aboutsummaryrefslogtreecommitdiffstats
path: root/lib/IEEE754_extra.v
blob: 35feb29dbc47c7781d31f45fd5e1638f11279382 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*          Jacques-Henri Jourdan, INRIA Paris-Rocquencourt            *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU Lesser General Public License as        *)
(*  published by the Free Software Foundation, either version 2.1 of   *)
(*  the License, or  (at your option) any later version.               *)
(*  This file is also distributed under the terms of the               *)
(*  INRIA Non-Commercial License Agreement.                            *)
(*                                                                     *)
(* *********************************************************************)

(** Additional operations and proofs about IEEE-754 binary
    floating-point numbers, on top of the Flocq library. *)

From Flocq Require Import Core Digits Operations Round Bracket Sterbenz
                          Binary Round_odd.
Require Import Psatz.
Require Import Bool.
Require Import Eqdep_dec.

Require Import Coq.Logic.FunctionalExtensionality.

Local Open Scope Z_scope.


Lemma Znearest_lub :
  forall choice (n : Z) (x : R), (IZR n <= x)%R -> (n <= Znearest choice x)%Z.
Proof.
  intros until x. intro BND.
  pose proof (Zfloor_lub n x BND).
  pose proof (Znearest_ge_floor choice x).
  lia.
Qed.

Lemma Znearest_glb :
  forall choice (n : Z) (x : R), (x <= IZR n)%R -> (Znearest choice x <= n)%Z.
Proof.
  intros until x. intro BND.
  pose proof (Zceil_glb n x BND).
  pose proof (Znearest_le_ceil choice x).
  lia.
Qed.

Lemma Znearest_IZR :
  forall choice n, (Znearest choice (IZR n)) = n.
Proof.
  intros.
  unfold Znearest.
  case Rcompare_spec ; intro ORDER.
  - apply Zfloor_IZR.
  - destruct choice.
    + apply Zceil_IZR.
    + apply Zfloor_IZR.
  - apply Zceil_IZR.
Qed.

Lemma ZnearestE_IZR:
  forall n, (ZnearestE (IZR n)) = n.
Proof.
  apply Znearest_IZR.
Qed.

Lemma Zfloor_opp :
  forall x : R, (Zfloor (- x)) = - (Zceil x).
Proof.
  unfold Zceil, Zfloor.
  intro x.
  rewrite Z.opp_involutive.
  reflexivity.
Qed.

Lemma Zceil_opp :
  forall x : R, (Zceil (- x)) = - (Zfloor x).
Proof.
  unfold Zceil, Zfloor.
  intro x.
  rewrite Ropp_involutive.
  reflexivity.
Qed.

Lemma ZnearestE_opp
     : forall x : R, ZnearestE (- x) = - ZnearestE x.
Proof.
  intro.
  rewrite Znearest_opp.
  f_equal.
  f_equal.
  apply functional_extensionality.
  intro.
  rewrite Z.even_opp.
  fold (Z.succ x0).
  rewrite Z.even_succ.
  f_equal.
  apply Z.negb_odd.
Qed.

Lemma Zceil_non_floor:
  forall x : R, (x > IZR(Zfloor x))%R -> Zceil x = Z.succ(Zfloor x).
Proof.
  intros x BETWEEN.
  unfold Z.succ.
  apply Zceil_imp.
  split.
  { rewrite minus_IZR.
    rewrite plus_IZR.
    lra.
  }
  rewrite plus_IZR.
  pose proof (Zfloor_ub x).
  lra.
Qed.

(** more complicated way of proving
Lemma Zceil_non_ceil:
  forall x : R, (x < IZR(Zceil x))%R -> Zceil x = Z.succ(Zfloor x).
Proof.
  intros x BETWEEN.
  unfold Z.succ.
  cut (Zfloor x = (Zceil x) - 1). { intros; lia. }
  apply Zfloor_imp.
  split.
  { rewrite minus_IZR.
    pose proof (Zceil_lb x).
    lra.
  }
  rewrite plus_IZR.
  rewrite minus_IZR.
  lra.
Qed.    

Lemma ZnearestE_opp
     : forall x : R, ZnearestE (- x) = - ZnearestE x.
Proof.
  intro x.
  unfold ZnearestE.
  case (Rcompare_spec (x - IZR (Zfloor x)) (/ 2)); intro CMP.
  - pose proof (Zfloor_lb x) as LB.
    destruct (Rcompare_spec x (IZR (Zfloor x))) as [ ABSURD | EXACT | INEXACT].
    lra.
    { set (n := Zfloor x) in *.
      rewrite EXACT.
      rewrite <- opp_IZR.
      rewrite Zfloor_IZR.
      rewrite opp_IZR.
      rewrite Rcompare_Lt by lra.
      reflexivity.
    }
    rewrite Rcompare_Gt.
    { apply Zceil_opp. }
    rewrite Zfloor_opp.
    rewrite opp_IZR.
    rewrite Zceil_non_floor by assumption.
    unfold Z.succ.
    rewrite plus_IZR.
    lra.
  - rewrite Rcompare_Eq.
    { rewrite Zceil_opp.
      rewrite Zfloor_opp.
      rewrite Z.even_opp.
      rewrite Zceil_non_floor by lra.
      rewrite Z.even_succ.
      rewrite Z.negb_odd.
      destruct (Z.even (Zfloor x)); reflexivity.
    }
    rewrite Zfloor_opp.
    rewrite opp_IZR.
    ring_simplify.
    rewrite Zceil_non_floor by lra.
    unfold Z.succ.
    rewrite plus_IZR.
    lra.
  - rewrite Rcompare_Lt.
    { apply Zfloor_opp. }
    rewrite Zfloor_opp.
    rewrite opp_IZR.
    rewrite Zceil_non_floor by lra.
    unfold Z.succ.
    rewrite plus_IZR.
    lra.
Qed.
 *)

Lemma Znearest_imp2:
  forall choice x, (Rabs (IZR (Znearest choice x) - x) <= /2)%R.
Proof.
  intros.
  unfold Znearest.
  pose proof (Zfloor_lb x) as FL.
  pose proof (Zceil_ub x) as CU.
  pose proof (Zceil_non_floor x) as NF.
  case Rcompare_spec; intro CMP; apply Rabs_le; split; try lra.
  - destruct choice; lra.
  - destruct choice. 2: lra.
    rewrite NF. 2: lra.
    unfold Z.succ. rewrite plus_IZR. lra.
  - rewrite NF. 2: lra.
    unfold Z.succ. rewrite plus_IZR. lra.
Qed.

Theorem Znearest_le
  : forall choice (x y : R), (x <= y)%R -> Znearest choice x <= Znearest choice y.
Proof.
  intros.
  destruct (Z_le_gt_dec (Znearest choice x) (Znearest choice y)) as [LE | GT].
  assumption.
  exfalso.
  assert (1 <= IZR (Znearest choice x) - IZR(Znearest choice y))%R as GAP.
  { rewrite <- minus_IZR.
    apply IZR_le.
    lia.
  }
  pose proof (Znearest_imp2 choice x) as Rx.
  pose proof (Znearest_imp2 choice y) as Ry.
  apply Rabs_le_inv in Rx.
  apply Rabs_le_inv in Ry.
  assert (x = y) by lra.
  subst y.
  lia.
Qed.

Section Extra_ops.

(** [prec] is the number of bits of the mantissa including the implicit one.
    [emax] is the exponent of the infinities.
    Typically p=24 and emax = 128 in single precision. *)

Variable prec emax : Z.
Context (prec_gt_0_ : Prec_gt_0 prec).
Let emin := (3 - emax - prec)%Z.
Let fexp := FLT_exp emin prec.
Hypothesis Hmax : (prec < emax)%Z.
Let binary_float := binary_float prec emax.

(** Remarks on [is_finite] *)

Remark is_finite_not_is_nan:
  forall (f: binary_float), is_finite _ _ f = true -> is_nan _ _ f = false.
Proof.
  destruct f; reflexivity || discriminate.
Qed.

Remark is_finite_strict_finite:
  forall (f: binary_float), is_finite_strict _ _ f = true -> is_finite _ _ f = true.
Proof.
  destruct f; reflexivity || discriminate.
Qed.

(** Digression on FP numbers that cannot be [-0.0]. *)

Definition is_finite_pos0 (f: binary_float) : bool :=
  match f with
  | B754_zero _ _ s => negb s
  | B754_infinity _ _ _ => false
  | B754_nan _ _ _ _ _ => false
  | B754_finite _ _ _ _ _ _ => true
  end.

Lemma Bsign_pos0:
  forall x, is_finite_pos0 x = true -> Bsign _ _ x = Rlt_bool (B2R _ _ x) 0%R.
Proof.
  intros. destruct x as [ [] | | | [] ex mx Bx ]; try discriminate; simpl.
- rewrite Rlt_bool_false; auto. lra.
- rewrite Rlt_bool_true; auto. apply F2R_lt_0. compute; auto.
- rewrite Rlt_bool_false; auto.
  assert ((F2R (Float radix2 (Z.pos ex) mx) > 0)%R) by
    ( apply F2R_gt_0; compute; auto ).
  lra.
Qed.

Theorem B2R_inj_pos0:
  forall x y,
  is_finite_pos0 x = true -> is_finite_pos0 y = true ->
  B2R _ _ x = B2R _ _ y ->
  x = y.
Proof.
  intros. apply B2R_Bsign_inj.
  destruct x; reflexivity||discriminate.
  destruct y; reflexivity||discriminate.
  auto.
  rewrite ! Bsign_pos0 by auto. rewrite H1; auto.
Qed.

(** ** Decidable equality *)

Definition Beq_dec: forall (f1 f2: binary_float), {f1 = f2} + {f1 <> f2}.
Proof.
  assert (UIP_bool: forall (b1 b2: bool) (e e': b1 = b2), e = e').
  { intros. apply UIP_dec. decide equality. }
  Ltac try_not_eq := try solve [right; congruence].
  destruct f1 as [s1|s1|s1 p1 H1|s1 m1 e1 H1], f2 as [s2|s2|s2 p2 H2|s2 m2 e2 H2];
  try destruct s1; try destruct s2;
  try solve [left; auto]; try_not_eq.
  destruct (Pos.eq_dec p1 p2); try_not_eq;
    subst; left; f_equal; f_equal; apply UIP_bool.
  destruct (Pos.eq_dec p1 p2); try_not_eq;
    subst; left; f_equal; f_equal; apply UIP_bool.
  destruct (Pos.eq_dec m1 m2); try_not_eq;
  destruct (Z.eq_dec e1 e2); try solve [right; intro H; inversion H; congruence];
  subst; left; f_equal; apply UIP_bool.
  destruct (Pos.eq_dec m1 m2); try_not_eq;
  destruct (Z.eq_dec e1 e2); try solve [right; intro H; inversion H; congruence];
  subst; left; f_equal; apply UIP_bool.
Defined.

(** ** Conversion from an integer to a FP number *)

(** Integers that can be represented exactly as FP numbers. *)

Definition integer_representable (n: Z): Prop :=
  Z.abs n <= 2^emax - 2^(emax - prec) /\ generic_format radix2 fexp (IZR n).

Let int_upper_bound_eq: 2^emax - 2^(emax - prec) = (2^prec - 1) * 2^(emax - prec).
Proof.
  red in prec_gt_0_.
  ring_simplify. rewrite <- (Zpower_plus radix2) by lia. f_equal. f_equal. lia.
Qed.

Lemma integer_representable_n2p:
  forall n p,
  -2^prec < n < 2^prec -> 0 <= p -> p <= emax - prec ->
  integer_representable (n * 2^p).
Proof.
  intros; split.
- red in prec_gt_0_. replace (Z.abs (n * 2^p)) with (Z.abs n * 2^p).
  rewrite int_upper_bound_eq.
  apply Zmult_le_compat. zify; lia. apply (Zpower_le radix2); lia.
  zify; lia. apply (Zpower_ge_0 radix2).
  rewrite Z.abs_mul. f_equal. rewrite Z.abs_eq. auto. apply (Zpower_ge_0 radix2).
- apply generic_format_FLT. exists (Float radix2 n p).
  unfold F2R; simpl.
  rewrite <- IZR_Zpower by auto. apply mult_IZR.
  simpl; zify; lia.
  unfold emin, Fexp; red in prec_gt_0_; lia.
Qed.

