aboutsummaryrefslogtreecommitdiffstats
path: root/kvx/lib/RTLpathSE_impl_junk.v
blob: 1831b3fcf2c07deb5d9dda12c8bbce28b7451079 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
(** Implementation and refinement of the symbolic execution

* a JUNK VERSION WITHOUT ANY FORMAL PROOF !!!

 *)

Require Import Coqlib Maps Floats.
Require Import AST Integers Values Events Memory Globalenvs Smallstep.
Require Import Op Registers.
Require Import RTL RTLpath.
Require Import Errors Duplicate.
Require Import RTLpathSE_theory RTLpathLivegenproof.
Require Import Axioms.

Local Open Scope error_monad_scope.
Local Open Scope option_monad_scope.

Require Export Impure.ImpHCons.
Export Notations.
Import HConsing.

Local Open Scope impure.

Import ListNotations.
Local Open Scope list_scope.

Ltac wlp_intros varname hname := apply wlp_unfold; intros varname hname.
Ltac wlp_step_bind varname hname := apply wlp_bind; wlp_intros varname hname.

(** * Implementation of Data-structure use in Hash-consing *)

(** ** Implementation of symbolic values/symbolic memories with hash-consing data *)

Inductive hsval :=
  | HSinput (r: reg) (hid:hashcode)
  | HSop (op:operation) (hlsv: hlist_sval)  (hsm: hsmem) (hid:hashcode)
  | HSload (hsm: hsmem) (trap: trapping_mode) (chunk: memory_chunk) (addr:addressing) (hlsv:hlist_sval) (hid:hashcode)
with hlist_sval := 
  | HSnil (hid:hashcode)
  | HScons (hsv: hsval) (hlsv: hlist_sval) (hid:hashcode)
(* symbolic memory *)
with hsmem :=
  | HSinit (hid:hashcode)
  | HSstore (hsm: hsmem) (chunk:memory_chunk) (addr:addressing) (hlsv:hlist_sval) (srce: hsval) (hid:hashcode).

Scheme hsval_mut := Induction for hsval Sort Prop
with hlist_sval_mut := Induction for hlist_sval Sort Prop
with hsmem_mut := Induction for hsmem Sort Prop.

Definition hsval_get_hid (hsv: hsval): hashcode :=
  match hsv with
  | HSinput _ hid => hid
  | HSop _ _ _ hid => hid
  | HSload _ _ _ _ _ hid => hid
  end.

Definition hlist_sval_get_hid (hlsv: hlist_sval): hashcode :=
  match hlsv with
  | HSnil hid => hid
  | HScons _ _ hid => hid
  end.

Definition hsmem_get_hid (hsm: hsmem ): hashcode :=
  match hsm with
  | HSinit hid => hid
  | HSstore _ _ _ _ _ hid => hid
  end.

Definition hsval_set_hid (hsv: hsval) (hid: hashcode): hsval :=
  match hsv with
  | HSinput r _ => HSinput r hid
  | HSop o hlsv hsm _ => HSop o hlsv hsm hid
  | HSload hsm trap chunk addr hlsv _ => HSload hsm trap chunk addr hlsv hid
  end.

Definition hlist_sval_set_hid (hlsv: hlist_sval) (hid: hashcode): hlist_sval :=
  match hlsv with
  | HSnil _ => HSnil hid
  | HScons hsv hlsv _ => HScons hsv hlsv hid
  end.

Definition hsmem_set_hid (hsm: hsmem ) (hid: hashcode): hsmem :=
  match hsm with
  | HSinit _ => HSinit hid
  | HSstore hsm chunk addr hlsv srce _ => HSstore hsm chunk addr hlsv srce hid
  end.

(* Now, we build the hash-Cons value from a "hash_eq".

Informal specification: 
  [hash_eq] must be consistent with the "hashed" constructors defined above.

We expect that hashinfo values in the code of these "hashed" constructors verify:

  (hash_eq (hdata x) (hdata y) ~> true) <-> (hcodes x)=(hcodes y)
*)

Definition hsval_hash_eq (sv1 sv2: hsval): ?? bool :=
  match sv1, sv2 with
  | HSinput r1 _, HSinput r2 _ => struct_eq r1 r2 (* NB: really need a struct_eq here ? *)
  | HSop op1 lsv1 sm1 _, HSop op2 lsv2 sm2 _  =>
     DO b1 <~ phys_eq lsv1 lsv2;;
     DO b2 <~ phys_eq sm1 sm2;;
     if b1 && b2 
     then struct_eq op1 op2 (* NB: really need a struct_eq here ? *)
     else RET false
  | HSload sm1 trap1 chk1 addr1 lsv1 _, HSload sm2 trap2 chk2 addr2 lsv2 _ =>
     DO b1 <~ phys_eq lsv1 lsv2;;
     DO b2 <~ phys_eq sm1 sm2;;
     DO b3 <~ struct_eq trap1 trap2;;
     DO b4 <~ struct_eq chk1 chk2;;
     if b1 && b2 && b3 && b4
     then struct_eq addr1 addr2
     else RET false
  | _,_ => RET false
  end.

Definition hlist_sval_hash_eq (lsv1 lsv2: hlist_sval): ?? bool :=
  match lsv1, lsv2 with
  | HSnil _, HSnil _ => RET true
  | HScons sv1 lsv1' _, HScons sv2 lsv2' _  =>
     DO b <~ phys_eq lsv1' lsv2';;
     if b 
     then phys_eq sv1 sv2
     else RET false
  | _,_ => RET false
  end.

Definition hsmem_hash_eq (sm1 sm2: hsmem): ?? bool :=
  match sm1, sm2 with
  | HSinit _, HSinit _ => RET true
  | HSstore sm1 chk1 addr1 lsv1 sv1 _, HSstore sm2 chk2 addr2 lsv2 sv2 _ =>
     DO b1 <~ phys_eq lsv1 lsv2;;
     DO b2 <~ phys_eq sm1 sm2;;
     DO b3 <~ phys_eq sv1 sv2;;
     DO b4 <~ struct_eq chk1 chk2;;
     if b1 && b2 && b3 && b4
     then struct_eq addr1 addr2
     else RET false
  | _,_ => RET false
  end.

Definition hSVAL: hashP hsval := {| hash_eq := hsval_hash_eq; get_hid:=hsval_get_hid; set_hid:=hsval_set_hid |}. 
Definition hLSVAL: hashP hlist_sval := {| hash_eq := hlist_sval_hash_eq; get_hid:= hlist_sval_get_hid; set_hid:= hlist_sval_set_hid |}.
Definition hSMEM: hashP hsmem := {| hash_eq := hsmem_hash_eq; get_hid:= hsmem_get_hid; set_hid:= hsmem_set_hid |}.

Program Definition mk_hash_params: Dict.hash_params hsval :=
 {|
    Dict.test_eq := phys_eq;
    Dict.hashing := fun (ht: hsval) => RET (hsval_get_hid ht);
    Dict.log := fun _ => RET () (* NB no log *) |}.
Obligation 1.
  wlp_simplify.
Qed.


(* Symbolic final value -- from hash-consed values
It does not seem useful to hash-consed these final values (because they are final).
*)
Inductive hsfval :=
  | HSnone
  | HScall (sig:signature) (svos: hsval + ident) (lsv:hlist_sval) (res:reg) (pc:node)
  | HStailcall (sig:signature) (svos: hsval + ident) (lsv:hlist_sval)
  | HSbuiltin (ef:external_function) (sargs: list (builtin_arg hsval)) (res: builtin_res reg) (pc:node)
  | HSjumptable (sv: hsval) (tbl: list node)
  | HSreturn (res:option hsval)
.

(** ** Implementation of symbolic states 
*)

(** name : Hash-consed Symbolic Internal state local.  *)
Record hsistate_local := 
  { 
    (** [hsi_smem] represents the current smem symbolic evaluations.
        (we can recover the previous one from smem)  *)
    hsi_smem:> hsmem;
    (** For the values in registers:
        1) we store a list of sval evaluations
        2) we encode the symbolic regset by a PTree *)
    hsi_ok_lsval: list hsval;
    hsi_sreg:> PTree.t hsval
  }.

(* Syntax and semantics of symbolic exit states *)
Record hsistate_exit := mk_hsistate_exit
  { hsi_cond: condition; hsi_scondargs: hlist_sval; hsi_elocal: hsistate_local; hsi_ifso: node }.


(** ** Syntax and Semantics of symbolic internal state *)
Record hsistate := { hsi_pc: node; hsi_exits: list hsistate_exit; hsi_local: hsistate_local }.

(** ** Syntax and Semantics of symbolic state *)
Record hsstate := { hinternal:> hsistate; hfinal: hsfval }.

Fixpoint hsval_proj hsv :=
  match hsv with
  | HSinput r _ => Sinput r
  | HSop op hl hm _ => Sop op (hsval_list_proj hl) (hsmem_proj hm)
  | HSload hm t chk addr hl _ => Sload (hsmem_proj hm) t chk addr (hsval_list_proj hl)
  end
with hsval_list_proj hl :=
  match hl with
  | HSnil _ => Snil
  | HScons hv hl _ => Scons (hsval_proj hv) (hsval_list_proj hl)
  end
with hsmem_proj hm :=
  match hm with
  | HSinit _ => Sinit
  | HSstore hm chk addr hl hv _ => Sstore (hsmem_proj hm) chk addr (hsval_list_proj hl) (hsval_proj hv)
  end.

(** * Implementation of symbolic execution *)
Section CanonBuilding.

Variable hC_hsval: hashinfo hsval -> ?? hsval.

(** FIXME - maybe it's not what we want ? *)
Hypothesis hC_hsval_correct: forall hs rhsv,
  hC_hsval hs ~~> rhsv ->
  (hsval_proj (hdata hs)) = (hsval_proj rhsv).

Variable hC_hlist_sval: hashinfo hlist_sval -> ?? hlist_sval.

Hypothesis hC_hlist_sval_correct: forall hs rhsv,
  hC_hlist_sval hs ~~> rhsv ->
  (hsval_list_proj (hdata hs)) = (hsval_list_proj rhsv).

Variable hC_hsmem: hashinfo hsmem -> ?? hsmem.

Hypothesis hC_hsmem_correct: forall hs rhsv,
  hC_hsmem hs ~~> rhsv ->
  (hsmem_proj (hdata hs)) = (hsmem_proj rhsv).

(* First, we wrap constructors for hashed values !*)

Definition reg_hcode := 1.
Definition op_hcode := 2.
Definition load_hcode := 3.

Definition hSinput_hcodes (r: reg) :=
   DO hc <~ hash reg_hcode;;
   DO hv <~ hash r;;
   RET [hc;hv].
Extraction Inline hSinput_hcodes.

Definition hSinput (r:reg): ?? hsval :=
   DO hv <~ hSinput_hcodes r;;
   hC_hsval {| hdata:=HSinput r unknown_hid; hcodes :=hv; |}.


Definition hSop_hcodes (op:operation) (hlsv: hlist_sval)  (hsm: hsmem) :=
   DO hc <~ hash op_hcode;;
   DO hv <~ hash op;;
   RET [hc;hv;hlist_sval_get_hid hlsv; hsmem_get_hid hsm].
Extraction Inline hSop_hcodes.

Definition hSop (op:operation) (hlsv: hlist_sval)  (hsm: hsmem): ?? hsval :=
   DO hv <~ hSop_hcodes op hlsv hsm;;
   hC_hsval {| hdata:=HSop op hlsv hsm unknown_hid; hcodes :=hv |}.


Definition hSload_hcodes (hsm: hsmem) (trap: trapping_mode) (chunk: memory_chunk) (addr:addressing) (hlsv:hlist_sval):=
   DO hc <~ hash load_hcode;;
   DO hv1 <~ hash trap;;
   DO hv2 <~ hash chunk;;
   DO hv3 <~ hash addr;;
   RET [hc;hsmem_get_hid hsm;hv1;hv2;hv3;hlist_sval_get_hid hlsv].
Extraction Inline hSload_hcodes.

