aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Integers.v
blob: b6c41d8d6c9975999848a0304a8bd6c52b2b6818 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherstestche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU Lesser General Public License as        *)
(*  published by the Free Software Foundation, either version 2.1 of   *)
(*  the License, or  (at your option) any later version.               *)
(*  This file is also distributed under the terms of the               *)
(*  INRIA Non-Commercial License Agreement.                            *)
(*                                                                     *)
(* *********************************************************************)

(** Formalizations of machine integers modulo $2^N$ #2<sup>N</sup>#. *)

Require Import Eqdep_dec Zquot Zwf.
Require Import Coqlib Zbits Axioms.
Require Archi.
Require Import Lia.

(** * Comparisons *)

Inductive comparison : Type :=
  | Ceq : comparison               (**r same *)
  | Cne : comparison               (**r different *)
  | Clt : comparison               (**r less than *)
  | Cle : comparison               (**r less than or equal *)
  | Cgt : comparison               (**r greater than *)
  | Cge : comparison.              (**r greater than or equal *)

Definition comparison_eq: forall (x y: comparison), {x = y} + {x <> y}.
Proof.
  decide equality.
Defined.

Definition negate_comparison (c: comparison): comparison :=
  match c with
  | Ceq => Cne
  | Cne => Ceq
  | Clt => Cge
  | Cle => Cgt
  | Cgt => Cle
  | Cge => Clt
  end.

Definition swap_comparison (c: comparison): comparison :=
  match c with
  | Ceq => Ceq
  | Cne => Cne
  | Clt => Cgt
  | Cle => Cge
  | Cgt => Clt
  | Cge => Cle
  end.

(** * Parameterization by the word size, in bits. *)

Module Type WORDSIZE.
  Parameter wordsize: nat.
  Axiom wordsize_not_zero: wordsize <> 0%nat.
End WORDSIZE.

(* To avoid useless definitions of inductors in extracted code. *)
Local Unset Elimination Schemes.
Local Unset Case Analysis Schemes.

Module Make(WS: WORDSIZE).

Definition wordsize: nat := WS.wordsize.
Definition zwordsize: Z := Z.of_nat wordsize.
Definition modulus : Z := two_power_nat wordsize.
Definition half_modulus : Z := modulus / 2.
Definition max_unsigned : Z := modulus - 1.
Definition max_signed : Z := half_modulus - 1.
Definition min_signed : Z := - half_modulus.

Remark wordsize_pos: zwordsize > 0.
Proof.
  unfold zwordsize, wordsize. generalize WS.wordsize_not_zero. lia.
Qed.

Remark modulus_power: modulus = two_p zwordsize.
Proof.
  unfold modulus. apply two_power_nat_two_p.
Qed.

Remark modulus_gt_one: modulus > 1.
Proof.
  rewrite modulus_power. apply Z.lt_gt. apply (two_p_monotone_strict 0).
  generalize wordsize_pos; lia.
Qed.

Remark modulus_pos: modulus > 0.
Proof.
  generalize modulus_gt_one; lia.
Qed.

Global Hint Resolve modulus_pos: ints.

(** * Representation of machine integers *)

(** A machine integer (type [int]) is represented as a Coq arbitrary-precision
  integer (type [Z]) plus a proof that it is in the range 0 (included) to
  [modulus] (excluded). *)

Record int: Type := mkint { intval: Z; intrange: -1 < intval < modulus }.

(** Fast normalization modulo [2^wordsize] *)

Definition Z_mod_modulus (x: Z) : Z :=
  match x with
  | Z0 => 0
  | Zpos p => P_mod_two_p p wordsize
  | Zneg p => let r := P_mod_two_p p wordsize in if zeq r 0 then 0 else modulus - r
  end.

Lemma Z_mod_modulus_range:
  forall x, 0 <= Z_mod_modulus x < modulus.
Proof (Z_mod_two_p_range wordsize).

Lemma Z_mod_modulus_range':
  forall x, -1 < Z_mod_modulus x < modulus.
Proof.
  intros. generalize (Z_mod_modulus_range x); intuition.
Qed.

Lemma Z_mod_modulus_eq:
  forall x, Z_mod_modulus x = x mod modulus.
Proof (Z_mod_two_p_eq wordsize).

(** The [unsigned] and [signed] functions return the Coq integer corresponding
  to the given machine integer, interpreted as unsigned or signed
  respectively. *)

Definition unsigned (n: int) : Z := intval n.

Definition signed (n: int) : Z :=
  let x := unsigned n in
  if zlt x half_modulus then x else x - modulus.

(** Conversely, [repr] takes a Coq integer and returns the corresponding
  machine integer.  The argument is treated modulo [modulus]. *)

Definition repr (x: Z) : int :=
  mkint (Z_mod_modulus x) (Z_mod_modulus_range' x).

Definition zero := repr 0.
Definition one  := repr 1.
Definition mone := repr (-1).
Definition iwordsize := repr zwordsize.

Lemma mkint_eq:
  forall x y Px Py, x = y -> mkint x Px = mkint y Py.
Proof.
  intros. subst y.
  assert (forall (n m: Z) (P1 P2: n < m), P1 = P2).
  {
    unfold Z.lt; intros.
    apply eq_proofs_unicity.
    intros c1 c2. destruct c1; destruct c2; (left; reflexivity) || (right; congruence).
  }
  destruct Px as [Px1 Px2]. destruct Py as [Py1 Py2].
  rewrite (H _ _ Px1 Py1).
  rewrite (H _ _ Px2 Py2).
  reflexivity.
Qed.

Lemma eq_dec: forall (x y: int), {x = y} + {x <> y}.
Proof.
  intros. destruct x; destruct y. destruct (zeq intval0 intval1).
  left. apply mkint_eq. auto.
  right. red; intro. injection H. exact n.
Defined.

