x) as NEAR.
  assert (Rabs (IZR (ZnearestE x) - IZR a/ IZR b) < 1)%R as BALL.
  { pose proof (Rabs_triang (IZR (ZnearestE x) - x)
                            (x - IZR a/ IZR b)) as TRI.
    ring_simplify (IZR (ZnearestE x) - x + (x - IZR a / IZR b))%R in TRI.
    lra.
  }
  clear GAP NEAR.
  rewrite Rabs_minus_sym in BALL.
  pose proof (floor_ball1 _ _ BALL) as FLOOR.
  clear BALL.
  rewrite Zfloor_div in FLOOR by lia.
  pose proof (Z_div_mod_eq_full a b) as DIV_MOD.
  assert (0 < b) as bPOS' by lia.
  pose proof (Z.mod_pos_bound a b bPOS') as MOD_BOUNDS.
  case Z.ltb_spec; intro; destruct FLOOR; lia.
Qed.

Opaque approx_inv.

Theorem fp_divu32_correct :
  forall (ge : genv)  (sp: val) cmenv memenv
         (le : letenv) (expr_a expr_b : expr) (a b : int)
         (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vint a))
         (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vint b))
         (b_nz : (Int.unsigned b > 0)%Z),
  eval_expr ge sp cmenv memenv le (fp_divu32 expr_a expr_b)
            (Vint (Int.divu a b)).
Proof.
  intros.
  assert (eval_expr ge sp cmenv memenv (Vint b :: Vint a :: le)
                    (Eletvar 0) (Vint b)) as EVAL_b'.
  { constructor. reflexivity. }
  destruct (approx_inv_correct ge sp cmenv memenv (Vint b :: Vint a :: le) (Eletvar 0) b EVAL_b' b_nz) as (inv_b & inv_b_eval & inv_b_finite & inv_b_correct).
  unfold fp_divu32.
  repeat econstructor.
  { exact EVAL_a. }
  { apply eval_lift. exact EVAL_b. }
  exact inv_b_eval.
  cbn. f_equal.
  rewrite <- Float.of_intu_of_longu.
  unfold Float.to_longu_ne.
  rewrite ZofB_ne_range_correct by lia.
  set (prod := (Float.mul (Float.of_intu a) inv_b)).
  pose proof (Int.unsigned_range a) as a_range.
  pose proof (Int.unsigned_range b) as b_range.
  change Int.modulus with 4294967296 in a_range.
  change Int.modulus with 4294967296 in b_range.
  set (prod' := (B2R _ _ prod)).
  set (prod_r := ZnearestE prod') in *.

  Local Transparent Float.mul Float.of_intu.
  unfold Float.mul, Float.of_intu in prod.
  set (a' := Int.unsigned a) in *.
  set (b' := Int.unsigned b) in *.
  assert (IZR_a' : (0 <= IZR a' <= 4294967295)%R).
  { split; apply IZR_le; lia. }
  assert (IZR_b' : (1 <= IZR b' <= 4294967295)%R).
  { split; apply IZR_le; lia. }
  assert (SILLY : -2^53 <= a' <= 2^53).
  { cbn; lia. }
  destruct (BofZ_exact 53 1024 (@eq_refl _ Lt) (@eq_refl _ Lt) a' SILLY) as (C0E  & C0F & _).
  clear SILLY.
  pose proof (Bmult_correct  53 1024 (@eq_refl _ Lt) (@eq_refl _ Lt) Float.binop_nan mode_NE
                               (BofZ 53 1024  (@eq_refl _ Lt) (@eq_refl _ Lt)a') inv_b) as C1.
  set (inv_b_r :=  B2R 53 1024 inv_b) in *.
  assert (INV_RANGE : (1/4294967296 <= 1/IZR b' <= 1)%R).
  { split; unfold Rdiv.
    - apply Rmult_le_compat_l. lra.
      apply Rinv_le. apply IZR_lt. lia.
      apply IZR_le. lia.
    - replace 1%R with (1 / 1)%R at 2 by field.
      apply Rmult_le_compat_l. lra.
      apply Rinv_le. apply IZR_lt. lia.
      apply IZR_le. lia.
  }
  apply Rabs_def2b in inv_b_correct.
  rewrite Rlt_bool_true in C1; cycle 1.
  { clear C1.
    rewrite C0E.
    apply (Rabs_relax (bpow radix2 64)).
    { apply bpow_lt. lia. }
    replace inv_b_r with (1 / IZR b' +  (inv_b_r - 1 / IZR b'))%R by ring.
    set (delta := (inv_b_r - 1 / IZR b')%R) in *.
    unfold approx_inv_thresh in inv_b_correct.
    cbn.
    assert (b'_RANGE : (1 <= IZR b' <= 4294967295)%R).
    { split; apply IZR_le; lia.
    }
    assert (a'_RANGE : (0 <= IZR a' <= 4294967295)%R).
    { split; apply IZR_le; lia.
    }
    gappa.
  }
  rewrite C0F in C1.
  cbn in C1.
  rewrite C0E in C1.
  rewrite inv_b_finite in C1.
  fold prod in C1.
  fold prod' in C1.
  destruct C1 as (C1E & C1F & _).
  rewrite C1F. cbn.