Definition hSload (hsm: hsmem) (trap: trapping_mode) (chunk: memory_chunk) (addr:addressing) (hlsv:hlist_sval): ?? hsval :=
   DO hv <~ hSload_hcodes hsm trap chunk addr hlsv;;
   hC_hsval {| hdata:=HSload hsm trap chunk addr hlsv unknown_hid; hcodes :=hv |}.


Definition hSnil (_: unit): ?? hlist_sval :=
   hC_hlist_sval {| hdata:=HSnil unknown_hid; hcodes := nil |}.

Definition hScons (hsv: hsval) (hlsv: hlist_sval): ?? hlist_sval :=
   hC_hlist_sval {| hdata:=HScons hsv hlsv unknown_hid; hcodes := [hsval_get_hid hsv; hlist_sval_get_hid hlsv] |}.

Definition hSinit (_: unit): ?? hsmem :=
   hC_hsmem {| hdata:=HSinit unknown_hid; hcodes := nil |}.

Definition hSstore_hcodes (hsm: hsmem) (chunk: memory_chunk) (addr:addressing) (hlsv:hlist_sval) (srce: hsval):=
   DO hv1 <~ hash chunk;;
   DO hv2 <~ hash addr;;
   RET [hsmem_get_hid hsm;hv1;hv2;hlist_sval_get_hid hlsv;hsval_get_hid srce].
Extraction Inline hSstore_hcodes.

Definition hSstore (hsm: hsmem) (chunk:memory_chunk) (addr:addressing) (hlsv:hlist_sval) (srce: hsval): ?? hsmem :=
   DO hv <~ hSstore_hcodes hsm chunk addr hlsv srce;;
   hC_hsmem {| hdata:=HSstore hsm chunk addr hlsv srce unknown_hid; hcodes := hv |}.


Definition hsi_sreg_get (hst: PTree.t hsval) r: ?? hsval :=
   match PTree.get r hst with 
   | None => hSinput r
   | Some sv => RET sv
   end.

Fixpoint hlist_args (hst: PTree.t hsval) (l: list reg): ?? hlist_sval :=
  match l with
  | nil => hSnil()
  | r::l =>
    DO v <~ hsi_sreg_get hst r;;
    DO hlsv <~ hlist_args hst l;;
    hScons v hlsv
  end.

(** ** Assignment of memory *)
Definition hslocal_store (hst:hsistate_local) chunk addr args src: ?? hsistate_local :=
   let pt := hst.(hsi_sreg) in
   DO hargs <~ hlist_args pt args;;
   DO hsrc <~ hsi_sreg_get pt src;;
   DO hm <~ hSstore hst chunk addr hargs hsrc;;
   RET {| hsi_smem := hm;
         hsi_ok_lsval := hsi_ok_lsval hst;
         hsi_sreg:= hsi_sreg hst
       |}.

(** ** Assignment of local state *)

Definition hsist_set_local (hst: hsistate) (pc: node) (hnxt: hsistate_local): hsistate :=
   {| hsi_pc := pc; hsi_exits := hst.(hsi_exits); hsi_local:= hnxt |}.

(** ** Assignment of registers *)

(* locally new symbolic values during symbolic execution *)
Inductive root_sval: Type :=
| Rop (op:operation)
| Rload (trap: trapping_mode) (chunk:memory_chunk) (addr:addressing)
.

Definition root_apply (rsv: root_sval) (lsv: list reg) (hst: hsistate_local) : ?? hsval :=
  DO hlsv <~ hlist_args hst lsv;;
  match rsv with
  | Rop op => hSop op hlsv hst
  | Rload trap chunk addr => hSload hst trap chunk addr hlsv
  end.

Local Open Scope lazy_bool_scope.

(* NB: return [false] if the rsv cannot fail *)
Definition may_trap (rsv: root_sval) (lsv: list reg): bool :=
  match rsv with 
  | Rop op => is_trapping_op op ||| negb (Nat.eqb (length lsv) (args_of_operation op))  (* cf. lemma is_trapping_op_sound *)
  | Rload TRAP _ _  => true
  | _ => false
  end.

(* simplify a symbolic value before assignment to a register *)
Definition simplify (rsv: root_sval) (lsv: list reg) (hst: hsistate_local): ?? hsval :=
  match rsv with
  | Rop op =>
     match is_move_operation op lsv with
     | Some arg => hsi_sreg_get hst arg (* optimization of Omove *)
     | None =>
       DO hsi <~ hSinit ();;
       DO hlsv <~ hlist_args hst lsv;;
       hSop op hlsv hsi (* magically remove the dependency on sm ! *)
     end
  | Rload _ chunk addr => 
       DO hlsv <~ hlist_args hst lsv;;
       hSload hst NOTRAP chunk addr hlsv
  end.

Definition red_PTree_set (r:reg) (sv: hsval) (hst: PTree.t hsval): PTree.t hsval :=
  match sv with
  | HSinput r' _ =>
     if Pos.eq_dec r r' 
     then PTree.remove r' hst
     else PTree.set r sv hst
  | _ => PTree.set r sv hst
  end.

Definition hslocal_set_sreg (hst:hsistate_local) (r:reg) (rsv:root_sval) lsv: ?? hsistate_local :=
  DO hsiok <~ 
   (if may_trap rsv lsv
    then DO hv <~ root_apply rsv lsv hst;; RET (hv::(hsi_ok_lsval hst))
    else RET (hsi_ok_lsval hst));;
  DO simp <~ simplify rsv lsv hst;;
  RET {| hsi_smem := hst;
         hsi_ok_lsval := hsiok;
         hsi_sreg := red_PTree_set r simp (hsi_sreg hst) |}.

(** ** Execution of one instruction *)

Definition hsiexec_inst (i: instruction) (hst: hsistate): ?? (option hsistate) := 
  match i with
  | Inop pc' => 
      RET (Some (hsist_set_local hst pc' hst.(hsi_local)))
  | Iop op args dst pc' =>
      DO next <~ hslocal_set_sreg hst.(hsi_local) dst (Rop op) args;;
      RET (Some (hsist_set_local hst pc' next))
  | Iload trap chunk addr args dst pc' =>
      DO next <~ hslocal_set_sreg hst.(hsi_local) dst (Rload trap chunk addr) args;;
      RET (Some (hsist_set_local hst pc' next))
  | Istore chunk addr args src pc' =>
      DO next <~ hslocal_store hst.(hsi_local) chunk addr args src;;
      RET (Some (hsist_set_local hst pc' next))
  | Icond cond args ifso ifnot _ =>
      let prev := hst.(hsi_local) in
      DO vargs <~ hlist_args prev args ;;
      let ex := {| hsi_cond:=cond; hsi_scondargs:=vargs; hsi_elocal := prev; hsi_ifso := ifso |} in
      RET (Some {| hsi_pc := ifnot; hsi_exits := ex::hst.(hsi_exits); hsi_local := prev |})
  | _ => RET None (* TODO jumptable ? *)
  end.

Definition some_or_fail {A} (o: option A) (msg: pstring): ?? A :=
  match o with
  | Some x => RET x
  | None => FAILWITH msg
  end.

Fixpoint hsiexec_path (path:nat) (f: function) (hst: hsistate): ?? hsistate :=
  match path with
  | O => RET hst
  | S p =>
    DO i <~ some_or_fail ((fn_code f)!(hst.(hsi_pc))) "hsiexec_path.internal_error.1";;
    DO ohst1 <~ hsiexec_inst i hst;;
    DO hst1 <~ some_or_fail ohst1 "hsiexec_path.internal_error.2";;
    hsiexec_path p f hst1
  end.

Fixpoint hbuiltin_arg (hst: PTree.t hsval) (arg : builtin_arg reg): ?? builtin_arg hsval := 
  match arg with
  | BA r => 
         DO v <~ hsi_sreg_get hst r;;
         RET (BA v)
  | BA_int n => RET (BA_int n)
  | BA_long n => RET (BA_long n)
  | BA_float f0 => RET (BA_float f0)
  | BA_single s => RET (BA_single s)
  | BA_loadstack chunk ptr => RET (BA_loadstack chunk ptr)
  | BA_addrstack ptr => RET (BA_addrstack ptr)
  | BA_loadglobal chunk id ptr => RET (BA_loadglobal chunk id ptr)
  | BA_addrglobal id ptr => RET (BA_addrglobal id ptr)
  | BA_splitlong ba1 ba2 => 
    DO v1 <~ hbuiltin_arg hst ba1;;
    DO v2 <~ hbuiltin_arg hst ba2;;
    RET (BA_splitlong v1 v2)
  | BA_addptr ba1 ba2 => 
    DO v1 <~ hbuiltin_arg hst ba1;;
    DO v2 <~ hbuiltin_arg hst ba2;;
    RET (BA_addptr v1 v2)
  end.

Fixpoint hbuiltin_args (hst: PTree.t hsval) (args: list (builtin_arg reg)): ?? list (builtin_arg hsval) :=
  match args with
  | nil => RET nil
  | a::l =>
    DO ha <~ hbuiltin_arg hst a;;
    DO hl <~ hbuiltin_args hst l;;
    RET (ha::hl)
    end.

Definition hsum_left (hst: PTree.t hsval) (ros: reg + ident): ?? (hsval + ident) :=
  match ros with
  | inl r => DO hr <~ hsi_sreg_get hst r;; RET (inl hr) 
  | inr s => RET (inr s)
  end.



(** * The simulation test of concrete hash-consed symbolic execution *)

Definition phys_check {A} (x y:A) (msg: pstring): ?? unit :=
  DO b <~ phys_eq x y;;
  assert_b b msg;;
  RET tt.

Definition struct_check {A} (x y:A) (msg: pstring): ?? unit :=
  DO b <~ struct_eq x y;;
  assert_b b msg;;
  RET tt.

Definition option_eq_check {A} (o1 o2: option A): ?? unit :=
  match o1, o2 with
  | Some x1, Some x2 => phys_check x1 x2 "option_eq_check: data physically differ"
  | None, None => RET tt
  | _, _ => FAILWITH "option_eq_check: structure differs"
  end.

Lemma option_eq_check_correct A (o1 o2: option A): WHEN option_eq_check o1 o2 ~> _ THEN o1=o2.
Proof.
  wlp_simplify.
Qed.
Global Opaque option_eq_check.
(* Global *) Hint Resolve option_eq_check_correct:wlp.

Import PTree.

Fixpoint PTree_eq_check {A} (d1 d2: PTree.t A): ?? unit :=
  match d1, d2 with
  | Leaf, Leaf => RET tt
  | Node l1 o1 r1, Node l2 o2 r2 =>
      option_eq_check o1 o2;;
      PTree_eq_check l1 l2;;
      PTree_eq_check r1 r2
  | _, _ => FAILWITH "PTree_eq_check: some key is absent"
  end.

Lemma PTree_eq_check_correct A d1: forall (d2: t A),
 WHEN PTree_eq_check d1 d2 ~> _ THEN forall x, PTree.get x d1 = PTree.get x d2.
Proof.
  induction d1 as [|l1 Hl1 o1 r1 Hr1]; destruct d2 as [|l2 o2 r2]; simpl; 
  wlp_simplify. destruct x; simpl; auto.
Qed.
Global Opaque PTree_eq_check.

Fixpoint PTree_frame_eq_check {A} (frame: list positive) (d1 d2: PTree.t A): ?? unit :=
  match frame with
  | nil => RET tt
  | k::l => 
    option_eq_check (PTree.get k d1) (PTree.get k d2);;
    PTree_frame_eq_check l d1 d2
  end.

Lemma PTree_frame_eq_check_correct A l (d1 d2: t A):
 WHEN PTree_frame_eq_check l d1 d2 ~> _ THEN forall x, List.In x l -> PTree.get x d1 = PTree.get x d2.
Proof.
  induction l as [|k l]; simpl; wlp_simplify.
  subst; auto.
Qed.
Global Opaque PTree_frame_eq_check.

(** hsilocal_simu_check and properties *)

Lemma ssem_local_sok ge sp rs0 m0 st rs m:
  ssem_local ge sp st rs0 m0 rs m -> sok_local ge sp rs0 m0 st.
Proof.
  unfold sok_local, ssem_local. 
  intuition congruence.
Qed.

