aboutsummaryrefslogtreecommitdiffstats
path: root/kvx/FPDivision64.v
blob: 298831a08bc8e7694b2a751aa57ebb0256c7e8f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
(*
This needs a special gappa script

#!/bin/sh
/home/monniaux/.opam/4.12.0+flambda/bin/gappa -Eprecision=100 "$@"

in PATH before the normal gappa
 *)

From Flocq Require Import Core Digits Operations Round Bracket Sterbenz
                          Binary Round_odd Bits.
Require Archi.
Require Import Coqlib.
Require Import Compopts.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Op.
Require Import CminorSel.
Require Import OpHelpers.
Require Import ExtFloats.
Require Import DecBoolOps.
Require Import Chunks.
Require Import Builtins.
Require Import Values Globalenvs.
Require Compopts.
Require Import Psatz.
Require Import IEEE754_extra.
Require Import Memory.

From Gappa Require Import Gappa_tactic.

Definition approx_inv_longu b :=
  let invb_s := ExtValues.invfs (Val.singleoffloat (Val.maketotal (Val.floatoflongu b))) in
  let invb_d := Val.floatofsingle invb_s in
  let b_d := Val.maketotal (Val.floatoflongu b) in
  let one := Vfloat (ExtFloat.one) in
  let alpha := ExtValues.fmsubf one invb_d b_d in
  ExtValues.fmaddf invb_d alpha invb_d.

Lemma Rabs_relax:
  forall b b' (INEQ : (b < b')%R) x,
    (-b <= x <= b)%R -> (Rabs x < b')%R.
Proof.
  intros.
  apply Rabs_lt.
  lra.
Qed.

Local Notation "'rd'" := (round radix2 (FLT_exp (-1074) 53) ZnearestE).
Local Notation "'rs'" := (round radix2 (FLT_exp (-149) 24) ZnearestE).

Definition approx_inv_rel_thresh := (1049/72057594037927936)%R.
Theorem approx_inv_longu_correct_rel :
  forall b,
    (0 < Int64.unsigned b)%Z ->
    exists (f : float),
      (approx_inv_longu (Vlong b)) = Vfloat f /\
      is_finite _ _ f = true /\ (Rabs(IZR (Int64.unsigned b) * (B2R _ _ f) - 1) <= approx_inv_rel_thresh)%R.
Proof.
  intros b NONZ.
  unfold approx_inv_longu.
  cbn.
  econstructor.
  split.
  reflexivity.
  Local Transparent Float.neg Float.of_single Float32.of_longu Float32.div Float.of_longu Float32.of_int Float.of_int Float.to_single.
  unfold Float.fma, Float.neg, Float.of_single, Float32.of_longu, ExtFloat32.inv, Float32.div, Float.of_longu, ExtFloat32.one, Float32.of_int, ExtFloat.one, Float.of_int, Float.to_single.
  set (re := (@eq_refl Datatypes.comparison Lt)).
  change (Int.signed (Int.repr 1)) with 1%Z.
  set (b' := Int64.unsigned b) in *.
  pose proof (Int64.unsigned_range b) as RANGE.
  change Int64.modulus with 18446744073709551616%Z in RANGE.                                              
  assert(1 <= IZR b' <= 18446744073709551616)%R as RANGE'.
  { split; apply IZR_le; lia.
  }

  assert (-16777216 <= 1 <= 16777216)%Z as SILLY by lia.
  destruct (BofZ_exact 24 128 re re 1 SILLY) as (C0R & C0F & _).
  clear SILLY.
  set (one_s := (BofZ 24 128 re re 1)) in *.
  
  pose proof (BofZ_correct 53 1024 re re b') as C5.
  rewrite Rlt_bool_true in C5; cycle 1.
  { clear C5.
    eapply (Rabs_relax (bpow radix2 64)).
    { apply bpow_lt. lia. }
    cbn.
    gappa.
  }
  cbn in C5.
  destruct C5 as (C5R & C5F & C5S).
  set (b_d :=  (BofZ 53 1024 re re b')) in *.

  pose proof (Bconv_correct 53 1024 24 128 re re Float.to_single_nan mode_NE b_d C5F) as C1.
  rewrite Rlt_bool_true in C1; cycle 1.
  { clear C1.
    apply (Rabs_relax (bpow radix2 64)).
    { apply bpow_lt. lia. }
    rewrite C5R.
    cbn.
    gappa.
  }
  cbn in C1.
  destruct C1 as (C1R & C1F & C1S).
  set (b_s := (Bconv 53 1024 24 128 re re Float.to_single_nan mode_NE b_d)) in *.
  assert(1 <= B2R 24 128 b_s <= 18446744073709551616)%R as b_s_RANGE.
  { rewrite C1R.
    rewrite C5R.
    cbn.
    gappa.
  }
  assert(B2R 24 128 b_s <> 0)%R as b_s_NONZ by lra.
  
  pose proof (Bdiv_correct 24 128 re re Float32.binop_nan mode_NE one_s b_s b_s_NONZ) as C2.
  rewrite Rlt_bool_true in C2; cycle 1.
  { clear C2.
    apply Rabs_relax with (b := 1%R).
    { cbn; lra. }
    rewrite C0R.
    set (r_b_s := B2R 24 128 b_s) in *.
    cbn.
    gappa.
  }
  
  destruct C2 as (C2R & C2F & _).
  set (invb_s := (Bdiv 24 128 re re Float32.binop_nan mode_NE one_s b_s)) in *.
  rewrite C0F in C2F.

  assert ((1/18446744073709551616 <= B2R 24 128 invb_s <= 1)%R) as invb_s_RANGE.
  { rewrite C2R.
    set (r_b_s := B2R 24 128 b_s) in *.
    rewrite C0R.
    cbn.
    gappa.
  }
  
  pose proof (Bconv_correct 24 128 53 1024 re re Float.of_single_nan mode_NE invb_s C2F) as C3.
  rewrite Rlt_bool_true in C3; cycle 1.
  { clear C3.
    set (r_invb_s := (B2R 24 128 invb_s)) in *.
    apply Rabs_relax with (b := 1%R).
    { replace 1%R with (bpow radix2 0)%R by reflexivity.
      apply bpow_lt.
      lia.
    }
    cbn.
    gappa.
  }
  
  destruct C3 as (C3R & C3F & _).
  set (invb_d :=  (Bconv 24 128 53 1024 re re Float.of_single_nan mode_NE invb_s)) in *.
  assert ((1/18446744073709551616 <= B2R 53 1024 invb_d <= 1)%R) as invb_d_RANGE.
  { 
    rewrite C3R.
    set (r_invb_s := B2R 24 128 invb_s) in *.
    cbn.
    gappa.
  }

  pose proof (is_finite_Bopp 53 1024 Float.neg_nan invb_d) as opp_finite.
  rewrite C3F in opp_finite.

  pose proof (BofZ_correct 53 1024 re re 1) as C4.
  rewrite Rlt_bool_true in C4; cycle 1.
  { clear C4.
    cbn.
    eapply (Rabs_relax (IZR 18446744073709551616)).
    lra.
    set (b'' := IZR b') in *.
    gappa.
  }
  destruct C4 as (C4R & C4F & _).
    
  assert(1 <= B2R 53 1024 b_d <= 18446744073709551616)%R as b_d_RANGE.
  { rewrite C5R.
    gappa.
  }

  pose proof (Bfma_correct 53 1024 re re Float.fma_nan mode_NE
          (Bopp 53 1024 Float.neg_nan invb_d) (BofZ 53 1024 re re b')
          (BofZ 53 1024 re re 1) opp_finite C5F C4F) as C6.
  rewrite Rlt_bool_true in C6; cycle 1.
  { clear C6.
    rewrite C4R.
    rewrite B2R_Bopp.
    cbn.
    eapply (Rabs_relax (IZR 18446744073709551616)).
    { lra. }
    fold invb_d.
    fold b_d.
    set (r_invb_d := B2R 53 1024 invb_d) in *.
    set (r_b_d := B2R 53 1024 b_d) in *.
    gappa.
  }
  fold b_d in C6.
  destruct C6 as (C6R & C6F & _).

  pose proof (Bfma_correct 53 1024 re re Float.fma_nan mode_NE
       (Bfma 53 1024 re re Float.fma_nan mode_NE
          (Bopp 53 1024 Float.neg_nan invb_d) b_d (BofZ 53 1024 re re 1))
       invb_d invb_d C6F C3F C3F) as C7.
  rewrite Rlt_bool_true in C7; cycle 1.
  { clear C7.
    rewrite C6R.
    rewrite B2R_Bopp.
    eapply (Rabs_relax (bpow radix2 64)).
    { apply bpow_lt. lia. }
    rewrite C4R.
    cbn.
    set (r_invb_d := B2R 53 1024 invb_d) in *.
    set (r_b_d := B2R 53 1024 b_d) in *.
    gappa.
  }
  destruct C7 as (C7R & C7F & _).

  split. assumption.
  rewrite C7R.
  rewrite C6R.
  rewrite C5R.
  rewrite C4R.
  rewrite B2R_Bopp.
  rewrite C3R.
  rewrite C2R.
  rewrite C1R.
  rewrite C5R.
  rewrite C0R.
  cbn.
  set(b1 := IZR b') in *.

  replace (rd 1) with 1%R by gappa.
  replace (rd (rs (1 / rs (rd b1)))) with
    ((((rd (rs (1 / rs (rd b1))) - (/b1))/(/b1))+1)*(/ b1))%R ; cycle 1.
  { field. lra. }
  set (er0 := ((rd (rs (1 / rs (rd b1))) - (/b1))/(/b1))%R).
  replace (rd b1) with ((((rd b1) - b1)/b1 + 1) * b1)%R; cycle 1.
  { field. lra. }
  set (er1 := (((rd b1) - b1)/b1)%R).
  replace (- ((er0 + 1) * / b1) * ((er1 + 1) * b1) + 1)%R
    with (1 - (er0 + 1)*(er1 + 1))%R ; cycle 1.
  { field. lra. }
  set (z0 := (1 - (er0 + 1) * (er1 + 1))%R).
  assert (Rabs er0 <= 257/2147483648)%R as er0_ABS.
  { unfold er0.
    gappa.
  }
  assert (Rabs er1 <= 1/9007199254740992)%R as er1_ABS.
  { unfold er1.
    gappa.
  }
  replace (rd z0) with ((rd(z0)-z0)+z0)%R by ring.
  set (ea0 := (rd(z0)-z0)%R).
  assert (Rabs ea0 <= 1/75557863725914323419136)%R as ea0_ABS.
  { unfold ea0. unfold z0.
    gappa.
  }
  set (z1 :=  ((ea0 + z0) * ((er0 + 1) * / b1) + (er0 + 1) * / b1)%R).
  replace (rd z1) with ((((rd z1)-z1)/z1+1)*z1)%R; cycle 1.
  { field.
    unfold z1.
    unfold z0.
    gappa.
  }
  set (er2 := ((rd z1 - z1) / z1)%R).
  assert (Rabs er2 <= 1/9007199254740992)%R as er2_ABS.
  { unfold er2.
    unfold z1, z0.
    gappa.
  }
  unfold z1, z0.
  replace  (b1 *
      ((er2 + 1) *
       ((ea0 + (1 - (er0 + 1) * (er1 + 1))) * ((er0 + 1) * / b1) +
          (er0 + 1) * / b1)) - 1)%R
      with (-er0*er0*er1*er2 - er0*er0*er1 + ea0*er0*er2 - er0*er0*er2 - 2*er0*er1*er2 + ea0*er0 - er0*er0 - 2*er0*er1 + ea0*er2 - er1*er2 + ea0 - er1 + er2)%R; cycle 1.
  { field. lra. }
  unfold approx_inv_rel_thresh.
  gappa.
Qed.

Definition step1_real_inv_longu b :=
  let invb_s := ExtValues.invfs (Val.singleoffloat (Val.maketotal (Val.floatoflongu b))) in
  Val.floatofsingle invb_s.

Definition step1_real_inv_thresh := (3/33554432)%R.
(* 8.94069671630859e-8 *)

Theorem step1_real_inv_longu_correct :
  forall b,
    (0 < Int64.unsigned b)%Z ->
    exists (f : float),
      (step1_real_inv_longu (Vlong b)) = Vfloat f /\
        (B2R _ _ f) = (rd (rs (1 / rs (rd (IZR (Int64.unsigned b)))))) /\
        is_finite _ _ f = true /\
        Bsign _ _ f = false.
Proof.
  intros b NONZ.
  unfold step1_real_inv_longu.
  cbn.
  econstructor.
  split.
  reflexivity.
  Local Transparent Float.neg Float.of_single Float32.of_longu Float32.div Float.of_longu Float32.of_int Float.of_int Float.to_single.
  unfold Float.fma, Float.neg, Float.of_single, Float32.of_longu, ExtFloat32.inv, Float32.div, Float.of_longu, ExtFloat32.one, Float32.of_int, ExtFloat.one, Float.of_int, Float.to_single.
  set (re := (@eq_refl Datatypes.comparison Lt)).
  change (Int.signed (Int.repr 1)) with 1%Z.
  set (b' := Int64.unsigned b) in *.
  pose proof (Int64.unsigned_range b) as RANGE.
  change Int64.modulus with 18446744073709551616%Z in RANGE.                                              
  assert(1 <= IZR b' <= 18446744073709551616)%R as RANGE'.
  { split; apply IZR_le; lia.
  }

  assert (-16777216 <= 1 <= 16777216)%Z as SILLY by lia.
  destruct (BofZ_exact 24 128 re re 1 SILLY) as (C0R & C0F & C0S).
  clear SILLY.
  set (one_s := (BofZ 24 128 re re 1)) in *.

  pose proof (BofZ_correct 53 1024 re re b') as C0'.
  rewrite Rlt_bool_true in C0'; cycle 1.
  { apply (Rabs_relax (bpow radix2 64)).
    { apply bpow_lt. lia. }
    cbn.
    gappa.
  }
  cbn in C0'.
  destruct C0' as (C0'R & C0'F & C0'S).
  set (b_d :=  (BofZ 53 1024 re re b')) in *.

  pose proof (Bconv_correct 53 1024 24 128 re re Float.to_single_nan mode_NE b_d C0'F) as C1.
  rewrite C0'R in C1.
  rewrite C0'S in C1.
  rewrite Rlt_bool_true in C1; cycle 1.
  { clear C1.
    eapply (Rabs_relax (bpow radix2 64)).
    { apply bpow_lt. lia. }
    cbn.
    gappa.
  }
  destruct C1 as (C1R & C1F & C1S).
  set (b_s := (Bconv 53 1024 24 128 re re Float.to_single_nan mode_NE b_d)) in *.