(** * Arithmetic and logical operations over machine integers *)

Definition eq (x y: int) : bool :=
  if zeq (unsigned x) (unsigned y) then true else false.
Definition lt (x y: int) : bool :=
  if zlt (signed x) (signed y) then true else false.
Definition ltu (x y: int) : bool :=
  if zlt (unsigned x) (unsigned y) then true else false.

Definition neg (x: int) : int := repr (- unsigned x).

Definition add (x y: int) : int :=
  repr (unsigned x + unsigned y).
Definition sub (x y: int) : int :=
  repr (unsigned x - unsigned y).
Definition mul (x y: int) : int :=
  repr (unsigned x * unsigned y).

Definition divs (x y: int) : int :=
  repr (Z.quot (signed x) (signed y)).
Definition mods (x y: int) : int :=
  repr (Z.rem (signed x) (signed y)).

Definition divu (x y: int) : int :=
  repr (unsigned x / unsigned y).
Definition modu (x y: int) : int :=
  repr ((unsigned x) mod (unsigned y)).

(** Bitwise boolean operations. *)

Definition and (x y: int): int := repr (Z.land (unsigned x) (unsigned y)).
Definition or (x y: int): int := repr (Z.lor (unsigned x) (unsigned y)).
Definition xor (x y: int) : int := repr (Z.lxor (unsigned x) (unsigned y)).

Definition not (x: int) : int := xor x mone.

(** Shifts and rotates. *)

Definition shl (x y: int): int := repr (Z.shiftl (unsigned x) (unsigned y)).
Definition shru (x y: int): int := repr (Z.shiftr (unsigned x) (unsigned y)).
Definition shr (x y: int): int := repr (Z.shiftr (signed x) (unsigned y)).

Definition rol (x y: int) : int :=
  let n := (unsigned y) mod zwordsize in
  repr (Z.lor (Z.shiftl (unsigned x) n) (Z.shiftr (unsigned x) (zwordsize - n))).
Definition ror (x y: int) : int :=
  let n := (unsigned y) mod zwordsize in
  repr (Z.lor (Z.shiftr (unsigned x) n) (Z.shiftl (unsigned x) (zwordsize - n))).

Definition rolm (x a m: int): int := and (rol x a) m.

(** Viewed as signed divisions by powers of two, [shrx] rounds towards
  zero, while [shr] rounds towards minus infinity. *)

Definition shrx (x y: int): int :=
  divs x (shl one y).

(** High half of full multiply. *)

Definition mulhu (x y: int): int := repr ((unsigned x * unsigned y) / modulus).
Definition mulhs (x y: int): int := repr ((signed x * signed y) / modulus).

(** Condition flags *)

Definition negative (x: int): int :=
  if lt x zero then one else zero.

Definition add_carry (x y cin: int): int :=
  if zlt (unsigned x + unsigned y + unsigned cin) modulus then zero else one.

Definition add_overflow (x y cin: int): int :=
  let s := signed x + signed y + signed cin in
  if zle min_signed s && zle s max_signed then zero else one.

Definition sub_borrow (x y bin: int): int :=
  if zlt (unsigned x - unsigned y - unsigned bin) 0 then one else zero.

Definition sub_overflow (x y bin: int): int :=
  let s := signed x - signed y - signed bin in
  if zle min_signed s && zle s max_signed then zero else one.

(** [shr_carry x y] is 1 if [x] is negative and at least one 1 bit is shifted away. *)

Definition shr_carry (x y: int) : int :=
  if lt x zero && negb (eq (and x (sub (shl one y) one)) zero)
  then one else zero.

(** Zero and sign extensions *)

Definition zero_ext (n: Z) (x: int) : int := repr (Zzero_ext n (unsigned x)).
Definition sign_ext (n: Z) (x: int) : int := repr (Zsign_ext n (unsigned x)).

(** Decomposition of a number as a sum of powers of two. *)

Definition one_bits (x: int) : list int :=
  List.map repr (Z_one_bits wordsize (unsigned x) 0).

(** Recognition of powers of two. *)

Definition is_power2 (x: int) : option int :=
  match Z_is_power2 (unsigned x) with
  | Some i => Some (repr i)
  | None => None
  end.

(** Comparisons. *)

Definition cmp (c: comparison) (x y: int) : bool :=
  match c with
  | Ceq => eq x y
  | Cne => negb (eq x y)
  | Clt => lt x y
  | Cle => negb (lt y x)
  | Cgt => lt y x
  | Cge => negb (lt x y)
  end.

Definition cmpu (c: comparison) (x y: int) : bool :=
  match c with
  | Ceq => eq x y
  | Cne => negb (eq x y)
  | Clt => ltu x y
  | Cle => negb (ltu y x)
  | Cgt => ltu y x
  | Cge => negb (ltu x y)
  end.

Definition is_false (x: int) : Prop := x = zero.
Definition is_true  (x: int) : Prop := x <> zero.
Definition notbool  (x: int) : int  := if eq x zero then one else zero.

(** x86-style extended division and modulus *)

Definition divmodu2 (nhi nlo: int) (d: int) : option (int * int) :=
  if eq_dec d zero then None else
   (let (q, r) := Z.div_eucl (unsigned nhi * modulus + unsigned nlo) (unsigned d) in
    if zle q max_unsigned then Some(repr q, repr r) else None).

Definition divmods2 (nhi nlo: int) (d: int) : option (int * int) :=
  if eq_dec d zero then None else
   (let (q, r) := Z.quotrem (signed nhi * modulus + unsigned nlo) (signed d) in
    if zle min_signed q && zle q max_signed then Some(repr q, repr r) else None).