Definition seval_hsval ge sp hsv rs0 m0 := seval_sval ge sp (hsval_proj hsv) rs0 m0.
Definition seval_hsmem ge sp hsm rs0 m0 := seval_smem ge sp (hsmem_proj hsm) rs0 m0.

Definition hsi_sreg_eval ge sp (hst: PTree.t hsval) r rs0 m0: option val :=
   match PTree.get r hst with
   | None => Some (Regmap.get r rs0)
   | Some hsv => seval_hsval ge sp hsv rs0 m0
   end.

Lemma hsi_sreg_eval_correct ge sp hst r rs0 m0:
  WHEN hsi_sreg_get hst r ~> hv THEN
  hsi_sreg_eval ge sp hst r rs0 m0 = seval_hsval ge sp hv rs0 m0.
Proof.
  wlp_simplify.
  - unfold hsi_sreg_eval. rewrite H. reflexivity.
  - unfold hsi_sreg_eval. rewrite H. eapply hC_hsval_correct in Hexta1.
    simpl in Hexta1. unfold seval_hsval. rewrite <- Hexta1. simpl. reflexivity.
Qed.
Hint Resolve hsi_sreg_eval_correct: wlp.

Definition hsok_local ge sp rs0 m0 (hst: hsistate_local) : Prop :=
     (forall hsv, List.In hsv (hsi_ok_lsval hst) -> seval_hsval ge sp hsv rs0 m0 <> None).

(* refinement link between a (st: sistate_local) and (hst: hsistate_local) *)
Definition hsilocal_refines ge sp rs0 m0 (hst: hsistate_local) (st: sistate_local) :=
      (sok_local ge sp rs0 m0 st <-> hsok_local ge sp rs0 m0 hst) 
  /\  (hsok_local ge sp rs0 m0 hst -> seval_hsmem ge sp (hsi_smem hst) rs0 m0 = seval_smem ge sp st.(si_smem) rs0 m0)
  /\  (hsok_local ge sp rs0 m0 hst -> forall r, hsi_sreg_eval ge sp hst r rs0 m0 = seval_sval ge sp (si_sreg st r) rs0 m0)
  /\  (forall r sv, hst ! r = Some sv -> In sv (hsi_ok_lsval hst)).

Lemma ssem_local_refines_hok ge sp rs0 m0 hst st rs m:
  ssem_local ge sp st rs0 m0 rs m -> hsilocal_refines ge sp rs0 m0 hst st -> hsok_local ge sp rs0 m0 hst.
Proof.
  intros H0 (H1 & _ & _). apply H1. eapply ssem_local_sok. eauto.
Qed.

Definition hsilocal_simu_core (oalive: option Regset.t) (hst1 hst2: hsistate_local) :=
     incl (hsi_ok_lsval hst2) (hsi_ok_lsval hst1)
  /\ (forall r, (match oalive with Some alive => Regset.In r alive | _ => True end) -> (* hsi_sreg_get hst2 r = hsi_sreg_get hst1 r *)
              PTree.get r hst2 = PTree.get r hst1)
  /\ hsi_smem hst1 = hsi_smem hst2.

Lemma hseval_preserved ge ge' rs0 m0 sp hsv:
  (forall s, Genv.find_symbol ge' s = Genv.find_symbol ge s) ->
  seval_hsval ge sp hsv rs0 m0 = seval_hsval ge' sp hsv rs0 m0.
Proof.
  intros. unfold seval_hsval. erewrite seval_preserved; eauto.
Qed.

Lemma hsmem_eval_preserved ge ge' rs0 m0 sp hsm:
  (forall s, Genv.find_symbol ge' s = Genv.find_symbol ge s) ->
  seval_hsmem ge sp hsm rs0 m0 = seval_hsmem ge' sp hsm rs0 m0.
Proof.
  intros. unfold seval_hsmem. erewrite smem_eval_preserved; eauto.
Qed.

Lemma hsilocal_simu_core_nofail ge1 ge2 of sp rs0 m0 hst1 hst2:
  hsilocal_simu_core of hst1 hst2 ->
  (forall s, Genv.find_symbol ge1 s = Genv.find_symbol ge2 s) ->
  hsok_local ge1 sp rs0 m0 hst1 ->
  hsok_local ge2 sp rs0 m0 hst2.
Proof.
  intros (RSOK & _ & _) GFS OKV.
  intros sv INS. apply RSOK in INS. apply OKV in INS. erewrite hseval_preserved; eauto.
Qed.

Remark istate_simulive_reflexive dm is: istate_simulive  (fun _ : Regset.elt => True) dm is is.
Proof.
  unfold istate_simulive. 
  repeat (constructor; auto).
Qed.

Definition seval_sval_partial ge sp rs0 m0 hsv :=
  match seval_hsval ge sp hsv rs0 m0 with
  | Some v => v
  | None => Vundef
  end.

Definition select_first (ox oy: option val) :=
  match ox with
  | Some v => Some v
  | None => oy
  end.

(** If the register was computed by hrs, evaluate the symbolic value from hrs.
    Else, take the value directly from rs0 *)
Definition seval_partial_regset ge sp rs0 m0 hrs :=
  let hrs_eval := PTree.map1 (seval_sval_partial ge sp rs0 m0) hrs in
  (fst rs0, PTree.combine select_first hrs_eval (snd rs0)).

Lemma seval_partial_regset_get ge sp rs0 m0 hrs r:
  (seval_partial_regset ge sp rs0 m0 hrs) # r =
  match (hrs ! r) with Some sv => seval_sval_partial ge sp rs0 m0 sv | None => (rs0 # r) end.
Proof.
  unfold seval_partial_regset. unfold Regmap.get. simpl.
  rewrite PTree.gcombine; [| simpl; reflexivity]. rewrite PTree.gmap1.
  destruct (hrs ! r); simpl; [reflexivity|].
  destruct ((snd rs0) ! r); reflexivity.
Qed.

Theorem hsilocal_simu_core_correct hst1 hst2 of ge1 ge2 sp rs0 m0 rs m st1 st2:
  hsilocal_simu_core of hst1 hst2 ->
  hsilocal_refines ge1 sp rs0 m0 hst1 st1 ->
  hsilocal_refines ge2 sp rs0 m0 hst2 st2 ->
  (forall s, Genv.find_symbol ge1 s = Genv.find_symbol ge2 s) ->
  ssem_local ge1 sp st1 rs0 m0 rs m ->
  match of with
  | None => ssem_local ge2 sp st2 rs0 m0 rs m
  | Some alive => 
      let rs' := seval_partial_regset ge2 sp rs0 m0 (hsi_sreg hst2)
      in ssem_local ge2 sp st2 rs0 m0 rs' m /\ eqlive_reg (fun r => Regset.In r alive) rs rs'
  end.
Proof.
  intros CORE HREF1 HREF2 GFS SEML.
  refine (modusponens _ _ (ssem_local_refines_hok _ _ _ _ _ _ _ _ _ _) _); eauto.
  intro HOK1.
  refine (modusponens _ _ (hsilocal_simu_core_nofail _ _ _ _ _ _ _ _ _ _ _) _); eauto.
  intro HOK2.
  destruct SEML as (PRE & MEMEQ & RSEQ).
  assert (SIPRE: si_pre st2 ge2 sp rs0 m0). { destruct HREF2 as (OKEQ & _ & _). rewrite <- OKEQ in HOK2. apply HOK2. }
  assert (SMEMEVAL: seval_smem ge2 sp (si_smem st2) rs0 m0 = Some m). {
    destruct HREF2 as (_ & MEMEQ2 & _). destruct HREF1 as (_ & MEMEQ1 & _).
    destruct CORE as (_ & _ & MEMEQ3).
    rewrite <- MEMEQ2; auto. rewrite <- MEMEQ3.
    erewrite hsmem_eval_preserved; [| eapply GFS].
    rewrite MEMEQ1; auto. }
  destruct of as [alive |].
  - constructor.
    + constructor; [assumption | constructor; [assumption|]].
      destruct HREF2 as (B & _ & A & PT).
      (** B, A and PT are used for the auto below *)
      assert (forall r : positive, hsi_sreg_eval ge2 sp hst2 r rs0 m0 = seval_sval ge2 sp (si_sreg st2 r) rs0 m0) by auto.
      intro r. rewrite <- H. clear H. rewrite seval_partial_regset_get. unfold hsi_sreg_eval.
      destruct (hst2 ! r) eqn:HST2; [| simpl; reflexivity].
      unfold seval_sval_partial.
      assert (seval_hsval ge2 sp h rs0 m0 <> None) by eauto.
      destruct (seval_hsval ge2 sp h rs0 m0); [reflexivity | contradiction].
    + intros r ALIVE. destruct HREF2 as (_ & _ & A & _). destruct HREF1 as (_ & _ & B & _).
      destruct CORE as (_ & C & _). rewrite seval_partial_regset_get.
      assert (OPT: forall (x y: val), Some x = Some y -> x = y) by congruence.
      destruct (hst2 ! r) eqn:HST2; apply OPT; clear OPT.
      ++ unfold seval_sval_partial.
         assert (seval_hsval ge2 sp h rs0 m0 = hsi_sreg_eval ge2 sp hst2 r rs0 m0). {
           unfold hsi_sreg_eval. rewrite HST2. reflexivity. }
         rewrite H. clear H.
         unfold hsi_sreg_eval. rewrite HST2.
         erewrite hseval_preserved; [| eapply GFS].
         unfold hsi_sreg_eval in B.
         generalize (B HOK1 r); clear B; intro B.
         rewrite <- C in B; eauto.
         rewrite HST2 in B.
         rewrite B, RSEQ.
         reflexivity.
      ++ rewrite <- RSEQ. rewrite <- B; [|assumption].
         unfold hsi_sreg_eval. rewrite <- C; [|assumption]. rewrite HST2. reflexivity.
  - constructor; [|constructor].
    + destruct HREF2 as (OKEQ & _ & _). rewrite <- OKEQ in HOK2. apply HOK2.
    + destruct HREF2 as (_ & MEMEQ2 & _). destruct HREF1 as (_ & MEMEQ1 & _).
      destruct CORE as (_ & _ & MEMEQ3).
      rewrite <- MEMEQ2; auto. rewrite <- MEMEQ3. erewrite hsmem_eval_preserved; [| eapply GFS].
      rewrite MEMEQ1; auto.
    + intro r. destruct HREF2 as (_ & _ & A & _). destruct HREF1 as (_ & _ & B & _).
      destruct CORE as (_ & C & _). rewrite <- A; auto.
      unfold hsi_sreg_eval. destruct (hst2 ! r) eqn:HST2.
      ++ assert (seval_hsval ge2 sp h rs0 m0 = hsi_sreg_eval ge2 sp hst2 r rs0 m0). {
           unfold hsi_sreg_eval. rewrite HST2. reflexivity. }
         rewrite H. clear H.
         unfold hsi_sreg_eval. rewrite HST2.
         erewrite hseval_preserved; [| eapply GFS].
         unfold hsi_sreg_eval in B.
         generalize (B HOK1 r); clear B; intro B.
         rewrite <- C in B; eauto. rewrite HST2 in B. rewrite B, RSEQ. reflexivity.
      ++ rewrite <- RSEQ. rewrite <- B; [|assumption].
         unfold hsi_sreg_eval. rewrite <- C; [|auto]. rewrite HST2. reflexivity.
Qed.

Definition hsilocal_simu_check hst1 hst2 : ?? unit :=
  phys_check (hsi_smem hst2) (hsi_smem hst1) "hsilocal_simu_check: hsi_smem sets aren't equiv";;
  Sets.assert_list_incl mk_hash_params (hsi_ok_lsval hst2) (hsi_ok_lsval hst1);;
  PTree_eq_check (hsi_sreg hst1) (hsi_sreg hst2).

Theorem hsilocal_simu_check_correct hst1 hst2:
  WHEN hsilocal_simu_check hst1 hst2 ~> tt THEN
  hsilocal_simu_core None hst1 hst2.
Proof.
  wlp_simplify. constructor; [|constructor]; [assumption | | congruence].
  intros. unfold hsi_sreg_get. rewrite (PTree_eq_check_correct _ hst1 hst2); [|eassumption].
  reflexivity.
Qed.
Hint Resolve hsilocal_simu_check_correct: wlp.
Global Opaque hsilocal_simu_check.