  assert(1 <= B2R 24 128 b_s <= 18446744073709551616)%R as b_s_RANGE.
  { rewrite C1R.
    cbn.
    gappa.
  }
  assert(B2R 24 128 b_s <> 0)%R as b_s_NONZ by lra.
  
  pose proof (Bdiv_correct 24 128 re re Float32.binop_nan mode_NE one_s b_s b_s_NONZ) as C2.
  rewrite Rlt_bool_true in C2; cycle 1.
  { clear C2.
    apply Rabs_relax with (b := 1%R).
    { cbn; lra. }
    rewrite C0R.
    set (r_b_s := B2R 24 128 b_s) in *.
    cbn.
    gappa.
  }
  rewrite C1R in C2.
  rewrite C1S in C2.
  rewrite C0S in C2.
  destruct C2 as (C2R & C2F & C2Sz).
  change (1 <? 0)%Z with false in C2Sz.
  replace (b' <? 0)%Z with false in C2Sz by lia.
  change (xorb false false) with false in C2Sz.
  set (invb_s := (Bdiv 24 128 re re Float32.binop_nan mode_NE one_s b_s)) in *.
  rewrite C0F in C2F.
  assert (is_nan 24 128 invb_s = false) as NAN.
  { apply is_finite_not_is_nan.
    assumption.
  }
  pose proof (C2Sz NAN) as C2S.
  clear C2Sz.
  
  assert ((1/18446744073709551616 <= B2R 24 128 invb_s <= 1)%R) as invb_s_RANGE.
  { rewrite C2R.
    set (r_b_s := B2R 24 128 b_s) in *.
    rewrite C0R.
    cbn.
    gappa.
  }
  
  pose proof (Bconv_correct 24 128 53 1024 re re Float.of_single_nan mode_NE invb_s C2F) as C3.
  rewrite Rlt_bool_true in C3; cycle 1.
  { clear C3.
    set (r_invb_s := (B2R 24 128 invb_s)) in *.
    apply Rabs_relax with (b := 1%R).
    { replace 1%R with (bpow radix2 0)%R by reflexivity.
      apply bpow_lt.
      lia.
    }
    cbn.
    gappa.
  }
  destruct C3 as (C3R & C3F & C3S).
  set (invb_d :=  (Bconv 24 128 53 1024 re re Float.of_single_nan mode_NE invb_s)) in *.
  assert ((1/18446744073709551616 <= B2R 53 1024 invb_d <= 1)%R) as invb_d_RANGE.
  { 
    rewrite C3R.
    set (r_invb_s := B2R 24 128 invb_s) in *.
    cbn.
    gappa.
  }
  rewrite C2S in C3S.
  rewrite C2R in C3R.
  rewrite C0R in C3R.

  auto.
Qed.

Theorem step1_real_inv_longu_correct1 :
  forall b,
    (Int64.unsigned b = 1%Z) ->
    exists f,
    (step1_real_inv_longu (Vlong b)) = Vfloat f /\
        (B2R _ _ f) = 1%R /\
        is_finite _ _ f = true /\
        Bsign _ _ f = false.
Proof.
  intros b EQ1.
  assert (0 < Int64.unsigned b)%Z as b_RANGE by lia.
  destruct (step1_real_inv_longu_correct b b_RANGE) as (f & C1E & C1R & C1F & C1S).
  rewrite EQ1 in C1R.
  exists f.
  repeat split; try assumption.
  rewrite C1R.
  gappa.
Qed.

Lemma Bsign_false_nonneg:
  forall prec emax f,
    (Bsign prec emax f) = false -> (0 <= (B2R prec emax f))%R.
Proof.
  intros until f. intro SIGN.
  destruct f.
  1, 2, 3: cbn; lra.
  cbn.
  apply F2R_ge_0.
  cbn.
  cbn in SIGN.
  rewrite SIGN.
  cbn.
  lia.
Qed.

Lemma Znearest_IZR_le :
  forall rnd n x, (IZR n <= x)%R -> (n <= Znearest rnd x)%Z.
Proof.
  intros until x. intro ORDER.
  pose proof (Znearest_ge_floor rnd x).
  pose proof (Zfloor_le _ _ ORDER) as KK.
  rewrite Zfloor_IZR in KK.
  lia.
Qed.

Lemma Znearest_le_IZR :
  forall rnd n x, (x <= IZR n)%R -> (Znearest rnd x <= n)%Z.
Proof.
  intros until x. intro ORDER.
  pose proof (Znearest_le_ceil rnd x).
  pose proof (Zceil_le _ _ ORDER) as KK.
  rewrite Zceil_IZR in KK.
  lia.
Qed.

Definition step1_real_div_longu a b :=
  Val.mulf (Val.maketotal (Val.floatoflongu a)) (step1_real_inv_longu b).

Definition step1_div_longu a b :=
  Val.maketotal (Val.longuoffloat_ne (step1_real_div_longu a b)).

Definition step1_real_quotient (a b : R) :=
             rd ((rd (a)) * (rd (rs (1 / rs (rd (b)))))).
  
Theorem step1_real_div_longu_correct:
  forall a b,
    (1 < Int64.unsigned b)%Z ->
    exists (q : float),
      (step1_real_div_longu (Vlong a) (Vlong b)) = Vfloat q /\
        (B2R _ _ q) = step1_real_quotient (IZR (Int64.unsigned a))
                                          (IZR (Int64.unsigned b)) /\
        is_finite _ _ q = true /\
        Bsign _ _ q = false.
Proof.
  intros a b b_NON01.
  assert (0 < Int64.unsigned b)%Z as b_NON0 by lia.
  destruct (step1_real_inv_longu_correct b b_NON0) as (f & C1E & C1R & C1F & C1S).
  unfold step1_real_div_longu.
  rewrite C1E.
  cbn.
  set (b' := Int64.unsigned b) in *.
  Local Transparent Float.mul.
  unfold Float.mul, Float.of_longu.
  econstructor.
  split. reflexivity.
  set (a' := Int64.unsigned a) in *.
  set (re :=  (@eq_refl Datatypes.comparison Lt)).

  pose proof (Int64.unsigned_range a) as a_RANGE.
  change Int64.modulus with 18446744073709551616%Z in a_RANGE.
  assert (0 <= IZR a' <= 18446744073709551615)%R as IZR_a_RANGE.
  { split; apply IZR_le; lia. }
  pose proof (Int64.unsigned_range b) as b_RANGE.
  change Int64.modulus with 18446744073709551616%Z in b_RANGE.
  assert (2 <= IZR b' <= 18446744073709551615)%R as IZR_b_RANGE.
  { split; apply IZR_le; lia. }
  
  pose proof (BofZ_correct 53 1024 re re a') as C2.
  rewrite Rlt_bool_true in C2; cycle 1.
  { clear C2.
    apply Rabs_relax with (b := bpow radix2 64).
    { apply bpow_lt. lia. }
    cbn.
    gappa.
  }
  destruct C2 as (C2R & C2F & C2S).
  rewrite Zlt_bool_false in C2S by lia.

  pose proof (Bmult_correct 53 1024 re re Float.binop_nan mode_NE (BofZ 53 1024 re re a') f) as C3.
  rewrite C1S in C3.
  rewrite C2S in C3.
  rewrite C1F in C3.
  rewrite C2F in C3.
  rewrite C1R in C3.
  rewrite C2R in C3.
  rewrite Rlt_bool_true in C3; cycle 1.
  { apply Rabs_relax with (b := bpow radix2 64).
    { apply bpow_lt ; lia. }
    cbn.
    gappa.
  }
  cbn in C3.
  destruct C3 as (C3R & C3F & C3Sz).
  assert (is_nan 53 1024
          (Bmult 53 1024 re re Float.binop_nan mode_NE 
                 (BofZ 53 1024 re re a') f) = false) as NAN.
  { apply is_finite_not_is_nan.
    assumption. }
  pose proof (C3Sz NAN) as C3S.
  clear NAN C3Sz.

  auto.
Qed.

Definition smallb_thresh :=       4398046511104%Z.

Definition smallb_approx_real_range := 2200000000000%R.
Lemma step1_smallb_real :
  forall a b
    (a_RANGE : (1 <= a <= 18446744073709551615)%R)
    (b_RANGE : (1 <= b <= IZR smallb_thresh)%R),
    (Rabs((step1_real_quotient a b) * b - a) <= smallb_approx_real_range)%R.
Proof.
  intros.
  unfold smallb_thresh in b_RANGE.
  unfold smallb_approx_real_range.
  unfold step1_real_quotient.
  set (q := ((rd (a)) * (rd (rs (1 / rs (rd b)))))%R) in *.
  replace ((rd q) *b - a)%R with
     ((rd(q)-q)/q * rd(a) * (1 + (rd (rs (1 / rs (rd b))) - 1/b)/(1/b)) +
  (rd (a)) * ((rd (rs (1 / rs (rd b))) - 1 / b) / (1/b)) +
        (rd(a) - a))%R; cycle 1.
  { unfold q.
    field.
    split. lra.
    split. gappa.
    gappa.
  }
  unfold q.
  gappa.
Qed.

Lemma step1_div_longu_a0 :
  forall b,
    (0 < Int64.unsigned b)%Z ->
    (step1_div_longu (Vlong Int64.zero) (Vlong b)) = Vlong Int64.zero.
Proof.
  intros b b_NOT0.
  unfold step1_div_longu.
  unfold step1_real_div_longu.
  destruct (step1_real_inv_longu_correct b b_NOT0) as
    (f & C1E & C1R & C1F & C1S).
  rewrite C1E.
  cbn.
  unfold Float.to_longu_ne, Float.of_longu, Float.mul.
  rewrite Int64.unsigned_zero.
  set (re :=  (@eq_refl Datatypes.comparison Lt)).
  assert (- 2 ^ 53 <= 0 <= 2 ^ 53)%Z as SILLY by lia.
  destruct (BofZ_exact 53 1024 re re 0 SILLY) as (C2R & C2F & C2S).
  
  pose proof (Bmult_correct 53 1024 re re Float.binop_nan mode_NE
                            (BofZ 53 1024 re re 0) f) as C3.
  rewrite C1F in C3.
  rewrite C2F in C3.
  rewrite C1S in C3.
  rewrite C2S in C3.
  rewrite Z.ltb_irrefl in C3.
  rewrite Rlt_bool_true in C3; cycle 1.
  { clear C3.
    apply Rabs_relax with (b := bpow radix2 64).
    { apply bpow_lt. lia. }
    cbn.
    rewrite Rmult_0_l.
    gappa.
  }
  rewrite C2R in C3.
  rewrite Rmult_0_l in C3.
  destruct C3 as (C3R & C3F & C3Sz).
  change (true && true) with true in C3F.
  change (xorb false false) with false in C3Sz.
  assert (is_nan 53 1024
           (Bmult 53 1024 re re Float.binop_nan mode_NE 
                  (BofZ 53 1024 re re 0) f) = false) as NAN.
  { apply is_finite_not_is_nan.
    assumption.
  }
  pose proof (C3Sz NAN) as C3S.
  clear NAN C3Sz.
  pose proof ((ZofB_ne_range_correct 53 1024
             (Bmult 53 1024 re re Float.binop_nan mode_NE
                    (BofZ 53 1024 re re 0) f) 0 Int64.max_unsigned)) as C4.
  rewrite C3R in C4.
  replace (round radix2 (FLT_exp (3 - 1024 - 53) 53) (round_mode mode_NE) 0)
    with 0%R in C4 by (cbn ; gappa).
  rewrite Znearest_IZR in C4.
  cbn zeta in C4.
  rewrite Z.leb_refl in C4.
  change (0 <=? Int64.max_unsigned)%Z with true in C4.
  rewrite andb_true_r in C4.
  rewrite andb_true_r in C4.
  rewrite C3F in C4.
  rewrite C4.
  reflexivity.
Qed.

Lemma step1_div_longu_correct_anyb :
    forall a b
     (b_NOT01 : (1 < Int64.unsigned b)%Z),
    exists (q : int64),
      (step1_div_longu (Vlong a) (Vlong b)) = Vlong q.
Proof.
  intros.

  pose proof (Int64.unsigned_range a) as a_RANGE.
  pose proof (Int64.unsigned_range b) as b_RANGE.
  change Int64.modulus with 18446744073709551616%Z in *.
  set (a' := Int64.unsigned a) in *.
  set (b' := Int64.unsigned b) in *.
  assert (0 <= IZR a' <= 18446744073709551615)%R as a_RANGE'.
  { split; apply IZR_le; lia. }
  assert (2 <= IZR b' <= 18446744073709551615)%R as b_RANGE'.
  { split; apply IZR_le; lia. }

  assert (0 < b')%Z as b_NOT0 by lia.
                                  
  destruct (Z_le_gt_dec a' 0).
  { assert (a' = 0%Z) as ZERO by lia.
    replace a with Int64.zero; cycle 1.
    {
      unfold a' in ZERO.
      unfold Int64.zero.
      rewrite <- ZERO.
      apply Int64.repr_unsigned.
    }
    exists Int64.zero.
    apply step1_div_longu_a0.
    exact b_NOT0.
  }

  unfold step1_div_longu.
  unfold step1_real_div_longu.
  destruct (step1_real_inv_longu_correct b b_NOT0) as (f & C1E & C1R & C1F & C1S).
  rewrite C1E.
  cbn.
  unfold Float.of_longu, Float.mul, Float.to_longu_ne.
  set (re := (@eq_refl Datatypes.comparison Lt)).
  fold a'.
  fold b' in C1R.
  pose proof (BofZ_correct 53 1024 re re a') as C2.
  rewrite Rlt_bool_true in C2; cycle 1.
  { clear C2.
    apply Rabs_relax with (b := bpow radix2 64).
    { apply bpow_lt. lia. }
    cbn.
    gappa.
  }
  cbn in C2.
  destruct C2 as (C2R & C2F & C2S).
  pose proof  (Bmult_correct 53 1024 re re Float.binop_nan mode_NE
                             (BofZ 53 1024 re re a') f) as C3.
  rewrite C2R in C3.
  rewrite C2F in C3.
  rewrite C2S in C3.
  rewrite C1R in C3.
  rewrite C1F in C3.
  rewrite C1S in C3.
  rewrite Rlt_bool_true in C3; cycle 1.
  { clear C3.
    apply Rabs_relax with (b := bpow radix2 64).
    { apply bpow_lt. lia. }
    cbn.
    gappa.
  }
  cbn in C3.
  destruct C3 as (C3R & C3F & _).
  pose proof (ZofB_ne_range_correct 53 1024
               (Bmult 53 1024 re re Float.binop_nan mode_NE
                      (BofZ 53 1024 re re a') f) 0 Int64.max_unsigned) as C4.
  rewrite C3R in C4.
  rewrite C3F in C4.
  cbn zeta in C4.
  rewrite Zle_bool_true in C4 ; cycle 1.
  { clear C4.
    apply Znearest_lub.
    gappa.
  }
  rewrite Zle_bool_true in C4 ; cycle 1.
  { clear C4.
    apply Znearest_glb.
    cbn.
    gappa.
  }
  rewrite C4.
  cbn.
  eauto.
Qed.