  assert(prod'_range : (0 <= prod' <= 17179869181/4)%R).
  {
    rewrite C1E.
    replace inv_b_r with (1/IZR b' + (inv_b_r - 1 / IZR b'))%R by ring.
    assert (a'_RANGE : (0 <= IZR a' <= 4294967295)%R).
    { split; apply IZR_le; lia.
    }
    unfold approx_inv_thresh in inv_b_correct.
    set (true_inv := (1 / IZR b')%R) in *.
    set (delta := (inv_b_r - true_inv)%R) in *.
    gappa.
  }

  assert(0 <= prod_r <= 4294967295) as prod_r_range.
  { unfold prod_r.
    rewrite <- (Znearest_IZR  (fun x => negb (Z.even x)) 0).
    replace 4294967295 with (ZnearestE (17179869181 / 4)%R); cycle 1.
    { apply Znearest_imp.
      apply Rabs_lt.
      lra.
    }
    split; apply Znearest_le; lra.
  }

  replace (_ && _ ) with true; cycle 1.
  {
    symmetry.
    rewrite andb_true_iff.
    split; apply Zle_imp_le_bool; lia.
  }
  cbn.
  f_equal.
  unfold Int.divu.
  assert(Rabs
             (round radix2 (FLT_exp (-1074) 53) ZnearestE (IZR a' * inv_b_r) - (IZR a' * inv_b_r)) <= 1/512)%R as R1 by gappa.

  assert ( (Rabs (B2R 53 1024 prod - IZR (Int.unsigned a) / IZR (Int.unsigned b)) < 1 / 2)%R) as NEAR.
  {
    unfold prod.
    pose proof (Bmult_correct 53 1024 (@eq_refl _ Lt) (@eq_refl _ Lt) Float.binop_nan mode_NE (BofZ 53 1024 (@eq_refl _ Lt) (@eq_refl _ Lt) a') inv_b) as C2.
    rewrite C0E in C2.
    rewrite Rlt_bool_true in C2; cycle 1.
    { clear C2.
      apply (Rabs_relax (bpow radix2 64)).
      { apply bpow_lt. reflexivity. }
      cbn.
      fold inv_b_r.
      replace inv_b_r with (1 / IZR b' + (inv_b_r - 1 / IZR b'))%R by ring.
      set (delta := (inv_b_r - 1 / IZR b')%R) in *.
      unfold approx_inv_thresh in *.
      gappa.
    }
    destruct C2 as (C2E & C2F & _).
    rewrite C2E.
    fold inv_b_r a' b'.
    replace ((round radix2 (FLT_exp (3 - 1024 - 53) 53) (round_mode mode_NE) (IZR a' * inv_b_r)) -
               (IZR a' / IZR b'))%R with
      (((round radix2 (FLT_exp (3 - 1024 - 53) 53) (round_mode mode_NE) (IZR a' * inv_b_r)) -
          (IZR a' * inv_b_r)) +
         (IZR a' * (inv_b_r - 1 / IZR b')))%R by (field ; lra).
    set(delta :=  (inv_b_r - 1 / IZR b')%R) in *.
    cbn. 
    unfold approx_inv_thresh in *.
    assert (Rabs(IZR a' * delta) <= 3/8)%R as R2.
    { apply Rabs_le.
      split; nra.
    }
    rewrite <- C1E.
    rewrite <- C1E in R1.
    pose proof (Rabs_triang (prod' - IZR a' * inv_b_r)  (IZR a' * delta))%R.
    lra.
  }
  pose proof (div_approx_reals_correct (Int.unsigned a) (Int.unsigned b) prod' b_nz NEAR) as DIV_CORRECT.
  rewrite <- DIV_CORRECT.