Definition hsilocal_frame_simu_check frame hst1 hst2 : ?? unit :=
  phys_check (hsi_smem hst2) (hsi_smem hst1) "hsilocal_frame_simu_check: hsi_smem sets aren't equiv";;
  Sets.assert_list_incl mk_hash_params (hsi_ok_lsval hst2) (hsi_ok_lsval hst1);;
  PTree_frame_eq_check frame (hsi_sreg hst1) (hsi_sreg hst2).

Lemma setoid_in {A: Type} (a: A): forall l,
  SetoidList.InA (fun x y => x = y) a l ->
  In a l.
Proof.
  induction l; intros; inv H.
  - constructor. reflexivity.
  - right. auto.
Qed.

Lemma regset_elements_in r rs:
  Regset.In r rs ->
  In r (Regset.elements rs).
Proof.
  intros. exploit Regset.elements_1; eauto. intro SIN.
  apply setoid_in. assumption.
Qed.

Local Hint Resolve PTree_frame_eq_check_correct: wlp.
Local Hint Resolve regset_elements_in: core.

Theorem hsilocal_frame_simu_check_correct hst1 hst2 alive:
  WHEN hsilocal_frame_simu_check (Regset.elements alive) hst1 hst2 ~> tt THEN
  hsilocal_simu_core (Some alive) hst1 hst2.
Proof.
  wlp_simplify. constructor; [|constructor]; [assumption | | congruence].
  intros. symmetry. eauto.
(*   rewrite (PTree_frame_eq_check_correct _ (Regset.elements alive) hst1 hst2); [reflexivity | eassumption | ].
  apply regset_elements_in. assumption. *)
Qed.
Hint Resolve hsilocal_frame_simu_check_correct: wlp.
Global Opaque hsilocal_frame_simu_check.

Definition init_hsistate_local (_:unit): ?? hsistate_local
  := DO hm <~ hSinit ();;
     RET {| hsi_smem := hm; hsi_ok_lsval := nil; hsi_sreg := PTree.empty hsval |}.

Remark hsinit_seval_hsmem ge sp rs0 m0:
  WHEN hSinit () ~> init THEN
  seval_hsmem ge sp init rs0 m0 = Some m0.
Proof.
  wlp_simplify. unfold hSinit in Hexta. apply hC_hsmem_correct in Hexta. simpl in Hexta.
  unfold seval_hsmem. rewrite <- Hexta. simpl. reflexivity.
Qed.

Remark init_hsistate_local_correct ge sp rs0 m0:
  WHEN init_hsistate_local () ~> hsl THEN
  hsilocal_refines ge sp rs0 m0 hsl init_sistate_local.
Proof.
  wlp_simplify.
  constructor; constructor; simpl.
  - intro. destruct H as (_ & SMEM & SVAL). unfold hsok_local. simpl. contradiction.
  - intro. constructor; [simpl; auto|]. constructor; simpl; discriminate.
  - unfold hsok_local. simpl. intros; simpl. apply hsinit_seval_hsmem. assumption.
  - constructor.
    + intros. simpl. unfold hsi_sreg_eval. rewrite PTree.gempty. reflexivity.
    + intros r sv. rewrite PTree.gempty. discriminate.
Qed.

(** Simulation of exits *)

Definition hsiexit_simu_core dm f (hse1 hse2: hsistate_exit) :=
  (exists path, (fn_path f) ! (hsi_ifso hse1) = Some path
    /\ hsilocal_simu_core (Some path.(input_regs)) (hsi_elocal hse1) (hsi_elocal hse2))
  /\ dm ! (hsi_ifso hse2) = Some (hsi_ifso hse1)
  /\ hsi_cond hse1 = hsi_cond hse2
  /\ hsi_scondargs hse1 = hsi_scondargs hse2 (* FIXME - should there be something about okvals ? *).

(** NB: we split the refinement relation between a "static" part -- independendent of the initial context
   and a "dynamic" part -- that depends on it
*)
Definition hsiexit_refines_stat (hext: hsistate_exit) (ext: sistate_exit): Prop :=
  hsi_ifso hext = si_ifso ext.

Definition hsok_exit ge sp rs m hse := hsok_local ge sp rs m (hsi_elocal hse).

Definition hseval_condition ge sp cond hcondargs hmem rs0 m0 :=
  seval_condition ge sp cond (hsval_list_proj hcondargs) (hsmem_proj hmem) rs0 m0.

Lemma hseval_condition_preserved ge ge' sp cond args mem rs0 m0:
  (forall s : ident, Genv.find_symbol ge' s = Genv.find_symbol ge s) ->
  hseval_condition ge sp cond args mem rs0 m0 = hseval_condition ge' sp cond args mem rs0 m0.
Proof.
  intros. unfold hseval_condition. erewrite seval_condition_preserved; [|eapply H].
  reflexivity.
Qed.

Definition hsiexit_refines_dyn ge sp rs0 m0 (hext: hsistate_exit) (ext: sistate_exit): Prop :=
   hsilocal_refines ge sp rs0 m0 (hsi_elocal hext) (si_elocal ext)
   /\ (hsok_local ge sp rs0 m0 (hsi_elocal hext) -> 
        hseval_condition ge sp (hsi_cond hext) (hsi_scondargs hext) (hsi_smem (hsi_elocal hext)) rs0 m0
         = seval_condition ge sp (si_cond ext) (si_scondargs ext) (si_smem (si_elocal ext)) rs0 m0).

Definition hsiexit_simu dm f (ctx: simu_proof_context f) hse1 hse2: Prop := forall se1 se2,
  hsiexit_refines_stat hse1 se1 ->
  hsiexit_refines_stat hse2 se2 ->
  hsiexit_refines_dyn (the_ge1 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) hse1 se1 ->
  hsiexit_refines_dyn (the_ge2 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) hse2 se2 ->
  siexit_simu dm f ctx se1 se2.

Lemma hsiexit_simu_core_nofail dm f hse1 hse2 ge1 ge2 sp rs m:
  hsiexit_simu_core dm f hse1 hse2 ->
  (forall s, Genv.find_symbol ge1 s = Genv.find_symbol ge2 s) ->
  hsok_exit ge1 sp rs m hse1 ->
  hsok_exit ge2 sp rs m hse2.
Proof.
  intros CORE GFS HOK1.
  destruct CORE as ((p & _ & CORE') & _ & _ & _).
  eapply hsilocal_simu_core_nofail; eauto.
Qed.

Theorem hsiexit_simu_core_correct dm f hse1 hse2 ctx:
  hsiexit_simu_core dm f hse1 hse2 ->
  hsiexit_simu dm f ctx hse1 hse2.
Proof.
  intros SIMUC st1 st2 HREF1 HREF2 HDYN1 HDYN2.
  assert (SEVALC:
   sok_local (the_ge1 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) (si_elocal st1) ->
    (seval_condition (the_ge1 ctx) (the_sp ctx) (si_cond st1) (si_scondargs st1) (si_smem (si_elocal st1)) 
      (the_rs0 ctx) (the_m0 ctx)) =
    (seval_condition (the_ge2 ctx) (the_sp ctx) (si_cond st2) (si_scondargs st2) (si_smem (si_elocal st2)) 
      (the_rs0 ctx) (the_m0 ctx))).
  { destruct HDYN1 as ((OKEQ1 & _) & SCOND1).
    rewrite OKEQ1; intro OK1. rewrite <- SCOND1 by assumption. clear SCOND1.
    generalize (genv_match ctx).
    intro GFS; refine (modusponens _ _ (hsiexit_simu_core_nofail _ _ _ _ _ _ _ _ _ _ _ _) _); eauto.
    destruct HDYN2 as (_ & SCOND2). intro OK2. rewrite <- SCOND2 by assumption. clear OK1 OK2 SCOND2.
    destruct SIMUC as ((path & _ & LSIMU) & _ & CONDEQ & ARGSEQ). destruct LSIMU as (_ & _ & MEMEQ).
    rewrite CONDEQ. rewrite ARGSEQ. rewrite MEMEQ. erewrite <- hseval_condition_preserved; eauto.
  }
  constructor; [assumption|]. intros is1 ICONT SSEME.
  assert (OK1: sok_local (the_ge1 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) (si_elocal st1)). {
    destruct SSEME as (_ & SSEML & _). eapply ssem_local_sok; eauto. }
  assert (HOK1: hsok_exit (the_ge1 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) hse1). {
    unfold hsok_exit. destruct HDYN1 as (LREF & _). destruct LREF as (OKEQ & _ & _). rewrite <- OKEQ. assumption. }
  refine (modusponens _ _ (hsiexit_simu_core_nofail _ _ _ _ _ _ _ _ _ _ _ _) _).
    2: eapply ctx. all: eauto. intro HOK2.
  destruct SSEME as (SCOND & SLOC & PCEQ). destruct SIMUC as ((path & PATH & LSIMU) & REVEQ & _ & _); eauto.
  destruct HDYN1 as (LREF1 & _). destruct HDYN2 as (LREF2 & _).
  exploit hsilocal_simu_core_correct; eauto; [apply ctx|]. simpl.
  intros (SSEML & EQREG).
  eexists (mk_istate (icontinue is1) (si_ifso st2) _ (imem is1)). simpl. constructor.
  - constructor; intuition congruence || eauto.
  - unfold istate_simu. rewrite ICONT.
    simpl. assert (PCEQ': hsi_ifso hse1 = ipc is1) by congruence.
    exists path. constructor; [|constructor]; [congruence| |congruence].
    constructor; [|constructor]; simpl; auto.
Qed.

Remark hsiexit_simu_siexit dm f ctx hse1 hse2 se1 se2:
  hsiexit_simu dm f ctx hse1 hse2 ->
  hsiexit_refines_stat hse1 se1 ->
  hsiexit_refines_stat hse2 se2 ->
  hsiexit_refines_dyn (the_ge1 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) hse1 se1 ->
  hsiexit_refines_dyn (the_ge2 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) hse2 se2 ->
  siexit_simu dm f ctx se1 se2.
Proof.
  auto.
Qed.

Definition revmap_check_single (dm: PTree.t node) (n tn: node) : ?? unit :=
  DO res <~ some_or_fail (dm ! tn) "revmap_check_single: no mapping for tn";;
  struct_check n res "revmap_check_single: n and res are physically different".

Definition hsiexit_simu_check (dm: PTree.t node) (f: RTLpath.function) (hse1 hse2: hsistate_exit): ?? unit :=
  struct_check (hsi_cond hse1) (hsi_cond hse2) "hsiexit_simu_check: conditions do not match";;
  phys_check (hsi_scondargs hse1) (hsi_scondargs hse2) "hsiexit_simu_check: args do not match";;
  revmap_check_single dm (hsi_ifso hse1) (hsi_ifso hse2);;
  DO path <~ some_or_fail ((fn_path f) ! (hsi_ifso hse1)) "hsiexit_simu_check: internal error";;
  hsilocal_frame_simu_check (Regset.elements path.(input_regs)) (hsi_elocal hse1) (hsi_elocal hse2).

Theorem hsiexit_simu_check_correct dm f hse1 hse2:
  WHEN hsiexit_simu_check dm f hse1 hse2 ~> tt THEN
  hsiexit_simu_core dm f hse1 hse2.
Proof.
  wlp_simplify. constructor; [| constructor; [| constructor]]. 2-4: assumption.
  exists a. constructor. 1-2: assumption.
Qed.
Hint Resolve hsiexit_simu_check_correct: wlp.
Global Opaque hsiexit_simu_check.

Definition hsiexits_simu dm f (ctx: simu_proof_context f) lhse1 lhse2: Prop :=
  list_forall2 (hsiexit_simu dm f ctx) lhse1 lhse2.

Definition hsiexits_simu_core dm f lhse1 lhse2: Prop :=
  list_forall2 (hsiexit_simu_core dm f) lhse1 lhse2.