(** * Properties of integers and integer arithmetic *)

(** ** Properties of [modulus], [max_unsigned], etc. *)

Remark half_modulus_power:
  half_modulus = two_p (zwordsize - 1).
Proof.
  unfold half_modulus. rewrite modulus_power.
  set (ws1 := zwordsize - 1).
  replace (zwordsize) with (Z.succ ws1).
  rewrite two_p_S. rewrite Z.mul_comm. apply Z_div_mult. lia.
  unfold ws1. generalize wordsize_pos; lia.
  unfold ws1. lia.
Qed.

Remark half_modulus_modulus: modulus = 2 * half_modulus.
Proof.
  rewrite half_modulus_power. rewrite modulus_power.
  rewrite <- two_p_S. apply f_equal. lia.
  generalize wordsize_pos; lia.
Qed.

(** Relative positions, from greatest to smallest:
<<
      max_unsigned
      max_signed
      2*wordsize-1
      wordsize
      0
      min_signed
>>
*)

Remark half_modulus_pos: half_modulus > 0.
Proof.
  rewrite half_modulus_power. apply two_p_gt_ZERO. generalize wordsize_pos; lia.
Qed.

Remark min_signed_neg: min_signed < 0.
Proof.
  unfold min_signed. generalize half_modulus_pos. lia.
Qed.

Remark max_signed_pos: max_signed >= 0.
Proof.
  unfold max_signed. generalize half_modulus_pos. lia.
Qed.

Remark wordsize_max_unsigned: zwordsize <= max_unsigned.
Proof.
  assert (zwordsize < modulus).
    rewrite modulus_power. apply two_p_strict.
    generalize wordsize_pos. lia.
  unfold max_unsigned. lia.
Qed.

Remark two_wordsize_max_unsigned: 2 * zwordsize - 1 <= max_unsigned.
Proof.
  assert (2 * zwordsize - 1 < modulus).
    rewrite modulus_power. apply two_p_strict_2. generalize wordsize_pos; lia.
  unfold max_unsigned; lia.
Qed.

Remark max_signed_unsigned: max_signed < max_unsigned.
Proof.
  unfold max_signed, max_unsigned. rewrite half_modulus_modulus.
  generalize half_modulus_pos. lia.
Qed.

Lemma unsigned_repr_eq:
  forall x, unsigned (repr x) = Z.modulo x modulus.
Proof.
  intros. simpl. apply Z_mod_modulus_eq.
Qed.

Lemma signed_repr_eq:
  forall x, signed (repr x) = if zlt (Z.modulo x modulus) half_modulus then Z.modulo x modulus else Z.modulo x modulus - modulus.
Proof.
  intros. unfold signed. rewrite unsigned_repr_eq. auto.
Qed.

(** ** Modulo arithmetic *)

(** [eqm] is equality modulo $2^{wordsize}$ #2<sup>wordsize</sup>#. *)

Definition eqm := eqmod modulus.

Lemma eqm_refl: forall x, eqm x x.
Proof (eqmod_refl modulus).
Global Hint Resolve eqm_refl: ints.

Lemma eqm_refl2:
  forall x y, x = y -> eqm x y.
Proof (eqmod_refl2 modulus).
Global Hint Resolve eqm_refl2: ints.

Lemma eqm_sym: forall x y, eqm x y -> eqm y x.
Proof (eqmod_sym modulus).
Global Hint Resolve eqm_sym: ints.

Lemma eqm_trans: forall x y z, eqm x y -> eqm y z -> eqm x z.
Proof (eqmod_trans modulus).
Global Hint Resolve eqm_trans: ints.

Lemma eqm_small_eq:
  forall x y, eqm x y -> 0 <= x < modulus -> 0 <= y < modulus -> x = y.
Proof (eqmod_small_eq modulus).
Global Hint Resolve eqm_small_eq: ints.

Lemma eqm_add:
  forall a b c d, eqm a b -> eqm c d -> eqm (a + c) (b + d).
Proof (eqmod_add modulus).
Global Hint Resolve eqm_add: ints.

Lemma eqm_neg:
  forall x y, eqm x y -> eqm (-x) (-y).
Proof (eqmod_neg modulus).
Global Hint Resolve eqm_neg: ints.

Lemma eqm_sub:
  forall a b c d, eqm a b -> eqm c d -> eqm (a - c) (b - d).
Proof (eqmod_sub modulus).
Global Hint Resolve eqm_sub: ints.

Lemma eqm_mult:
  forall a b c d, eqm a c -> eqm b d -> eqm (a * b) (c * d).
Proof (eqmod_mult modulus).
Global Hint Resolve eqm_mult: ints.

Lemma eqm_same_bits:
  forall x y,
  (forall i, 0 <= i < zwordsize -> Z.testbit x i = Z.testbit y i) ->
  eqm x y.
Proof (eqmod_same_bits wordsize).

Lemma same_bits_eqm:
  forall x y i,
  eqm x y ->
  0 <= i < zwordsize ->
  Z.testbit x i = Z.testbit y i.
Proof (same_bits_eqmod wordsize).

(** ** Properties of the coercions between [Z] and [int] *)

Lemma eqm_samerepr: forall x y, eqm x y -> repr x = repr y.
Proof.
  intros. unfold repr. apply mkint_eq.
  rewrite !Z_mod_modulus_eq. apply eqmod_mod_eq. auto with ints. exact H.
Qed.

Lemma eqm_unsigned_repr:
  forall z, eqm z (unsigned (repr z)).
Proof.
  unfold eqm; intros. rewrite unsigned_repr_eq. apply eqmod_mod. auto with ints.
Qed.
Global Hint Resolve eqm_unsigned_repr: ints.