Definition smallb_approx_range := 4400000000000%Z.
Lemma step1_div_longu_correct :
    forall a b,
    (1 < Int64.unsigned b <= smallb_thresh)%Z ->
    exists (q : int64),
      (step1_div_longu (Vlong a) (Vlong b)) = Vlong q /\
        (Z.abs (Int64.unsigned a - Int64.unsigned b*Int64.unsigned q) <= smallb_approx_range)%Z.
Proof.
  intros a b b_RANGE.

  pose proof (Int64.unsigned_range a) as a_RANGE.
  change Int64.modulus with 18446744073709551616%Z in a_RANGE.
  set (a' := Int64.unsigned a) in *.
  set (b' := Int64.unsigned b) in *.

  destruct (Z_le_gt_dec a' 0).
  { assert (a' = 0%Z) as ZERO by lia.
    exists Int64.zero.
    rewrite ZERO.
    rewrite Int64.unsigned_zero.
    replace (Z.abs (0 - b' * 0))%Z with 0%Z by lia.
    replace a with Int64.zero; cycle 1.
    {
      unfold a' in ZERO.
      unfold Int64.zero.
      rewrite <- ZERO.
      apply Int64.repr_unsigned.
    }
    split.
    { apply step1_div_longu_a0.
      lia.
    }
    unfold smallb_approx_range.
    lia.
  }

  unfold step1_div_longu.
  assert (1 < b')%Z as b_NOT01 by lia.   
  destruct (step1_real_div_longu_correct a b b_NOT01) as (q & C1E & C1R & C1F & C1S).
  rewrite C1E. cbn.
  unfold Float.to_longu_ne.
  pose proof (ZofB_ne_range_correct 53 1024 q 0 Int64.max_unsigned) as C2.
  rewrite C1F in C2.

  
  assert (1 <= IZR a' <= 18446744073709551615)%R as a_RANGE'.
  { split; apply IZR_le; lia. }
  assert (2 <= IZR b' <= IZR smallb_thresh)%R as b_RANGE'.
  { split; apply IZR_le; lia. }
  assert (1 <= IZR b' <= IZR smallb_thresh)%R as b_RANGE'' by lra.
  pose proof (step1_smallb_real (IZR a') (IZR b') a_RANGE' b_RANGE'') as DELTA.
  fold a' in C1R.
  fold b' in C1R.
  rewrite <- C1R in DELTA.

  assert (0 <= B2R _ _ q)%R as q_NONNEG.
  { apply Bsign_false_nonneg. assumption. }
  cbn in C2.
  rewrite Zle_bool_true in C2; cycle 1.
  { apply Znearest_IZR_le. assumption. }
  assert (B2R _ _ q <= 9223376000000000000)%R as q_SMALL.
  { replace (B2R _ _ q) with
      ((IZR a' / IZR b') + (B2R _ _ q * IZR b' - IZR a') / IZR b')%R; cycle 1.
    { field. lra. }
    unfold smallb_approx_real_range in DELTA.
    unfold smallb_thresh in b_RANGE'.
    set (y := (B2R 53 1024 q * IZR b' - IZR a')%R) in *.
    gappa.
  }
  rewrite Zle_bool_true in C2; cycle 1.
  { apply Znearest_le_IZR. lra. }
  cbn in C2.

  change Int64.max_unsigned with 18446744073709551615%Z.
  rewrite C2.
  cbn.

  econstructor. split. reflexivity.
  rewrite Int64.unsigned_repr; cycle 1.
  { split.
    - apply Znearest_IZR_le. lra.
    - apply Znearest_le_IZR.
      change Int64.max_unsigned with 18446744073709551615%Z.
      lra.
  }
  apply le_IZR.
  rewrite abs_IZR.
  unfold smallb_approx_real_range, smallb_approx_range, smallb_thresh in *.
  rewrite minus_IZR.
  rewrite mult_IZR.
  set (q_r := B2R 53 1024 q) in *.
  assert (Rabs (IZR (ZnearestE q_r) - q_r) <= / 2)%R as NEAR
      by apply Znearest_imp2.
  set (q_i := IZR (ZnearestE q_r)) in *.
  replace  (IZR a' - IZR b' * q_i)%R with
    (-(IZR b' * (q_i - q_r)) - (q_r * IZR b' - IZR a'))%R by ring.
  set (delta1 := (q_i - q_r)%R) in *.
  set (delta2 := (q_r * IZR b' - IZR a')%R) in *.
  gappa.
Qed.

Lemma le_IZR3 :
  forall n m p : Z, (IZR n <= IZR m <= IZR p)%R -> (n <= m <= p)%Z.
Proof.
  intros ; split ; apply le_IZR ; lra.
Qed.

Definition mostb_thresh := 18446740000000000000%Z.
Lemma step1_div_longu_correct_mostb :
    forall a b,
      (1 < Int64.unsigned b <= mostb_thresh)%Z ->
    exists (q : int64),
      (step1_div_longu (Vlong a) (Vlong b)) = Vlong q /\
        (Int64.min_signed <= (Int64.unsigned a - Int64.unsigned b*Int64.unsigned q) <= Int64.max_signed)%Z.
Proof.
  intros a b b_RANGE.

  pose proof (Int64.unsigned_range a) as a_RANGE.
  change Int64.modulus with 18446744073709551616%Z in a_RANGE.
  set (a' := Int64.unsigned a) in *.
  set (b' := Int64.unsigned b) in *.

  destruct (Z_le_gt_dec a' 0).
  { assert (a' = 0%Z) as ZERO by lia.
    exists Int64.zero.
    rewrite ZERO.
    rewrite Int64.unsigned_zero.
    replace (Z.abs (0 - b' * 0))%Z with 0%Z by lia.
    replace a with Int64.zero; cycle 1.
    {
      unfold a' in ZERO.
      unfold Int64.zero.
      rewrite <- ZERO.
      apply Int64.repr_unsigned.
    }
    split.
    { apply step1_div_longu_a0.
      lia.
    }
    change Int64.min_signed with (-9223372036854775808)%Z.
    change Int64.max_signed with ( 9223372036854775807)%Z.
    lia.
  }

  unfold step1_div_longu.
  assert (1 < b')%Z as b_NOT01 by lia.   
  destruct (step1_real_div_longu_correct a b b_NOT01) as (q & C1E & C1R & C1F & C1S).
  rewrite C1E. cbn.
  unfold Float.to_longu_ne.
  pose proof (ZofB_ne_range_correct 53 1024 q 0 Int64.max_unsigned) as C2.
  rewrite C1F in C2.

  
  assert (1 <= IZR a' <= 18446744073709551615)%R as a_RANGE'.
  { split; apply IZR_le; lia. }
  assert (2 <= IZR b' <= IZR mostb_thresh)%R as b_RANGE'.
  { split; apply IZR_le; lia. }
  assert (1 <= IZR b' <= IZR mostb_thresh)%R as b_RANGE'' by lra.
  cbn zeta in C2.
  rewrite C2.
  cbn.
  rewrite C1R.
  unfold step1_real_quotient.
  fold a' b'.
  unfold mostb_thresh in *.
  
  rewrite Zle_bool_true ; cycle 1.
  { apply Znearest_IZR_le.
    gappa.
  }
  rewrite Zle_bool_true ; cycle 1.
  { apply Znearest_le_IZR.
    gappa.
  }
  cbn.
  econstructor; split. reflexivity.
  set (q_r := (rd (rd (IZR a') * rd (rs (1 / rs ( rd (IZR b'))))))%R).
  assert (Rabs (IZR (ZnearestE q_r) - q_r) <= /2)%R as NEAR by apply Znearest_imp2.
  set (delta1 := (IZR (ZnearestE q_r) - q_r)%R) in NEAR.
  apply le_IZR3.
  rewrite minus_IZR.
  rewrite mult_IZR.
  rewrite Int64.unsigned_repr ; cycle 1.
  { split.
    - apply Znearest_IZR_le. unfold q_r.
      gappa.
    - apply Znearest_le_IZR. unfold q_r.
      change Int64.max_unsigned with 18446744073709551615%Z.
      gappa.
  }
  replace (IZR (ZnearestE q_r)) with ((IZR (ZnearestE q_r) - q_r) + q_r)%R by ring.
  fold delta1.
  unfold q_r.
  set (a1 := IZR a') in *. 
  set (b1 := IZR b') in *.
  replace (rd (rd a1 * rd (rs (1 / rs (rd b1)))))%R with
    ((((rd (rd a1 * rd (rs (1 / rs (rd b1))))-(a1 * (1 / b1))) / (a1 * (1 / b1)))+1) * (a1 / b1))%R;
    cycle 1.
  { field. lra. }
  set (delta2 := ((rd (rd a1 * rd (rs (1 / rs (rd b1))))-(a1 * (1 / b1))) / (a1 * (1 / b1)))%R) in *.
  (* assert (Rabs (delta2) <= 1/4194304)%R.
  {  unfold delta2. gappa. } *)
  replace (a1 - b1 * (delta1 + (delta2 + 1) * (a1 / b1)))%R with
    (-b1*delta1 - a1*delta2)%R; cycle 1.
  { field. lra. }
  unfold delta2.
  gappa.
Qed.

Lemma find_quotient:
  forall (a b : Z)
         (b_POS : (0 < b)%Z)
         (qr : R)
         (GAP : (Rabs (IZR a / IZR b - qr) < /2)%R),
    (a / b)%Z =
      let q := ZnearestE qr in
      if (b*q >? a)%Z
      then (q-1)%Z
      else q.
Proof.
  intros.
  set (q := ZnearestE qr).
  cbn zeta.
  set (b' := IZR b) in *.
  set (a' := IZR a) in *.
  assert (1 <= b')%R as b_POS'.
  { apply IZR_le.
    lia.
  }
  
  pose proof (Znearest_imp2 (fun x : Z => negb (Z.even x)) qr) as ROUND.
  fold q in ROUND.
  set (q' := IZR q) in *.
  
  pose proof (Rabs_triang (a' / b' - qr)
                          (qr - q'))%R as TRIANGLE.
  replace ((a' / b' - qr) +  (qr - q'))%R with
    (a' / b' - q')%R in TRIANGLE by ring.
  rewrite <- Rabs_Ropp in ROUND.
  replace (- (q' - qr))%R with (qr - q')%R in ROUND by ring.
  assert (Z.abs (a - b*q) < b)%Z as DELTA.
  { apply lt_IZR.
    rewrite <- Rabs_Zabs.
    rewrite minus_IZR.
    rewrite mult_IZR.
    fold a' q' b'.
    apply Rmult_lt_reg_r with (r := (/b')%R).
    { apply Rinv_0_lt_compat. lra. }
    rewrite Rinv_r by lra.
    replace (/ b')%R with (/ Rabs(b'))%R ; cycle 1.
    { f_equal.
      apply Rabs_pos_eq. lra. }
    rewrite <- Rabs_Rinv by lra.
    rewrite <- Rabs_mult.
    replace ((a' - b' * q') * / b')%R with (a'/b' - q')%R by (field ; lra).
    lra.
  }
   
  pose proof (Zgt_cases (b * q) a)%Z as CASE.
  destruct (_ >? _)%Z.
  { apply Zdiv_unique with (b := (a - (q-1)*b)%Z).
    ring.
    split; lia.
  }

  apply Zdiv_unique with (b := (a - q*b)%Z).
  ring.
  split; lia.
Qed.

Definition step2_real_div_long a b :=
  Val.mulf (Val.maketotal (Val.floatoflong a)) (approx_inv_longu b).

Definition smalla_thresh := 34184372088832%Z.

Lemma step2_real_div_long_smalla_correct :
    forall (a b : int64)
           (a_SMALL : (Z.abs (Int64.signed a) <= smalla_thresh)%Z)
           (b_NOT0 : (0 < Int64.unsigned b)%Z),
    exists (q : float),
      (step2_real_div_long (Vlong a) (Vlong b)) = Vfloat q /\
        (Rabs ((B2R _ _ q) - (IZR (Int64.signed a)) / (IZR (Int64.unsigned b))) <= (32767/65536))%R /\
      is_finite _ _ q = true.
Proof.
  intros.
  unfold step2_real_div_long.
  destruct (approx_inv_longu_correct_rel b b_NOT0) as (f & C0E & C0F & C0R).
  rewrite C0E.
  econstructor.
  split. reflexivity.
  Local Transparent Float.of_long.
  unfold Float.mul, Float.of_long.
  set (re := (@eq_refl Datatypes.comparison Lt)) in *.
  pose proof (Int64.unsigned_range b) as b_RANGE.
  change Int64.modulus with 18446744073709551616%Z in b_RANGE.
  set (a' := Int64.signed a) in *.
  set (b' := Int64.unsigned b) in *.
  assert (1 <= IZR b' <= 18446744073709551615)%R as b_RANGE'.
  { split; apply IZR_le; lia.
  }
  assert(Rabs (IZR a') <= IZR smalla_thresh)%R as a_RANGE'.
  { rewrite Rabs_Zabs.
    apply IZR_le.
    assumption.
  }
  assert (- 2 ^ 53 <= a' <= 2 ^ 53)%Z as SILLY.
  { unfold smalla_thresh in a_SMALL.
    apply Z.abs_le.
    lia.
  } 
  destruct (BofZ_exact 53 1024 re re (Int64.signed a) SILLY) as (C1R & C1F & C1S).
  fold a' in C1R, C1F, C1S.
  pose proof (Bmult_correct 53 1024 re re Float.binop_nan mode_NE (BofZ 53 1024 re re a') f) as C2.
  rewrite Rlt_bool_true in C2 ; cycle 1.
  { clear C2.
    apply Rabs_relax with (b := bpow radix2 53).
    { apply bpow_lt. lia. }
    cbn.
    rewrite C1R.
    unfold approx_inv_rel_thresh in C0R.
    replace (B2R 53 1024 f) with
      ((1/IZR b') * ((IZR b' * B2R 53 1024 f - 1) + 1))%R ; cycle 1.
    { field. lra. }
    unfold smalla_thresh in *.
    gappa.
  }
  rewrite C0F in C2.
  rewrite C1R in C2.
  rewrite C1F in C2.
  rewrite C1S in C2.
  cbn in C2.
  destruct C2 as (C2R & C2F & _).
  split.
  2: exact C2F.
  rewrite C2R.
  replace (IZR a' * (B2R 53 1024 f))%R with
    ((IZR a'/IZR b') * ((IZR b' * B2R 53 1024 f - 1) + 1))%R ; cycle 1.
  { field. lra. }
  set (delta1 := (IZR b' * B2R 53 1024 f - 1)%R) in *.
  set (q1 := (IZR a' / IZR b' * (delta1 + 1))%R).
  replace (rd q1) with (((rd q1) - q1) + q1)%R by ring.
  set (delta2 := ((rd q1) - q1)%R).
  unfold q1.
  replace (delta2 + IZR a' / IZR b' * (delta1 + 1) - IZR a' / IZR b')%R with
    (delta2 + (IZR a' / IZR b') * delta1)%R by ring.
  unfold delta2.
  unfold q1.
  unfold approx_inv_rel_thresh in *.
  unfold smalla_thresh in *.
  gappa.
Qed.