Theorem hsiexits_simu_core_correct dm f lhse1 lhse2 ctx:
  hsiexits_simu_core dm f lhse1 lhse2 ->
  hsiexits_simu dm f ctx lhse1 lhse2.
Proof.
  induction 1; [constructor|].
  constructor; [|apply IHlist_forall2; assumption].
  apply hsiexit_simu_core_correct; assumption.
Qed.

Definition hsiexits_refines_stat lhse lse :=
  list_forall2 hsiexit_refines_stat lhse lse.

Definition hsiexits_refines_dyn ge sp rs0 m0 lhse se :=
  list_forall2 (hsiexit_refines_dyn ge sp rs0 m0) lhse se.

Fixpoint hsiexits_simu_check (dm: PTree.t node) (f: RTLpath.function) (lhse1 lhse2: list hsistate_exit) :=
  match lhse1,lhse2 with
  | nil, nil => RET tt
  | hse1 :: lhse1, hse2 :: lhse2 =>
    hsiexit_simu_check dm f hse1 hse2;;
    hsiexits_simu_check dm f lhse1 lhse2
  | _, _ => FAILWITH "siexists_simu_check:  lengths do not match"
  end.

Theorem hsiexits_simu_check_correct dm f: forall le1 le2,
  WHEN hsiexits_simu_check dm f le1 le2 ~> tt THEN
  hsiexits_simu_core dm f le1 le2.
Proof.
  induction le1; simpl.
  - destruct le2; wlp_simplify. constructor.
  - destruct le2; wlp_simplify. constructor; [assumption|].
    eapply IHle1. eassumption.
Qed.
Hint Resolve hsiexits_simu_check_correct: wlp.
Global Opaque hsiexits_simu_check.

Definition hsistate_simu_core dm f (hse1 hse2: hsistate) :=
     dm ! (hsi_pc hse2) = Some (hsi_pc hse1)
  /\ list_forall2 (hsiexit_simu_core dm f) (hsi_exits hse1) (hsi_exits hse2)
  /\ hsilocal_simu_core None (hsi_local hse1) (hsi_local hse2).

Definition hsistate_refines_stat (hst: hsistate) (st:sistate): Prop :=
  hsi_pc hst = si_pc st
  /\ hsiexits_refines_stat (hsi_exits hst) (si_exits st).

Inductive nested_sok ge sp rs0 m0: sistate_local -> list sistate_exit -> Prop :=
    nsok_nil st: nested_sok ge sp rs0 m0 st nil
  | nsok_cons st se lse:
     (sok_local ge sp rs0 m0 st -> sok_local ge sp rs0 m0 (si_elocal se)) ->
     nested_sok ge sp rs0 m0 (si_elocal se) lse ->
     nested_sok ge sp rs0 m0 st (se::lse).

Lemma nested_sok_prop ge sp st sle rs0 m0:
  nested_sok ge sp rs0 m0 st sle ->
  sok_local ge sp rs0 m0 st ->
  forall se, In se sle -> sok_local ge sp rs0 m0 (si_elocal se).
Proof.
  induction 1; simpl; intuition (subst; eauto).
Qed.

Lemma nested_sok_elocal ge sp rs0 m0 st2 exits:
  nested_sok ge sp rs0 m0 st2 exits ->
  forall st1, (sok_local ge sp rs0 m0 st1 -> sok_local ge sp rs0 m0 st2) ->
  nested_sok ge sp rs0 m0 st1 exits.
Proof.
  induction 1; [intros; constructor|].
  intros. constructor; auto.
Qed.

Lemma nested_sok_tail ge sp rs0 m0 st lx exits:
  is_tail lx exits ->
  nested_sok ge sp rs0 m0 st exits ->
  nested_sok ge sp rs0 m0 st lx.
Proof.
  induction 1; [auto|].
  intros. inv H0. eapply IHis_tail. eapply nested_sok_elocal; eauto.
Qed.

Definition hsistate_refines_dyn ge sp rs0 m0 (hst: hsistate) (st:sistate): Prop :=
     hsiexits_refines_dyn ge sp rs0 m0 (hsi_exits hst) (si_exits st)
  /\ hsilocal_refines ge sp rs0 m0 (hsi_local hst) (si_local st)
  /\ nested_sok ge sp rs0 m0 (si_local st) (si_exits st).

Definition hsistate_simu dm f (hst1 hst2: hsistate) (ctx: simu_proof_context f): Prop := forall st1 st2,
  hsistate_refines_stat hst1 st1 ->
  hsistate_refines_stat hst2 st2 ->
  hsistate_refines_dyn (the_ge1 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) hst1 st1 ->
  hsistate_refines_dyn (the_ge2 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) hst2 st2 ->
  sistate_simu dm f st1 st2 ctx.

Definition init_hsistate pc: ?? hsistate 
  := DO hst <~ init_hsistate_local ();;
     RET {| hsi_pc := pc; hsi_exits := nil; hsi_local := hst |}.

Remark init_hsistate_correct_stat pc:
  WHEN init_hsistate pc ~> hst THEN
  hsistate_refines_stat hst (init_sistate pc).
Proof.
  wlp_simplify.
  constructor; constructor; simpl; auto.
Qed.
Hint Resolve init_hsistate_correct_stat: wlp.

Remark init_hsistate_correct_dyn ge sp rs0 m0 pc:
  WHEN init_hsistate pc ~> hst THEN
  hsistate_refines_dyn ge sp rs0 m0 hst (init_sistate pc).
Proof.
  unfold init_hsistate. wlp_step_bind hst HST.
  wlp_simplify.
  constructor; simpl; auto; [|constructor].
  - apply list_forall2_nil.
  - apply init_hsistate_local_correct. assumption.
  - constructor.
Qed.

Lemma siexits_simu_all_fallthrough dm f ctx: forall lse1 lse2,
  siexits_simu dm f lse1 lse2 ctx ->
  all_fallthrough (the_ge1 ctx) (the_sp ctx) lse1 (the_rs0 ctx) (the_m0 ctx) ->
  (forall se1, In se1 lse1 -> sok_local (the_ge1 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) (si_elocal se1)) ->
  all_fallthrough (the_ge2 ctx) (the_sp ctx) lse2 (the_rs0 ctx) (the_m0 ctx).
Proof.
  induction 1; [unfold all_fallthrough; contradiction|]; simpl.
  intros X OK ext INEXT. eapply all_fallthrough_revcons in X. destruct X as (SEVAL & ALLFU).
  apply IHlist_forall2 in ALLFU.
  - destruct H as (CONDSIMU & _).
    inv INEXT; [|eauto].
    erewrite <- CONDSIMU; eauto.
  - intros; intuition.
Qed.

Lemma hsiexits_simu_siexits dm f ctx lhse1 lhse2:
  hsiexits_simu dm f ctx lhse1 lhse2 ->
  forall lse1 lse2,
  hsiexits_refines_stat lhse1 lse1 ->
  hsiexits_refines_stat lhse2 lse2 ->
  hsiexits_refines_dyn (the_ge1 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) lhse1 lse1 ->
  hsiexits_refines_dyn (the_ge2 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) lhse2 lse2 ->
  siexits_simu dm f lse1 lse2 ctx.
Proof.
  induction 1.
  - intros. inv H. inv H0. constructor.
  - intros lse1 lse2 SREF1 SREF2 DREF1 DREF2. inv SREF1. inv SREF2. inv DREF1. inv DREF2.
    constructor; [| eapply IHlist_forall2; eauto].
    eapply hsiexit_simu_siexit; eauto.
Qed.

Lemma siexits_simu_all_fallthrough_upto dm f ctx lse1 lse2:
  siexits_simu dm f lse1 lse2 ctx ->
  forall ext1 lx1,
  (forall se1, In se1 lx1 -> sok_local (the_ge1 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) (si_elocal se1)) ->
  all_fallthrough_upto_exit (the_ge1 ctx) (the_sp ctx) ext1 lx1 lse1 (the_rs0 ctx) (the_m0 ctx) ->
  exists ext2 lx2,
    all_fallthrough_upto_exit (the_ge2 ctx) (the_sp ctx) ext2 lx2 lse2 (the_rs0 ctx) (the_m0 ctx)
  /\ length lx1 = length lx2.
Proof.
  induction 1.
  - intros ext lx1. intros OK H. destruct H as (ITAIL & ALLFU). eapply is_tail_false in ITAIL. contradiction.
  - simpl; intros ext lx1 OK ALLFUE.
    destruct ALLFUE as (ITAIL & ALLFU). inv ITAIL.
    + eexists; eexists.
      constructor; [| eapply list_forall2_length; eauto].
      constructor; [econstructor | eapply siexits_simu_all_fallthrough; eauto].
    + exploit IHlist_forall2.
      * intuition. apply OK. eassumption.
      * constructor; eauto.
      * intros (ext2 & lx2 & ALLFUE2 & LENEQ).
        eexists; eexists. constructor; eauto.
        eapply all_fallthrough_upto_exit_cons; eauto.
Qed.

Lemma list_forall2_nth_error {A} (l1 l2: list A) P:
  list_forall2 P l1 l2 ->
  forall x1 x2 n,
  nth_error l1 n = Some x1 ->
  nth_error l2 n = Some x2 ->
  P x1 x2.
Proof.
  induction 1.
  - intros. rewrite nth_error_nil in H. discriminate.
  - intros x1 x2 n. destruct n as [|n]; simpl.
    + intros. inv H1. inv H2. assumption.
    + apply IHlist_forall2.
Qed.

Lemma is_tail_length {A} (l1 l2: list A):
  is_tail l1 l2 ->
  (length l1 <= length l2)%nat.
Proof.
  induction l2.
  - intro. destruct l1; auto. apply is_tail_false in H. contradiction.
  - intros ITAIL. inv ITAIL; auto.
    apply IHl2 in H1. clear IHl2. simpl. omega.
Qed.

Lemma is_tail_nth_error {A} (l1 l2: list A) x:
  is_tail (x::l1) l2 ->
  nth_error l2 ((length l2) - length l1 - 1) = Some x.
Proof.
  induction l2.
  - intro ITAIL. apply is_tail_false in ITAIL. contradiction.
  - intros ITAIL. assert (length (a::l2) = S (length l2)) by auto. rewrite H. clear H.
    assert (forall n n', ((S n) - n' - 1)%nat = (n - n')%nat) by (intros; omega). rewrite H. clear H.
    inv ITAIL.
    + assert (forall n, (n - n)%nat = 0%nat) by (intro; omega). rewrite H.
      simpl. reflexivity.
    + exploit IHl2; eauto. intros. clear IHl2.
      assert (forall n n', (n > n')%nat -> (n - n')%nat = S (n - n' - 1)%nat) by (intros; omega).
      exploit (is_tail_length (x::l1)); eauto. intro. simpl in H2.
      assert ((length l2 > length l1)%nat) by omega. clear H2.
      rewrite H0; auto.
Qed.