Lemma eqm_unsigned_repr_l:
  forall a b, eqm a b -> eqm (unsigned (repr a)) b.
Proof.
  intros. apply eqm_trans with a.
  apply eqm_sym. apply eqm_unsigned_repr. auto.
Qed.
Global Hint Resolve eqm_unsigned_repr_l: ints.

Lemma eqm_unsigned_repr_r:
  forall a b, eqm a b -> eqm a (unsigned (repr b)).
Proof.
  intros. apply eqm_trans with b. auto.
  apply eqm_unsigned_repr.
Qed.
Global Hint Resolve eqm_unsigned_repr_r: ints.

Lemma eqm_signed_unsigned:
  forall x, eqm (signed x) (unsigned x).
Proof.
  intros; red. unfold signed. set (y := unsigned x).
  case (zlt y half_modulus); intro.
  apply eqmod_refl. red; exists (-1); ring.
Qed.

Theorem unsigned_range:
  forall i, 0 <= unsigned i < modulus.
Proof.
  destruct i. simpl. lia.
Qed.
Global Hint Resolve unsigned_range: ints.

Theorem unsigned_range_2:
  forall i, 0 <= unsigned i <= max_unsigned.
Proof.
  intro; unfold max_unsigned.
  generalize (unsigned_range i). lia.
Qed.
Global Hint Resolve unsigned_range_2: ints.

Theorem signed_range:
  forall i, min_signed <= signed i <= max_signed.
Proof.
  intros. unfold signed.
  generalize (unsigned_range i). set (n := unsigned i). intros.
  case (zlt n half_modulus); intro.
  unfold max_signed. generalize min_signed_neg. lia.
  unfold min_signed, max_signed.
  rewrite half_modulus_modulus in *. lia.
Qed.

Theorem repr_unsigned:
  forall i, repr (unsigned i) = i.
Proof.
  destruct i; simpl. unfold repr. apply mkint_eq.
  rewrite Z_mod_modulus_eq. apply Z.mod_small; lia.
Qed.
Global Hint Resolve repr_unsigned: ints.

Lemma repr_signed:
  forall i, repr (signed i) = i.
Proof.
  intros. transitivity (repr (unsigned i)).
  apply eqm_samerepr. apply eqm_signed_unsigned. auto with ints.
Qed.
Global Hint Resolve repr_signed: ints.

Opaque repr.

Lemma eqm_repr_eq: forall x y, eqm x (unsigned y) -> repr x = y.
Proof.
  intros. rewrite <- (repr_unsigned y). apply eqm_samerepr; auto.
Qed.

Theorem unsigned_repr:
  forall z, 0 <= z <= max_unsigned -> unsigned (repr z) = z.
Proof.
  intros. rewrite unsigned_repr_eq.
  apply Z.mod_small. unfold max_unsigned in H. lia.
Qed.
Global Hint Resolve unsigned_repr: ints.

Theorem signed_repr:
  forall z, min_signed <= z <= max_signed -> signed (repr z) = z.
Proof.
  intros. unfold signed. destruct (zle 0 z).
  replace (unsigned (repr z)) with z.
  rewrite zlt_true. auto. unfold max_signed in H. lia.
  symmetry. apply unsigned_repr. generalize max_signed_unsigned. lia.
  pose (z' := z + modulus).
  replace (repr z) with (repr z').
  replace (unsigned (repr z')) with z'.
  rewrite zlt_false. unfold z'. lia.
  unfold z'. unfold min_signed in H.
  rewrite half_modulus_modulus. lia.
  symmetry. apply unsigned_repr.
  unfold z', max_unsigned. unfold min_signed, max_signed in H.
  rewrite half_modulus_modulus. lia.
  apply eqm_samerepr. unfold z'; red. exists 1. lia.
Qed.

Theorem signed_eq_unsigned:
  forall x, unsigned x <= max_signed -> signed x = unsigned x.
Proof.
  intros. unfold signed. destruct (zlt (unsigned x) half_modulus).
  auto. unfold max_signed in H. extlia.
Qed.

Theorem signed_positive:
  forall x, signed x >= 0 <-> unsigned x <= max_signed.
Proof.
  intros. unfold signed, max_signed.
  generalize (unsigned_range x) half_modulus_modulus half_modulus_pos; intros.
  destruct (zlt (unsigned x) half_modulus); lia.
Qed.

(** ** Properties of zero, one, minus one *)

Theorem unsigned_zero: unsigned zero = 0.
Proof.
  unfold zero; rewrite unsigned_repr_eq. apply Zmod_0_l.
Qed.

Theorem unsigned_one: unsigned one = 1.
Proof.
  unfold one; rewrite unsigned_repr_eq. apply Z.mod_small. split. lia.
  unfold modulus. replace wordsize with (S(Init.Nat.pred wordsize)).
  rewrite two_power_nat_S. generalize (two_power_nat_pos (Init.Nat.pred wordsize)).
  lia.
  generalize wordsize_pos. unfold zwordsize. lia.
Qed.

Theorem unsigned_mone: unsigned mone = modulus - 1.
Proof.
  unfold mone; rewrite unsigned_repr_eq.
  replace (-1) with ((modulus - 1) + (-1) * modulus).
  rewrite Z_mod_plus_full. apply Z.mod_small.
  generalize modulus_pos. lia. lia.
Qed.

Theorem signed_zero: signed zero = 0.
Proof.
  unfold signed. rewrite unsigned_zero. apply zlt_true. generalize half_modulus_pos; lia.
Qed.

Theorem signed_one: zwordsize > 1 -> signed one = 1.
Proof.
  intros. unfold signed. rewrite unsigned_one. apply zlt_true. 
  change 1 with (two_p 0). rewrite half_modulus_power. apply two_p_monotone_strict. lia. 
Qed.