Definition step2_div_long' a b :=
  Val.maketotal (Val.longoffloat_ne (step2_real_div_long a b)).

Definition step2_div_long a b :=
  let q := step2_div_long' a b in
  Val.select (Val.cmpl_bool Clt (Val.subl a (Val.mull q b)) (Vlong Int64.zero))
             (Val.addl q (Vlong Int64.mone)) q Tlong.

Lemma function_ite :
  forall {A B : Type} (fn : A->B) (b : bool) (x y: A),
    fn (if b then x else y) = (if b then fn x else fn y).
Proof.
  intros.
  destruct b; reflexivity.
Qed.

Lemma normalize_ite :
  forall ty (b : bool) x y,
    Val.normalize (if b then x else y) ty =
      (if b then Val.normalize x ty else Val.normalize y ty).
Proof.
  intros.
  destruct b; reflexivity.
Qed.


Lemma int64_mul_signed_unsigned:
    forall x y : int64,
      Int64.mul x y = Int64.repr (Int64.signed x * Int64.unsigned y).
Proof.
  intros.
  unfold Int64.mul.
  apply Int64.eqm_samerepr.
  apply Int64.eqm_mult.
  - apply Int64.eqm_sym.
    apply Int64.eqm_signed_unsigned.
  - apply Int64.eqm_refl.
Qed.

Lemma int64_eqm_signed_repr:
  forall z : Z, Int64.eqm z (Int64.signed (Int64.repr z)).
Proof.
  intros.
  apply Int64.eqm_trans with (y := Int64.unsigned (Int64.repr z)).
  - apply Int64.eqm_unsigned_repr.
  - apply Int64.eqm_sym.
    apply Int64.eqm_signed_unsigned.
Qed.

Lemma signed_repr_sub:
  forall x y,
    Int64.repr (Int64.signed (Int64.repr x) - y) =
    Int64.repr (x - y).
Proof.
  intros.
  apply Int64.eqm_samerepr.
  apply Int64.eqm_sub.
  - apply Int64.eqm_sym.
    apply int64_eqm_signed_repr.
  - apply Int64.eqm_refl.
Qed.

Lemma signed_repr_sub2:
  forall x y,
    Int64.repr (x - Int64.signed (Int64.repr y)) =
    Int64.repr (x - y).
Proof.
  intros.
  apply Int64.eqm_samerepr.
  apply Int64.eqm_sub.
  - apply Int64.eqm_refl.
  - apply Int64.eqm_sym.
    apply int64_eqm_signed_repr.
Qed.
                                                                        
Lemma step2_div_long_smalla_correct :
    forall a b
      (a_SMALL : (Z.abs (Int64.signed a) <= smalla_thresh)%Z)
      (b_NOT0 : (0 < Int64.unsigned b)%Z)
      (b_NOT_VERY_BIG : (Int64.unsigned b <= Int64.max_signed)%Z),
      step2_div_long (Vlong a) (Vlong b) = Vlong (Int64.repr (Int64.signed a / Int64.unsigned b))%Z.
Proof.
  intros.
  pose proof (Int64.unsigned_range b) as b_RANGE.
  change Int64.modulus with 18446744073709551616%Z in b_RANGE.
  set (a' := (Int64.signed a)) in *.
  set (b' := (Int64.unsigned b)) in *.
  assert (Rabs (IZR a') <= IZR smalla_thresh)%R as a_RANGE'.
  { rewrite Rabs_Zabs.
    apply IZR_le.
    assumption.
  }
  assert (1 <= IZR b' <= 18446744073709551615)%R as b_RANGE'.
  { split; apply IZR_le; lia.
  } 
  destruct (step2_real_div_long_smalla_correct a b a_SMALL b_NOT0) as (q & C1R & C1E & C1F).
  fold a' b' in C1E.
  assert ((Int64.min_signed <=? ZnearestE (B2R 53 1024 q))=true)%Z as q_LOW.
  { apply Zle_imp_le_bool.
    change Int64.min_signed with (-9223372036854775808)%Z.
    apply Znearest_lub.
    set (q' :=  B2R 53 1024 q) in *.
    replace q' with (IZR a' / IZR b' + (q' - IZR a' / IZR b'))%R by ring.
    unfold smalla_thresh in a_RANGE'.
    gappa.
  }
  assert ((ZnearestE (B2R 53 1024 q) <=? Int64.max_signed)=true)%Z as q_HIGH.
  { apply Zle_imp_le_bool.
    change Int64.max_signed with (9223372036854775807)%Z.
    apply Znearest_glb.
    set (q' :=  B2R 53 1024 q) in *.
    replace q' with (IZR a' / IZR b' + (q' - IZR a' / IZR b'))%R by ring.
    unfold smalla_thresh in a_RANGE'.
    gappa.
  }
  unfold step2_div_long, step2_div_long'.
  rewrite C1R.
  cbn.
  unfold Float.to_long_ne.
  rewrite (ZofB_ne_range_correct _ _ q Int64.min_signed Int64.max_signed).
  rewrite C1F.
  rewrite q_LOW.
  rewrite q_HIGH.
  cbn.
  rewrite normalize_ite.
  cbn.
  rewrite <- (function_ite Vlong).
  f_equal.
  unfold Int64.lt.
  set (q' :=  B2R 53 1024 q) in *.
  fold a'.
  assert (Int64.signed (Int64.repr (ZnearestE q')) = ZnearestE q') as q_SIGNED.
  { apply Int64.signed_repr.
    split; lia.
  }
  rewrite Int64.add_signed.
  rewrite q_SIGNED.
  rewrite Int64.signed_mone.
  rewrite Int64.signed_zero.
  rewrite <- (function_ite Int64.repr).
  f_equal.
  replace  (ZnearestE q' + -1)%Z with (ZnearestE q' - 1)%Z by ring.
  
  set (q'' :=  (ZnearestE q')) in *.
  fold a'.
  rewrite int64_mul_signed_unsigned.
  rewrite q_SIGNED.
  fold b'.

  rewrite Int64.sub_signed.
  fold a'.
  rewrite signed_repr_sub2.

  assert ((Rabs (IZR a' / IZR b' - q') < / 2)%R) as HALF.
  { replace (IZR a' / IZR b' - q')%R with
      (-(q' - IZR a' / IZR b'))%R by ring.
    rewrite Rabs_Ropp.
    lra.
  }
  pose proof (find_quotient a' b' b_NOT0 q' HALF) as QUOTIENT.
  fold q'' in QUOTIENT.
  cbn zeta in QUOTIENT.

  assert (b' <> 0)%Z as NONZ by lia.
  pose proof (Zmod_eq_full a' b' NONZ) as MOD.
  assert (b' > 0)%Z as b_GT0 by lia.
  pose proof (Z_mod_lt a' b' b_GT0) as MOD_LT.
  destruct (Z_lt_dec a' (b' * q'')) as [LT | GE].
  { replace (b' * q'' >? a')%Z with true in QUOTIENT by lia.
    replace q'' with (1 + (a' / b'))%Z by lia.
    replace (a' - (1 + a' / b') * b')%Z
      with ((a' - a' / b' * b')-b')%Z by ring.
    rewrite <- MOD.
    rewrite Int64.signed_repr; cycle 1.
    { change Int64.min_signed with (-9223372036854775808)%Z in *.
      change Int64.max_signed with (9223372036854775807)%Z in *.
      lia.
    }
    rewrite zlt_true by lia.
    ring.
  }
  replace (b' * q'' >? a')%Z with false in QUOTIENT by lia.
  rewrite <- QUOTIENT.
  replace (a' / b' * b' - a')%Z with (-(a' - a' / b' * b'))%Z by ring.
  rewrite <- MOD.
  rewrite Int64.signed_repr ; cycle 1.
  { change Int64.min_signed with (-9223372036854775808)%Z in *.
    change Int64.max_signed with (9223372036854775807)%Z in *.
    lia.
  }
  rewrite zlt_false by lia.
  reflexivity.
Qed.

Definition twostep_div_longu a b :=
  let q1 := step1_div_longu a b in
  let q2 := step2_div_long (Val.subl a (Val.mull b q1)) b in
  Val.addl q1 q2.

Lemma unsigned_repr_sub :
  forall a b,
    Int64.repr (a - b) = Int64.repr (a - Int64.unsigned (Int64.repr b)).
Proof.
  intros.
  apply Int64.eqm_samerepr.
  apply Int64.eqm_sub.
  - apply Int64.eqm_refl.
  - apply Int64.eqm_unsigned_repr.
Qed.

Lemma unsigned_repr_add :
  forall a b,
    Int64.repr (a + b) = Int64.repr (a + Int64.unsigned (Int64.repr b)).
Proof.
  intros.
  apply Int64.eqm_samerepr.
  apply Int64.eqm_add.
  - apply Int64.eqm_refl.
  - apply Int64.eqm_unsigned_repr.
Qed.
    
Lemma twostep_div_longu_smallb_correct :
    forall a b
      (b_RANGE : (1 < Int64.unsigned b <= smallb_thresh)%Z),
          (twostep_div_longu (Vlong a) (Vlong b)) =
            (Val.maketotal (Val.divlu (Vlong a) (Vlong b))).
Proof.
  intros.
  unfold twostep_div_longu.
  destruct (step1_div_longu_correct a b b_RANGE) as (q1 & C1R & C1E).
  rewrite C1R.
  set (q1' := Int64.unsigned q1) in *.
  set (b' := Int64.unsigned b) in *.
  set (a' := Int64.unsigned a) in *.
  assert ( Z.abs (Int64.signed (Int64.sub a (Int64.mul b q1))) <= smalla_thresh)%Z as r1_SMALL.
  { unfold smalla_thresh, smallb_approx_range in *.
    unfold Int64.sub, Int64.mul.
    fold q1' b' a'.
    rewrite <- unsigned_repr_sub.
    rewrite Int64.signed_repr ; cycle 1.
    { change Int64.min_signed with (-9223372036854775808)%Z.
      change Int64.max_signed with (9223372036854775807)%Z.
      lia.
    }
    lia.
  }
  assert (0 < b')%Z as b_NOT0 by lia.
  assert (b' <= Int64.max_signed)%Z as b_NOTBIG.
  { change Int64.max_signed with (9223372036854775807)%Z.
    unfold smallb_thresh in b_RANGE.
    lia.
  }
  cbn.
  rewrite (step2_div_long_smalla_correct (Int64.sub a (Int64.mul b q1)) b r1_SMALL b_NOT0 b_NOTBIG).
  unfold Int64.add, Int64.sub, Int64.mul, Int64.divu.
  fold q1' b' a'.
  rewrite <- unsigned_repr_sub.
  rewrite <- unsigned_repr_add.
  rewrite Int64.signed_repr ; cycle 1.
  {
    change Int64.min_signed with (-9223372036854775808)%Z.
    change Int64.max_signed with (9223372036854775807)%Z.
    unfold smallb_approx_range in *.
    lia.
  }
  rewrite Z.add_comm.
  rewrite <- Z.div_add by lia.
  replace (a' - b' * q1' + q1' * b')%Z with a' by ring.
  rewrite Int64.eq_false ; cycle 1.
  { intro Z. unfold b' in b_NOT0. rewrite Z in b_NOT0.
    rewrite Int64.unsigned_zero in b_NOT0.
    lia.
  }
  reflexivity.
Qed.