Theorem hsistate_simu_core_correct dm f hst1 hst2 ctx:
  hsistate_simu_core dm f hst1 hst2 ->
  hsistate_simu dm f hst1 hst2 ctx.
Proof.
  intros SIMUC st1 st2 HREF1 HREF2 DREF1 DREF2 is1 SEMI.
  destruct HREF1 as (PCREF1 & EREF1). destruct HREF2 as (PCREF2 & EREF2).
  destruct DREF1 as (DEREF1 & LREF1 & NESTED). destruct DREF2 as (DEREF2 & LREF2 & _).
  destruct SIMUC as (PCSIMU & ESIMU & LSIMU).
  exploit hsiexits_simu_core_correct; eauto. intro HESIMU.
  unfold ssem_internal in SEMI. destruct (icontinue _) eqn:ICONT.
  - destruct SEMI as (SSEML & PCEQ & ALLFU).
    exploit hsilocal_simu_core_correct; eauto; [apply ctx|]. simpl. intro SSEML2.
    exists (mk_istate (icontinue is1) (si_pc st2) (irs is1) (imem is1)). constructor.
    + unfold ssem_internal. simpl. rewrite ICONT. constructor; [assumption | constructor; [reflexivity |]].
      eapply siexits_simu_all_fallthrough; eauto.
      * eapply hsiexits_simu_siexits; eauto.
      * eapply nested_sok_prop; eauto.
        eapply ssem_local_sok; eauto.
    + unfold istate_simu. rewrite ICONT. constructor; [simpl; assumption | constructor; [| reflexivity]].
      constructor.
  - destruct SEMI as (ext & lx & SSEME & ALLFU).
    assert (SESIMU: siexits_simu dm f (si_exits st1) (si_exits st2) ctx) by (eapply hsiexits_simu_siexits; eauto).
    exploit siexits_simu_all_fallthrough_upto; eauto.
    * destruct ALLFU as (ITAIL & ALLF).
      exploit nested_sok_tail; eauto. intros NESTED2.
      inv NESTED2. destruct SSEME as (_ & SSEML & _). eapply ssem_local_sok in SSEML.
      eapply nested_sok_prop; eauto.
    * intros (ext2 & lx2 & ALLFU2 & LENEQ).
      assert (EXTSIMU: siexit_simu dm f ctx ext ext2). {
        eapply list_forall2_nth_error; eauto.
        - destruct ALLFU as (ITAIL & _). eapply is_tail_nth_error; eauto.
        - destruct ALLFU2 as (ITAIL & _). eapply is_tail_nth_error in ITAIL.
          assert (LENEQ': length (si_exits st1) = length (si_exits st2)) by (eapply list_forall2_length; eauto).
          congruence. }
      destruct EXTSIMU as (CONDEVAL & EXTSIMU).
      apply EXTSIMU in SSEME; [|assumption]. clear EXTSIMU. destruct SSEME as (is2 & SSEME2 & ISIMU).
      exists (mk_istate (icontinue is1) (ipc is2) (irs is2) (imem is2)). constructor.
      + unfold ssem_internal. simpl. rewrite ICONT. exists ext2, lx2. constructor; assumption.
      + unfold istate_simu in *. rewrite ICONT in *. destruct ISIMU as (path & PATHEQ & ISIMULIVE & DMEQ).
        destruct ISIMULIVE as (CONTEQ & REGEQ & MEMEQ).
        exists path. repeat (constructor; auto).
Qed.

Definition hsistate_simu_check (dm: PTree.t node) (f: RTLpath.function) (hst1 hst2: hsistate) :=
  revmap_check_single dm (hsi_pc hst1) (hsi_pc hst2);;
  hsilocal_simu_check (hsi_local hst1) (hsi_local hst2);;
  hsiexits_simu_check dm f (hsi_exits hst1) (hsi_exits hst2).

Theorem hsistate_simu_check_correct dm f hst1 hst2:
  WHEN hsistate_simu_check dm f hst1 hst2 ~> tt THEN
  hsistate_simu_core dm f hst1 hst2.
Proof.
  wlp_simplify.
  constructor; [|constructor]. 1-3: assumption.
Qed.
Hint Resolve hsistate_simu_check_correct: wlp.
Global Opaque hsistate_simu_check.

Definition hsi_proj (hsi: hsval + ident) := match hsi with
  | inl hv => inl (hsval_proj hv)
  | inr id => inr id
  end.

Fixpoint barg_proj (bhv: builtin_arg hsval) := match bhv with
  | BA hv => BA (hsval_proj hv)
  | BA_splitlong ba1 ba2 => BA_splitlong (barg_proj ba1) (barg_proj ba2)
  | BA_addptr ba1 ba2 => BA_addptr (barg_proj ba1) (barg_proj ba2)
  | BA_int i => BA_int i
  | BA_long i => BA_long i
  | BA_float f => BA_float f
  | BA_single f32 => BA_single f32
  | BA_loadstack m p => BA_loadstack m p
  | BA_addrstack p => BA_addrstack p
  | BA_loadglobal c i p => BA_loadglobal c i p
  | BA_addrglobal i p => BA_addrglobal i p
  end.

Fixpoint barg_list_proj lbh := match lbh with
  | [] => []
  | bh::lbh => (barg_proj bh) :: (barg_list_proj lbh)
  end.

Definition option_hsval_proj oh := match oh with None => None | Some h => Some (hsval_proj h) end.

Definition hfinal_proj hfv := match hfv with
  | HSnone => Snone
  | HScall s hvi hlv r pc => Scall s (hsi_proj hvi) (hsval_list_proj hlv) r pc
  | HStailcall s hvi hlv => Stailcall s (hsi_proj hvi) (hsval_list_proj hlv)
  | HSbuiltin ef lbh br pc => Sbuiltin ef (barg_list_proj lbh) br pc
  | HSjumptable hv ln => Sjumptable (hsval_proj hv) ln
  | HSreturn oh => Sreturn (option_hsval_proj oh)
  end.

Section HFINAL_REFINES.

Variable ge: RTL.genv.
Variable sp: val.
Variable rs0: regset.
Variable m0: mem.

Definition sval_refines (hv: hsval) (sv: sval) := seval_hsval ge sp hv rs0 m0 = seval_sval ge sp sv rs0 m0.

Definition sum_refines (hsi: hsval + ident) (si: sval + ident) :=
  match hsi, si with
  | inl hv, inl sv => sval_refines hv sv
  | inr id, inr id' => id = id'
  | _, _ => False
  end.

Inductive list_refines: hlist_sval -> list_sval -> Prop :=
  | hsnil_ref: forall h, list_refines (HSnil h) Snil
  | hscons_ref: forall lhv lsv hv sv h,
      list_refines lhv lsv ->
      sval_refines hv sv ->
      list_refines (HScons hv lhv h) (Scons sv lsv).

Inductive barg_refines: builtin_arg hsval -> builtin_arg sval -> Prop :=
  | hba_ref: forall hsv sv, sval_refines hsv sv -> barg_refines (BA hsv) (BA sv)
  | hba_splitlong: forall bha1 bha2 ba1 ba2,
      barg_refines bha1 ba1 -> barg_refines bha2 ba2 ->
      barg_refines (BA_splitlong bha1 bha2) (BA_splitlong ba1 ba2)
  | hba_addptr: forall bha1 bha2 ba1 ba2,
      barg_refines bha1 ba1 -> barg_refines bha2 ba2 ->
      barg_refines (BA_addptr bha1 bha2) (BA_addptr ba1 ba2)
  | hba_int: forall i, barg_refines (BA_int i) (BA_int i)
  | hba_long: forall l, barg_refines (BA_long l) (BA_long l)
  | hba_float: forall f, barg_refines (BA_float f) (BA_float f)
  | hba_single: forall s, barg_refines (BA_single s) (BA_single s)
  | hba_loadstack: forall chk ptr, barg_refines (BA_loadstack chk ptr) (BA_loadstack chk ptr)
  | hba_addrstack: forall ptr, barg_refines (BA_addrstack ptr) (BA_addrstack ptr)
  | hba_loadglobal: forall chk id ptr, barg_refines (BA_loadglobal chk id ptr) (BA_loadglobal chk id ptr)
  | hba_addrglobal: forall id ptr, barg_refines (BA_addrglobal id ptr) (BA_addrglobal id ptr).

Definition option_refines ohsv osv :=
  match ohsv, osv with
  | Some hsv, Some sv => sval_refines hsv sv
  | None, None => True
  | _, _ => False
  end.

Inductive hfinal_refines: hsfval -> sfval -> Prop :=
  | hsnone_ref: hfinal_refines HSnone Snone
  | hscall_ref: forall hros ros hargs args s r pc,
      sum_refines hros ros ->
      list_refines hargs args ->
      hfinal_refines (HScall s hros hargs r pc) (Scall s ros args r pc)
  | hstailcall_ref: forall hros ros hargs args s,
      sum_refines hros ros ->
      list_refines hargs args ->
      hfinal_refines (HStailcall s hros hargs) (Stailcall s ros args)
  | hsbuiltin_ref: forall ef lbha lba br pc,
      list_forall2 barg_refines lbha lba ->
      hfinal_refines (HSbuiltin ef lbha br pc) (Sbuiltin ef lba br pc)
  | hsjumptable_ref: forall hsv sv lpc,
      sval_refines hsv sv -> hfinal_refines (HSjumptable hsv lpc) (Sjumptable sv lpc)
  | hsreturn_ref: forall ohsv osv,
      option_refines ohsv osv -> hfinal_refines (HSreturn ohsv) (Sreturn osv).

Remark hfinal_refines_snone: hfinal_refines HSnone Snone.
Proof. constructor. Qed.

End HFINAL_REFINES.

Lemma list_proj_refines_eq ge ge' sp rs0 m0: forall lsv hlsv,
  (forall s, Genv.find_symbol ge s = Genv.find_symbol ge' s) ->
  list_refines ge sp rs0 m0 hlsv lsv ->
  forall hlsv' lsv',
  list_refines ge' sp rs0 m0 hlsv' lsv' ->
  hsval_list_proj hlsv = hsval_list_proj hlsv' ->
  seval_list_sval ge sp lsv rs0 m0 = seval_list_sval ge' sp lsv' rs0 m0.
Proof.
  induction 2; rename H into GFS.
  - simpl. intros. destruct hlsv'; try discriminate. clear H0.
    inv H. simpl. reflexivity.
  - simpl. intros. destruct hlsv'; try discriminate.
    simpl in H2. inv H2. destruct lsv'; [inv H|].
    inv H. simpl.
    assert (SVALEQ: seval_sval ge sp sv rs0 m0 = seval_sval ge' sp sv0 rs0 m0). {
      rewrite <- H10. rewrite <- H1. unfold seval_hsval. erewrite <- seval_preserved; [| eapply GFS]. congruence.
    } rewrite SVALEQ.
    erewrite IHlist_refines; eauto.
Qed.

Lemma sval_refines_proj ge ge' sp rs m hsv sv hsv' sv':
  (forall s, Genv.find_symbol ge s = Genv.find_symbol ge' s) ->
  sval_refines ge sp rs m hsv sv ->
  sval_refines ge' sp rs m hsv' sv' ->
  hsval_proj hsv = hsval_proj hsv' ->
  seval_sval ge sp sv rs m = seval_sval ge' sp sv' rs m.
Proof.
  intros GFS REF REF' PROJ.
  rewrite <- REF. rewrite <- REF'. unfold seval_hsval.
  erewrite <- seval_preserved; [| eapply GFS].
  congruence.
Qed.

Lemma barg_proj_refines_eq_single ge ge' sp rs0 m0:
  (forall s, Genv.find_symbol ge s = Genv.find_symbol ge' s) ->
  forall hsv sv, barg_refines ge sp rs0 m0 hsv sv ->
  forall hsv' sv', barg_refines ge' sp rs0 m0 hsv' sv' ->
  barg_proj hsv = barg_proj hsv' ->
  seval_builtin_sval ge sp sv rs0 m0 = seval_builtin_sval ge' sp sv' rs0 m0.
Proof.
  intro GFS. induction 1.
  all: try (simpl; intros hsv' sv' BREF' BPROJ';
    destruct hsv'; simpl in BPROJ'; try discriminate;
    inv BPROJ'; inv BREF'; simpl; try reflexivity;
    erewrite sval_refines_proj; eauto).
(* BA_splitlong *)
  - simpl. intros hsv' sv' BREF' BPROJ'.
    destruct hsv'; simpl in BPROJ'; try discriminate.
    inv BPROJ'. inv BREF'. simpl.
    erewrite IHbarg_refines2; eauto.
    erewrite IHbarg_refines1. 2: eapply H5.
    all: eauto.
(* BA_addptr *)
  - simpl. intros hsv' sv' BREF' BPROJ'.
    destruct hsv'; simpl in BPROJ'; try discriminate.
    inv BPROJ'. inv BREF'. simpl.
    erewrite IHbarg_refines2; eauto.
    erewrite IHbarg_refines1. 2: eapply H5.
    all: eauto.
Qed.