Theorem signed_mone: signed mone = -1.
Proof.
  unfold signed. rewrite unsigned_mone.
  rewrite zlt_false. lia.
  rewrite half_modulus_modulus. generalize half_modulus_pos. lia.
Qed.

Theorem one_not_zero: one <> zero.
Proof.
  assert (unsigned one <> unsigned zero).
  rewrite unsigned_one; rewrite unsigned_zero; congruence.
  congruence.
Qed.

Theorem unsigned_repr_wordsize:
  unsigned iwordsize = zwordsize.
Proof.
  unfold iwordsize; rewrite unsigned_repr_eq. apply Z.mod_small.
  generalize wordsize_pos wordsize_max_unsigned; unfold max_unsigned; lia.
Qed.

(** ** Properties of equality *)

Theorem eq_sym:
  forall x y, eq x y = eq y x.
Proof.
  intros; unfold eq. case (zeq (unsigned x) (unsigned y)); intro.
  rewrite e. rewrite zeq_true. auto.
  rewrite zeq_false. auto. auto.
Qed.

Theorem eq_spec: forall (x y: int), if eq x y then x = y else x <> y.
Proof.
  intros; unfold eq. case (eq_dec x y); intro.
  subst y. rewrite zeq_true. auto.
  rewrite zeq_false. auto.
  destruct x; destruct y.
  simpl. red; intro. elim n. apply mkint_eq. auto.
Qed.

Theorem eq_true: forall x, eq x x = true.
Proof.
  intros. generalize (eq_spec x x); case (eq x x); intros; congruence.
Qed.

Theorem eq_false: forall x y, x <> y -> eq x y = false.
Proof.
  intros. generalize (eq_spec x y); case (eq x y); intros; congruence.
Qed.

Theorem same_if_eq: forall x y, eq x y = true -> x = y.
Proof.
  intros. generalize (eq_spec x y); rewrite H; auto.
Qed.

Theorem eq_signed:
  forall x y, eq x y = if zeq (signed x) (signed y) then true else false.
Proof.
  intros. predSpec eq eq_spec x y.
  subst x. rewrite zeq_true; auto.
  destruct (zeq (signed x) (signed y)); auto.
  elim H. rewrite <- (repr_signed x). rewrite <- (repr_signed y). congruence.
Qed.

(** ** Properties of addition *)

Theorem add_unsigned: forall x y, add x y = repr (unsigned x + unsigned y).
Proof. intros; reflexivity.
Qed.

Theorem add_signed: forall x y, add x y = repr (signed x + signed y).
Proof.
  intros. rewrite add_unsigned. apply eqm_samerepr.
  apply eqm_add; apply eqm_sym; apply eqm_signed_unsigned.
Qed.

Theorem add_commut: forall x y, add x y = add y x.
Proof. intros; unfold add. decEq. lia. Qed.

Theorem add_zero: forall x, add x zero = x.
Proof.
  intros. unfold add. rewrite unsigned_zero.
  rewrite Z.add_0_r. apply repr_unsigned.
Qed.

Theorem add_zero_l: forall x, add zero x = x.
Proof.
  intros. rewrite add_commut. apply add_zero.
Qed.

Theorem add_assoc: forall x y z, add (add x y) z = add x (add y z).
Proof.
  intros; unfold add.
  set (x' := unsigned x).
  set (y' := unsigned y).
  set (z' := unsigned z).
  apply eqm_samerepr.
  apply eqm_trans with ((x' + y') + z').
  auto with ints.
  rewrite <- Z.add_assoc. auto with ints.
Qed.

Theorem add_permut: forall x y z, add x (add y z) = add y (add x z).
Proof.
  intros. rewrite (add_commut y z). rewrite <- add_assoc. apply add_commut.
Qed.

Theorem add_neg_zero: forall x, add x (neg x) = zero.
Proof.
  intros; unfold add, neg, zero. apply eqm_samerepr.
  replace 0 with (unsigned x + (- (unsigned x))).
  auto with ints. lia.
Qed.

Theorem unsigned_add_carry:
  forall x y,
  unsigned (add x y) = unsigned x + unsigned y - unsigned (add_carry x y zero) * modulus.
Proof.
  intros.
  unfold add, add_carry. rewrite unsigned_zero. rewrite Z.add_0_r.
  rewrite unsigned_repr_eq.
  generalize (unsigned_range x) (unsigned_range y). intros.
  destruct (zlt (unsigned x + unsigned y) modulus).
  rewrite unsigned_zero. apply Zmod_unique with 0. lia. lia.
  rewrite unsigned_one. apply Zmod_unique with 1. lia. lia.
Qed.

Corollary unsigned_add_either:
  forall x y,
  unsigned (add x y) = unsigned x + unsigned y
  \/ unsigned (add x y) = unsigned x + unsigned y - modulus.
Proof.
  intros. rewrite unsigned_add_carry. unfold add_carry.
  rewrite unsigned_zero. rewrite Z.add_0_r.
  destruct (zlt (unsigned x + unsigned y) modulus).
  rewrite unsigned_zero. left; lia.
  rewrite unsigned_one. right; lia.
Qed.

(** ** Properties of negation *)

Theorem neg_repr: forall z, neg (repr z) = repr (-z).
Proof.
  intros; unfold neg. apply eqm_samerepr. auto with ints.
Qed.

Theorem neg_zero: neg zero = zero.
Proof.
  unfold neg. rewrite unsigned_zero. auto.
Qed.

Theorem neg_involutive: forall x, neg (neg x) = x.
Proof.
  intros; unfold neg.
  apply eqm_repr_eq. eapply eqm_trans. apply eqm_neg.
  apply eqm_unsigned_repr_l. apply eqm_refl. apply eqm_refl2. lia.
Qed.