Lemma integer_representable_2p:
  forall p,
  0 <= p <= emax - 1 ->
  integer_representable (2^p).
Proof.
  intros; split.
- red in prec_gt_0_.
  rewrite Z.abs_eq by (apply (Zpower_ge_0 radix2)).
  apply Z.le_trans with (2^(emax-1)).
  apply (Zpower_le radix2); lia.
  assert (2^emax = 2^(emax-1)*2).
  { change 2 with (2^1) at 3. rewrite <- (Zpower_plus radix2) by lia.
    f_equal. lia. }
  assert (2^(emax - prec) <= 2^(emax - 1)).
  { apply (Zpower_le radix2). lia. }
  lia.
- red in prec_gt_0_.
  apply generic_format_FLT. exists (Float radix2 1 p).
  unfold F2R; simpl.
  rewrite Rmult_1_l. rewrite <- IZR_Zpower. auto. lia.
  simpl Z.abs. change 1 with (2^0). apply (Zpower_lt radix2). lia. auto.
  unfold emin, Fexp; lia.
Qed.

Lemma integer_representable_opp:
  forall n, integer_representable n -> integer_representable (-n).
Proof.
  intros n (A & B); split. rewrite Z.abs_opp. auto.
  rewrite opp_IZR. apply generic_format_opp; auto.
Qed.

Lemma integer_representable_n2p_wide:
  forall n p,
  -2^prec <= n <= 2^prec -> 0 <= p -> p < emax - prec ->
  integer_representable (n * 2^p).
Proof.
  intros. red in prec_gt_0_.
  destruct (Z.eq_dec n (2^prec)); [idtac | destruct (Z.eq_dec n (-2^prec))].
- rewrite e. rewrite <- (Zpower_plus radix2) by lia.
  apply integer_representable_2p. lia.
- rewrite e. rewrite <- Zopp_mult_distr_l. apply integer_representable_opp.
  rewrite <- (Zpower_plus radix2) by lia.
  apply integer_representable_2p. lia.
- apply integer_representable_n2p; lia.
Qed.

Lemma integer_representable_n:
  forall n, -2^prec <= n <= 2^prec -> integer_representable n.
Proof.
  red in prec_gt_0_. intros.
  replace n with (n * 2^0) by (change (2^0) with 1; ring).
  apply integer_representable_n2p_wide. auto. lia. lia.
Qed.

Lemma round_int_no_overflow:
  forall n,
  Z.abs n <= 2^emax - 2^(emax-prec) ->
  (Rabs (round radix2 fexp (round_mode mode_NE) (IZR n)) < bpow radix2 emax)%R.
Proof.
  intros. red in prec_gt_0_.
  rewrite <- round_NE_abs.
  apply Rle_lt_trans with (IZR (2^emax - 2^(emax-prec))).
  apply round_le_generic. apply fexp_correct; auto. apply valid_rnd_N.
  apply generic_format_FLT. exists (Float radix2 (2^prec-1) (emax-prec)).
  rewrite int_upper_bound_eq. unfold F2R; simpl.
  rewrite <- IZR_Zpower by lia. rewrite <- mult_IZR. auto.
  assert (0 < 2^prec) by (apply (Zpower_gt_0 radix2); lia).
  unfold Fnum; simpl; zify; lia.
  unfold emin, Fexp; lia.
  rewrite <- abs_IZR. apply IZR_le. auto.
  rewrite <- IZR_Zpower by lia. apply IZR_lt. simpl.
  assert (0 < 2^(emax-prec)) by (apply (Zpower_gt_0 radix2); lia).
  lia.
  apply fexp_correct. auto.
Qed.

(** Conversion from an integer.  Round to nearest. *)

Definition BofZ (n: Z) : binary_float :=
  binary_normalize prec emax prec_gt_0_ Hmax mode_NE n 0 false.

Theorem BofZ_correct:
  forall n,
  if Rlt_bool (Rabs (round radix2 fexp (round_mode mode_NE) (IZR n))) (bpow radix2 emax)
  then
    B2R prec emax (BofZ n) = round radix2 fexp (round_mode mode_NE) (IZR n) /\
    is_finite _ _ (BofZ n) = true /\
    Bsign prec emax (BofZ n) = Z.ltb n 0
  else
    B2FF prec emax (BofZ n) = binary_overflow prec emax mode_NE (Z.ltb n 0).
Proof.
  intros.
  generalize (binary_normalize_correct prec emax prec_gt_0_ Hmax mode_NE n 0 false).
  fold emin; fold fexp; fold (BofZ n).
  replace (F2R {| Fnum := n; Fexp := 0 |}) with (IZR n).
  destruct Rlt_bool.
- intros (A & B & C). split; [|split].
  + auto.
  + auto.
  + rewrite C. rewrite Rcompare_IZR.
    unfold Z.ltb. auto.
- intros A; rewrite A. f_equal.
  generalize (Z.ltb_spec n 0); intros SPEC; inversion SPEC.
  apply Rlt_bool_true; apply IZR_lt; auto.
  apply Rlt_bool_false; apply IZR_le; auto.
- unfold F2R; simpl. ring.
Qed.

Theorem BofZ_finite:
  forall n,
  Z.abs n <= 2^emax - 2^(emax-prec) ->
  B2R _ _ (BofZ n) = round radix2 fexp (round_mode mode_NE) (IZR n)
  /\ is_finite _ _ (BofZ n) = true
  /\ Bsign _ _ (BofZ n) = Z.ltb n 0%Z.
Proof.
  intros.
  generalize (BofZ_correct n). rewrite Rlt_bool_true. auto.
  apply round_int_no_overflow; auto.
Qed.

Theorem BofZ_representable:
  forall n,
  integer_representable n ->
  B2R _ _ (BofZ n) = IZR n
  /\ is_finite _ _ (BofZ n) = true
  /\ Bsign _ _ (BofZ n) = (n <? 0).
Proof.
  intros. destruct H as (P & Q). destruct (BofZ_finite n) as (A & B & C). auto.
  intuition. rewrite A. apply round_generic. apply valid_rnd_round_mode. auto.
Qed.

Theorem BofZ_exact:
  forall n,
  -2^prec <= n <= 2^prec ->
  B2R _ _ (BofZ n) = IZR n
  /\ is_finite _ _ (BofZ n) = true
  /\ Bsign _ _ (BofZ n) = Z.ltb n 0%Z.
Proof.
  intros. apply BofZ_representable. apply integer_representable_n; auto.
Qed.

Lemma BofZ_finite_pos0:
  forall n,
  Z.abs n <= 2^emax - 2^(emax-prec) -> is_finite_pos0 (BofZ n) = true.
Proof.
  intros.
  generalize (binary_normalize_correct prec emax prec_gt_0_ Hmax mode_NE n 0 false).
  fold emin; fold fexp; fold (BofZ n).
  replace (F2R {| Fnum := n; Fexp := 0 |}) with (IZR n) by
    (unfold F2R; simpl; ring).
  rewrite Rlt_bool_true by (apply round_int_no_overflow; auto).
  intros (A & B & C).
  destruct (BofZ n); auto; try discriminate.
  simpl in *. rewrite C. rewrite Rcompare_IZR.
  generalize (Zcompare_spec n 0); intros SPEC; inversion SPEC; auto.
  assert ((round radix2 fexp ZnearestE (IZR n) <= -1)%R).
  { apply round_le_generic. apply fexp_correct. auto. apply valid_rnd_N.
    apply (integer_representable_opp 1).
    apply (integer_representable_2p 0).
    red in prec_gt_0_; lia.
    apply IZR_le; lia.
  }
  lra.
Qed.

Lemma BofZ_finite_equal:
  forall x y,
  Z.abs x <= 2^emax - 2^(emax-prec) ->
  Z.abs y <= 2^emax - 2^(emax-prec) ->
  B2R _ _ (BofZ x) = B2R _ _ (BofZ y) ->
  BofZ x = BofZ y.
Proof.
  intros. apply B2R_inj_pos0; auto; apply BofZ_finite_pos0; auto.
Qed.

(** Commutation properties with addition, subtraction, multiplication. *)

Theorem BofZ_plus:
  forall nan p q,
  integer_representable p -> integer_representable q ->
  Bplus _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) = BofZ (p + q).
Proof.
  intros.
  destruct (BofZ_representable p) as (A & B & C); auto.
  destruct (BofZ_representable q) as (D & E & F); auto.
  generalize (Bplus_correct _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) B E).
  fold emin; fold fexp.
  rewrite A, D. rewrite <- plus_IZR.
  generalize (BofZ_correct (p + q)). destruct Rlt_bool.
- intros (P & Q & R) (U & V & W).
  apply B2R_Bsign_inj; auto.
  rewrite P, U; auto.
  rewrite R, W, C, F.
  rewrite Rcompare_IZR. unfold Z.ltb at 3.
  generalize (Zcompare_spec (p + q) 0); intros SPEC; inversion SPEC; auto.
  assert (EITHER: 0 <= p \/ 0 <= q) by lia.
  destruct EITHER; [apply andb_false_intro1 | apply andb_false_intro2];
  apply Zlt_bool_false; auto.
- intros P (U & V).
  apply B2FF_inj.
  rewrite P, U, C. f_equal. rewrite C, F in V.
  generalize (Zlt_bool_spec p 0) (Zlt_bool_spec q 0). rewrite <- V.
  intros SPEC1 SPEC2; inversion SPEC1; inversion SPEC2; try congruence; symmetry.
  apply Zlt_bool_true; lia.
  apply Zlt_bool_false; lia.
Qed.

Theorem BofZ_minus:
  forall nan p q,
  integer_representable p -> integer_representable q ->
  Bminus _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) = BofZ (p - q).
Proof.
  intros.
  destruct (BofZ_representable p) as (A & B & C); auto.
  destruct (BofZ_representable q) as (D & E & F); auto.
  generalize (Bminus_correct _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) B E).
  fold emin; fold fexp.
  rewrite A, D. rewrite <- minus_IZR.
  generalize (BofZ_correct (p - q)). destruct Rlt_bool.
- intros (P & Q & R) (U & V & W).
  apply B2R_Bsign_inj; auto.
  rewrite P, U; auto.
  rewrite R, W, C, F.
  rewrite Rcompare_IZR. unfold Z.ltb at 3.
  generalize (Zcompare_spec (p - q) 0); intros SPEC; inversion SPEC; auto.
  assert (EITHER: 0 <= p \/ q < 0) by lia.
  destruct EITHER; [apply andb_false_intro1 | apply andb_false_intro2].
  rewrite Zlt_bool_false; auto.
  rewrite Zlt_bool_true; auto.
- intros P (U & V).
  apply B2FF_inj.
  rewrite P, U, C. f_equal. rewrite C, F in V.
  generalize (Zlt_bool_spec p 0) (Zlt_bool_spec q 0). rewrite V.
  intros SPEC1 SPEC2; inversion SPEC1; inversion SPEC2; symmetry.
  rewrite <- H3 in H1; discriminate.
  apply Zlt_bool_true; lia.
  apply Zlt_bool_false; lia.
  rewrite <- H3 in H1; discriminate.
Qed.