Lemma step2_real_div_long_bigb_correct :
    forall (a b : int64)
           (b_BIG : ((Int64.unsigned b) > smallb_thresh)%Z),
    exists (q : float),
      (step2_real_div_long (Vlong a) (Vlong b)) = Vfloat q /\
        (Rabs ((B2R _ _ q) - (IZR (Int64.signed a)) / (IZR (Int64.unsigned b))) <= (32767/65536))%R /\
      is_finite _ _ q = true.
Proof.
  intros.
  unfold step2_real_div_long.
  assert (0 < Int64.unsigned b)%Z as b_NOT0 by (unfold smallb_thresh in *; lia).
  destruct (approx_inv_longu_correct_rel b b_NOT0) as (f & C0E & C0F & C0R).
  rewrite C0E.
  econstructor.
  split. reflexivity.
  Local Transparent Float.of_long.
  unfold Float.mul, Float.of_long.
  set (re := (@eq_refl Datatypes.comparison Lt)) in *.
  pose proof (Int64.unsigned_range b) as b_RANGE.
  change Int64.modulus with 18446744073709551616%Z in b_RANGE.
  pose proof (Int64.signed_range a) as a_RANGE.
  set (a' := Int64.signed a) in *.
  set (b' := Int64.unsigned b) in *.
  assert (IZR (1 + smallb_thresh) <= IZR b' <= 18446744073709551615)%R as b_RANGE'.
  { split; apply IZR_le; lia.
  }
  assert(IZR Int64.min_signed <= IZR a' <= IZR Int64.max_signed)%R as a_RANGE'.
  { split; apply IZR_le; lia.
  }
  change Int64.min_signed with (-9223372036854775808)%Z in a_RANGE'.
  change Int64.max_signed with (9223372036854775807)%Z in a_RANGE'.
  pose proof (BofZ_correct 53 1024 re re a') as C1.
  rewrite Rlt_bool_true in C1 ; cycle 1.
  { clear C1.
    apply Rabs_relax with (b := bpow radix2 64).
    { apply bpow_lt; lia. }
    cbn.
    gappa.
  }
  cbn in C1.
  destruct C1 as (C1R & C1F & C1S).

  unfold smallb_thresh in b_RANGE'; cbn in b_RANGE'.

  pose proof (Bmult_correct 53 1024 re re Float.binop_nan mode_NE (BofZ 53 1024 re re a') f) as C2.
  rewrite Rlt_bool_true in C2 ; cycle 1.
  { clear C2.
    apply Rabs_relax with (b := bpow radix2 53).
    { apply bpow_lt. lia. }
    cbn.
    rewrite C1R.
    unfold approx_inv_rel_thresh in C0R.
    replace (B2R 53 1024 f) with
      ((1/IZR b') * ((IZR b' * B2R 53 1024 f - 1) + 1))%R ; cycle 1.
    { field.  lra. }
    gappa.
  }
  rewrite C0F in C2.
  rewrite C1R in C2.
  rewrite C1F in C2.
  rewrite C1S in C2.
  cbn in C2.
  destruct C2 as (C2R & C2F & _).
  split.
  2: exact C2F.
  rewrite C2R.
  set (f' := (B2R 53 1024 f)) in *.  
  replace (rd(rd (IZR a') * f') - IZR a' / IZR b')%R with
    ((rd(rd (IZR a') * f') - IZR a' * f') + IZR a' / IZR b' * (IZR b' * f' - 1))%R ; cycle 1.
  { field. lra. }
  unfold approx_inv_rel_thresh in *.
  gappa.
Qed.
                                                                        
Lemma step2_div_long_bigb_correct :
    forall a b
           (b_BIG : ((Int64.unsigned b) > smallb_thresh)%Z)
           (b_NOT_TOO_BIG : ((Int64.unsigned b) <= Int64.max_signed)%Z),
      step2_div_long (Vlong a) (Vlong b) = Vlong (Int64.repr (Int64.signed a / Int64.unsigned b))%Z.
Proof.
  intros.
  pose proof (Int64.unsigned_range b) as b_RANGE.
  change Int64.modulus with 18446744073709551616%Z in b_RANGE.
  pose proof (Int64.signed_range a) as a_RANGE.
  set (a' := (Int64.signed a)) in *.
  set (b' := (Int64.unsigned b)) in *.
  assert (IZR (1 + smallb_thresh) <= IZR b' <= 18446744073709551615)%R as b_RANGE'.
  { split; apply IZR_le; lia.
  }
  assert(IZR Int64.min_signed <= IZR a' <= IZR Int64.max_signed)%R as a_RANGE'.
  { split; apply IZR_le; lia.
  }
  unfold smallb_thresh in *; cbn in b_RANGE'.
  change Int64.min_signed with (-9223372036854775808)%Z in *.
  change Int64.max_signed with (9223372036854775807)%Z in *.
  assert (0 < b')%Z as b_NOT0 by lia.

  destruct (step2_real_div_long_bigb_correct a b b_BIG) as (q & C1R & C1E & C1F).
  fold a' b' in C1E.
  assert ((Int64.min_signed <=? ZnearestE (B2R 53 1024 q))=true)%Z as q_LOW.
  { apply Zle_imp_le_bool.
    change Int64.min_signed with (-9223372036854775808)%Z.
    apply Znearest_lub.
    set (q' :=  B2R 53 1024 q) in *.
    replace q' with (IZR a' / IZR b' + (q' - IZR a' / IZR b'))%R by ring.
    gappa.
  }
  assert ((ZnearestE (B2R 53 1024 q) <=? Int64.max_signed)=true)%Z as q_HIGH.
  { apply Zle_imp_le_bool.
    change Int64.max_signed with (9223372036854775807)%Z.
    apply Znearest_glb.
    set (q' :=  B2R 53 1024 q) in *.
    replace q' with (IZR a' / IZR b' + (q' - IZR a' / IZR b'))%R by ring.
    gappa.
  }
  unfold step2_div_long, step2_div_long'.
  rewrite C1R.
  cbn.
  unfold Float.to_long_ne.
  rewrite (ZofB_ne_range_correct _ _ q Int64.min_signed Int64.max_signed).
  rewrite C1F.
  rewrite q_LOW.
  rewrite q_HIGH.
  cbn.
  rewrite normalize_ite.
  cbn.
  rewrite <- (function_ite Vlong).
  f_equal.
  unfold Int64.lt.
  set (q' :=  B2R 53 1024 q) in *.
  fold a'.
  assert (Int64.signed (Int64.repr (ZnearestE q')) = ZnearestE q') as q_SIGNED.
  { apply Int64.signed_repr.
    split; lia.
  }
  rewrite Int64.add_signed.
  rewrite q_SIGNED.
  rewrite Int64.signed_mone.
  rewrite Int64.signed_zero.
  rewrite <- (function_ite Int64.repr).
  f_equal.
  replace  (ZnearestE q' + -1)%Z with (ZnearestE q' - 1)%Z by ring.
  
  set (q'' :=  (ZnearestE q')) in *.
  fold a'.
  rewrite int64_mul_signed_unsigned.
  rewrite q_SIGNED.
  fold b'.

  rewrite Int64.sub_signed.
  fold a'.
  rewrite signed_repr_sub2.

  assert ((Rabs (IZR a' / IZR b' - q') < / 2)%R) as HALF.
  { replace (IZR a' / IZR b' - q')%R with
      (-(q' - IZR a' / IZR b'))%R by ring.
    rewrite Rabs_Ropp.
    lra.
  }
  pose proof (find_quotient a' b' b_NOT0 q' HALF) as QUOTIENT.
  fold q'' in QUOTIENT.
  cbn zeta in QUOTIENT.

  assert (b' <> 0)%Z as NONZ by lia.
  pose proof (Zmod_eq_full a' b' NONZ) as MOD.
  assert (b' > 0)%Z as b_GT0 by lia.
  pose proof (Z_mod_lt a' b' b_GT0) as MOD_LT.
  destruct (Z_lt_dec a' (b' * q'')) as [LT | GE].
  { replace (b' * q'' >? a')%Z with true in QUOTIENT by lia.
    replace q'' with (1 + (a' / b'))%Z by lia.
    replace (a' - (1 + a' / b') * b')%Z
      with ((a' - a' / b' * b')-b')%Z by ring.
    rewrite <- MOD.
    rewrite Int64.signed_repr; cycle 1.
    { change Int64.min_signed with (-9223372036854775808)%Z in *.
      change Int64.max_signed with (9223372036854775807)%Z in *.
      lia.
    }
    rewrite zlt_true by lia.
    ring.
  }
  replace (b' * q'' >? a')%Z with false in QUOTIENT by lia.
  rewrite <- QUOTIENT.
  replace (a' / b' * b' - a')%Z with (-(a' - a' / b' * b'))%Z by ring.
  rewrite <- MOD.
  rewrite Int64.signed_repr ; cycle 1.
  { change Int64.min_signed with (-9223372036854775808)%Z in *.
    change Int64.max_signed with (9223372036854775807)%Z in *.
    lia.
  }
  rewrite zlt_false by lia.
  reflexivity.
Qed.

Definition step2_real_div_longu a b :=
  Val.mulf (Val.maketotal (Val.floatoflongu a)) (approx_inv_longu b).

Definition step2_div_longu' a b :=
  Val.maketotal (Val.longuoffloat_ne (step2_real_div_longu a b)).

Definition step2_div_longu a b :=
  let q := step2_div_longu' a b in
  Val.select (Val.cmpl_bool Cgt (Val.subl (Val.mull q b) a) (Vlong Int64.zero))
             (Val.addl q (Vlong Int64.mone)) q Tlong.

Lemma step2_real_div_longu_bigb_correct :
    forall (a b : int64)
           (b_BIG : ((Int64.unsigned b) > smallb_thresh)%Z),
    exists (q : float),
      (step2_real_div_longu (Vlong a) (Vlong b)) = Vfloat q /\
        (Rabs ((B2R _ _ q) - (IZR (Int64.unsigned a)) / (IZR (Int64.unsigned b))) <= (32767/65536))%R /\
      is_finite _ _ q = true.
Proof.
  intros.
  unfold step2_real_div_longu.
  assert (0 < Int64.unsigned b)%Z as b_NOT0 by (unfold smallb_thresh in *; lia).
  destruct (approx_inv_longu_correct_rel b b_NOT0) as (f & C0E & C0F & C0R).
  rewrite C0E.
  econstructor.
  split. reflexivity.
  Local Transparent Float.of_longu.
  unfold Float.mul, Float.of_longu.
  set (re := (@eq_refl Datatypes.comparison Lt)) in *.
  pose proof (Int64.unsigned_range b) as b_RANGE.
  pose proof (Int64.unsigned_range a) as a_RANGE.
  change Int64.modulus with 18446744073709551616%Z in *.
  set (a' := Int64.unsigned a) in *.
  set (b' := Int64.unsigned b) in *.
  assert (IZR (1 + smallb_thresh) <= IZR b' <= 18446744073709551615)%R as b_RANGE'.
  { split; apply IZR_le; lia.
  }
  assert(0 <= IZR a' <= 18446744073709551615)%R as a_RANGE'.
  { split; apply IZR_le; lia.
  }
  pose proof (BofZ_correct 53 1024 re re a') as C1.
  rewrite Rlt_bool_true in C1 ; cycle 1.
  { clear C1.
    apply Rabs_relax with (b := bpow radix2 64).
    { apply bpow_lt; lia. }
    cbn.
    gappa.
  }
  cbn in C1.
  destruct C1 as (C1R & C1F & C1S).

  unfold smallb_thresh in b_RANGE'; cbn in b_RANGE'.

  pose proof (Bmult_correct 53 1024 re re Float.binop_nan mode_NE (BofZ 53 1024 re re a') f) as C2.
  rewrite Rlt_bool_true in C2 ; cycle 1.
  { clear C2.
    apply Rabs_relax with (b := bpow radix2 53).
    { apply bpow_lt. lia. }
    cbn.
    rewrite C1R.
    unfold approx_inv_rel_thresh in C0R.
    replace (B2R 53 1024 f) with
      ((1/IZR b') * ((IZR b' * B2R 53 1024 f - 1) + 1))%R ; cycle 1.
    { field.  lra. }
    gappa.
  }
  rewrite C0F in C2.
  rewrite C1R in C2.
  rewrite C1F in C2.
  rewrite C1S in C2.
  cbn in C2.
  destruct C2 as (C2R & C2F & _).
  split.
  2: exact C2F.
  rewrite C2R.
  set (f' := (B2R 53 1024 f)) in *.  
  replace (rd(rd (IZR a') * f') - IZR a' / IZR b')%R with
    ((rd(rd (IZR a') * f') - IZR a' * f') + IZR a' / IZR b' * (IZR b' * f' - 1))%R ; cycle 1.
  { field. lra. }
  unfold approx_inv_rel_thresh in *.
  gappa.
Qed.

Lemma repr_unsigned_mul:
  forall a b,
    (Int64.repr (Int64.unsigned (Int64.repr a) * b)) = Int64.repr (a * b).
Proof.
  intros.
  apply Int64.eqm_samerepr.
  apply Int64.eqm_mult.
  - apply Int64.eqm_sym. apply Int64.eqm_unsigned_repr.
  - apply Int64.eqm_refl.
Qed.

Lemma repr_unsigned_sub:
  forall a b,
    (Int64.repr (Int64.unsigned (Int64.repr a) - b)) = Int64.repr (a - b).
Proof.
  intros.
  apply Int64.eqm_samerepr.
  apply Int64.eqm_sub.
  - apply Int64.eqm_sym. apply Int64.eqm_unsigned_repr.
  - apply Int64.eqm_refl.
Qed.

Lemma repr_unsigned_add:
  forall a b,
    (Int64.repr (Int64.unsigned (Int64.repr a) + b)) = Int64.repr (a + b).
Proof.
  intros.
  apply Int64.eqm_samerepr.
  apply Int64.eqm_add.
  - apply Int64.eqm_sym. apply Int64.eqm_unsigned_repr.
  - apply Int64.eqm_refl.
Qed.
  