  unfold div_approx_reals in *.
  fold a' b' prod' prod_r.
  unfold Int64.mul.
  rewrite Int64.unsigned_repr by (cbn; lia).
  rewrite Int64.unsigned_repr by (cbn; lia).
  unfold Int64.sub.
  rewrite Int64.unsigned_repr by (cbn; lia).
  rewrite Int64.unsigned_repr by (cbn; nia).
  assert (FMA_RANGE : Int64.min_signed <= a' - prod_r * b' <= Int64.max_signed).
  { cbn.
    unfold prod_r.
    rewrite <- C1E in R1.
    assert (IZR (-9223372036854775808) <= IZR (a' - ZnearestE prod' * b') <= IZR 9223372036854775807)%R.
    2: split; apply le_IZR; lra.
    rewrite minus_IZR.
    rewrite mult_IZR.
    replace (IZR (ZnearestE prod')) with (prod' + (IZR (ZnearestE prod') - prod'))%R by ring.
    pose proof (Znearest_imp2 (fun x => negb (Z.even x)) prod') as R2.
    set (delta1 := (IZR (ZnearestE prod') - prod')%R) in *.
    replace prod' with ((prod' - IZR a' * inv_b_r) + IZR a' * (inv_b_r - 1 / IZR b')
                        + IZR a' / IZR b')%R by (field; lra).
    set (delta2 :=  (inv_b_r - 1 / IZR b')%R) in *.
    set (delta3 := (prod' - IZR a' * inv_b_r)%R) in *.
    replace (IZR a' - (delta3 + IZR a' * delta2 + IZR a' / IZR b' + delta1) * IZR b')%R with
      (- (delta3 + IZR a' * delta2 + delta1) * IZR b')%R by (field; lra).
    unfold approx_inv_thresh in *.
    assert (Rabs(IZR a' * delta2) <= 1/4)%R as R4.
    { apply Rabs_le.
      split; 
        nra. }
    set (delta4 := (IZR a' * delta2)%R) in *.
    apply Rabs_def2b in R1.
    apply Rabs_def2b in R2.
    apply Rabs_def2b in R4.
    split; nra.
  }
  fold a' b' prod_r in DIV_CORRECT.

  pose proof (Zlt_cases (a' - prod_r * b') 0) as CMP.
  destruct (Z.ltb (a' - prod_r * b') 0).
  - replace (Int64.lt (Int64.repr (a' - prod_r * b')) Int64.zero) with true; cycle 1.
    { unfold Int64.lt.
      change (Int64.signed Int64.zero) with 0.
      rewrite Int64.signed_repr by exact FMA_RANGE.
      rewrite zlt_true by lia.
      reflexivity.
    }
    cbn.
    f_equal.
    rewrite Int64.add_signed.
    rewrite (Int64.signed_repr prod_r) by (cbn ; lia).
    rewrite Int64.signed_repr by (cbn ; lia).
    unfold Int64.loword.
    rewrite Int64.unsigned_repr. reflexivity.
    split.
    2: cbn; lia.
    replace (prod_r + (-1)) with (prod_r - 1) by lia.
    rewrite DIV_CORRECT.
    apply Z.div_pos; lia.
    
  - replace (Int64.lt (Int64.repr (a' - prod_r * b')) Int64.zero) with false; cycle 1.
    { unfold Int64.lt.
      change (Int64.signed Int64.zero) with 0.
      rewrite Int64.signed_repr by exact FMA_RANGE.
      rewrite zlt_false by lia.
      reflexivity.
    }
    cbn.
    unfold Int64.loword.
    rewrite Int64.unsigned_repr by (cbn; lia).
    reflexivity.
Qed.

Definition e_msubl a b c := Eop Omsub (a ::: b ::: c ::: Enil).
Definition fp_modu32 a b := Elet a (Elet (lift b) (e_msubl (Eletvar 1%nat) (Eletvar 0%nat)
                                                    (fp_divu32 (Eletvar 1%nat) (Eletvar 0%nat)))).