Theorem BofZ_mult:
  forall nan p q,
  integer_representable p -> integer_representable q ->
  0 < q ->
  Bmult _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) = BofZ (p * q).
Proof.
  intros.
  assert (SIGN: xorb (p <? 0) (q <? 0) = (p * q <? 0)).
  {
    rewrite (Zlt_bool_false q) by lia.
    generalize (Zlt_bool_spec p 0); intros SPEC; inversion SPEC; simpl; symmetry.
    apply Zlt_bool_true. rewrite Z.mul_comm. apply Z.mul_pos_neg; lia.
    apply Zlt_bool_false. apply Zsame_sign_imp; lia.
  }
  destruct (BofZ_representable p) as (A & B & C); auto.
  destruct (BofZ_representable q) as (D & E & F); auto.
  generalize (Bmult_correct _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q)).
  fold emin; fold fexp.
  rewrite A, B, C, D, E, F. rewrite <- mult_IZR.
  generalize (BofZ_correct (p * q)). destruct Rlt_bool.
- intros (P & Q & R) (U & V & W).
  apply B2R_Bsign_inj; auto.
  rewrite P, U; auto.
  rewrite R, W; auto.
  apply is_finite_not_is_nan; auto.
- intros P U.
  apply B2FF_inj. rewrite P, U. f_equal. auto.
Qed.

Theorem BofZ_mult_2p:
  forall nan x p,
  Z.abs x <= 2^emax - 2^(emax-prec) ->
  2^prec <= Z.abs x ->
  0 <= p <= emax - 1 ->
  Bmult _ _ _ Hmax nan mode_NE (BofZ x) (BofZ (2^p)) = BofZ (x * 2^p).
Proof.
  intros.
  destruct (Z.eq_dec x 0).
- subst x. apply BofZ_mult.
    apply integer_representable_n.
    generalize (Zpower_ge_0 radix2 prec). simpl; lia.
    apply integer_representable_2p. auto.
    apply (Zpower_gt_0 radix2).
    lia.
- assert (IZR x <> 0%R) by (apply (IZR_neq _ _ n)).
  destruct (BofZ_finite x H) as (A & B & C).
  destruct (BofZ_representable (2^p)) as (D & E & F).
    apply integer_representable_2p. auto.
  assert (cexp radix2 fexp (IZR (x * 2^p)) =
          cexp radix2 fexp (IZR x) + p).
  {
    unfold cexp, fexp. rewrite mult_IZR.
    change (2^p) with (radix2^p). rewrite IZR_Zpower by lia.
    rewrite mag_mult_bpow by auto.
    assert (prec + 1 <= mag radix2 (IZR x)).
    { rewrite <- (mag_abs radix2 (IZR x)).
      rewrite <- (mag_bpow radix2 prec).
      apply mag_le.
      apply bpow_gt_0. rewrite <- IZR_Zpower by (red in prec_gt_0_;lia).
      rewrite <- abs_IZR. apply IZR_le; auto. }
    unfold FLT_exp.
    unfold emin; red in prec_gt_0_; zify; lia.
  }
  assert (forall m, round radix2 fexp m (IZR x) * IZR (2^p) =
                    round radix2 fexp m (IZR (x * 2^p)))%R.
  {
    intros. unfold round, scaled_mantissa. rewrite H3.
    rewrite mult_IZR. rewrite Z.opp_add_distr. rewrite bpow_plus.
    set (a := IZR x); set (b := bpow radix2 (- cexp radix2 fexp a)).
    replace (a * IZR (2^p) * (b * bpow radix2 (-p)))%R with (a * b)%R.
    unfold F2R; simpl. rewrite Rmult_assoc. f_equal.
    rewrite bpow_plus.  f_equal. apply (IZR_Zpower radix2). lia.
    transitivity ((a * b) * (IZR (2^p) * bpow radix2 (-p)))%R.
    rewrite (IZR_Zpower radix2). rewrite <- bpow_plus.
    replace (p + -p) with 0 by lia. change (bpow radix2 0) with 1%R. ring.
    lia.
    ring.
  }
  assert (forall m x,
    round radix2 fexp (round_mode m) (round radix2 fexp (round_mode m) x) =
    round radix2 fexp (round_mode m) x).
  {
    intros. apply round_generic. apply valid_rnd_round_mode.
    apply generic_format_round.  apply fexp_correct; auto.
    apply valid_rnd_round_mode.
  }
  assert (xorb (x <? 0) (2^p <? 0) = (x * 2^p <? 0)).
  {
    assert (0 < 2^p) by (apply (Zpower_gt_0 radix2); lia).
    rewrite (Zlt_bool_false (2^p)) by lia. rewrite xorb_false_r.
    symmetry. generalize (Zlt_bool_spec x 0); intros SPEC; inversion SPEC.
    apply Zlt_bool_true. apply Z.mul_neg_pos; auto.
    apply Zlt_bool_false. apply Z.mul_nonneg_nonneg; lia.
  }
  generalize (Bmult_correct _ _ _ Hmax nan mode_NE (BofZ x) (BofZ (2^p)))
             (BofZ_correct (x * 2^p)).
  fold emin; fold fexp. rewrite A, B, C, D, E, F, H4, H5.
  destruct Rlt_bool.
+ intros (P & Q & R) (U & V & W).
  apply B2R_Bsign_inj; auto.
  rewrite P, U. auto.
  rewrite R, W. auto.
  apply is_finite_not_is_nan; auto.
+ intros P U.
  apply B2FF_inj. rewrite P, U. f_equal; auto.
Qed.

(** Rounding to odd the argument of [BofZ]. *)

Lemma round_odd_flt:
  forall prec' emin' x choice,
  prec > 1 -> prec' > 1 -> prec' >= prec + 2 -> emin' <= emin - 2 ->
  round radix2 fexp (Znearest choice) (round radix2 (FLT_exp emin' prec') Zrnd_odd x) =
  round radix2 fexp (Znearest choice) x.
Proof.
  intros. apply round_N_odd. auto. apply fexp_correct; auto.
  apply exists_NE_FLT. right; lia.
  apply FLT_exp_valid. red; lia.
  apply exists_NE_FLT. right; lia.
  unfold fexp, FLT_exp; intros. zify; lia.
Qed.

Corollary round_odd_fix:
  forall x p choice,
  prec > 1 ->
  0 <= p ->
  (bpow radix2 (prec + p + 1) <= Rabs x)%R ->
  round radix2 fexp (Znearest choice) (round radix2 (FIX_exp p) Zrnd_odd x) =
  round radix2 fexp (Znearest choice) x.
Proof.
  intros. destruct (Req_EM_T x 0%R).
- subst x. rewrite round_0. auto. apply valid_rnd_odd.
- set (prec' := mag radix2 x - p).
  set (emin' := emin - 2).
  assert (PREC: mag radix2 (bpow radix2 (prec + p + 1)) <= mag radix2 x).
  { rewrite <- (mag_abs radix2 x).
    apply mag_le; auto. apply bpow_gt_0. }
  rewrite mag_bpow in PREC.
  assert (CANON: cexp radix2 (FLT_exp emin' prec') x =
                 cexp radix2 (FIX_exp p) x).
  {
    unfold cexp, FLT_exp, FIX_exp.
    replace (mag radix2 x - prec') with p by (unfold prec'; lia).
    apply Z.max_l. unfold emin', emin. red in prec_gt_0_; lia.
  }
  assert (RND: round radix2 (FIX_exp p) Zrnd_odd x =
               round radix2 (FLT_exp emin' prec') Zrnd_odd x).
  {
    unfold round, scaled_mantissa. rewrite CANON. auto.
  }
  rewrite RND.
  apply round_odd_flt. auto.
  unfold prec'. red in prec_gt_0_; lia.
  unfold prec'. lia.
  unfold emin'. lia.
Qed.

Definition int_round_odd (x: Z) (p: Z) :=
  (if Z.eqb (x mod 2^p) 0 || Z.odd (x / 2^p) then x / 2^p else x / 2^p + 1) * 2^p.

Lemma Zrnd_odd_int:
  forall n p, 0 <= p ->
  Zrnd_odd (IZR n * bpow radix2 (-p)) * 2^p =
  int_round_odd n p.
Proof.
  clear. intros.
  assert (0 < 2^p) by (apply (Zpower_gt_0 radix2); lia).
  assert (n = (n / 2^p) * 2^p + n mod 2^p) by (rewrite Z.mul_comm; apply Z.div_mod; lia).
  assert (0 <= n mod 2^p < 2^p) by (apply Z_mod_lt; lia).
  unfold int_round_odd. set (q := n / 2^p) in *; set (r := n mod 2^p) in *.
  f_equal.
  pose proof (bpow_gt_0 radix2 (-p)).
  assert (bpow radix2 p * bpow radix2 (-p) = 1)%R.
  { rewrite <- bpow_plus. replace (p + -p) with 0 by lia. auto. }
  assert (IZR n * bpow radix2 (-p) = IZR q + IZR r * bpow radix2 (-p))%R.
  { rewrite H1. rewrite plus_IZR, mult_IZR.
    change (IZR (2^p)) with (IZR (radix2^p)).
    rewrite IZR_Zpower by lia. ring_simplify.
    rewrite Rmult_assoc. rewrite H4. ring. }
  assert (0 <= IZR r < bpow radix2 p)%R.
  { split. apply IZR_le; lia.
    rewrite <- IZR_Zpower by lia. apply IZR_lt; tauto. }
  assert (0 <= IZR r * bpow radix2 (-p) < 1)%R.
  { generalize (bpow_gt_0 radix2 (-p)). intros.
    split. apply Rmult_le_pos; lra.
    rewrite <- H4. apply Rmult_lt_compat_r. auto. tauto. }
  assert (Zfloor (IZR n * bpow radix2 (-p)) = q).
  { apply Zfloor_imp. rewrite H5. rewrite plus_IZR. lra. }
  unfold Zrnd_odd. destruct Req_EM_T.
- assert (IZR r * bpow radix2 (-p) = 0)%R.
  { rewrite H8 in e. rewrite e in H5. lra. }
  apply Rmult_integral in H9. destruct H9; [ | lra ].
  apply (eq_IZR r 0) in H9. apply <- Z.eqb_eq in H9. rewrite H9. assumption.
- assert (IZR r * bpow radix2 (-p) <> 0)%R.
  { rewrite H8 in n0. lra. }
  destruct (Z.eqb r 0) eqn:RZ.
  apply Z.eqb_eq in RZ. rewrite RZ in H9.
  rewrite Rmult_0_l in H9. congruence.
  rewrite Zceil_floor_neq by lra. rewrite H8.
  change Zeven with Z.even. rewrite Zodd_even_bool. destruct (Z.even q); auto.
Qed.

Lemma int_round_odd_le:
  forall p x y, 0 <= p ->
  x <= y -> int_round_odd x p <= int_round_odd y p.
Proof.
  clear. intros.
  assert (Zrnd_odd (IZR x * bpow radix2 (-p)) <= Zrnd_odd (IZR y * bpow radix2 (-p))).
  { apply Zrnd_le. apply valid_rnd_odd. apply Rmult_le_compat_r. apply bpow_ge_0.
    apply IZR_le; auto. }
  rewrite <- ! Zrnd_odd_int by auto.
  apply Zmult_le_compat_r. auto. apply (Zpower_ge_0 radix2).
Qed.

Lemma int_round_odd_exact:
  forall p x, 0 <= p ->
  (2^p | x) -> int_round_odd x p = x.
Proof.
  clear. intros. unfold int_round_odd. apply Znumtheory.Zdivide_mod in H0.
  rewrite H0. simpl. rewrite Z.mul_comm. symmetry. apply Z_div_exact_2.
  apply Z.lt_gt. apply (Zpower_gt_0 radix2). auto. auto.
Qed.