Theorem neg_add_distr: forall x y, neg(add x y) = add (neg x) (neg y).
Proof.
  intros; unfold neg, add. apply eqm_samerepr.
  apply eqm_trans with (- (unsigned x + unsigned y)).
  auto with ints.
  replace (- (unsigned x + unsigned y))
     with ((- unsigned x) + (- unsigned y)).
  auto with ints. lia.
Qed.

(** ** Properties of subtraction *)

Theorem sub_zero_l: forall x, sub x zero = x.
Proof.
  intros; unfold sub. rewrite unsigned_zero.
  replace (unsigned x - 0) with (unsigned x) by lia. apply repr_unsigned.
Qed.

Theorem sub_zero_r: forall x, sub zero x = neg x.
Proof.
  intros; unfold sub, neg. rewrite unsigned_zero. auto.
Qed.

Theorem sub_add_opp: forall x y, sub x y = add x (neg y).
Proof.
  intros; unfold sub, add, neg. apply eqm_samerepr.
  apply eqm_add; auto with ints.
Qed.

Theorem sub_idem: forall x, sub x x = zero.
Proof.
  intros; unfold sub. unfold zero. decEq. lia.
Qed.

Theorem sub_add_l: forall x y z, sub (add x y) z = add (sub x z) y.
Proof.
  intros. repeat rewrite sub_add_opp.
  repeat rewrite add_assoc. decEq. apply add_commut.
Qed.

Theorem sub_add_r: forall x y z, sub x (add y z) = add (sub x z) (neg y).
Proof.
  intros. repeat rewrite sub_add_opp.
  rewrite neg_add_distr. rewrite add_permut. apply add_commut.
Qed.

Theorem sub_shifted:
  forall x y z,
  sub (add x z) (add y z) = sub x y.
Proof.
  intros. rewrite sub_add_opp. rewrite neg_add_distr.
  rewrite add_assoc.
  rewrite (add_commut (neg y) (neg z)).
  rewrite <- (add_assoc z). rewrite add_neg_zero.
  rewrite (add_commut zero). rewrite add_zero.
  symmetry. apply sub_add_opp.
Qed.

Theorem sub_signed:
  forall x y, sub x y = repr (signed x - signed y).
Proof.
  intros. unfold sub. apply eqm_samerepr.
  apply eqm_sub; apply eqm_sym; apply eqm_signed_unsigned.
Qed.

Theorem unsigned_sub_borrow:
  forall x y,
  unsigned (sub x y) = unsigned x - unsigned y + unsigned (sub_borrow x y zero) * modulus.
Proof.
  intros.
  unfold sub, sub_borrow. rewrite unsigned_zero. rewrite Z.sub_0_r.
  rewrite unsigned_repr_eq.
  generalize (unsigned_range x) (unsigned_range y). intros.
  destruct (zlt (unsigned x - unsigned y) 0).
  rewrite unsigned_one. apply Zmod_unique with (-1). lia. lia.
  rewrite unsigned_zero. apply Zmod_unique with 0. lia. lia.
Qed.

(** ** Properties of multiplication *)

Theorem mul_commut: forall x y, mul x y = mul y x.
Proof.
  intros; unfold mul. decEq. ring.
Qed.

Theorem mul_zero: forall x, mul x zero = zero.
Proof.
  intros; unfold mul. rewrite unsigned_zero.
  unfold zero. decEq. ring.
Qed.

Theorem mul_one: forall x, mul x one = x.
Proof.
  intros; unfold mul. rewrite unsigned_one.
  transitivity (repr (unsigned x)). decEq. ring.
  apply repr_unsigned.
Qed.

Theorem mul_mone: forall x, mul x mone = neg x.
Proof.
  intros; unfold mul, neg. rewrite unsigned_mone.
  apply eqm_samerepr.
  replace (-unsigned x) with (0 - unsigned x) by lia.
  replace (unsigned x * (modulus - 1)) with (unsigned x * modulus - unsigned x) by ring.
  apply eqm_sub. exists (unsigned x). lia. apply eqm_refl.
Qed.

Theorem mul_assoc: forall x y z, mul (mul x y) z = mul x (mul y z).
Proof.
  intros; unfold mul.
  set (x' := unsigned x).
  set (y' := unsigned y).
  set (z' := unsigned z).
  apply eqm_samerepr. apply eqm_trans with ((x' * y') * z').
  auto with ints.
  rewrite <- Z.mul_assoc. auto with ints.
Qed.

Theorem mul_add_distr_l:
  forall x y z, mul (add x y) z = add (mul x z) (mul y z).
Proof.
  intros; unfold mul, add.
  apply eqm_samerepr.
  set (x' := unsigned x).
  set (y' := unsigned y).
  set (z' := unsigned z).
  apply eqm_trans with ((x' + y') * z').
  auto with ints.
  replace ((x' + y') * z') with (x' * z' + y' * z').
  auto with ints.
  ring.
Qed.

Theorem mul_add_distr_r:
  forall x y z, mul x (add y z) = add (mul x y) (mul x z).
Proof.
  intros. rewrite mul_commut. rewrite mul_add_distr_l.
  decEq; apply mul_commut.
Qed.

Theorem neg_mul_distr_l:
  forall x y, neg(mul x y) = mul (neg x) y.
Proof.
  intros. unfold mul, neg.
  set (x' := unsigned x).  set (y' := unsigned y).
  apply eqm_samerepr. apply eqm_trans with (- (x' * y')).
  auto with ints.
  replace (- (x' * y')) with ((-x') * y') by ring.
  auto with ints.
Qed.

Theorem neg_mul_distr_r:
   forall x y, neg(mul x y) = mul x (neg y).
Proof.
  intros. rewrite (mul_commut x y). rewrite (mul_commut x (neg y)).
  apply neg_mul_distr_l.
Qed.