Lemma step2_div_longu_bigb_correct :
  forall a b
           (b_BIG : ((Int64.unsigned b) > smallb_thresh)%Z)
           (b_NOT_TOO_BIG : ((Int64.unsigned b) <= Int64.max_signed)%Z),
      step2_div_longu (Vlong a) (Vlong b) = Vlong (Int64.repr (Int64.unsigned a / Int64.unsigned b))%Z.
Proof.
  intros.
  pose proof (Int64.unsigned_range b) as b_RANGE.
  pose proof (Int64.unsigned_range a) as a_RANGE.
  change Int64.modulus with 18446744073709551616%Z in *.
  set (a' := (Int64.unsigned a)) in *.
  set (b' := (Int64.unsigned b)) in *.
  assert (IZR (1 + smallb_thresh) <= IZR b' <= 18446744073709551615)%R as b_RANGE'.
  { split; apply IZR_le; lia.
  }
  assert(0 <= IZR a' <= 18446744073709551615)%R as a_RANGE'.
  { split; apply IZR_le; lia.
  }
  unfold smallb_thresh in *; cbn in b_RANGE'.
  assert (0 < b')%Z as b_NOT0 by lia.

  destruct (step2_real_div_longu_bigb_correct a b b_BIG) as (q & C1R & C1E & C1F).
  fold a' b' in C1E.

  assert ((0 <=? ZnearestE (B2R 53 1024 q))=true)%Z as q_LOW.
  { apply Zle_imp_le_bool.
    set (q' :=  B2R 53 1024 q) in *.
    assert (-32767 / 65536 <= q')%R as LOWROUND.
    { replace q' with (IZR a' / IZR b' + (q' - IZR a' / IZR b'))%R by ring.
      gappa.
    }
    destruct (Rcase_abs q').
    { replace (ZnearestE q') with 0%Z. lia.
      symmetry.
      apply Znearest_imp.
      apply Rabs_lt.
      split; lra.
    }
    apply Znearest_lub.
    lra.
  }
  assert ((ZnearestE (B2R 53 1024 q) <=? Int64.max_unsigned)=true)%Z as q_HIGH.
  { apply Zle_imp_le_bool.
    change Int64.max_unsigned with (18446744073709551615)%Z.
    apply Znearest_glb.
    set (q' :=  B2R 53 1024 q) in *.
    replace q' with (IZR a' / IZR b' + (q' - IZR a' / IZR b'))%R by ring.
    gappa.
  }
  
  unfold step2_div_longu, step2_div_longu'.
  rewrite C1R.
  cbn.
  unfold Float.to_longu_ne.
  rewrite (ZofB_ne_range_correct _ _ q _ _).
  rewrite C1F.
  rewrite q_LOW.
  rewrite q_HIGH.
  cbn.
  rewrite normalize_ite.
  cbn.
  rewrite <- (function_ite Vlong).
  f_equal.
  unfold Int64.lt.
  set (q' :=  B2R 53 1024 q) in *.
  fold a'.
  rewrite Int64.signed_zero.
  set (q'' :=  (ZnearestE q')) in *.
  assert ((Rabs (IZR a' / IZR b' - q') < / 2)%R) as HALF.
  { replace (IZR a' / IZR b' - q')%R with
      (-(q' - IZR a' / IZR b'))%R by ring.
    rewrite Rabs_Ropp.
    lra.
  }
  pose proof (find_quotient a' b' b_NOT0 q' HALF) as QUOTIENT.
  fold q'' in QUOTIENT.
  cbn zeta in QUOTIENT.

  assert (b' <> 0)%Z as NONZ by lia.
  pose proof (Zmod_eq_full a' b' NONZ) as MOD.
  assert (b' > 0)%Z as b_GT0 by lia.
  pose proof (Z_mod_lt a' b' b_GT0) as MOD_LT.
  destruct (Z_lt_dec a' (b' * q'')) as [LT | GE].
  { replace (b' * q'' >? a')%Z with true in QUOTIENT by lia.
    unfold Int64.sub, Int64.mul.
    fold a' b'.
    replace q'' with (1 + a'/b')%Z by lia.
    rewrite repr_unsigned_mul.
    rewrite repr_unsigned_sub.
    
    replace ((1 + a' / b') * b' - a')%Z with (b' -  (a' - a' / b' * b'))%Z by ring.
    rewrite <- MOD.
    rewrite Int64.signed_repr ; cycle 1.
    { change Int64.max_signed with 9223372036854775807%Z in *.
      change Int64.min_signed with (-9223372036854775808)%Z in *.
      lia.
    }
    rewrite zlt_true by lia.
    replace q'' with (1 + (a' / b'))%Z by lia.
    apply Int64.eqm_samerepr.
    apply Int64.eqm_trans with (y := ((1 + a' / b') + (-1))%Z).
    { apply Int64.eqm_add.
      apply Int64.eqm_sym.
      apply Int64.eqm_unsigned_repr.
      rewrite Int64.unsigned_mone.
      replace (-1)%Z with (0 - 1)%Z by ring.
      apply Int64.eqm_add.
      exists 1%Z.
      lia.
      apply Int64.eqm_refl.
    }
    replace (1 + a' / b' + -1)%Z with (a'/b')%Z by ring.
    apply Int64.eqm_refl.
  }
  replace (b' * q'' >? a')%Z with false in QUOTIENT by lia.
  rewrite <- QUOTIENT.
  unfold Int64.sub, Int64.mul.
  fold a' b'.
  rewrite repr_unsigned_mul.
  rewrite repr_unsigned_sub.
  replace (a' / b' * b' - a')%Z with (- (a' mod b'))%Z by lia.
  rewrite Int64.signed_repr ; cycle 1.
  { change Int64.max_signed with 9223372036854775807%Z in *.
    change Int64.min_signed with (-9223372036854775808)%Z in *.
    lia.
  }
  rewrite zlt_false by lia.
  reflexivity.
Qed.

Lemma one_bigb_div :
  forall a b
     (b_RANGE : (9223372036854775808 <= b < 18446744073709551616)%Z)
     (ORDER : (b <= a < 18446744073709551616)%Z),
  (a / b = 1)%Z.
Proof.
  intros.
  assert (((a - b) / b) = 0)%Z as ZERO.
  { apply Zdiv_small. lia.
  }
  replace a with (1 * b + (a - b))%Z by ring.
  rewrite Z.div_add_l by lia.
  rewrite ZERO.
  ring.
Qed.

Lemma repr_unsigned_sub2:
  forall a b,
    (Int64.repr (a - Int64.unsigned (Int64.repr b))) = Int64.repr (a - b).
Proof.
  intros.
  apply Int64.eqm_samerepr.
  apply Int64.eqm_sub.
  - apply Int64.eqm_refl.
  - apply Int64.eqm_sym. apply Int64.eqm_unsigned_repr.
Qed.

Lemma repr_unsigned_add2:
  forall a b,
    (Int64.repr (a + Int64.unsigned (Int64.repr b))) = Int64.repr (a + b).
Proof.
  intros.
  apply Int64.eqm_samerepr.
  apply Int64.eqm_add.
  - apply Int64.eqm_refl.
  - apply Int64.eqm_sym. apply Int64.eqm_unsigned_repr.
Qed.
    
Lemma twostep_div_longu_mostb_correct :
    forall a b
      (b_RANGE : (1 < Int64.unsigned b <= Int64.max_signed)%Z),
          (twostep_div_longu (Vlong a) (Vlong b)) =
            (Val.maketotal (Val.divlu (Vlong a) (Vlong b))).
Proof.
  intros.
  destruct (Z_le_gt_dec (Int64.unsigned b) smallb_thresh).
  { apply twostep_div_longu_smallb_correct. lia. }
  set (a' := Int64.unsigned a).
  set (b' := Int64.unsigned b).
  assert (0 < b')%Z as b_NOT0 by lia.
  cbn.
  rewrite Int64.eq_false ; cycle 1.
  { intro Z. unfold b' in b_NOT0. rewrite Z in b_NOT0.
    rewrite Int64.unsigned_zero in b_NOT0.
    lia.
  }
  cbn.

  unfold twostep_div_longu.
  assert (1 < Int64.unsigned b <= mostb_thresh)%Z as MOST_B.
  { unfold mostb_thresh.
    change Int64.max_signed with 9223372036854775807%Z in b_RANGE.
    lia.
  }
  destruct (step1_div_longu_correct_mostb a b MOST_B) as
    (q & step1_REW & step1_RANGE).
  rewrite step1_REW.
  cbn.
  rewrite step2_div_long_bigb_correct; cycle 1.
  1, 2: lia.
  f_equal.

  unfold Int64.sub, Int64.mul.
  rewrite repr_unsigned_sub2.
  rewrite Int64.signed_repr by lia.
  unfold Int64.add, Int64.divu.
  fold a' b'.
  set (q' := Int64.unsigned q) in *.
  rewrite repr_unsigned_add2.
  rewrite <- Z.div_add_l by lia.
  f_equal. f_equal.
  ring.
Qed.

Definition full2_div_longu a b m :=
  let is_big := Val.cmpl_bool Clt b (Vlong Int64.zero) in
  let is_one := Val.cmplu_bool (Mem.valid_pointer m) Cle b (Vlong Int64.one) in
  let is_special := Val.or (Val.of_optbool is_big) (Val.of_optbool is_one) in
  let if_big := Val.longofintu (Val.of_optbool (Val.cmplu_bool (Mem.valid_pointer m) Cge a b)) in
  let if_special := Val.select is_big if_big a Tlong in
  Val.select (Val.cmp_bool Cne is_special (Vint Int.zero))
             if_special
             (twostep_div_longu a b) Tlong.

Lemma full2_div_longu_correct :
  forall a b m
           (b_NOT0 : (0 < Int64.unsigned b)%Z),
      full2_div_longu (Vlong a) (Vlong b) m = Vlong (Int64.repr (Int64.unsigned a / Int64.unsigned b))%Z.
Proof.

  Local Opaque twostep_div_longu.
  intros.
  unfold full2_div_longu.
  cbn.
  unfold Int64.lt, Int64.ltu.
  pose proof (Int64.unsigned_range a).
  pose proof (Int64.unsigned_range b).
  set (a' := Int64.unsigned a) in *.
  set (b' := Int64.unsigned b) in *.
  rewrite Int64.signed_zero.
  rewrite Int64.unsigned_one.
  destruct zlt.
  { replace  (Val.cmp_bool Cne
       (Val.or Vtrue
          (if negb (if zlt 1 b' then true else false) then Vtrue else Vfalse))
       (Vint Int.zero)) with (Some true) ; cycle 1.
    { destruct zlt; reflexivity.
    }
    cbn.
    destruct zlt; cbn.
    { rewrite Zdiv_small by lia.
      reflexivity.
    }
    rewrite one_bigb_div.
    reflexivity.
    {
      change Int64.modulus with 18446744073709551616%Z in *.
      split. 2: lia.
      unfold b'.
      rewrite Int64.unsigned_signed.
      unfold Int64.lt.
      rewrite Int64.signed_zero.
      rewrite zlt_true by lia.
      pose proof (Int64.signed_range b).
      change Int64.min_signed with (-9223372036854775808)%Z in *.
      change Int64.max_signed with (9223372036854775807)%Z in *.
      change Int64.modulus with 18446744073709551616%Z in *.
      lia.
    }
    change Int64.modulus with 18446744073709551616%Z in *.
    lia.
  }
  destruct zlt; cbn.
  { change (negb (Int.eq (Int.or Int.zero Int.zero) Int.zero)) with false.
    cbn.
    rewrite twostep_div_longu_mostb_correct.
    {
      cbn.
      unfold Int64.eq.
      fold b'.
      rewrite Int64.unsigned_zero.
      rewrite zeq_false by lia.
      reflexivity.
    }
    
    change Int64.modulus with 18446744073709551616%Z in *.
    split. lia.
    rewrite Int64.unsigned_signed.
    unfold Int64.lt.
    rewrite Int64.signed_zero.
    rewrite zlt_false by lia.
    pose proof (Int64.signed_range b).
    change Int64.min_signed with (-9223372036854775808)%Z in *.
    change Int64.max_signed with (9223372036854775807)%Z in *.
    change Int64.modulus with 18446744073709551616%Z in *.
    lia.
  }
  change (negb (Int.eq (Int.or Int.zero Int.one) Int.zero)) with true.
  cbn.
  replace b' with 1%Z by lia.
  rewrite Z.div_1_r.
  unfold a'.
  rewrite Int64.repr_unsigned.
  reflexivity.
Qed.

Definition step2_mod_long a b :=
  let q := step2_div_long' a b in
  let r := Val.subl a (Val.mull q b) in
  Val.select (Val.cmpl_bool Clt r (Vlong Int64.zero))
             (Val.addl r b) r Tlong.

Definition twostep_mod_longu a b :=
  let q1 := step1_div_longu a b in
  step2_mod_long (Val.subl a (Val.mull b q1)) b.

Lemma vlong_eq: forall a b, (Vlong a) = (Vlong b) -> a = b.
Proof.
  intros a b EQ.
  congruence.
Qed.

Lemma move_repr_in_mod :
  forall a b c,
    Int64.repr (a - b * c)%Z =
      Int64.repr (a - b * Int64.unsigned (Int64.repr c))%Z.
Proof.
  intros.
  apply Int64.eqm_samerepr.
  auto 10 with ints.
Qed.

Lemma twostep_mod_longu_mostb_correct :
    forall a b
      (b_RANGE : (1 < Int64.unsigned b <= Int64.max_signed)%Z),
          (twostep_mod_longu (Vlong a) (Vlong b)) =
            (Val.maketotal (Val.modlu (Vlong a) (Vlong b))).
Proof.
  intros.
  Local Transparent twostep_div_longu.
  pose proof (twostep_div_longu_mostb_correct a b b_RANGE) as div_correct.
  unfold twostep_div_longu, twostep_mod_longu, step2_div_long, step2_mod_long in *.
  set (q1 := (step1_div_longu (Vlong a) (Vlong b))) in *.
  set (q2 := (step2_div_long' (Val.subl (Vlong a) (Val.mull (Vlong b) q1)) (Vlong b))) in *.
  cbn in div_correct.
  cbn.
  unfold Int64.eq in *.
  change (Int64.unsigned Int64.zero) with 0%Z in *.
  rewrite zeq_false by lia.
  rewrite zeq_false in div_correct by lia.
  cbn in div_correct.
  cbn.
  destruct q1 as [  |  | q1l |  |  |  ] ; cbn in *; try discriminate.
  destruct q2 as [  |  | q2l |  |  |  ] ; cbn in *; try discriminate.
  rewrite <- (function_ite Vlong).
  rewrite <- (function_ite Vlong) in div_correct.
  cbn. cbn in div_correct.
  unfold Int64.lt, Int64.sub, Int64.mul, Int64.add, Int64.divu, Int64.modu in *.
  set (a' := Int64.unsigned a) in *.
  set (b' := Int64.unsigned b) in *.
  set (q1' := Int64.unsigned q1l) in *.
  set (q2' := Int64.unsigned q2l) in *.
  change (Int64.signed Int64.zero) with 0%Z in *.
  replace (Int64.repr
               (Int64.unsigned
                  (Int64.repr (a' - Int64.unsigned (Int64.repr (b' * q1')))) -
                  Int64.unsigned (Int64.repr (q2' * b'))))
    with (Int64.repr (a' - (b' * q1') - (q2' * b')))%Z in * ; cycle 1.
  {
    apply Int64.eqm_samerepr.
    auto 10 with ints.
  }
  replace (a' - b' * q1' - q2' * b')%Z with (a' - b' * (q1' + q2'))%Z in * by ring.
  f_equal.
  apply vlong_eq in div_correct.
  rewrite Z.mod_eq by lia.
  rewrite (move_repr_in_mod a' b' (a' / b'))%Z.
  rewrite <- div_correct.
  clear div_correct.
  rewrite <- (move_repr_in_mod a' b')%Z.
 
  destruct zlt as [NEG | POS].
  2: reflexivity.
  rewrite repr_unsigned_add.
  replace (a' - b' * (q1' + q2') + b')%Z with (a' - b' * (q1' + q2' - 1))%Z by ring.
  apply Int64.eqm_samerepr.
  assert (Int64.eqm (Int64.unsigned (Int64.repr (q2' + Int64.unsigned Int64.mone)))
                    (q2' -1))%Z as EQM.
  { apply Int64.eqm_trans with (y :=  (q2' + Int64.unsigned Int64.mone)%Z).
    apply Int64.eqm_sym.
    apply Int64.eqm_unsigned_repr.
    apply Int64.eqm_add.
    apply Int64.eqm_refl.
    exists (1)%Z.
    reflexivity.
  }
  replace  (q1' + q2' - 1)%Z with (q1' + (q2' - 1))%Z by ring.
  auto with ints.
Qed.
    