Lemma barg_proj_refines_eq ge ge' sp rs0 m0: forall lsv lhsv,
  (forall s, Genv.find_symbol ge s = Genv.find_symbol ge' s) ->
  list_forall2 (barg_refines ge sp rs0 m0) lhsv lsv ->
  forall lhsv' lsv',
  list_forall2 (barg_refines ge' sp rs0 m0) lhsv' lsv' ->
  barg_list_proj lhsv = barg_list_proj lhsv' ->
  seval_list_builtin_sval ge sp lsv rs0 m0 = seval_list_builtin_sval ge' sp lsv' rs0 m0.
Proof.
  induction 2; rename H into GFS.
  - simpl. intros. destruct lhsv'; try discriminate. clear H0.
    inv H. simpl. reflexivity.
  - simpl. intros. destruct lhsv'; try discriminate.
    simpl in H2. inv H2. destruct lsv'; [inv H|].
    inv H. simpl.
    erewrite barg_proj_refines_eq_single; eauto.
    erewrite IHlist_forall2; eauto.
Qed.

Definition final_simu_core (dm: PTree.t node) (f: RTLpath.function) (pc1 pc2: node) (f1 f2: sfval): Prop :=
  match f1 with
  | Scall sig1 svos1 lsv1 res1 pc1 =>
      match f2 with
      | Scall sig2 svos2 lsv2 res2 pc2 =>
          dm ! pc2 = Some pc1 /\ sig1 = sig2 /\ svos1 = svos2 /\ lsv1 = lsv2 /\ res1 = res2
      | _ => False
      end
  | Sbuiltin ef1 lbs1 br1 pc1 =>
      match f2 with
      | Sbuiltin ef2 lbs2 br2 pc2 =>
          dm ! pc2 = Some pc1 /\ ef1 = ef2 /\ lbs1 = lbs2 /\ br1 = br2
      | _ => False
      end
  | Sjumptable sv1 lpc1 =>
      match f2 with
      | Sjumptable sv2 lpc2 =>
          ptree_get_list dm lpc2 = Some lpc1 /\ sv1 = sv2
      | _ => False
      end
  | Snone =>
      match f2 with
      | Snone => dm ! pc2 = Some pc1
      | _ => False
      end
  (* Stailcall, Sreturn *)
  | _ => f1 = f2
  end.

Definition hfinal_simu_core (dm: PTree.t node) (f: RTLpath.function) (pc1 pc2: node) (hf1 hf2: hsfval): Prop :=
  final_simu_core dm f pc1 pc2 (hfinal_proj hf1) (hfinal_proj hf2).

Lemma svident_simu_refl f ctx s:
  svident_simu f ctx s s.
Proof.
  destruct s; constructor; [| reflexivity].
  erewrite <- seval_preserved; [| eapply ctx]. constructor.
Qed.

Theorem hfinal_simu_core_correct dm f ctx opc1 opc2 hf1 hf2 f1 f2:
  hfinal_simu_core dm f opc1 opc2 hf1 hf2 ->
  hfinal_refines (the_ge1 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) hf1 f1 ->
  hfinal_refines (the_ge2 ctx) (the_sp ctx) (the_rs0 ctx) (the_m0 ctx) hf2 f2 ->
  sfval_simu dm f opc1 opc2 ctx f1 f2.
Proof.
  assert (GFS: forall s : ident, Genv.find_symbol (the_ge1 ctx) s = Genv.find_symbol (the_ge2 ctx) s) by apply ctx.
  intros CORE FREF1 FREF2.
  destruct hf1; inv FREF1.
  (* Snone *)
  - destruct hf2; try contradiction. inv FREF2.
    inv CORE. constructor. assumption.
  (* Scall *)
  - rename H5 into SREF1. rename H6 into LREF1.
    destruct hf2; try contradiction. inv FREF2.
    rename H5 into SREF2. rename H6 into LREF2.
    destruct CORE as (PCEQ & ? & ? & ? & ?). subst.
    rename H0 into SVOSEQ. rename H1 into LSVEQ.
    constructor; [assumption | |].
    + destruct svos.
      * destruct svos0; try discriminate. destruct ros; try contradiction.
        destruct ros0; try contradiction. constructor.
        simpl in SVOSEQ. inv SVOSEQ.
        simpl in SREF1. simpl in SREF2.
        rewrite <- SREF1. rewrite <- SREF2. unfold seval_hsval.
        erewrite <- seval_preserved; [| eapply GFS]. congruence.
      * destruct svos0; try discriminate. destruct ros; try contradiction.
        destruct ros0; try contradiction. constructor.
        simpl in SVOSEQ. inv SVOSEQ. congruence.
    + erewrite list_proj_refines_eq; eauto. constructor.
  (* Stailcall *)
  - rename H3 into SREF1. rename H4 into LREF1.
    destruct hf2; try (inv CORE; fail). inv FREF2.
    rename H4 into LREF2. rename H3 into SREF2.
    inv CORE. rename H1 into SVOSEQ. rename H2 into LSVEQ.
    constructor.
    + destruct svos. (** Copy-paste from Scall *)
      * destruct svos0; try discriminate. destruct ros; try contradiction.
        destruct ros0; try contradiction. constructor.
        simpl in SVOSEQ. inv SVOSEQ.
        simpl in SREF1. simpl in SREF2.
        rewrite <- SREF1. rewrite <- SREF2. unfold seval_hsval.
        erewrite <- seval_preserved; [| eapply GFS]. congruence.
      * destruct svos0; try discriminate. destruct ros; try contradiction.
        destruct ros0; try contradiction. constructor.
        simpl in SVOSEQ. inv SVOSEQ. congruence.
    + erewrite list_proj_refines_eq; eauto. constructor.
  (* Sbuiltin *)
  - rename H4 into BREF1. destruct hf2; try (inv CORE; fail). inv FREF2.
    rename H4 into BREF2. inv CORE. destruct H0 as (? & ? & ?). subst.
    rename H into PCEQ. rename H1 into ARGSEQ. constructor; [assumption|].
    erewrite barg_proj_refines_eq; eauto. constructor.
  (* Sjumptable *)
  - rename H2 into SREF1. destruct hf2; try contradiction. inv FREF2.
    rename H2 into SREF2. destruct CORE as (A & B). constructor; [assumption|].
    erewrite sval_refines_proj; eauto. constructor.
  (* Sreturn *)
  - rename H0 into SREF1.
    destruct hf2; try discriminate. inv CORE.
    inv FREF2. destruct osv; destruct res; inv SREF1.
    + destruct res0; try discriminate. destruct osv0; inv H1.
      constructor. simpl in H0. inv H0. erewrite sval_refines_proj; eauto.
      constructor.
    + destruct res0; try discriminate. destruct osv0; inv H1. constructor.
Qed.

Definition hsexec_final (i: instruction) (hst: PTree.t hsval): ?? hsfval := 
  match i with
  | Icall sig ros args res pc => 
    DO svos <~ hsum_left hst ros;;
    DO sargs <~ hlist_args hst args;;
    RET (HScall sig svos sargs res pc)
  | Itailcall sig ros args =>
    DO svos <~ hsum_left hst ros;;
    DO sargs <~ hlist_args hst args;;
    RET (HStailcall sig svos sargs)
  | Ibuiltin ef args res pc =>
    DO sargs <~ hbuiltin_args hst args;;
    RET (HSbuiltin ef sargs res pc)
  | Ijumptable reg tbl =>
    DO sv <~ hsi_sreg_get hst reg;;
    RET (HSjumptable sv tbl)
  | Ireturn or => 
    match or with
    | Some r => DO hr <~ hsi_sreg_get hst r;; RET (HSreturn (Some hr))
    | None => RET (HSreturn None)
    end
  | _ => RET (HSnone)
  end.

Lemma sval_refines_local_get ge sp rs0 m0 hsl sl r:
  hsok_local ge sp rs0 m0 hsl ->
  hsilocal_refines ge sp rs0 m0 hsl sl ->
  WHEN hsi_sreg_get hsl r ~> hsv THEN
  sval_refines ge sp rs0 m0 hsv (si_sreg sl r).
Proof.
  intros HOK HREF. wlp_intros hsv HSV. unfold sval_refines.
  erewrite <- hsi_sreg_eval_correct; eauto.
  destruct HREF as (_ & _ & A & _). rewrite <- A; [| assumption].
  reflexivity.
Qed.

Lemma hsum_left_correct ge sp rs0 m0 hsl sl ros:
  hsok_local ge sp rs0 m0 hsl ->
  hsilocal_refines ge sp rs0 m0 hsl sl ->
  WHEN hsum_left hsl ros ~> svos THEN
  sum_refines ge sp rs0 m0 svos (sum_left_map (si_sreg sl) ros).
Proof.
  intros HOK HREF. destruct ros; [| wlp_simplify].
  wlp_step_bind hr HGET. wlp_simplify. unfold sval_refines.
  rewrite sval_refines_local_get; eauto.
Qed.

Lemma hsexec_final_correct ge sp rs0 m0 hsl sl i:
  hsok_local ge sp rs0 m0 hsl ->
  hsilocal_refines ge sp rs0 m0 hsl sl ->
  WHEN hsexec_final i hsl ~> hsf THEN
  hfinal_refines ge sp rs0 m0 hsf (sexec_final i sl).
Proof.
  intro HOK.
  destruct i; simpl; intros HLREF; try (wlp_simplify; apply hfinal_refines_snone).
  (* Scall *)
  - wlp_step_bind svos SVOS. wlp_step_bind sargs SARGS. wlp_intros hsf HSF.
    apply mayRet_ret in HSF. subst. constructor.
    + eapply hsum_left_correct; eauto.
    + Search list_refines. admit.
    
(* 
    + intro. inv H. constructor; auto.
      ++ erewrite <- sfind_function_conserves; eauto.
      ++ erewrite <- seval_list_sval_refines; eauto.
    + intro. inv H. constructor; auto.
      ++ erewrite sfind_function_conserves; eauto.
      ++ erewrite seval_list_sval_refines; eauto.
  (* Stailcall *)
  - admit.
  (* Sbuiltin *)
  - admit.
  (* Sjumptable *)
  - admit.
  (* Sreturn *)
  - admit.
 *)Admitted.


Fixpoint revmap_check_list (dm: PTree.t node) (ln ln': list node): ?? unit :=
  match ln, ln' with
  | nil, nil => RET tt
  | n::ln, n'::ln' => 
      revmap_check_single dm n n';;
      revmap_check_list dm ln ln'
  | _, _ => FAILWITH "revmap_check_list: lists have different lengths"
  end.

Definition svos_simu_check (svos1 svos2: hsval + ident) :=
  match svos1, svos2 with
  | inl sv1, inl sv2 => phys_check sv1 sv2 "svos_simu_check: sval mismatch"
  | inr id1, inr id2 => phys_check id1 id2 "svos_simu_check: symbol mismatch"
  | _, _ => FAILWITH "svos_simu_check: type mismatch"
  end.

Fixpoint builtin_arg_simu_check (bs bs': builtin_arg hsval) :=
  match bs, bs' with
  | BA sv, BA sv' => phys_check sv sv' "builtin_arg_simu_check: sval mismatch"
  | BA_splitlong lo hi, BA_splitlong lo' hi' => 
      builtin_arg_simu_check lo lo';;
      builtin_arg_simu_check hi hi'
  | BA_addptr b1 b2, BA_addptr b1' b2' => 
      builtin_arg_simu_check b1 b1';;
      builtin_arg_simu_check b2 b2'
  | _, _ => struct_check bs bs' "builtin_arg_simu_check: basic mismatch"
  end.

Fixpoint list_builtin_arg_simu_check lbs1 lbs2 :=
  match lbs1, lbs2 with
  | nil, nil => RET tt
  | bs1::lbs1, bs2::lbs2 =>
    builtin_arg_simu_check bs1 bs2;;
    list_builtin_arg_simu_check lbs1 lbs2
  | _, _ => FAILWITH "list_builtin_arg_simu_check: length mismatch"
  end.