Theorem mul_signed:
  forall x y, mul x y = repr (signed x * signed y).
Proof.
  intros; unfold mul. apply eqm_samerepr.
  apply eqm_mult; apply eqm_sym; apply eqm_signed_unsigned.
Qed.

(** ** Properties of division and modulus *)

Lemma modu_divu_Euclid:
  forall x y, y <> zero -> x = add (mul (divu x y) y) (modu x y).
Proof.
  intros. unfold add, mul, divu, modu.
  transitivity (repr (unsigned x)). auto with ints.
  apply eqm_samerepr.
  set (x' := unsigned x). set (y' := unsigned y).
  apply eqm_trans with ((x' / y') * y' + x' mod y').
  apply eqm_refl2. rewrite Z.mul_comm. apply Z_div_mod_eq.
  generalize (unsigned_range y); intro.
  assert (unsigned y <> 0). red; intro.
  elim H. rewrite <- (repr_unsigned y). unfold zero. congruence.
  unfold y'. lia.
  auto with ints.
Qed.

Theorem modu_divu:
  forall x y, y <> zero -> modu x y = sub x (mul (divu x y) y).
Proof.
  intros.
  assert (forall a b c, a = add b c -> c = sub a b).
  intros. subst a. rewrite sub_add_l. rewrite sub_idem.
  rewrite add_commut. rewrite add_zero. auto.
  apply H0. apply modu_divu_Euclid. auto.
Qed.

Lemma mods_divs_Euclid:
  forall x y, x = add (mul (divs x y) y) (mods x y).
Proof.
  intros. unfold add, mul, divs, mods.
  transitivity (repr (signed x)). auto with ints.
  apply eqm_samerepr.
  set (x' := signed x). set (y' := signed y).
  apply eqm_trans with ((Z.quot x' y') * y' + Z.rem x' y').
  apply eqm_refl2. rewrite Z.mul_comm. apply Z.quot_rem'.
  apply eqm_add; auto with ints.
  apply eqm_unsigned_repr_r. apply eqm_mult; auto with ints.
  unfold y'. apply eqm_signed_unsigned.
Qed.

Theorem mods_divs:
  forall x y, mods x y = sub x (mul (divs x y) y).
Proof.
  intros.
  assert (forall a b c, a = add b c -> c = sub a b).
  intros. subst a. rewrite sub_add_l. rewrite sub_idem.
  rewrite add_commut. rewrite add_zero. auto.
  apply H. apply mods_divs_Euclid.
Qed.

Theorem divu_one:
  forall x, divu x one = x.
Proof.
  unfold divu; intros. rewrite unsigned_one. rewrite Zdiv_1_r. apply repr_unsigned.
Qed.

Theorem divs_one:
  forall x, zwordsize > 1 -> divs x one = x.
Proof.
  unfold divs; intros. rewrite signed_one. rewrite Z.quot_1_r. apply repr_signed. auto.
Qed.

Theorem modu_one:
  forall x, modu x one = zero.
Proof.
  intros. rewrite modu_divu. rewrite divu_one. rewrite mul_one. apply sub_idem.
  apply one_not_zero.
Qed.

Theorem divs_mone:
  forall x, divs x mone = neg x.
Proof.
  unfold divs, neg; intros.
  rewrite signed_mone.
  replace (Z.quot (signed x) (-1)) with (- (signed x)).
  apply eqm_samerepr. apply eqm_neg. apply eqm_signed_unsigned.
  set (x' := signed x).
  set (one := 1).
  change (-1) with (- one). rewrite Zquot_opp_r.
  assert (Z.quot x' one = x').
  symmetry. apply Zquot_unique_full with 0. red.
  change (Z.abs one) with 1.
  destruct (zle 0 x'). left. lia. right. lia.
  unfold one; ring.
  congruence.
Qed.

Theorem mods_mone:
  forall x, mods x mone = zero.
Proof.
  intros. rewrite mods_divs. rewrite divs_mone.
  rewrite <- neg_mul_distr_l. rewrite mul_mone. rewrite neg_involutive. apply sub_idem.
Qed.

Theorem divmodu2_divu_modu:
  forall n d,
  d <> zero -> divmodu2 zero n d = Some (divu n d, modu n d).
Proof.
  unfold divmodu2, divu, modu; intros.
  rewrite dec_eq_false by auto.
  set (N := unsigned zero * modulus + unsigned n).
  assert (E1: unsigned n = N) by (unfold N; rewrite unsigned_zero; ring). rewrite ! E1.
  set (D := unsigned d).
  set (Q := N / D); set (R := N mod D).
  assert (E2: Z.div_eucl N D = (Q, R)).
  { unfold Q, R, Z.div, Z.modulo. destruct (Z.div_eucl N D); auto. }
  rewrite E2. rewrite zle_true. auto.
  assert (unsigned d <> 0).
  { red; intros. elim H. rewrite <- (repr_unsigned d). rewrite H0; auto. }
  assert (0 < D).
  { unfold D. generalize (unsigned_range d); intros. lia. }
  assert (0 <= Q <= max_unsigned).
  { unfold Q. apply Zdiv_interval_2.
    rewrite <- E1; apply unsigned_range_2.
    lia. unfold max_unsigned; generalize modulus_pos; lia. lia. }
  lia.
Qed.

Lemma unsigned_signed:
  forall n, unsigned n = if lt n zero then signed n + modulus else signed n.
Proof.
  intros. unfold lt. rewrite signed_zero. unfold signed.
  generalize (unsigned_range n). rewrite half_modulus_modulus. intros.
  destruct (zlt (unsigned n) half_modulus).
- rewrite zlt_false by lia. auto.
- rewrite zlt_true by lia. ring.
Qed.