Definition full2_mod_longu a b m :=
  let is_big := Val.cmpl_bool Clt b (Vlong Int64.zero) in
  let is_one := Val.cmplu_bool (Mem.valid_pointer m) Cle b (Vlong Int64.one) in
  let is_special := Val.or (Val.of_optbool is_big) (Val.of_optbool is_one) in
  let if_big := Val.select (Val.cmplu_bool (Mem.valid_pointer m) Cge a b) (Val.subl a b) a Tlong in
  let if_special := Val.select is_big if_big (Vlong Int64.zero) Tlong in
  Val.select (Val.cmp_bool Cne is_special (Vint Int.zero))
             if_special
             (twostep_mod_longu a b) Tlong.

Lemma full2_mod_longu_correct :
  forall a b m
           (b_NOT0 : (0 < Int64.unsigned b)%Z),
      full2_mod_longu (Vlong a) (Vlong b) m = Vlong (Int64.repr ((Int64.unsigned a) mod (Int64.unsigned b)))%Z.
Proof.

  Local Opaque twostep_mod_longu.
  intros.
  unfold full2_mod_longu.
  cbn.
  unfold Int64.lt, Int64.ltu.
  pose proof (Int64.unsigned_range a).
  pose proof (Int64.unsigned_range b).
  set (a' := Int64.unsigned a) in *.
  set (b' := Int64.unsigned b) in *.
  rewrite Int64.signed_zero.
  rewrite Int64.unsigned_one.
  destruct zlt.
  { replace  (Val.cmp_bool Cne
       (Val.or Vtrue
          (if negb (if zlt 1 b' then true else false) then Vtrue else Vfalse))
       (Vint Int.zero)) with (Some true) ; cycle 1.
    { destruct zlt; reflexivity.
    }
    cbn.
    rewrite Z.mod_eq by lia.
    
    destruct zlt; cbn.
    { rewrite Zdiv_small by lia.
      replace (a' - b' * 0)%Z with a' by ring.
      unfold a'.
      rewrite Int64.repr_unsigned.
      reflexivity.
    }
    rewrite one_bigb_div.
    { unfold Int64.sub.
      fold a' b'.
      repeat f_equal. ring.
    }
    {
      change Int64.modulus with 18446744073709551616%Z in *.
      split. 2: lia.
      unfold b'.
      rewrite Int64.unsigned_signed.
      unfold Int64.lt.
      rewrite Int64.signed_zero.
      rewrite zlt_true by lia.
      pose proof (Int64.signed_range b).
      change Int64.min_signed with (-9223372036854775808)%Z in *.
      change Int64.max_signed with (9223372036854775807)%Z in *.
      change Int64.modulus with 18446744073709551616%Z in *.
      lia.
    }
    change Int64.modulus with 18446744073709551616%Z in *.
    lia.
  }
  destruct zlt; cbn.
  { change (negb (Int.eq (Int.or Int.zero Int.zero) Int.zero)) with false.
    cbn.
    rewrite twostep_mod_longu_mostb_correct.
    {
      cbn.
      unfold Int64.eq.
      fold b'.
      rewrite Int64.unsigned_zero.
      rewrite zeq_false by lia.
      reflexivity.
    }
    
    change Int64.modulus with 18446744073709551616%Z in *.
    split. lia.
    rewrite Int64.unsigned_signed.
    unfold Int64.lt.
    rewrite Int64.signed_zero.
    rewrite zlt_false by lia.
    pose proof (Int64.signed_range b).
    change Int64.min_signed with (-9223372036854775808)%Z in *.
    change Int64.max_signed with (9223372036854775807)%Z in *.
    change Int64.modulus with 18446744073709551616%Z in *.
    lia.
  }
  change (negb (Int.eq (Int.or Int.zero Int.one) Int.zero)) with true.
  cbn.
  replace b' with 1%Z by lia.
  rewrite Z.mod_1_r.
  reflexivity.
Qed.

Open Scope cminorsel_scope.
Definition e_invfs a := Eop Oinvfs (a ::: Enil).
Definition e_float_of_longu a := Eop Ofloatoflongu (a ::: Enil).
Definition e_float_of_long a := Eop Ofloatoflong (a ::: Enil).
Definition e_float_of_single a := Eop Ofloatofsingle (a ::: Enil).
Definition e_single_of_float a := Eop Osingleoffloat (a ::: Enil).
Definition e_long_of_float_ne a := Eop Olongoffloat_ne (a ::: Enil).
Definition e_longu_of_float_ne a := Eop Olonguoffloat_ne (a ::: Enil).
Definition e_mulf a b := Eop Omulf (a ::: b ::: Enil).
Definition e_float_const c := Eop (Ofloatconst c) Enil.
Definition e_fmaddf a b c := Eop Ofmaddf (a ::: b ::: c ::: Enil).
Definition e_fmsubf a b c := Eop Ofmsubf (a ::: b ::: c ::: Enil).
Definition e_addlimm a b := Eop (Oaddlimm b) (a ::: Enil).
Definition e_msubl a b c := Eop Omsubl (a ::: b ::: c ::: Enil).
Definition e_ite ty c vc v1 v2 := Eop (Osel c ty) (v1 ::: v2 ::: vc ::: Enil).
Definition e_cmplimm c v n := Eop (Ocmp (Ccomplimm c n)) (v ::: Enil).
Definition e_cmpluimm c v n := Eop (Ocmp (Ccompluimm c n)) (v ::: Enil).
Definition e_addl a b := Eop Oaddl (a ::: b ::: Enil).
Definition e_or a b := Eop Oor (a ::: b ::: Enil).
Definition e_cast32unsigned a := Eop Ocast32unsigned (a ::: Enil).
Definition e_cmplu c a b := Eop (Ocmp (Ccomplu c)) (a ::: b ::: Enil).

Definition a_var1 := Eletvar (4%nat).
Definition a_d_var1 := Eletvar (3%nat).
Definition b_var1 := Eletvar (2%nat).
Definition b_d_var1 := Eletvar (1%nat).
Definition binv_d_var1 := Eletvar (0%nat).

Definition e_setup1 a b rest :=
  Elet a (Elet (e_float_of_longu (Eletvar 0%nat))
    (Elet (lift (lift b)) (Elet (e_float_of_longu (Eletvar 0%nat))
      (Elet (e_float_of_single (e_invfs (e_single_of_float (Eletvar 0%nat))))
      rest)))).                  
Definition e_step1 := e_longu_of_float_ne (e_mulf a_d_var1 binv_d_var1).

Lemma e_step1_correct :
  forall (ge : genv)  (sp: val) cmenv memenv (le : letenv)
         (expr_a : expr) (a : int64) (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vlong a))
         (expr_b : expr) (b : int64) (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vlong b)),
         (eval_expr ge sp cmenv memenv le (e_setup1 expr_a expr_b (e_step1))
                    (step1_div_longu (Vlong a) (Vlong b))).           
Proof.
  intros.
  unfold e_setup1, step1_div_longu.
  repeat econstructor.
  { eassumption. }
  { cbn. apply eval_lift. apply eval_lift. eassumption. }
Qed.

Definition e_setup2 a b rest := (e_setup1 a b (Elet e_step1 rest)).

Definition a_var2 := Eletvar (5%nat).
Definition a_d_var2 := Eletvar (4%nat).
Definition b_var2 := Eletvar (3%nat).
Definition b_d_var2 := Eletvar (2%nat).
Definition binv_d_var2 := Eletvar (1%nat).
Definition step1_var2 := Eletvar (0%nat).

Definition e_step2 := e_msubl a_var2 b_var2 step1_var2.

Definition e_setup3 a b rest := (e_setup2 a b (Elet e_step2 rest)).

Definition a_var3 := Eletvar (6%nat).
Definition a_d_var3 := Eletvar (5%nat).
Definition b_var3 := Eletvar (4%nat).
Definition b_d_var3 := Eletvar (3%nat).
Definition binv_d_var3 := Eletvar (2%nat).
Definition step1_var3 := Eletvar (1%nat).
Definition step2_var3 := Eletvar (0%nat).

Definition e_step3 :=
 e_long_of_float_ne
       (e_mulf (e_float_of_long step2_var3)
          (e_fmaddf
             binv_d_var3
             (e_fmsubf (e_float_const ExtFloat.one)
                binv_d_var3
                b_d_var3 )
             binv_d_var3)).

Lemma e_step3_correct :
  forall (ge : genv)  (sp: val) cmenv memenv (le : letenv)
         (expr_a : expr) (a : int64) (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vlong a))
         (expr_b : expr) (b : int64) (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vlong b)),
         (eval_expr ge sp cmenv memenv le (e_setup3 expr_a expr_b (e_step3))
           (step2_div_long' (Val.subl (Vlong a) (Val.mull (Vlong b) (step1_div_longu (Vlong a) (Vlong b)))) (Vlong b))).
Proof.
intros.  
unfold e_setup2, e_setup1, e_step2, step2_div_long', step2_real_div_long, approx_inv_longu.
repeat (econstructor + apply eval_lift + eassumption).
Qed.

Definition e_setup4 a b rest := (e_setup3 a b (Elet e_step3 rest)).

Definition a_var4 := Eletvar (7%nat).
Definition a_d_var4 := Eletvar (6%nat).
Definition b_var4 := Eletvar (5%nat).
Definition b_d_var4 := Eletvar (4%nat).
Definition binv_d_var4 := Eletvar (3%nat).
Definition step1_var4 := Eletvar (2%nat).
Definition step2_var4 := Eletvar (1%nat).
Definition step3_var4 := Eletvar (0%nat).

Definition e_step4 :=
  e_ite Tlong (Ccompl0 Clt) (e_msubl step2_var4 step3_var4 b_var4)
             (e_addlimm step3_var4 Int64.mone) step3_var4.

Lemma e_step4_correct :
  forall (ge : genv)  (sp: val) cmenv memenv (le : letenv)
         (expr_a : expr) (a : int64) (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vlong a))
         (expr_b : expr) (b : int64) (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vlong b)),
         (eval_expr ge sp cmenv memenv le (e_setup4 expr_a expr_b (e_step4))
           (step2_div_long (Val.subl (Vlong a) (Val.mull (Vlong b) (step1_div_longu (Vlong a) (Vlong b)))) (Vlong b))).
Proof.
intros.  
unfold e_setup2, e_setup1, e_step2, step2_div_long, step2_div_long', step2_real_div_long, approx_inv_longu, step1_div_longu.
repeat (econstructor + apply eval_lift + eassumption).
Qed.

Definition e_setup5 a b rest := (e_setup4 a b (Elet e_step4 rest)).

Definition a_var5 := Eletvar (8%nat).
Definition a_d_var5 := Eletvar (7%nat).
Definition b_var5 := Eletvar (6%nat).
Definition b_d_var5 := Eletvar (5%nat).
Definition binv_d_var5 := Eletvar (4%nat).
Definition step1_var5 := Eletvar (3%nat).
Definition step2_var5 := Eletvar (2%nat).
Definition step3_var5 := Eletvar (1%nat).
Definition step4_var5 := Eletvar (0%nat).

Definition e_step5 := e_addl step1_var5 step4_var5.

Lemma e_step5_correct :
  forall (ge : genv)  (sp: val) cmenv memenv (le : letenv)
         (expr_a : expr) (a : int64) (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vlong a))
         (expr_b : expr) (b : int64) (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vlong b)),
         (eval_expr ge sp cmenv memenv le (e_setup5 expr_a expr_b (e_step5))
           (twostep_div_longu (Vlong a) (Vlong b))).
Proof.
  intros.
  Local Transparent twostep_div_longu.
  repeat unfold e_setup2, e_setup1, e_step2, step2_div_long, step2_div_long', step2_real_div_long, approx_inv_longu, step1_div_longu, twostep_div_longu.
repeat (econstructor + apply eval_lift + eassumption).
Qed.

Definition e_setup6 a b rest := (e_setup5 a b (Elet e_step5 rest)).

Definition a_var6 := Eletvar (9%nat).
Definition a_d_var6 := Eletvar (8%nat).
Definition b_var6 := Eletvar (7%nat).
Definition b_d_var6 := Eletvar (6%nat).
Definition binv_d_var6 := Eletvar (5%nat).
Definition step1_var6 := Eletvar (4%nat).
Definition step2_var6 := Eletvar (3%nat).
Definition step3_var6 := Eletvar (2%nat).
Definition step4_var6 := Eletvar (1%nat).
Definition twostep_var6 := Eletvar (0%nat).

Definition e_step6 := e_cmplimm Clt b_var6 Int64.zero.

Definition e_setup7 a b rest := e_setup6 a b (Elet e_step6 rest).

Definition a_var7 := Eletvar (10%nat).
Definition a_d_var7 := Eletvar (9%nat).
Definition b_var7 := Eletvar (8%nat).
Definition b_d_var7 := Eletvar (7%nat).
Definition binv_d_var7 := Eletvar (6%nat).
Definition step1_var7 := Eletvar (5%nat).
Definition step2_var7 := Eletvar (5%nat).
Definition step3_var7 := Eletvar (3%nat).
Definition step4_var7 := Eletvar (2%nat).
Definition twostep_var7 := Eletvar (1%nat).
Definition is_big_var7 := Eletvar (0%nat).

Definition e_is_one :=  e_cmpluimm Cle b_var7 Int64.one.
Definition e_is_special := e_or is_big_var7 e_is_one.
Definition e_if_big := e_cast32unsigned (e_cmplu Cge a_var7 b_var7).
Definition e_if_special := e_ite Tlong (Ccompu0 Cne) is_big_var7 e_if_big a_var7.
Definition e_step7 := e_ite Tlong (Ccompu0 Cne) e_is_special e_if_special twostep_var7.

Lemma e_step7_correct :
  forall (ge : genv)  (sp: val) cmenv memenv (le : letenv)
         (expr_a : expr) (a : int64) (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vlong a))
         (expr_b : expr) (b : int64) (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vlong b)),
         (eval_expr ge sp cmenv memenv le (e_setup7 expr_a expr_b (e_step7))
           (full2_div_longu (Vlong a) (Vlong b) memenv)).
Proof.
  intros.
  Local Transparent full2_div_longu.
  repeat unfold e_setup2, e_setup1, e_step2, step2_div_long, step2_div_long', step2_real_div_long, approx_inv_longu, step1_div_longu, twostep_div_longu, full2_div_longu.
  repeat (econstructor + apply eval_lift + eassumption).
  cbn.
  repeat f_equal.
  destruct (Int64.lt b Int64.zero); cbn; change (Int.eq Int.one Int.zero) with false; change (Int.eq Int.zero Int.zero) with true; cbn; reflexivity.
Qed.