Theorem BofZ_round_odd:
  forall x p,
  prec > 1 ->
  Z.abs x <= 2^emax - 2^(emax-prec) ->
  0 <= p <= emax - prec ->
  2^(prec + p + 1) <= Z.abs x ->
  BofZ x = BofZ (int_round_odd x p).
Proof.
  intros x p PREC XRANGE PRANGE XGE.
  assert (DIV: (2^p | 2^emax - 2^(emax - prec))).
  { rewrite int_upper_bound_eq. apply Z.divide_mul_r.
    exists (2^(emax - prec - p)). red in prec_gt_0_.
    rewrite <- (Zpower_plus radix2) by lia. f_equal; lia. }
  assert (YRANGE: Z.abs (int_round_odd x p) <= 2^emax - 2^(emax-prec)).
  { apply Z.abs_le. split.
    replace (-(2^emax - 2^(emax-prec))) with (int_round_odd (-(2^emax - 2^(emax-prec))) p).
    apply int_round_odd_le; zify; lia.
    apply int_round_odd_exact. lia. apply Z.divide_opp_r. auto.
    replace (2^emax - 2^(emax-prec)) with (int_round_odd (2^emax - 2^(emax-prec)) p).
    apply int_round_odd_le; zify; lia.
    apply int_round_odd_exact. lia. auto. }
  destruct (BofZ_finite x XRANGE) as (X1 & X2 & X3).
  destruct (BofZ_finite (int_round_odd x p) YRANGE) as (Y1 & Y2 & Y3).
  apply BofZ_finite_equal; auto.
  rewrite X1, Y1.
  assert (IZR (int_round_odd x p) = round radix2 (FIX_exp p) Zrnd_odd (IZR x)).
  {
     unfold round, scaled_mantissa, cexp, FIX_exp.
     rewrite <- Zrnd_odd_int by lia.
     unfold F2R; simpl. rewrite mult_IZR. f_equal. apply (IZR_Zpower radix2). lia.
  }
  rewrite H. symmetry. apply round_odd_fix. auto. lia.
  rewrite <- IZR_Zpower. rewrite <- abs_IZR. apply IZR_le; auto.
  red in prec_gt_0_; lia.
Qed.

Lemma int_round_odd_shifts:
  forall x p, 0 <= p ->
  int_round_odd x p =
  Z.shiftl (if Z.eqb (x mod 2^p) 0 then Z.shiftr x p else Z.lor (Z.shiftr x p) 1) p.
Proof.
  clear. intros.
  unfold int_round_odd. rewrite Z.shiftl_mul_pow2 by auto. f_equal.
  rewrite Z.shiftr_div_pow2 by auto.
  destruct (x mod 2^p =? 0) eqn:E. auto.
  assert (forall n, (if Z.odd n then n else n + 1) = Z.lor n 1).
  { destruct n; simpl; auto.
    destruct p0; auto.
    destruct p0; auto. induction p0; auto. }
  simpl. apply H0.
Qed.

Lemma int_round_odd_bits:
  forall x y p, 0 <= p ->
  (forall i, 0 <= i < p -> Z.testbit y i = false) ->
  Z.testbit y p = (if Z.eqb (x mod 2^p) 0 then Z.testbit x p else true) ->
  (forall i, p < i -> Z.testbit y i = Z.testbit x i) ->
  int_round_odd x p = y.
Proof.
  clear. intros until p; intros PPOS BELOW AT ABOVE.
  rewrite int_round_odd_shifts by auto.
  apply Z.bits_inj'. intros.
  generalize (Zcompare_spec n p); intros SPEC; inversion SPEC.
- rewrite BELOW by auto. apply Z.shiftl_spec_low; auto.
- subst n. rewrite AT. rewrite Z.shiftl_spec_high by lia.
  replace (p - p) with 0 by lia.
  destruct (x mod 2^p =? 0).
  + rewrite Z.shiftr_spec by lia. f_equal; lia.
  + rewrite Z.lor_spec. apply orb_true_r.
- rewrite ABOVE by auto.  rewrite Z.shiftl_spec_high by lia.
  destruct (x mod 2^p =? 0).
  rewrite Z.shiftr_spec by lia. f_equal; lia.
  rewrite Z.lor_spec, Z.shiftr_spec by lia.
  change 1 with (Z.ones 1). rewrite Z.ones_spec_high by lia. rewrite orb_false_r.
  f_equal; lia.
Qed.

(** ** Conversion from a FP number to an integer *)

(** Always rounds toward zero. *)

Definition ZofB (f: binary_float): option Z :=
  match f with
    | B754_finite _ _ s m (Zpos e) _ => Some (cond_Zopp s (Zpos m) * Z.pow_pos radix2 e)%Z
    | B754_finite _ _ s m 0 _ => Some (cond_Zopp s (Zpos m))
    | B754_finite _ _ s m (Zneg e) _ => Some (cond_Zopp s (Zpos m / Z.pow_pos radix2 e))%Z
    | B754_zero _ _ _ => Some 0%Z
    | _ => None
  end.

Theorem ZofB_correct:
  forall f,
  ZofB f = if is_finite _ _ f then Some (Ztrunc (B2R _ _ f)) else None.
Proof.
  destruct f as [s|s|s p H|s m e H]; simpl; auto.
- f_equal. symmetry. apply (Ztrunc_IZR 0).
- destruct e; f_equal.
  + unfold F2R; simpl. rewrite Rmult_1_r. rewrite Ztrunc_IZR. auto.
  + unfold F2R; simpl. rewrite <- mult_IZR. rewrite Ztrunc_IZR. auto.
  + unfold F2R; simpl. rewrite IZR_cond_Zopp. rewrite <- cond_Ropp_mult_l.
    assert (EQ: forall x, Ztrunc (cond_Ropp s x) = cond_Zopp s (Ztrunc x)).
    {
      intros. destruct s; simpl; auto. apply Ztrunc_opp.
    }
    rewrite EQ. f_equal.
    generalize (Zpower_pos_gt_0 2 p (eq_refl _)); intros.
    rewrite Ztrunc_floor. symmetry. apply Zfloor_div. lia.
    apply Rmult_le_pos. apply IZR_le. compute; congruence.
    apply Rlt_le. apply Rinv_0_lt_compat. apply IZR_lt. auto.
Qed.

(** Interval properties. *)

Remark Ztrunc_range_pos:
  forall x, 0 < Ztrunc x -> (IZR (Ztrunc x) <= x < IZR (Ztrunc x + 1)%Z)%R.
Proof.
  intros.
  rewrite Ztrunc_floor. split. apply Zfloor_lb. rewrite plus_IZR. apply Zfloor_ub.
  generalize (Rle_bool_spec 0%R x). intros RLE; inversion RLE; subst; clear RLE.
  auto.
  rewrite Ztrunc_ceil in H by lra. unfold Zceil in H.
  assert (-x < 0)%R.
  { apply Rlt_le_trans with (IZR (Zfloor (-x)) + 1)%R. apply Zfloor_ub.
    rewrite <- plus_IZR.
    apply IZR_le. lia. }
  lra.
Qed.

Remark Ztrunc_range_zero:
  forall x, Ztrunc x = 0 -> (-1 < x < 1)%R.
Proof.
  intros; generalize (Rle_bool_spec 0%R x). intros RLE; inversion RLE; subst; clear RLE.
- rewrite Ztrunc_floor in H by auto. split.
  + apply Rlt_le_trans with 0%R; auto. rewrite <- Ropp_0. apply Ropp_lt_contravar. apply Rlt_0_1.
  + replace 1%R with (IZR (Zfloor x) + 1)%R. apply Zfloor_ub. rewrite H. simpl. apply Rplus_0_l.
- rewrite Ztrunc_ceil in H by (apply Rlt_le; auto). split.
  + apply (Ropp_lt_cancel (-(1))). rewrite Ropp_involutive.
    replace 1%R with (IZR (Zfloor (-x)) + 1)%R. apply Zfloor_ub.
    unfold Zceil in H. replace (Zfloor (-x)) with 0 by lia. simpl. apply Rplus_0_l.
  + apply Rlt_le_trans with 0%R; auto. apply Rle_0_1.
Qed.

Theorem ZofB_range_pos:
  forall f n, ZofB f = Some n -> 0 < n -> (IZR n <= B2R _ _ f < IZR (n + 1)%Z)%R.
Proof.
  intros. rewrite ZofB_correct in H. destruct (is_finite prec emax f) eqn:FIN; inversion H.
  apply Ztrunc_range_pos. congruence.
Qed.

Theorem ZofB_range_neg:
  forall f n, ZofB f = Some n -> n < 0 -> (IZR (n - 1)%Z < B2R _ _ f <= IZR n)%R.
Proof.
  intros. rewrite ZofB_correct in H. destruct (is_finite prec emax f) eqn:FIN; inversion H.
  set (x := B2R prec emax f) in *. set (y := (-x)%R).
  assert (A: (IZR (Ztrunc y) <= y < IZR (Ztrunc y + 1)%Z)%R).
  { apply Ztrunc_range_pos. unfold y. rewrite Ztrunc_opp. lia. }
  destruct A as [B C].
  unfold y in B, C. rewrite Ztrunc_opp in B, C.
  replace (- Ztrunc x + 1) with (- (Ztrunc x - 1)) in C by lia.
  rewrite opp_IZR in B, C. lra.
Qed.

Theorem ZofB_range_zero:
  forall f, ZofB f = Some 0 -> (-1 < B2R _ _ f < 1)%R.
Proof.
  intros. rewrite ZofB_correct in H. destruct (is_finite prec emax f) eqn:FIN; inversion H.
  apply Ztrunc_range_zero. auto.
Qed.

Theorem ZofB_range_nonneg:
  forall f n, ZofB f = Some n -> 0 <= n -> (-1 < B2R _ _ f < IZR (n + 1)%Z)%R.
Proof.
  intros. destruct (Z.eq_dec n 0).
- subst n. apply ZofB_range_zero. auto.
- destruct (ZofB_range_pos f n) as (A & B). auto. lia.
  split; auto. apply Rlt_le_trans with 0%R. simpl; lra.
  apply Rle_trans with (IZR n); auto. apply IZR_le; auto.
Qed.

(** For representable integers, [ZofB] is left inverse of [BofZ]. *)

Theorem ZofBofZ_exact:
  forall n, integer_representable n -> ZofB (BofZ n) = Some n.
Proof.
  intros. destruct (BofZ_representable n H) as (A & B & C).
  rewrite ZofB_correct. rewrite A, B. f_equal. apply Ztrunc_IZR.
Qed.

(** Compatibility with subtraction *)

Remark Zfloor_minus:
  forall x n, Zfloor (x - IZR n) = Zfloor x - n.
Proof.
  intros. apply Zfloor_imp. replace (Zfloor x - n + 1) with ((Zfloor x + 1) - n) by lia.
  rewrite ! minus_IZR. unfold Rminus. split.
  apply Rplus_le_compat_r. apply Zfloor_lb.
  apply Rplus_lt_compat_r. rewrite plus_IZR. apply Zfloor_ub.
Qed.

Theorem ZofB_minus:
  forall minus_nan m f p q,
  ZofB f = Some p -> 0 <= p < 2*q -> q <= 2^prec -> (IZR q <= B2R _ _ f)%R ->
  ZofB (Bminus _ _ _ Hmax minus_nan m f (BofZ q)) = Some (p - q).
Proof.
  intros.
  assert (Q: -2^prec <= q <= 2^prec).
  { split; auto.  generalize (Zpower_ge_0 radix2 prec); simpl; lia. }
  assert (RANGE: (-1 < B2R _ _ f < IZR (p + 1)%Z)%R) by (apply ZofB_range_nonneg; auto; lia).
  rewrite ZofB_correct in H. destruct (is_finite prec emax f) eqn:FIN; try discriminate.
  assert (PQ2: (IZR (p + 1) <= IZR q * 2)%R).
  { rewrite <- mult_IZR. apply IZR_le. lia. }
  assert (EXACT: round radix2 fexp (round_mode m) (B2R _ _ f - IZR q)%R = (B2R _ _ f - IZR q)%R).
  { apply round_generic. apply valid_rnd_round_mode.
    apply sterbenz_aux. now apply FLT_exp_valid. apply FLT_exp_monotone. apply generic_format_B2R.
    apply integer_representable_n. auto. lra. }
  destruct (BofZ_exact q Q) as (A & B & C).
  generalize (Bminus_correct _ _ _ Hmax minus_nan m f (BofZ q) FIN B).
  rewrite Rlt_bool_true.
- fold emin; fold fexp. intros (D & E & F).
  rewrite ZofB_correct. rewrite E. rewrite D. rewrite A. rewrite EXACT.
  inversion H. f_equal. rewrite ! Ztrunc_floor. apply Zfloor_minus.
  lra. lra.
- rewrite A. fold emin; fold fexp. rewrite EXACT.
  apply Rle_lt_trans with (bpow radix2 prec).
  apply Rle_trans with (IZR q). apply Rabs_le. lra.
  rewrite <- IZR_Zpower. apply IZR_le; auto. red in prec_gt_0_; lia.
  apply bpow_lt. auto.
Qed.