Definition sfval_simu_check (dm: PTree.t node) (f: RTLpath.function) (opc1 opc2: node) (fv1 fv2: hsfval) :=
  match fv1, fv2 with
  | HSnone, HSnone => revmap_check_single dm opc1 opc2
  | HScall sig1 svos1 lsv1 res1 pc1, HScall sig2 svos2 lsv2 res2 pc2 =>
      revmap_check_single dm pc1 pc2;;
      phys_check sig1 sig2 "sfval_simu_check: Scall different signatures";;
      phys_check res1 res2 "sfval_simu_check: Scall res do not match";;
      svos_simu_check svos1 svos2;;
      phys_check lsv1 lsv2 "sfval_simu_check: Scall args do not match"
  | HStailcall sig1 svos1 lsv1, HStailcall sig2 svos2 lsv2 =>
      phys_check sig1 sig2 "sfval_simu_check: Stailcall different signatures";;
      svos_simu_check svos1 svos2;;
      phys_check lsv1 lsv2 "sfval_simu_check: Stailcall args do not match"
  | HSbuiltin ef1 lbs1 br1 pc1, HSbuiltin ef2 lbs2 br2 pc2 =>
      revmap_check_single dm pc1 pc2;;
      phys_check ef1 ef2 "sfval_simu_check: builtin ef do not match";;
      phys_check br1 br2 "sfval_simu_check: builtin br do not match";;
      list_builtin_arg_simu_check lbs1 lbs2
  | HSjumptable sv ln, HSjumptable sv' ln' =>
      revmap_check_list dm ln ln';;
      phys_check sv sv' "sfval_simu_check: Sjumptable sval do not match"
  | HSreturn osv1, HSreturn osv2 =>
      option_eq_check osv1 osv2
  | _, _ => FAILWITH "sfval_simu_check: structure mismatch"
  end.

Theorem sfval_simu_check_correct dm f opc1 opc2 fv1 fv2:
  WHEN sfval_simu_check dm f opc1 opc2 fv1 fv2 ~> tt THEN
  hfinal_simu_core dm f opc1 opc2 fv1 fv2.
Proof.
  wlp_simplify. destruct fv1. admit. (* needs to destruct fv2 and rule out the absurd cases *)
Admitted.
Hint Resolve sfval_simu_check_correct: wlp.
Global Opaque hfinal_simu_core.

Definition hsstate_refines (hst: hsstate) (st:sstate): Prop :=
   hsistate_refines_stat (hinternal hst) (internal st)
  /\ (forall ge sp rs0 m0, hsistate_refines_dyn ge sp rs0 m0 (hinternal hst) (internal st)
                        /\ hfinal_refines ge sp rs0 m0 (hfinal hst) (final st))
.

Definition hsstate_simu_core (dm: PTree.t node) (f: RTLpath.function) (hst1 hst2: hsstate) :=
     hsistate_simu_core dm f (hinternal hst1) (hinternal hst2)
  /\ hfinal_simu_core dm f (hsi_pc (hinternal hst1)) (hsi_pc (hinternal hst2)) (hfinal hst1) (hfinal hst2).

Definition hsstate_simu dm f (hst1 hst2: hsstate) ctx: Prop :=
  forall st1 st2,
  hsstate_refines hst1 st1 ->
  hsstate_refines hst2 st2 -> sstate_simu dm f st1 st2 ctx.

Theorem hsstate_simu_core_correct dm f ctx hst1 hst2:
  hsstate_simu_core dm f hst1 hst2 ->
  hsstate_simu dm f hst1 hst2 ctx.
Proof.
  intros (SCORE & FSIMU). intros st1 st2 HREF1 HREF2.
  destruct HREF1 as (SREF1 & DREF1 & FREF1). destruct HREF2 as (SREF2 & DREF2 & FREF2).
  assert (PCEQ: dm ! (hsi_pc hst2) = Some (hsi_pc hst1)) by apply SCORE.
  eapply hsistate_simu_core_correct in SCORE.
  eapply hfinal_simu_core_correct in FSIMU; eauto.
  constructor; [apply SCORE; auto|]. 1-2: eassumption.
  destruct SREF1 as (PC1 & _). destruct SREF2 as (PC2 & _). rewrite <- PC1. rewrite <- PC2.
  eapply FSIMU.
Qed.

Definition hsstate_simu_check (dm: PTree.t node) (f: RTLpath.function) (hst1 hst2: hsstate) :=
  hsistate_simu_check dm f (hinternal hst1) (hinternal hst2);;
  sfval_simu_check dm f (hsi_pc hst1) (hsi_pc hst2) (hfinal hst1) (hfinal hst2).

Theorem hsstate_simu_check_correct dm f hst1 hst2:
  WHEN hsstate_simu_check dm f hst1 hst2 ~> tt THEN
  hsstate_simu_core dm f hst1 hst2.
Proof.
  wlp_simplify. constructor. 1-2: assumption.
Qed.
Hint Resolve hsstate_simu_check_correct: wlp.
Global Opaque hsstate_simu_core.

Definition hsexec (f: function) (pc:node): ?? hsstate :=
  DO path <~ some_or_fail ((fn_path f)!pc) "hsexec.internal_error.1";;
  DO hinit <~ init_hsistate pc;;
  DO hst <~ hsiexec_path path.(psize) f hinit;;
  DO i <~ some_or_fail ((fn_code f)!(hst.(hsi_pc))) "hsexec.internal_error.2";;
  DO ohst <~ hsiexec_inst i hst;;
  match ohst with
  | Some hst' => RET {| hinternal := hst'; hfinal := HSnone |}
  | None => DO hsvf <~ hsexec_final i hst.(hsi_local);;
            RET {| hinternal := hst; hfinal := hsvf |}
  end.

(* Local Hint Resolve init_hsistate_correct_stat init_hsistate_correct_dyn hsexec_final_correct
  hsiexec_inst_correct_dyn hsiexec_path_correct_dyn hfinal_refines_snone: core. *)

Lemma hsexec_correct f pc:
  WHEN hsexec f pc ~> hst THEN
  exists st, sexec f pc = Some st /\ hsstate_refines hst st.
Proof. Admitted.
(*   unfold hsexec. intro. explore_hyp.
  unfold sexec. 
  rewrite EQ.
  exploit hsiexec_path_correct_stat; eauto.
  intros (st0 & SPATH & REF0).
  generalize REF0; intros (PC0 & XREF0). rewrite SPATH.
  erewrite <- PC0. rewrite EQ1.
  destruct (hsiexec_inst i h) eqn:HINST.
  + exploit hsiexec_inst_correct_stat; eauto.
    intros (st1 & EQ2 & PC2 & REF2).
    - split; eauto. 
    - rewrite EQ2.
      repeat (econstructor; simpl; eauto).
  + erewrite hsiexec_inst_correct_None; eauto.
    repeat (econstructor; simpl; eauto).
    unfold hfinal_refines. simpl; eauto.
Qed. *)

End CanonBuilding.

Definition simu_check_single (dm: PTree.t node) (f: RTLpath.function) (tf: RTLpath.function) (m: node * node): ?? unit :=
  let (pc2, pc1) := m in
  (* creating the hash-consing tables *)
  DO hC_sval <~ hCons hSVAL;;
  DO hC_hlist_sval <~ hCons hLSVAL;;
  DO hC_hsmem <~ hCons hSMEM;;
  let hsexec := hsexec hC_sval.(hC) hC_hlist_sval.(hC) hC_hsmem.(hC) in
  (* performing the hash-consed executions *)
  DO hst1 <~ hsexec f pc1;;
  DO hst2 <~ hsexec tf pc2;;
  (* comparing the executions *)
  hsstate_simu_check dm f hst1 hst2.

Lemma simu_check_single_correct dm tf f pc1 pc2:
  WHEN simu_check_single dm f tf (pc2, pc1) ~> _ THEN
  sexec_simu dm f tf pc1 pc2.
Proof.
  unfold simu_check_single.
  wlp_step_bind hC_sval HSVAL. wlp_step_bind hC_hlist_sval HLSVAL.
  wlp_step_bind hC_hsmem HSMEM. wlp_step_bind hst1 HSEXEC1. wlp_step_bind hst2 HSEXEC2.
  wlp_intros u HSIMU.
  unfold sexec_simu. intros st1 SEXEC. explore.
  assert (TODO1: forall hs rhsv, hC hC_sval hs ~~> rhsv -> hsval_proj (hdata hs) = hsval_proj rhsv)
    by admit.
  assert (TODO2: forall hs rhsv, hC hC_hlist_sval hs ~~> rhsv -> hsval_list_proj (hdata hs) = hsval_list_proj rhsv)
    by admit.
  assert (TODO3: forall hs rhsv, hC hC_hsmem hs ~~> rhsv -> hsmem_proj (hdata hs) = hsmem_proj rhsv)
    by admit.
  exploit hsexec_correct; eauto.
  intros (st2 & SEXEC2 & REF2).
  exploit hsexec_correct. 4: eapply HSEXEC1. all: eauto.
  intros (st0 & SEXEC1 & REF1).
  rewrite SEXEC1 in SEXEC. inv SEXEC.
  eexists. split; eauto.
  intros ctx. eapply hsstate_simu_check_correct in HSIMU; eauto.
  eapply hsstate_simu_core_correct; eauto.
Admitted.
Global Opaque simu_check_single.
Global Hint Resolve simu_check_single_correct: wlp.

Fixpoint simu_check_rec (dm: PTree.t node) (f: RTLpath.function) (tf: RTLpath.function) lm : ?? unit :=
  match lm with
  | nil => RET tt
  | m :: lm => 
    simu_check_single dm f tf m;;
    simu_check_rec dm f tf lm
  end.

Lemma simu_check_rec_correct dm f tf lm:
  WHEN simu_check_rec dm f tf lm ~> _ THEN
  forall pc1 pc2, In (pc2, pc1) lm -> sexec_simu dm f tf pc1 pc2.
Proof.
  induction lm; wlp_simplify.
  match goal with
  | X: (_,_) = (_,_) |- _ => inversion X; subst
  end.
  subst; eauto.
Qed.
Global Opaque simu_check_rec.
Global Hint Resolve simu_check_rec_correct: wlp.

Definition imp_simu_check (dm: PTree.t node) (f: RTLpath.function) (tf: RTLpath.function): ?? unit :=
   simu_check_rec dm f tf (PTree.elements dm);;
   println("simu_check OK!").

Local Hint Resolve PTree.elements_correct: core.
Lemma imp_simu_check_correct dm f tf:
  WHEN imp_simu_check dm f tf ~> _ THEN
  forall pc1 pc2, dm ! pc2 = Some pc1 -> sexec_simu dm f tf pc1 pc2.
Proof.
  wlp_simplify.
Qed.
Global Opaque imp_simu_check.
Global Hint Resolve imp_simu_check_correct: wlp.

Program Definition aux_simu_check (dm: PTree.t node) (f: RTLpath.function) (tf: RTLpath.function): ?? bool :=
   DO r <~ 
     (TRY 
       imp_simu_check dm f tf;; 
       RET true
      CATCH_FAIL s, _ =>
       println ("simu_check_failure:" +; s);;
       RET false
      ENSURE (fun b => b=true -> forall pc1 pc2, dm ! pc2 = Some pc1 -> sexec_simu dm f tf pc1 pc2));;
   RET (`r).
Obligation 1.
  split; wlp_simplify. discriminate.
Qed.

Lemma aux_simu_check_correct dm f tf:
  WHEN aux_simu_check dm f tf ~> b THEN
  b=true -> forall pc1 pc2, dm ! pc2 = Some pc1 -> sexec_simu dm f tf pc1 pc2.
Proof.
  unfold aux_simu_check; wlp_simplify.
  destruct exta; simpl; auto.
Qed.

(* Coerce aux_simu_check into a pure function (this is a little unsafe like all oracles in CompCert). *)

Import UnsafeImpure.

Definition simu_check (dm: PTree.t node) (f: RTLpath.function) (tf: RTLpath.function) : res unit := 
  match unsafe_coerce (aux_simu_check dm f tf) with
  | Some true => OK tt
  | _ => Error (msg "simu_check has failed")
  end.

Lemma simu_check_correct dm f tf:
  simu_check dm f tf = OK tt ->
  forall pc1 pc2, dm ! pc2 = Some pc1 ->
  sexec_simu dm f tf pc1 pc2.
Proof.
  unfold simu_check.
  destruct (unsafe_coerce (aux_simu_check dm f tf)) as [[|]|] eqn:Hres; simpl; try discriminate.
  intros; eapply aux_simu_check_correct; eauto.
  eapply unsafe_coerce_not_really_correct; eauto.
Qed.