Theorem fp_modu32_correct :
  forall (ge : genv)  (sp: val) cmenv memenv
         (le : letenv) (expr_a expr_b : expr) (a b : int)
         (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vint a))
         (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vint b))
         (b_nz : (Int.unsigned b > 0)%Z),
  eval_expr ge sp cmenv memenv le (fp_modu32 expr_a expr_b)
            (Vint (Int.modu a b)).
Proof.
  intros.
  rewrite Int.modu_divu; cycle 1.
  { intro Z.
    subst.
    rewrite Int.unsigned_zero in b_nz.
    lia.
  }
  unfold fp_modu32.
  Local Opaque fp_divu32.
  repeat (econstructor + apply eval_lift + eassumption).
  { apply fp_divu32_correct;
    repeat (econstructor + apply eval_lift + eassumption).
  }
  cbn.
  rewrite Int.mul_commut.
  reflexivity.
Qed.

Definition e_is_neg a := Eop (Ocmp (Ccompimm Clt Int.zero)) (a ::: Enil).
Definition e_xorw a b := Eop Oxor (a ::: b ::: Enil).
Definition e_ite ty c vc v1 v2 := Eop (Osel c ty) (v1 ::: v2 ::: vc ::: Enil).
Definition e_neg a := Eop Oneg (a ::: Enil).
Definition e_abs a := Eop (Oabsdiffimm Int.zero) (a ::: Enil).

Definition fp_divs32 a b :=
  Elet a (Elet (lift b)
    (Elet (fp_divu32 (e_abs (Eletvar (1%nat))) (e_abs (Eletvar (0%nat))))
          (e_ite Tint (Ccompu0 Cne) (e_xorw (e_is_neg (Eletvar 2%nat))
                                            (e_is_neg (Eletvar 1%nat)))
                 (e_neg (Eletvar 0%nat)) (Eletvar 0%nat)))).

Lemma nonneg_signed_unsigned:
  forall x (x_NONNEG : Int.signed x >= 0),
    (Int.signed x) = (Int.unsigned x).
Proof.
  intros.
  pose proof (Int.unsigned_range x).
  unfold Int.signed in *.
  destruct zlt. reflexivity.
  change Int.modulus with 4294967296%Z in *.
  change Int.half_modulus with 2147483648%Z in *.
  lia.
Qed.

Lemma int_min_signed_unsigned :
  (- Int.min_signed < Int.max_unsigned)%Z.
Proof.
  reflexivity.
Qed.

Lemma int_divs_divu :
  forall a b
    (b_NOT0 : Int.signed b <> 0),
    Int.divs a b = if xorb (Int.lt a Int.zero)
                           (Int.lt b Int.zero)
                   then Int.neg (Int.divu (ExtValues.int_abs a)
                                          (ExtValues.int_abs b))
                   else Int.divu (ExtValues.int_abs a) (ExtValues.int_abs b).
Proof.
  intros.
  unfold Int.divs, Int.divu, Int.lt, ExtValues.int_abs.
  pose proof (Int.signed_range a) as a_RANGE.
  pose proof (Int.signed_range b) as b_RANGE.
  change (Int.signed Int.zero) with 0%Z.
  destruct zlt.
  - cbn. rewrite (Z.abs_neq (Int.signed a)) by lia.
    rewrite (Int.unsigned_repr (- Int.signed a)); cycle 1.
    { pose proof int_min_signed_unsigned. lia. }

    destruct zlt.
    + rewrite (Z.abs_neq (Int.signed b)) by lia.
      rewrite Int.unsigned_repr ; cycle 1.
      { pose proof int_min_signed_unsigned. lia. }
      rewrite <- (Z.opp_involutive (Int.signed b)) at 1.
      rewrite Z.quot_opp_r by lia.
      rewrite <- (Z.opp_involutive (Int.signed a)) at 1.
      rewrite Z.quot_opp_l by lia.
      rewrite Z.quot_div_nonneg by lia.
      rewrite Z.opp_involutive.
      reflexivity.
      
    + rewrite (Z.abs_eq (Int.signed b)) by lia.
      rewrite Int.unsigned_repr ; cycle 1.
      { pose proof Int.max_signed_unsigned. lia. }
      rewrite <- (Z.opp_involutive (Int.signed a)) at 1.
      rewrite Z.quot_opp_l by lia.
      rewrite Z.quot_div_nonneg by lia.
      rewrite Int.neg_repr.
      reflexivity.
    