(** A variant of [ZofB] that bounds the range of representable integers. *)

Definition ZofB_range (f: binary_float) (zmin zmax: Z): option Z :=
  match ZofB f with
  | None => None
  | Some z => if Z.leb zmin z && Z.leb z zmax then Some z else None
  end.

Theorem ZofB_range_correct:
  forall f min max,
  let n := Ztrunc (B2R _ _ f) in
  ZofB_range f min max =
  if is_finite _ _ f && Z.leb min n && Z.leb n max then Some n else None.
Proof.
  intros. unfold ZofB_range. rewrite ZofB_correct. fold n.
  destruct (is_finite prec emax f); auto.
Qed.

Lemma ZofB_range_inversion:
  forall f min max n,
  ZofB_range f min max = Some n ->
  min <= n /\ n <= max /\ ZofB f = Some n.
Proof.
  intros. rewrite ZofB_range_correct in H. rewrite ZofB_correct.
  destruct (is_finite prec emax f); try discriminate.
  set (n1 := Ztrunc (B2R _ _ f)) in *.
  destruct (min <=? n1) eqn:MIN; try discriminate.
  destruct (n1 <=? max) eqn:MAX; try discriminate.
  simpl in H. inversion H. subst n.
  split. apply Zle_bool_imp_le; auto.
  split. apply Zle_bool_imp_le; auto.
  auto.
Qed.

Theorem ZofB_range_minus:
  forall minus_nan m f p q,
  ZofB_range f 0 (2 * q - 1) = Some p -> q <= 2^prec -> (IZR q <= B2R _ _ f)%R ->
  ZofB_range (Bminus _ _ _ Hmax minus_nan m f (BofZ q)) (-q) (q - 1) = Some (p - q).
Proof.
  intros. destruct (ZofB_range_inversion _ _ _ _ H) as (A & B & C).
  set (f' := Bminus prec emax prec_gt_0_ Hmax minus_nan m f (BofZ q)).
  assert (D: ZofB f' = Some (p - q)).
  { apply ZofB_minus. auto. lia. auto. auto. }
  unfold ZofB_range. rewrite D. rewrite Zle_bool_true by lia. rewrite Zle_bool_true by lia. auto.
Qed.

(** ZofB_ne : convert float to integer, round to nearest *)

Definition Zdiv_ne (a b : Z) :=
  let q := Z.div a b in
  let q1 := Z.succ q in
  match Z.compare (a-b*q) (b*q1-a) with
  | Lt => q
  | Gt => q1
  | Eq => (if Z.even q then q else q1)
  end.

Definition ZofB_ne (f: binary_float): option Z :=
  match f with
    | B754_finite _ _ s m (Zpos e) _ => Some (cond_Zopp s (Zpos m) * Z.pow_pos radix2 e)%Z
    | B754_finite _ _ s m 0 _ => Some (cond_Zopp s (Zpos m))
    | B754_finite _ _ s m (Zneg e) _ => Some (cond_Zopp s (Zdiv_ne (Zpos m)  (Z.pow_pos radix2 e)))%Z
    | B754_zero _ _ _ => Some 0%Z
    | _ => None
  end.

Ltac field_simplify_den := field_simplify ; [idtac | lra].
Ltac Rdiv_lt_0_den := apply Rdiv_lt_0_compat ; [idtac | lra].

Hint Rewrite <- plus_IZR minus_IZR opp_IZR mult_IZR : l_IZR.
Ltac l_IZR := autorewrite with l_IZR.

Theorem ZofB_ne_correct:
  forall f,
    ZofB_ne f = if is_finite _ _ f then Some (ZnearestE (B2R _ _ f)) else None.
Proof.
  destruct f as [s|s|s p H|s m e H]; simpl; auto.
- f_equal. symmetry. apply (ZnearestE_IZR 0).
- destruct e; f_equal.
  + unfold F2R; cbn. rewrite Rmult_1_r. rewrite ZnearestE_IZR. auto.
  + unfold F2R; cbn. rewrite <- mult_IZR. rewrite ZnearestE_IZR. auto.
  + unfold F2R; cbn. rewrite IZR_cond_Zopp. rewrite <- cond_Ropp_mult_l.
    assert (EQ: forall x, ZnearestE (cond_Ropp s x) = cond_Zopp s (ZnearestE x)).
    { intros. destruct s; cbn; auto. apply ZnearestE_opp. }
    rewrite EQ. f_equal.
    generalize (Zpower_pos_gt_0 2 p (eq_refl _)); intros.
    set (p2p := (Z.pow_pos 2 p)) in *.
    set (zm := Z.pos m) in *.
    assert (p2p > 0) as POS by lia.
    assert (0 < IZR p2p)%R as POS2.
    { apply IZR_lt. assumption. }
    unfold Zdiv_ne, Z.succ in *.
    case Z.compare_spec; intro CMP.
    * pose proof (Z_div_mod_eq_full zm p2p) as DECOMPOSE.
      destruct (Z_mod_lt zm p2p POS) as [MOD1 MOD2].
      set (q := zm / p2p) in *.
      set (r := zm mod p2p) in *.
      rewrite inbetween_int_NE with (m := q) (l := loc_Inexact Eq).
      { cbn. unfold cond_incr.
        destruct Z.even; reflexivity.
      }
      constructor.
      split.
      ** assert (0 < IZR zm / IZR p2p - IZR q)%R.
         2: lra.
         field_simplify_den.
         Rdiv_lt_0_den.
         l_IZR.
         apply IZR_lt.
         lia.
      ** assert (0 < IZR (q + 1) - (IZR zm * / IZR p2p))%R.
         2: lra.
         field_simplify_den.
         Rdiv_lt_0_den.
         l_IZR.
         apply IZR_lt.
         lia.
      ** apply Rcompare_Eq.
         assert ((IZR q + IZR (q + 1))/2 - (IZR zm * / IZR p2p) = 0)%R; [idtac|lra].
         field_simplify_den.
         l_IZR.
         replace (q * p2p + (q + 1) * p2p - 2 * zm) with 0 by lia.
         field. apply IZR_neq. lia.
    * symmetry.
      apply Znearest_imp with (n := zm / p2p).
      apply Rabs_lt. split.
     ** pose proof (Z_mult_div_ge zm p2p POS).
        assert (0 <= IZR zm * / IZR p2p - IZR (zm / p2p))%R.
        2: lra.
        field_simplify_den.
        apply Rmult_le_pos.
        { l_IZR.
          apply IZR_le.
          lia.
        }
        assert (0 < / IZR p2p)%R.
        2: lra.
        apply Rinv_0_lt_compat. assumption.
     ** assert (0 < 2*(IZR p2p * IZR (zm / p2p) - IZR zm) + (IZR p2p))%R as LT.
        { l_IZR.
          apply IZR_lt.
          lia. }
        assert (0 < -(IZR zm * / IZR p2p - IZR (zm / p2p) - / 2))%R as GT.
        2: lra.
        field_simplify_den.
        Rdiv_lt_0_den.
        lra.
    * symmetry.
      apply Znearest_imp.
      apply Rabs_lt. split.
      ** assert (0 < (IZR zm - IZR p2p * IZR (zm / p2p)) - (IZR p2p * (IZR (zm / p2p) + 1) - IZR zm))%R.
         { ring_simplify.
           l_IZR.
           apply IZR_lt.
           lia.
         }
         assert (0 < (/ 2) + IZR zm * / IZR p2p - IZR (zm / p2p + 1))%R.
         2: lra.
         field_simplify_den.
         Rdiv_lt_0_den.
         rewrite plus_IZR.
         lra.
      ** assert (0 < IZR (zm / p2p + 1) - (IZR zm * / IZR p2p))%R.
         2: lra.
         field_simplify_den.
         Rdiv_lt_0_den.
         l_IZR.
         apply IZR_lt.
         pose proof (Z_div_mod_eq_full zm p2p) as DECOMPOSE.
         ring_simplify.
         set (q := (zm / p2p)) in *.
         pose proof (Z_mod_lt zm p2p POS) as MOD.
         lia.
Qed.

Theorem ZofB_ne_ball:
  forall f n, ZofB_ne f = Some n -> (IZR n-1/2 <= B2R _ _ f <= IZR n+1/2)%R.
Proof.
  intros. rewrite ZofB_ne_correct in H. destruct (is_finite prec emax f) eqn:FIN; inversion H.
  pose proof (Znearest_imp2  (fun x => negb (Z.even x)) (B2R prec emax f)) as ABS.
  pose proof (Rabs_le_inv _ _ ABS).
  lra.
Qed.

(*
Theorem ZofB_ne_minus:
  forall minus_nan m f p q,
  ZofB_ne f = Some p -> 0 <= p < 2*q -> q <= 2^prec -> (IZR q <= B2R _ _ f)%R ->
  ZofB_ne (Bminus _ _ _ Hmax minus_nan m f (BofZ q)) = Some (p - q).
Proof.
  intros.
  assert (Q: -2^prec <= q <= 2^prec).
  { split; auto.  generalize (Zpower_ge_0 radix2 prec); simpl; lia. }
  assert (RANGE: (IZR p -1/2 <= B2R _ _ f <= IZR p + 1/2)%R) by ( apply ZofB_ne_ball; auto ).    
  rewrite ZofB_ne_correct in H. destruct (is_finite prec emax f) eqn:FIN; try discriminate.
  assert (PQ2: (IZR p + 1 <= IZR q * 2)%R).
  { l_IZR. apply IZR_le. lia. }
  assert (EXACT: round radix2 fexp (round_mode m) (B2R _ _ f - IZR q)%R = (B2R _ _ f - IZR q)%R).
  { apply round_generic. apply valid_rnd_round_mode.
    apply sterbenz_aux. now apply FLT_exp_valid. apply FLT_exp_monotone. apply generic_format_B2R.
    apply integer_representable_n. auto. lra. }
  destruct (BofZ_exact q Q) as (A & B & C).
  generalize (Bminus_correct _ _ _ Hmax minus_nan m f (BofZ q) FIN B).
  rewrite Rlt_bool_true.
- fold emin; fold fexp. intros (D & E & F).
  rewrite ZofB_ne_correct. rewrite E. rewrite D. rewrite A. rewrite EXACT.
  inversion H. f_equal.
  rewrite ! Ztrunc_floor. apply Zfloor_minus.
  lra. lra.
- rewrite A. fold emin; fold fexp. rewrite EXACT.
  apply Rle_lt_trans with (bpow radix2 prec).
  apply Rle_trans with (IZR q). apply Rabs_le. lra.
  rewrite <- IZR_Zpower. apply IZR_le; auto. red in prec_gt_0_; lia.
  apply bpow_lt. auto.
Qed.
 *)

Definition ZofB_ne_range (f: binary_float) (zmin zmax: Z): option Z :=
  match ZofB_ne f with
  | None => None
  | Some z => if Z.leb zmin z && Z.leb z zmax then Some z else None
  end.

Theorem ZofB_ne_range_correct:
  forall f min max,
  let n := ZnearestE (B2R _ _ f) in
  ZofB_ne_range f min max =
  if is_finite _ _ f && Z.leb min n && Z.leb n max then Some n else None.
Proof.
  intros. unfold ZofB_ne_range. rewrite ZofB_ne_correct. fold n.
  destruct (is_finite prec emax f); auto.
Qed.

Lemma ZofB_ne_range_inversion:
  forall f min max n,
  ZofB_ne_range f min max = Some n ->
  min <= n /\ n <= max /\ ZofB_ne f = Some n.
Proof.
  intros. rewrite ZofB_ne_range_correct in H. rewrite ZofB_ne_correct.
  destruct (is_finite prec emax f); try discriminate.
  set (n1 := ZnearestE (B2R _ _ f)) in *.
  destruct (min <=? n1) eqn:MIN; try discriminate.
  destruct (n1 <=? max) eqn:MAX; try discriminate.
  simpl in H. inversion H. subst n.
  split. apply Zle_bool_imp_le; auto.
  split. apply Zle_bool_imp_le; auto.
  auto.
Qed.