Definition fp_divu64 a b := e_setup7 a b e_step7.

Theorem fp_divu64_correct :
  forall (ge : genv)  (sp: val) cmenv memenv
         (le : letenv) (expr_a expr_b : expr) (a b : int64)
         (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vlong a))
         (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vlong b))
         (b_nz : (Int64.unsigned b > 0)%Z),
  eval_expr ge sp cmenv memenv le (fp_divu64 expr_a expr_b)
            (Vlong (Int64.divu a b)).
Proof.
  intros.
  unfold Int64.divu.
  rewrite <- full2_div_longu_correct with (m := memenv) by lia.
  apply e_step7_correct; assumption.
Qed.

Definition fp_modu64 a b := Elet a (Elet (lift b) (e_msubl (Eletvar 1%nat) (Eletvar 0%nat)
                                                    (fp_divu64 (Eletvar 1%nat) (Eletvar 0%nat)))).

Theorem fp_modu64_correct :
  forall (ge : genv)  (sp: val) cmenv memenv
         (le : letenv) (expr_a expr_b : expr) (a b : int64)
         (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vlong a))
         (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vlong b))
         (b_nz : (Int64.unsigned b > 0)%Z),
  eval_expr ge sp cmenv memenv le (fp_modu64 expr_a expr_b)
            (Vlong (Int64.modu a b)).
Proof.
  intros.
  rewrite Int64.modu_divu; cycle 1.
  { intro Z.
    subst.
    rewrite Int64.unsigned_zero in b_nz.
    lia.
  }
  unfold fp_modu64.
  Local Opaque fp_divu64.
  repeat (econstructor + apply eval_lift + eassumption).
  { apply fp_divu64_correct;
    repeat (econstructor + apply eval_lift + eassumption).
  }
  cbn.
  rewrite Int64.mul_commut.
  reflexivity.
Qed.

Definition e_is_negl a := Eop (Ocmp (Ccomplimm Clt Int64.zero)) (a ::: Enil).
Definition e_xorw a b := Eop Oxor (a ::: b ::: Enil).
Definition e_negl a := Eop Onegl (a ::: Enil).
Definition e_absl a := Eop (Oabsdifflimm Int64.zero) (a ::: Enil).

Definition fp_divs64 a b :=
  Elet a (Elet (lift b)
    (Elet (fp_divu64 (e_absl (Eletvar (1%nat))) (e_absl (Eletvar (0%nat))))
          (e_ite Tlong (Ccompu0 Cne) (e_xorw (e_is_negl (Eletvar 2%nat))
                                            (e_is_negl (Eletvar 1%nat)))
                 (e_negl (Eletvar 0%nat)) (Eletvar 0%nat)))).

Lemma nonneg_signed_unsigned:
  forall x (x_NONNEG : (Int64.signed x >= 0)%Z),
    (Int64.signed x) = (Int64.unsigned x).
Proof.
  intros.
  pose proof (Int64.unsigned_range x).
  unfold Int64.signed in *.
  destruct zlt. reflexivity.
  change Int64.modulus with 18446744073709551616%Z in *.
  change Int64.half_modulus with 9223372036854775808%Z in *.
  lia.
Qed.

Lemma long_min_signed_unsigned :
  (- Int64.min_signed < Int64.max_unsigned)%Z.
Proof.
  reflexivity.
Qed.

Lemma long_divs_divu :
  forall a b
    (b_NOT0 : (Int64.signed b <> 0)%Z),
    Int64.divs a b = if xorb (Int64.lt a Int64.zero)
                           (Int64.lt b Int64.zero)
                   then Int64.neg (Int64.divu (ExtValues.long_abs a)
                                          (ExtValues.long_abs b))
                   else Int64.divu (ExtValues.long_abs a) (ExtValues.long_abs b).
Proof.
  intros.
  unfold Int64.divs, Int64.divu, Int64.lt, ExtValues.long_abs.
  pose proof (Int64.signed_range a) as a_RANGE.
  pose proof (Int64.signed_range b) as b_RANGE.
  change (Int64.signed Int64.zero) with 0%Z.
  destruct zlt.
  - cbn. rewrite (Z.abs_neq (Int64.signed a)) by lia.
    rewrite (Int64.unsigned_repr (- Int64.signed a)); cycle 1.
    { pose proof long_min_signed_unsigned. lia. }

    destruct zlt.
    + rewrite (Z.abs_neq (Int64.signed b)) by lia.
      rewrite Int64.unsigned_repr ; cycle 1.
      { pose proof long_min_signed_unsigned. lia. }
      rewrite <- (Z.opp_involutive (Int64.signed b)) at 1.
      rewrite Z.quot_opp_r by lia.
      rewrite <- (Z.opp_involutive (Int64.signed a)) at 1.
      rewrite Z.quot_opp_l by lia.
      rewrite Z.quot_div_nonneg by lia.
      rewrite Z.opp_involutive.
      reflexivity.
      
    + rewrite (Z.abs_eq (Int64.signed b)) by lia.
      rewrite Int64.unsigned_repr ; cycle 1.
      { pose proof Int64.max_signed_unsigned. lia. }
      rewrite <- (Z.opp_involutive (Int64.signed a)) at 1.
      rewrite Z.quot_opp_l by lia.
      rewrite Z.quot_div_nonneg by lia.
      rewrite Int64.neg_repr.
      reflexivity.
    
  - cbn. rewrite (Z.abs_eq (Int64.signed a)) by lia.
    rewrite (Int64.unsigned_repr (Int64.signed a)); cycle 1.
    { pose proof Int64.max_signed_unsigned. lia. }
    destruct zlt.
    + rewrite (Z.abs_neq (Int64.signed b)) by lia.
      rewrite Int64.unsigned_repr ; cycle 1.
      { pose proof long_min_signed_unsigned. lia. }
      rewrite Int64.neg_repr.
      rewrite <- (Z.opp_involutive (Int64.signed b)) at 1.
      rewrite Z.quot_opp_r by lia.
      rewrite Z.quot_div_nonneg by lia.
      reflexivity.
      
    + rewrite (Z.abs_eq (Int64.signed b)) by lia.
      rewrite Int64.unsigned_repr ; cycle 1.
      { pose proof Int64.max_signed_unsigned. lia. }
      rewrite Z.quot_div_nonneg by lia.
      reflexivity.
Qed.

Lemma nonzero_unsigned_signed :
  forall b, (Int64.unsigned b > 0 -> Int64.signed b <> 0)%Z.
Proof.
  intros b GT EQ.
  rewrite Int64.unsigned_signed in GT.
  unfold Int64.lt in GT.
  rewrite Int64.signed_zero in GT.
  destruct zlt in GT; lia.
Qed.

Theorem fp_divs64_correct :
  forall (ge : genv)  (sp: val) cmenv memenv
         (le : letenv) (expr_a expr_b : expr) (a b : int64)
         (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vlong a))
         (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vlong b))
         (b_nz : (Int64.unsigned b > 0)%Z),
  eval_expr ge sp cmenv memenv le (fp_divs64 expr_a expr_b)
            (Vlong (Int64.divs a b)).
Proof.
  intros.
  unfold fp_divs64.
  Local Opaque fp_divu64.
  repeat (econstructor + apply eval_lift + eassumption).
  apply fp_divu64_correct.
  all: repeat (econstructor + apply eval_lift + eassumption).
  { unfold ExtValues.long_absdiff, ExtValues.Z_abs_diff.
    rewrite Int64.signed_zero. rewrite Z.sub_0_r.
    rewrite Int64.unsigned_repr.
    { pose proof (nonzero_unsigned_signed b b_nz).
      lia.
    }
    pose proof Int64.max_signed_unsigned.
    pose proof long_min_signed_unsigned.
    pose proof (Int64.signed_range b).
    lia.
  }
  cbn.
  rewrite long_divs_divu ; cycle 1.
  { apply nonzero_unsigned_signed. assumption. }
  unfold Int64.lt, ExtValues.long_abs, ExtValues.long_absdiff, ExtValues.Z_abs_diff.
  change (Int64.signed Int64.zero) with 0%Z.
  repeat rewrite Z.sub_0_r.
  destruct zlt; destruct zlt; reflexivity.
Qed.

Lemma long_mods_modu :
  forall a b
    (b_NOT0 : (Int64.signed b <> 0)%Z),
    Int64.mods a b = if Int64.lt a Int64.zero
                   then Int64.neg (Int64.modu (ExtValues.long_abs a)
                                          (ExtValues.long_abs b))
                   else Int64.modu (ExtValues.long_abs a) (ExtValues.long_abs b).
Proof.
  intros.
  unfold Int64.mods, Int64.modu, Int64.lt, ExtValues.long_abs.
  pose proof (Int64.signed_range a) as a_RANGE.
  pose proof (Int64.signed_range b) as b_RANGE.
  change (Int64.signed Int64.zero) with 0%Z.
  destruct zlt.
  - cbn. rewrite (Z.abs_neq (Int64.signed a)) by lia.
    rewrite (Int64.unsigned_repr (- Int64.signed a)); cycle 1.
    { pose proof long_min_signed_unsigned. lia. }

    destruct (zlt (Int64.signed b) 0%Z).
    + rewrite (Z.abs_neq (Int64.signed b)) by lia.
      rewrite Int64.unsigned_repr ; cycle 1.
      { pose proof long_min_signed_unsigned. lia. }
      rewrite <- (Z.opp_involutive (Int64.signed b)) at 1.
      rewrite Z.rem_opp_r by lia.
      rewrite <- (Z.opp_involutive (Int64.signed a)) at 1.
      rewrite Z.rem_opp_l by lia.
      rewrite Z.rem_mod_nonneg by lia.
      rewrite Int64.neg_repr.
      reflexivity.
      
    + rewrite (Z.abs_eq (Int64.signed b)) by lia.
      rewrite Int64.unsigned_repr ; cycle 1.
      { pose proof Int64.max_signed_unsigned. lia. }
      rewrite <- (Z.opp_involutive (Int64.signed a)) at 1.
      rewrite Z.rem_opp_l by lia.
      rewrite Z.rem_mod_nonneg by lia.
      rewrite Int64.neg_repr.
      reflexivity.
    
  - cbn. rewrite (Z.abs_eq (Int64.signed a)) by lia.
    rewrite (Int64.unsigned_repr (Int64.signed a)); cycle 1.
    { pose proof Int64.max_signed_unsigned. lia. }
    destruct (zlt (Int64.signed b) 0%Z).
    + rewrite (Z.abs_neq (Int64.signed b)) by lia.
      rewrite Int64.unsigned_repr ; cycle 1.
      { pose proof long_min_signed_unsigned. lia. }
      rewrite <- (Z.opp_involutive (Int64.signed b)) at 1.
      rewrite Z.rem_opp_r by lia.
      rewrite Z.rem_mod_nonneg by lia.
      reflexivity.
      
    + rewrite (Z.abs_eq (Int64.signed b)) by lia.
      rewrite Int64.unsigned_repr ; cycle 1.
      { pose proof Int64.max_signed_unsigned. lia. }
      rewrite Z.rem_mod_nonneg by lia.
      reflexivity.
Qed.

Definition fp_mods64z a b :=
  Elet a (Elet (lift b)
    (Elet (fp_modu64 (e_absl (Eletvar (1%nat))) (e_absl (Eletvar (0%nat))))
          (e_ite Tlong (Ccompl0 Clt) (Eletvar 2%nat)
                 (e_negl (Eletvar 0%nat)) (Eletvar 0%nat)))).

Theorem fp_mods64z_correct :
  forall (ge : genv)  (sp: val) cmenv memenv
         (le : letenv) (expr_a expr_b : expr) (a b : int64)
         (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vlong a))
         (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vlong b))
         (b_nz : (Int64.unsigned b > 0)%Z),
  eval_expr ge sp cmenv memenv le (fp_mods64z expr_a expr_b)
            (Vlong (Int64.mods a b)).
Proof.
  intros.
  unfold fp_mods64z.
  Local Opaque fp_modu64.
  repeat (econstructor + apply eval_lift + eassumption).
  apply fp_modu64_correct.
  all: repeat (econstructor + apply eval_lift + eassumption).
  { unfold ExtValues.long_absdiff, ExtValues.Z_abs_diff.
    rewrite Int64.signed_zero. rewrite Z.sub_0_r.
    rewrite Int64.unsigned_repr.
    { pose proof (nonzero_unsigned_signed b b_nz).
      lia.
    }
    pose proof Int64.max_signed_unsigned.
    pose proof long_min_signed_unsigned.
    pose proof (Int64.signed_range b).
    lia.
  }
  cbn.
  rewrite long_mods_modu ; cycle 1.
  { apply nonzero_unsigned_signed. assumption. }
  unfold Int64.lt, ExtValues.long_abs, ExtValues.long_absdiff, ExtValues.Z_abs_diff.
  change (Int64.signed Int64.zero) with 0%Z.
  repeat rewrite Z.sub_0_r.
  destruct zlt; reflexivity. 
Qed.

Definition fp_mods64 a b :=
  Elet a (Elet (lift b)
    (Elet (fp_divs64 (Eletvar (1%nat)) (Eletvar (0%nat)))
          (e_msubl (Eletvar 2%nat) (Eletvar 1%nat) (Eletvar 0%nat)))).

Theorem fp_mods64_correct :
  forall (ge : genv)  (sp: val) cmenv memenv
         (le : letenv) (expr_a expr_b : expr) (a b : int64)
         (EVAL_a : eval_expr ge sp cmenv memenv le expr_a (Vlong a))
         (EVAL_b : eval_expr ge sp cmenv memenv le expr_b (Vlong b))
         (b_nz : (Int64.unsigned b > 0)%Z),
  eval_expr ge sp cmenv memenv le (fp_mods64 expr_a expr_b)
            (Vlong (Int64.mods a b)).
Proof.
  intros.
  rewrite Int64.mods_divs.
  unfold fp_mods64.
  Local Opaque fp_divs64.
  repeat (econstructor + apply eval_lift + eassumption).
  { apply fp_divs64_correct;
    repeat (econstructor + apply eval_lift + eassumption).
  }
  cbn.
  rewrite Int64.mul_commut.
  reflexivity.
Qed.