  - cbn. rewrite (Z.abs_eq (Int.signed a)) by lia.
    rewrite (Int.unsigned_repr (Int.signed a)); cycle 1.
    { pose proof Int.max_signed_unsigned. lia. }
    destruct zlt.
    + rewrite (Z.abs_neq (Int.signed b)) by lia.
      rewrite Int.unsigned_repr ; cycle 1.
      { pose proof int_min_signed_unsigned. lia. }
      rewrite Int.neg_repr.
      rewrite <- (Z.opp_involutive (Int.signed b)) at 1.
      rewrite Z.quot_opp_r by lia.
      rewrite Z.quot_div_nonneg by lia.
      reflexivity.
      
    + rewrite (Z.abs_eq (Int.signed b)) by lia.
      rewrite Int.unsigned_repr ; cycle 1.
      { pose proof Int.max_signed_unsigned. lia. }
      rewrite Z.quot_div_nonneg by lia.
      reflexivity.
Qed.

Lemma nonzero_unsigned_signed :
  forall b, Int.unsigned b > 0 -> Int.signed b <> 0.
Proof.
  intros b GT EQ.
  rewrite Int.unsigned_signed in GT.
  unfold Int.lt in GT.
  rewrite Int.signed_zero in GT.
  destruct zlt in GT; lia.
Qed.

Theorem fp_divs32_correct :
  forall (ge : genv)  (sp: val) cmenv memenv
         (le : letenv) (expr_a expr_b : expr) (a b : int)
         (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vint a))
         (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vint b))
         (b_nz : (Int.unsigned b > 0)%Z),
  eval_expr ge sp cmenv memenv le (fp_divs32 expr_a expr_b)
            (Vint (Int.divs a b)).
Proof.
  intros.
  unfold fp_divs32.
  Local Opaque fp_divu32.
  repeat (econstructor + apply eval_lift + eassumption).
  apply fp_divu32_correct.
  all: repeat (econstructor + apply eval_lift + eassumption).
  { unfold ExtValues.int_absdiff, ExtValues.Z_abs_diff.
    rewrite Int.signed_zero. rewrite Z.sub_0_r.
    rewrite Int.unsigned_repr.
    { pose proof (nonzero_unsigned_signed b b_nz).
      lia.
    }
    pose proof Int.max_signed_unsigned.
    pose proof int_min_signed_unsigned.
    pose proof (Int.signed_range b).
    lia.
  }
  cbn.
  rewrite int_divs_divu ; cycle 1.
  { apply nonzero_unsigned_signed. assumption. }
  unfold Int.lt, ExtValues.int_abs, ExtValues.int_absdiff, ExtValues.Z_abs_diff.
  change (Int.signed Int.zero) with 0%Z.
  repeat rewrite Z.sub_0_r.
  destruct zlt; destruct zlt; reflexivity.
Qed.

Lemma int_mods_modu :
  forall a b
    (b_NOT0 : Int.signed b <> 0),
    Int.mods a b = if Int.lt a Int.zero
                   then Int.neg (Int.modu (ExtValues.int_abs a)
                                          (ExtValues.int_abs b))
                   else Int.modu (ExtValues.int_abs a) (ExtValues.int_abs b).
Proof.
  intros.
  unfold Int.mods, Int.modu, Int.lt, ExtValues.int_abs.
  pose proof (Int.signed_range a) as a_RANGE.
  pose proof (Int.signed_range b) as b_RANGE.
  change (Int.signed Int.zero) with 0%Z.
  destruct zlt.
  - cbn. rewrite (Z.abs_neq (Int.signed a)) by lia.
    rewrite (Int.unsigned_repr (- Int.signed a)); cycle 1.
    { pose proof int_min_signed_unsigned. lia. }

    destruct (zlt (Int.signed b) 0%Z).
    + rewrite (Z.abs_neq (Int.signed b)) by lia.
      rewrite Int.unsigned_repr ; cycle 1.
      { pose proof int_min_signed_unsigned. lia. }
      rewrite <- (Z.opp_involutive (Int.signed b)) at 1.
      rewrite Z.rem_opp_r by lia.
      rewrite <- (Z.opp_involutive (Int.signed a)) at 1.
      rewrite Z.rem_opp_l by lia.
      rewrite Z.rem_mod_nonneg by lia.
      rewrite Int.neg_repr.
      reflexivity.
      