(*
Theorem ZofB_ne_range_minus:
  forall minus_nan m f p q,
  ZofB_ne_range f 0 (2 * q - 1) = Some p -> q <= 2^prec -> (IZR q <= B2R _ _ f)%R ->
  ZofB_ne_range (Bminus _ _ _ Hmax minus_nan m f (BofZ q)) (-q) (q - 1) = Some (p - q).
Proof.
  intros. destruct (ZofB_ne_range_inversion _ _ _ _ H) as (A & B & C).
  set (f' := Bminus prec emax prec_gt_0_ Hmax minus_nan m f (BofZ q)).
  assert (D: ZofB_ne f' = Some (p - q)).
  { apply ZofB_ne_minus. auto. lia. auto. auto. }
  unfold ZofB_range. rewrite D. rewrite Zle_bool_true by lia. rewrite Zle_bool_true by lia. auto.
Qed.
 *)

(** ** Algebraic identities *)

(** Commutativity of addition and multiplication *)

Theorem Bplus_commut:
  forall plus_nan mode (x y: binary_float),
  plus_nan x y = plus_nan y x ->
  Bplus _ _ _ Hmax plus_nan mode x y = Bplus _ _ _ Hmax plus_nan mode y x.
Proof.
  intros until y; intros NAN.
  pose proof (Bplus_correct _ _ _ Hmax plus_nan mode x y).
  pose proof (Bplus_correct _ _ _ Hmax plus_nan mode y x).
  unfold Bplus in *; destruct x as [sx|sx|sx px Hx|sx mx ex Hx]; destruct y as [sy|sy|sy py Hy|sy my ey Hy]; auto.
- rewrite (eqb_sym sy sx). destruct (eqb sx sy) eqn:EQB; auto.
  f_equal; apply eqb_prop; auto.
- rewrite NAN; auto.
- rewrite (eqb_sym sy sx). destruct (eqb sx sy) eqn:EQB.
  f_equal; apply eqb_prop; auto.
  rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- generalize (H (eq_refl _) (eq_refl _)); clear H.
  generalize (H0 (eq_refl _) (eq_refl _)); clear H0.
  fold emin. fold fexp.
  set (x := B754_finite prec emax sx mx ex Hx). set (rx := B2R _ _ x).
  set (y := B754_finite prec emax sy my ey Hy). set (ry := B2R _ _ y).
  rewrite (Rplus_comm ry rx). destruct Rlt_bool.
  + intros (A1 & A2 & A3) (B1 & B2 & B3).
    apply B2R_Bsign_inj; auto. rewrite <- B1 in A1. auto.
    rewrite Z.add_comm. rewrite Z.min_comm. auto.
  + intros (A1 & A2) (B1 & B2). apply B2FF_inj. rewrite B2 in B1. rewrite <- B1 in A1. auto.
Qed.

Theorem Bmult_commut:
  forall mult_nan mode (x y: binary_float),
  mult_nan x y = mult_nan y x ->
  Bmult _ _ _ Hmax mult_nan mode x y = Bmult _ _ _ Hmax mult_nan mode y x.
Proof.
  intros until y; intros NAN.
  pose proof (Bmult_correct _ _ _ Hmax mult_nan mode x y).
  pose proof (Bmult_correct _ _ _ Hmax mult_nan mode y x).
  unfold Bmult in *; destruct x as [sx|sx|sx px Hx|sx mx ex Hx]; destruct y as [sy|sy|sy py Hy|sy my ey Hy]; auto.
- rewrite (xorb_comm sx sy); auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite (xorb_comm sx sy); auto.
- rewrite NAN; auto.
- rewrite (xorb_comm sx sy); auto.
- rewrite NAN; auto.
- rewrite (xorb_comm sx sy); auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite (xorb_comm sx sy); auto.
- rewrite (xorb_comm sx sy); auto.
- rewrite NAN; auto.
- revert H H0. fold emin. fold fexp.
  set (x := B754_finite prec emax sx mx ex Hx). set (rx := B2R _ _ x).
  set (y := B754_finite prec emax sy my ey Hy). set (ry := B2R _ _ y).
  rewrite (Rmult_comm ry rx).
  destruct (Rlt_bool (Rabs (round radix2 fexp (round_mode mode) (rx * ry)))
                     (bpow radix2 emax)).
  + intros (A1 & A2 & A3) (B1 & B2 & B3).
    apply B2R_Bsign_inj; auto. rewrite <- B1 in A1. auto.
    rewrite ! Bsign_FF2B. f_equal. f_equal. apply xorb_comm. now rewrite Pos.mul_comm. apply Z.add_comm.
  + intros A B. apply B2FF_inj. etransitivity. eapply A. rewrite xorb_comm. auto.
Qed.

(** Multiplication by 2 is diagonal addition. *)

Theorem Bmult2_Bplus:
  forall plus_nan mult_nan mode (f: binary_float),
  (forall (x y: binary_float),
   is_nan _ _ x = true -> is_finite _ _ y = true -> plus_nan x x = mult_nan x y) ->
  Bplus _ _ _ Hmax plus_nan mode f f = Bmult _ _ _ Hmax mult_nan mode f (BofZ 2%Z).
Proof.
  intros until f; intros NAN.
  destruct (BofZ_representable 2) as (A & B & C).
  apply (integer_representable_2p 1). red in prec_gt_0_; lia.
  pose proof (Bmult_correct _ _ _ Hmax mult_nan mode f (BofZ 2%Z)). fold emin in H.
  rewrite A, B, C in H. rewrite xorb_false_r in H.
  destruct (is_finite _ _ f) eqn:FIN.
- pose proof (Bplus_correct _ _ _ Hmax plus_nan mode f f FIN FIN). fold emin in H0.
  assert (EQ: (B2R prec emax f * IZR 2%Z = B2R prec emax f + B2R prec emax f)%R).
  { ring. }
  rewrite <- EQ in H0. destruct Rlt_bool.
  + destruct H0 as (P & Q & R). destruct H as (S & T & U).
    apply B2R_Bsign_inj; auto.
    rewrite P, S. auto.
    rewrite R, U.
    replace 0%R with (0 * 2)%R by ring. rewrite Rcompare_mult_r.
    rewrite andb_diag, orb_diag. destruct f as [s|s|s p H|s m e H]; try discriminate; simpl.
    rewrite Rcompare_Eq by auto. destruct mode; auto.
    replace 0%R with (@F2R radix2 {| Fnum := 0%Z; Fexp := e |}).
    rewrite Rcompare_F2R. destruct s; auto.
    unfold F2R. simpl. ring.
    apply IZR_lt. lia.
    destruct (Bmult prec emax prec_gt_0_ Hmax mult_nan mode f (BofZ 2)); reflexivity || discriminate.
  + destruct H0 as (P & Q). apply B2FF_inj. rewrite P, H. auto.
- destruct f as [sf|sf|sf pf Hf|sf mf ef Hf]; try discriminate.
  + simpl Bplus. rewrite eqb_true. destruct (BofZ 2) as [| | |s2 m2 e2 H2] eqn:B2; try discriminate; simpl in *.
    assert ((0 = 2)%Z) by (apply eq_IZR; auto). discriminate.
    subst s2. rewrite xorb_false_r. auto.
    auto.
  + unfold Bplus, Bmult. rewrite <- NAN by auto. auto.
Qed.

(** Divisions that can be turned into multiplications by an inverse *)

Definition Bexact_inverse_mantissa := Z.iter (prec - 1) xO xH.

Remark Bexact_inverse_mantissa_value:
  Zpos Bexact_inverse_mantissa = 2 ^ (prec - 1).
Proof.
  assert (REC: forall n, Z.pos (nat_rect _ xH (fun _ => xO) n) = 2 ^ (Z.of_nat n)).
  { induction n. reflexivity.
    simpl nat_rect. transitivity (2 * Z.pos (nat_rect _ xH (fun _ => xO) n)). reflexivity.
    rewrite Nat2Z.inj_succ. rewrite IHn. unfold Z.succ. rewrite Zpower_plus by lia.
    change (2 ^ 1) with 2. ring. }
  red in prec_gt_0_.
  unfold Bexact_inverse_mantissa. rewrite iter_nat_of_Z by lia. rewrite REC.
  rewrite Zabs2Nat.id_abs. rewrite Z.abs_eq by lia. auto.
Qed.

Remark Bexact_inverse_mantissa_digits2_pos:
  Z.pos (digits2_pos Bexact_inverse_mantissa) = prec.
Proof.
  assert (DIGITS: forall n, digits2_pos (nat_rect _ xH (fun _ => xO) n) = Pos.of_nat (n+1)).
  { induction n; simpl. auto. rewrite IHn. destruct n; auto. }
  red in prec_gt_0_.
  unfold Bexact_inverse_mantissa. rewrite iter_nat_of_Z by lia. rewrite DIGITS.
  rewrite Zabs2Nat.abs_nat_nonneg, Z2Nat.inj_sub by lia.
  destruct prec; try  discriminate. rewrite Nat.sub_add.
  simpl. rewrite Pos2Nat.id. auto.
  simpl. zify; lia.
Qed.

Remark bounded_Bexact_inverse:
  forall e,
  emin <= e <= emax - prec <-> bounded prec emax Bexact_inverse_mantissa e = true.
Proof.
  intros. unfold bounded, canonical_mantissa. rewrite andb_true_iff.
  rewrite <- Zeq_is_eq_bool. rewrite <- Zle_is_le_bool.
  rewrite Bexact_inverse_mantissa_digits2_pos.
  split.
- intros; split. unfold FLT_exp. unfold emin in H. zify; lia. lia.
- intros [A B]. unfold FLT_exp in A. unfold emin. zify; lia.
Qed.

Program Definition Bexact_inverse (f: binary_float) : option binary_float :=
  match f with
  | B754_finite _ _ s m e B =>
      if Pos.eq_dec m Bexact_inverse_mantissa then
      let e' := -e - (prec - 1) * 2 in
      if Z_le_dec emin e' then
      if Z_le_dec e' emax then
        Some(B754_finite _ _ s m e' _)
      else None else None else None
  | _ => None
  end.
Next Obligation.
  rewrite <- bounded_Bexact_inverse in B. rewrite <- bounded_Bexact_inverse.
  unfold emin in *. lia.
Qed.

Lemma Bexact_inverse_correct:
  forall f f', Bexact_inverse f = Some f' ->
  is_finite_strict _ _ f = true
  /\ is_finite_strict _ _ f' = true
  /\ B2R _ _ f' = (/ B2R _ _ f)%R
  /\ B2R _ _ f <> 0%R
  /\ Bsign _ _ f' = Bsign _ _ f.
Proof with (try discriminate).
  intros f f' EI. unfold Bexact_inverse in EI. destruct f as [s|s|s p H|s m e H]...
  destruct (Pos.eq_dec m Bexact_inverse_mantissa)...
  set (e' := -e - (prec - 1) * 2) in *.
  destruct (Z_le_dec emin e')...
  destruct (Z_le_dec e' emax)...
  inversion EI; clear EI; subst f' m.
  split. auto. split. auto. split. unfold B2R. rewrite Bexact_inverse_mantissa_value.
  unfold F2R; simpl. rewrite IZR_cond_Zopp.
  rewrite <- ! cond_Ropp_mult_l.
  red in prec_gt_0_.
  replace (IZR (2 ^ (prec - 1))) with (bpow radix2 (prec - 1))
  by (symmetry; apply (IZR_Zpower radix2); lia).
  rewrite <- ! bpow_plus.
  replace (prec - 1 + e') with (- (prec - 1 + e)) by (unfold e'; lia).
  rewrite bpow_opp. unfold cond_Ropp; destruct s; auto.
  rewrite Ropp_inv_permute. auto. apply Rgt_not_eq. apply bpow_gt_0.
  split. simpl. apply F2R_neq_0. destruct s; simpl in H; discriminate.
  auto.
Qed.

Theorem Bdiv_mult_inverse:
  forall div_nan mult_nan mode x y z,
  (forall (x y z: binary_float),
   is_nan _ _ x = true -> is_finite _ _ y = true -> is_finite _ _ z = true ->
   div_nan x y = mult_nan x z) ->
  Bexact_inverse y = Some z ->
  Bdiv _ _ _ Hmax div_nan mode x y = Bmult _ _ _ Hmax mult_nan mode x z.
Proof.
  intros until z; intros NAN; intros. destruct (Bexact_inverse_correct _ _ H) as (A & B & C & D & E).
  pose proof (Bmult_correct _ _ _ Hmax mult_nan mode x z).
  fold emin in H0. fold fexp in H0.
  pose proof (Bdiv_correct _ _ _ Hmax div_nan mode x y D).
  fold emin in H1. fold fexp in H1.
  unfold Rdiv in H1. rewrite <- C in H1.
  destruct (is_finite _ _ x) eqn:FINX.
- destruct Rlt_bool.
  + destruct H0 as (P & Q & R). destruct H1 as (S & T & U).
    apply B2R_Bsign_inj; auto.
    rewrite Q. simpl. apply is_finite_strict_finite; auto.
    rewrite P, S. auto.
    rewrite R, U, E. auto.
    apply is_finite_not_is_nan; auto.
    apply is_finite_not_is_nan. rewrite Q. simpl. apply is_finite_strict_finite; auto.  + apply B2FF_inj. rewrite H0, H1. rewrite E. auto.
- destruct y; try discriminate. destruct z; try discriminate.
  destruct x; try discriminate; simpl.
  + simpl in E; congruence.
  + erewrite NAN; eauto.
Qed.

(** ** Conversion from scientific notation *)

(** Russian peasant exponentiation *)

Fixpoint pos_pow (x y: positive) : positive :=
  match y with
  | xH => x
  | xO y => Pos.square (pos_pow x y)
  | xI y => Pos.mul x (Pos.square (pos_pow x y))
  end.

Lemma pos_pow_spec:
  forall x y, Z.pos (pos_pow x y) = Z.pos x ^ Z.pos y.
Proof.
  intros x.
  assert (REC: forall y a, Pos.iter (Pos.mul x) a y = Pos.mul (pos_pow x y) a).
  { induction y; simpl; intros.
  - rewrite ! IHy, Pos.square_spec, ! Pos.mul_assoc. auto.
  - rewrite ! IHy, Pos.square_spec, ! Pos.mul_assoc. auto.
  - auto.
  }
  intros. simpl. rewrite <- Pos2Z.inj_pow_pos. unfold Pos.pow. rewrite REC. rewrite Pos.mul_1_r. auto.
Qed.

(** Given a base [base], a mantissa [m] and an exponent [e], the following function
  computes the FP number closest to [m * base ^ e], using round to odd, ties break to even.
  The algorithm is naive, computing [base ^ |e|] exactly before doing a multiplication or
  division with [m].  However, we treat specially very large or very small values of [e],
  when the result is known to be [+infinity] or [0.0] respectively. *)

Definition Bparse (base: positive) (m: positive) (e: Z): binary_float :=
  match e with
  | Z0 =>
     BofZ (Zpos m)
  | Zpos p =>
     if e * Z.log2 (Zpos base) <? emax
     then BofZ (Zpos m * Zpos (pos_pow base p))
     else B754_infinity _ _ false
  | Zneg p =>
     if e * Z.log2 (Zpos base) + Z.log2_up (Zpos m) <? emin
     then B754_zero _ _ false
     else FF2B prec emax _ (proj1 (Bdiv_correct_aux prec emax prec_gt_0_ Hmax mode_NE
                                     false m Z0 false (pos_pow base p) Z0))
  end.

(** Properties of [Z.log2] and [Z.log2_up]. *)

Lemma Zpower_log:
  forall (base: radix) n,
  0 < n ->
  2 ^ (n * Z.log2 base) <= base ^ n <= 2 ^ (n * Z.log2_up base).
Proof.
  intros.
  assert (A: 0 < base) by apply radix_gt_0.
  assert (B: 0 <= Z.log2 base) by apply Z.log2_nonneg.
  assert (C: 0 <= Z.log2_up base) by apply Z.log2_up_nonneg.
  destruct (Z.log2_spec base) as [D E]; auto.
  destruct (Z.log2_up_spec base) as [F G]. apply radix_gt_1.
  assert (K: 0 <= 2 ^ Z.log2 base) by (apply Z.pow_nonneg; lia).
  rewrite ! (Z.mul_comm n). rewrite ! Z.pow_mul_r by lia.
  split; apply Z.pow_le_mono_l; lia.
Qed.

Lemma bpow_log_pos:
  forall (base: radix) n,
  0 < n ->
  (bpow radix2 (n * Z.log2 base)%Z <= bpow base n)%R.
Proof.
  intros. rewrite <- ! IZR_Zpower. apply IZR_le; apply Zpower_log; auto.
  lia.
  rewrite Z.mul_comm; apply Zmult_gt_0_le_0_compat. lia. apply Z.log2_nonneg.
Qed.

Lemma bpow_log_neg:
  forall (base: radix) n,
  n < 0 ->
  (bpow base n <= bpow radix2 (n * Z.log2 base)%Z)%R.
Proof.
  intros. set (m := -n). replace n with (-m) by (unfold m; lia).
  rewrite ! Z.mul_opp_l, ! bpow_opp. apply Rinv_le.
  apply bpow_gt_0.
  apply bpow_log_pos. unfold m; lia.
Qed.

(** Overflow and underflow conditions. *)

Lemma round_integer_overflow:
  forall (base: radix) e m,
  0 < e ->
  emax <= e * Z.log2 base ->
  (bpow radix2 emax <= round radix2 fexp (round_mode mode_NE) (IZR (Zpos m) * bpow base e))%R.
Proof.
  intros.
  rewrite <- (round_generic radix2 fexp (round_mode mode_NE) (bpow radix2 emax)); auto.
  apply round_le; auto. apply fexp_correct; auto. apply valid_rnd_round_mode.
  rewrite <- (Rmult_1_l (bpow radix2 emax)). apply Rmult_le_compat.
  apply Rle_0_1.
  apply bpow_ge_0.
  apply IZR_le. zify; lia.
  eapply Rle_trans. eapply bpow_le. eassumption. apply bpow_log_pos; auto.
  apply generic_format_FLT. exists (Float radix2 1 emax).
  unfold F2R; simpl. ring.
  simpl. apply (Zpower_gt_1 radix2); auto.
  simpl. unfold emin; red in prec_gt_0_; lia.
Qed.

Lemma round_NE_underflows:
  forall x,
  (0 <= x <= bpow radix2 (emin - 1))%R ->
  round radix2 fexp (round_mode mode_NE) x = 0%R.
Proof.
  intros.
  set (eps := bpow radix2 (emin - 1)) in *.
  assert (A: round radix2 fexp (round_mode mode_NE) eps = 0%R).
  { unfold round. simpl.
    assert (E: cexp radix2 fexp eps = emin).
    { unfold cexp, eps. rewrite mag_bpow. unfold fexp, FLT_exp. zify; red in prec_gt_0_; lia. }
    unfold scaled_mantissa; rewrite E.
    assert (P: (eps * bpow radix2 (-emin) = / 2)%R).
    { unfold eps. rewrite <- bpow_plus. replace (emin - 1 + -emin) with (-1) by lia. auto. }
    rewrite P. unfold Znearest.
    assert (F: Zfloor (/ 2)%R = 0).
    { apply Zfloor_imp. simpl. lra. }
    rewrite F. rewrite Rminus_0_r. rewrite Rcompare_Eq by auto.
    simpl. unfold F2R; simpl. apply Rmult_0_l.
  }
  apply Rle_antisym.
- rewrite <- A. apply round_le. apply fexp_correct; auto. apply valid_rnd_round_mode. tauto.
- rewrite <- (round_0 radix2 fexp (round_mode mode_NE)).
  apply round_le. apply fexp_correct; auto. apply valid_rnd_round_mode. tauto.
Qed.

Lemma round_integer_underflow:
  forall (base: radix) e m,
  e < 0 ->
  e * Z.log2 base + Z.log2_up (Zpos m) < emin ->
  round radix2 fexp (round_mode mode_NE) (IZR (Zpos m) * bpow base e) = 0%R.
Proof.
  intros. apply round_NE_underflows. split.
- apply Rmult_le_pos. apply IZR_le. zify; lia. apply bpow_ge_0.
- apply Rle_trans with (bpow radix2 (Z.log2_up (Z.pos m) + e * Z.log2 base)).
+ rewrite bpow_plus. apply Rmult_le_compat.
  apply IZR_le; zify; lia.
  apply bpow_ge_0.
  rewrite <- IZR_Zpower. apply IZR_le.
  destruct (Z.eq_dec (Z.pos m) 1).
  rewrite e0. simpl. lia.
  apply Z.log2_up_spec. zify; lia.
  apply Z.log2_up_nonneg.
  apply bpow_log_neg. auto.
+ apply bpow_le. lia.
Qed.

(** Correctness of Bparse *)

Theorem Bparse_correct:
  forall b m e (BASE: 2 <= Zpos b),
  let base := {| radix_val := Zpos b; radix_prop := Zle_imp_le_bool _ _ BASE |} in
  let r := round radix2 fexp (round_mode mode_NE) (IZR (Zpos m) * bpow base e) in
  if Rlt_bool (Rabs r) (bpow radix2 emax) then
     B2R _ _ (Bparse b m e) = r
  /\ is_finite _ _ (Bparse b m e) = true
  /\ Bsign _ _ (Bparse b m e) = false
  else
    B2FF _ _ (Bparse b m e) = F754_infinity false.
Proof.
  intros.
  assert (A: forall x, @F2R radix2 {| Fnum := x; Fexp := 0 |} = IZR x).
  { intros. unfold F2R, Fnum; simpl. ring. }
  unfold Bparse, r. destruct e as [ | e | e].
- (* e = Z0 *)
  change (bpow base 0) with 1%R. rewrite Rmult_1_r.
  exact (BofZ_correct (Z.pos m)).
- (* e = Zpos e *)
  destruct (Z.ltb_spec (Z.pos e * Z.log2 (Z.pos b)) emax).
+ (* no overflow *)
  rewrite pos_pow_spec. rewrite <- IZR_Zpower by (zify; lia). rewrite <- mult_IZR.
  replace false with (Z.pos m * Z.pos b ^ Z.pos e <? 0).
  exact (BofZ_correct (Z.pos m * Z.pos b ^ Z.pos e)).
  rewrite Z.ltb_ge. rewrite Z.mul_comm. apply Zmult_gt_0_le_0_compat. zify; lia.  apply (Zpower_ge_0 base).
+ (* overflow *)
  rewrite Rlt_bool_false. auto. eapply Rle_trans; [idtac|apply Rle_abs].
  apply (round_integer_overflow base). zify; lia. auto.
- (* e = Zneg e *)
  destruct (Z.ltb_spec (Z.neg e * Z.log2 (Z.pos b) + Z.log2_up (Z.pos m)) emin).
+ (* undeflow *)
  rewrite round_integer_underflow; auto.
  rewrite Rlt_bool_true. auto.
  replace (Rabs 0)%R with 0%R. apply bpow_gt_0. apply (abs_IZR 0).
  zify; lia.
+ (* no underflow *)
  generalize (Bdiv_correct_aux prec emax prec_gt_0_ Hmax mode_NE false m 0 false (pos_pow b e) 0).
  set (f := let '(mz, ez, lz) := Fdiv_core_binary prec emax (Z.pos m) 0 (Z.pos (pos_pow b e)) 0
         in binary_round_aux prec emax mode_NE (xorb false false) mz ez lz).
  fold emin; fold fexp. rewrite ! A. unfold cond_Zopp. rewrite pos_pow_spec.
  assert (B: (IZR (Z.pos m) / IZR (Z.pos b ^ Z.pos e) =
              IZR (Z.pos m) * bpow base (Z.neg e))%R).
  { change (Z.neg e) with (- (Z.pos e)). rewrite bpow_opp. auto. }
  rewrite B. intros [P Q].
  destruct (Rlt_bool
     (Rabs
        (round radix2 fexp (round_mode mode_NE)
           (IZR (Z.pos m) * bpow base (Z.neg e))))
    (bpow radix2 emax)).
* destruct Q as (Q1 & Q2 & Q3).
  split. rewrite B2R_FF2B, Q1. auto.
  split. rewrite is_finite_FF2B. auto.
  rewrite Bsign_FF2B. auto.
* rewrite B2FF_FF2B. auto.
Qed.