    + rewrite (Z.abs_eq (Int.signed b)) by lia.
      rewrite Int.unsigned_repr ; cycle 1.
      { pose proof Int.max_signed_unsigned. lia. }
      rewrite <- (Z.opp_involutive (Int.signed a)) at 1.
      rewrite Z.rem_opp_l by lia.
      rewrite Z.rem_mod_nonneg by lia.
      rewrite Int.neg_repr.
      reflexivity.
    
  - cbn. rewrite (Z.abs_eq (Int.signed a)) by lia.
    rewrite (Int.unsigned_repr (Int.signed a)); cycle 1.
    { pose proof Int.max_signed_unsigned. lia. }
    destruct (zlt (Int.signed b) 0%Z).
    + rewrite (Z.abs_neq (Int.signed b)) by lia.
      rewrite Int.unsigned_repr ; cycle 1.
      { pose proof int_min_signed_unsigned. lia. }
      rewrite <- (Z.opp_involutive (Int.signed b)) at 1.
      rewrite Z.rem_opp_r by lia.
      rewrite Z.rem_mod_nonneg by lia.
      reflexivity.
      
    + rewrite (Z.abs_eq (Int.signed b)) by lia.
      rewrite Int.unsigned_repr ; cycle 1.
      { pose proof Int.max_signed_unsigned. lia. }
      rewrite Z.rem_mod_nonneg by lia.
      reflexivity.
Qed.

Definition fp_mods32z a b :=
  Elet a (Elet (lift b)
    (Elet (fp_modu32 (e_abs (Eletvar (1%nat))) (e_abs (Eletvar (0%nat))))
          (e_ite Tint (Ccomp0 Clt) (Eletvar 2%nat)
                 (e_neg (Eletvar 0%nat)) (Eletvar 0%nat)))).

Theorem fp_mods32z_correct :
  forall (ge : genv)  (sp: val) cmenv memenv
         (le : letenv) (expr_a expr_b : expr) (a b : int)
         (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vint a))
         (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vint b))
         (b_nz : (Int.unsigned b > 0)%Z),
  eval_expr ge sp cmenv memenv le (fp_mods32z expr_a expr_b)
            (Vint (Int.mods a b)).
Proof.
  intros.
  unfold fp_mods32z.
  Local Opaque fp_modu32.
  repeat (econstructor + apply eval_lift + eassumption).
  apply fp_modu32_correct.
  all: repeat (econstructor + apply eval_lift + eassumption).
  { unfold ExtValues.int_absdiff, ExtValues.Z_abs_diff.
    rewrite Int.signed_zero. rewrite Z.sub_0_r.
    rewrite Int.unsigned_repr.
    { pose proof (nonzero_unsigned_signed b b_nz).
      lia.
    }
    pose proof Int.max_signed_unsigned.
    pose proof int_min_signed_unsigned.
    pose proof (Int.signed_range b).
    lia.
  }
  cbn.
  rewrite int_mods_modu ; cycle 1.
  { apply nonzero_unsigned_signed. assumption. }
  unfold Int.lt, ExtValues.int_abs, ExtValues.int_absdiff, ExtValues.Z_abs_diff.
  change (Int.signed Int.zero) with 0%Z.
  repeat rewrite Z.sub_0_r.
  destruct zlt; reflexivity. 
Qed.

Definition e_msub a b c := Eop Omsub (a ::: b ::: c ::: Enil).

Definition fp_mods32 a b :=
  Elet a (Elet (lift b)
    (Elet (fp_divs32 (Eletvar (1%nat)) (Eletvar (0%nat)))
          (e_msub (Eletvar 2%nat) (Eletvar 1%nat) (Eletvar 0%nat)))).

Theorem fp_mods32_correct :
  forall (ge : genv)  (sp: val) cmenv memenv
         (le : letenv) (expr_a expr_b : expr) (a b : int)
         (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vint a))
         (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vint b))
         (b_nz : (Int.unsigned b > 0)%Z),
  eval_expr ge sp cmenv memenv le (fp_mods32 expr_a expr_b)
            (Vint (Int.mods a b)).
Proof.
  intros.
  rewrite Int.mods_divs.
  unfold fp_mods32.
  Local Opaque fp_divs32.
  repeat (econstructor + apply eval_lift + eassumption).
  { apply fp_divs32_correct;
    repeat (econstructor + apply eval_lift + eassumption).
  }
  cbn.
  rewrite Int.mul_commut.
  reflexivity.
Qed.