End Extra_ops.

(** ** Conversions between two FP formats *)

Section Conversions.

Variable prec1 emax1 prec2 emax2 : Z.
Context (prec1_gt_0_ : Prec_gt_0 prec1) (prec2_gt_0_ : Prec_gt_0 prec2).
Let emin1 := (3 - emax1 - prec1)%Z.
Let fexp1 := FLT_exp emin1 prec1.
Let emin2 := (3 - emax2 - prec2)%Z.
Let fexp2 := FLT_exp emin2 prec2.
Hypothesis Hmax1 : (prec1 < emax1)%Z.
Hypothesis Hmax2 : (prec2 < emax2)%Z.
Let binary_float1 := binary_float prec1 emax1.
Let binary_float2 := binary_float prec2 emax2.

Definition Bconv (conv_nan: binary_float1 -> {x | is_nan prec2 emax2 x = true}) (md: mode) (f: binary_float1) : binary_float2 :=
  match f with
    | B754_nan _ _ _ _ _ => build_nan prec2 emax2 (conv_nan f)
    | B754_infinity _ _ s => B754_infinity _ _ s
    | B754_zero _ _ s => B754_zero _ _ s
    | B754_finite _ _ s m e _ => binary_normalize _ _ _ Hmax2 md (cond_Zopp s (Zpos m)) e s
  end.

Theorem Bconv_correct:
  forall conv_nan m f,
  is_finite _ _ f = true ->
  if Rlt_bool (Rabs (round radix2 fexp2 (round_mode m) (B2R _ _ f))) (bpow radix2 emax2)
  then
     B2R _ _ (Bconv conv_nan m f) = round radix2 fexp2 (round_mode m) (B2R _ _ f)
  /\ is_finite _ _ (Bconv conv_nan m f) = true
  /\ Bsign _ _ (Bconv conv_nan m f) = Bsign _ _ f
  else
     B2FF _ _ (Bconv conv_nan m f) = binary_overflow prec2 emax2 m (Bsign _ _ f).
Proof.
  intros. destruct f as [sf|sf|sf pf Hf|sf mf ef Hf]; try discriminate.
- simpl. rewrite round_0. rewrite Rabs_R0. rewrite Rlt_bool_true. auto.
  apply bpow_gt_0. apply valid_rnd_round_mode.
- generalize (binary_normalize_correct _ _ _ Hmax2 m (cond_Zopp sf (Zpos mf)) ef sf).
  fold emin2; fold fexp2. simpl. destruct Rlt_bool.
  + intros (A & B & C). split. auto. split. auto. rewrite C.
    destruct sf; simpl.
    rewrite Rcompare_Lt. auto. apply F2R_lt_0. simpl. compute; auto.
    rewrite Rcompare_Gt. auto. apply F2R_gt_0. simpl. compute; auto.
  + intros A. rewrite A. f_equal. destruct sf.
    apply Rlt_bool_true. apply F2R_lt_0. simpl. compute; auto.
    apply Rlt_bool_false. apply Rlt_le. apply Rgt_lt. apply F2R_gt_0. simpl. compute; auto.
Qed.

(** Converting a finite FP number to higher or equal precision preserves its value. *)

Theorem Bconv_widen_exact:
  (prec2 >= prec1)%Z -> (emax2 >= emax1)%Z ->
  forall conv_nan m f,
  is_finite _ _ f = true ->
     B2R _ _ (Bconv conv_nan m f) = B2R _ _ f
  /\ is_finite _ _ (Bconv conv_nan m f) = true
  /\ Bsign _ _ (Bconv conv_nan m f) = Bsign _ _ f.
Proof.
  intros PREC EMAX; intros. generalize (Bconv_correct conv_nan m f H).
  assert (LT: (Rabs (B2R _ _ f) < bpow radix2 emax2)%R).
  {
    destruct f; try discriminate; simpl.
    rewrite Rabs_R0. apply bpow_gt_0.
    apply Rlt_le_trans with (bpow radix2 emax1).
    rewrite F2R_cond_Zopp. rewrite abs_cond_Ropp. rewrite <- F2R_Zabs. simpl Z.abs.
    eapply bounded_lt_emax; eauto.
    apply bpow_le. lia.
  }
  assert (EQ: round radix2 fexp2 (round_mode m) (B2R prec1 emax1 f) = B2R prec1 emax1 f).
  {
    apply round_generic. apply valid_rnd_round_mode. eapply generic_inclusion_le.
    5: apply generic_format_B2R. apply fexp_correct; auto. apply fexp_correct; auto.
    instantiate (1 := emax2). intros. unfold fexp2, FLT_exp. unfold emin2. zify; lia.
    apply Rlt_le; auto.
  }
  rewrite EQ. rewrite Rlt_bool_true by auto. auto.
Qed.

(** Conversion from integers and change of format *)

Theorem Bconv_BofZ:
  forall conv_nan n,
  integer_representable prec1 emax1 n ->
  Bconv conv_nan mode_NE (BofZ prec1 emax1 _ Hmax1 n) = BofZ prec2 emax2 _ Hmax2 n.
Proof.
  intros.
  destruct (BofZ_representable _ _ _ Hmax1 n H) as (A & B & C).
  set (f := BofZ prec1 emax1 prec1_gt_0_ Hmax1 n) in *.
  generalize (Bconv_correct conv_nan mode_NE f B).
  unfold BofZ.
  generalize (binary_normalize_correct _ _ _ Hmax2 mode_NE n 0 false).
  fold emin2; fold fexp2. rewrite A.
  replace (F2R {| Fnum := n; Fexp := 0 |}) with (IZR n).
  destruct Rlt_bool.
- intros (P & Q & R) (D & E & F). apply B2R_Bsign_inj; auto.
  congruence. rewrite F, C, R. rewrite Rcompare_IZR.
  unfold Z.ltb. auto.
- intros P Q. apply B2FF_inj. rewrite P, Q. rewrite C. f_equal.
  generalize (Zlt_bool_spec n 0); intros LT; inversion LT.
  rewrite Rlt_bool_true; auto. apply IZR_lt; auto.
  rewrite Rlt_bool_false; auto. apply IZR_le; auto.
- unfold F2R; simpl. rewrite Rmult_1_r. auto.
Qed.

(** Change of format (to higher precision) and conversion to integer. *)

Theorem ZofB_Bconv:
  prec2 >= prec1 -> emax2 >= emax1 ->
  forall conv_nan m f n,
  ZofB _ _ f = Some n -> ZofB _ _ (Bconv conv_nan m f) = Some n.
Proof.
  intros. rewrite ZofB_correct in H1. destruct (is_finite _ _ f) eqn:FIN; inversion H1.
  destruct (Bconv_widen_exact H H0 conv_nan m f) as (A & B & C). auto.
  rewrite ZofB_correct. rewrite B. rewrite A. auto.
Qed.

Theorem ZofB_range_Bconv:
  forall min1 max1 min2 max2,
  prec2 >= prec1 -> emax2 >= emax1 -> min2 <= min1 -> max1 <= max2 ->
  forall conv_nan m f n,
  ZofB_range _ _ f min1 max1 = Some n ->
  ZofB_range _ _ (Bconv conv_nan m f) min2 max2 = Some n.
Proof.
  intros.
  destruct (ZofB_range_inversion _ _ _ _ _ _ H3) as (A & B & C).
  unfold ZofB_range. erewrite ZofB_Bconv by eauto.
  rewrite ! Zle_bool_true by lia. auto.
Qed.

(** Change of format (to higher precision) and comparison. *)

Theorem Bcompare_Bconv_widen:
  prec2 >= prec1 -> emax2 >= emax1 ->
  forall conv_nan m x y,
  Bcompare _ _ (Bconv conv_nan m x) (Bconv conv_nan m y) = Bcompare _ _ x y.
Proof.
  intros. destruct (is_finite _ _ x && is_finite _ _ y) eqn:FIN.
- apply andb_true_iff in FIN. destruct FIN.
  destruct (Bconv_widen_exact H H0 conv_nan m x H1) as (A & B & C).
  destruct (Bconv_widen_exact H H0 conv_nan m y H2) as (D & E & F).
  rewrite ! Bcompare_correct by auto. rewrite A, D. auto.
- generalize (Bconv_widen_exact H H0 conv_nan m x)
             (Bconv_widen_exact H H0 conv_nan m y); intros P Q.
  destruct x as [sx|sx|sx px Hx|sx mx ex Hx], y as [sy|sy|sy py Hy|sy my ey Hy]; try discriminate; simpl in P, Q; simpl;
  repeat (match goal with |- context [conv_nan ?b ?pl] => destruct (conv_nan b pl) end);
  auto.
  destruct Q as (D & E & F); auto.
  now destruct binary_normalize.
  destruct P as (A & B & C); auto.
  now destruct binary_normalize.
  destruct P as (A & B & C); auto.
  now destruct binary_normalize.
Qed.

End Conversions.

Section Compose_Conversions.

Variable prec1 emax1 prec2 emax2 : Z.
Context (prec1_gt_0_ : Prec_gt_0 prec1) (prec2_gt_0_ : Prec_gt_0 prec2).
Let emin1 := (3 - emax1 - prec1)%Z.
Let fexp1 := FLT_exp emin1 prec1.
Let emin2 := (3 - emax2 - prec2)%Z.
Let fexp2 := FLT_exp emin2 prec2.
Hypothesis Hmax1 : (prec1 < emax1)%Z.
Hypothesis Hmax2 : (prec2 < emax2)%Z.
Let binary_float1 := binary_float prec1 emax1.
Let binary_float2 := binary_float prec2 emax2.

(** Converting to a higher precision then down to the original format
    is the identity. *)
Theorem Bconv_narrow_widen:
  prec2 >= prec1 -> emax2 >= emax1 ->
  forall narrow_nan widen_nan m f,
  is_nan _ _ f = false ->
  Bconv prec2 emax2 prec1 emax1 _ Hmax1 narrow_nan m (Bconv prec1 emax1 prec2 emax2 _ Hmax2 widen_nan m f) = f.
Proof.
  intros. destruct (is_finite _ _ f) eqn:FIN.
- assert (EQ: round radix2 fexp1 (round_mode m) (B2R prec1 emax1 f) = B2R prec1 emax1 f).
  { apply round_generic. apply valid_rnd_round_mode. apply generic_format_B2R. }
  generalize (Bconv_widen_exact _ _ _ _ _ _ Hmax2 H H0 widen_nan m f FIN).
  set (f' := Bconv prec1 emax1 prec2 emax2 _ Hmax2 widen_nan m f).
  intros (A & B & C).
  generalize (Bconv_correct _ _ _ _ _ Hmax1 narrow_nan m f' B).
  fold emin1. fold fexp1. rewrite A, C, EQ. rewrite Rlt_bool_true.
  intros (D & E & F).
  apply B2R_Bsign_inj; auto.
  destruct f; try discriminate; simpl.
  rewrite Rabs_R0. apply bpow_gt_0.
  rewrite F2R_cond_Zopp. rewrite abs_cond_Ropp. rewrite <- F2R_Zabs. simpl Z.abs.
  eapply bounded_lt_emax; eauto.
- destruct f; try discriminate. simpl. auto.
Qed.

End Compose_Conversions.