Theorem divmods2_divs_mods:
  forall n d,
  d <> zero -> n <> repr min_signed \/ d <> mone ->
  divmods2 (if lt n zero then mone else zero) n d = Some (divs n d, mods n d).
Proof.
  unfold divmods2, divs, mods; intros.
  rewrite dec_eq_false by auto.
  set (N := signed (if lt n zero then mone else zero) * modulus + unsigned n).
  set (D := signed d).
  assert (D <> 0).
  { unfold D; red; intros. elim H. rewrite <- (repr_signed d). rewrite H1; auto. }
  assert (N = signed n).
  { unfold N. rewrite unsigned_signed. destruct (lt n zero).
    rewrite signed_mone. ring.
    rewrite signed_zero. ring. }
  set (Q := Z.quot N D); set (R := Z.rem N D).
  assert (E2: Z.quotrem N D = (Q, R)).
  { unfold Q, R, Z.quot, Z.rem. destruct (Z.quotrem N D); auto. }
  rewrite E2.
  assert (min_signed <= N <= max_signed) by (rewrite H2; apply signed_range).
  assert (min_signed <= Q <= max_signed).
  { unfold Q. destruct (zeq D 1); [ | destruct (zeq D (-1))].
  - (* D = 1 *)
    rewrite e. rewrite Z.quot_1_r; auto.
  - (* D = -1 *)
    rewrite e. change (-1) with (Z.opp 1). rewrite Z.quot_opp_r by lia.
    rewrite Z.quot_1_r.
    assert (N <> min_signed).
    { red; intros; destruct H0.
    + elim H0. rewrite <- (repr_signed n). rewrite <- H2. rewrite H4. auto.
    + elim H0. rewrite <- (repr_signed d). unfold D in e; rewrite e; auto. }
    unfold min_signed, max_signed in *. lia.
  - (* |D| > 1 *)
    assert (Z.abs (Z.quot N D) < half_modulus).
    { rewrite <- Z.quot_abs by lia. apply Zquot_lt_upper_bound.
      extlia. extlia.
      apply Z.le_lt_trans with (half_modulus * 1).
      rewrite Z.mul_1_r. unfold min_signed, max_signed in H3; extlia.
      apply Zmult_lt_compat_l. generalize half_modulus_pos; lia. extlia. }
    rewrite Z.abs_lt in H4.
    unfold min_signed, max_signed; lia.
  }
  unfold proj_sumbool; rewrite ! zle_true by lia; simpl.
  unfold Q, R; rewrite H2; auto.
Qed.

(** ** Bit-level properties *)

Definition testbit (x: int) (i: Z) : bool := Z.testbit (unsigned x) i.

Lemma testbit_repr:
  forall x i,
  0 <= i < zwordsize ->
  testbit (repr x) i = Z.testbit x i.
Proof.
  intros. unfold testbit. apply same_bits_eqm; auto with ints.
Qed.

Lemma same_bits_eq:
  forall x y,
  (forall i, 0 <= i < zwordsize -> testbit x i = testbit y i) ->
  x = y.
Proof.
  intros. rewrite <- (repr_unsigned x). rewrite <- (repr_unsigned y).
  apply eqm_samerepr. apply eqm_same_bits. auto.
Qed.

Lemma bits_above:
  forall x i, i >= zwordsize -> testbit x i = false.
Proof.
  intros. apply Ztestbit_above with wordsize; auto. apply unsigned_range.
Qed.

Lemma bits_below:
  forall x i, i < 0 -> testbit x i = false.
Proof.
  intros. apply Z.testbit_neg_r; auto.
Qed.

Lemma bits_zero:
  forall i, testbit zero i = false.
Proof.
  intros. unfold testbit. rewrite unsigned_zero. apply Ztestbit_0.
Qed.

Remark bits_one: forall n, testbit one n = zeq n 0.
Proof.
  unfold testbit; intros. rewrite unsigned_one. apply Ztestbit_1.
Qed.

Lemma bits_mone:
  forall i, 0 <= i < zwordsize -> testbit mone i = true.
Proof.
  intros. unfold mone. rewrite testbit_repr; auto. apply Ztestbit_m1. lia.
Qed.

Hint Rewrite bits_zero bits_mone : ints.

Ltac bit_solve :=
  intros; apply same_bits_eq; intros; autorewrite with ints; auto with bool.

Lemma sign_bit_of_unsigned:
  forall x, testbit x (zwordsize - 1) = if zlt (unsigned x) half_modulus then false else true.
Proof.
  intros. unfold testbit.
  set (ws1 := Init.Nat.pred wordsize).
  assert (zwordsize - 1 = Z.of_nat ws1).
    unfold zwordsize, ws1, wordsize.
    destruct WS.wordsize as [] eqn:E.
    elim WS.wordsize_not_zero; auto.
    rewrite Nat2Z.inj_succ. simpl. lia.
  assert (half_modulus = two_power_nat ws1).
    rewrite two_power_nat_two_p. rewrite <- H. apply half_modulus_power.
  rewrite H; rewrite H0.
  apply Zsign_bit. rewrite two_power_nat_S. rewrite <- H0.
  rewrite <- half_modulus_modulus. apply unsigned_range.
Qed.

Local Transparent repr.
Lemma sign_bit_of_signed: forall x,
    (testbit x (zwordsize - 1)) = lt x zero.
Proof.
  intro.
  rewrite sign_bit_of_unsigned.
  unfold lt.
  unfold signed, unsigned.
  simpl.
  pose proof half_modulus_pos as HMOD.
  destruct (zlt 0 half_modulus) as [HMOD' | HMOD'].
  2: lia.
  clear HMOD'.
  destruct (zlt (intval x) half_modulus) as [ LOW | HIGH].
  {
    destruct x as [ix RANGE].
    simpl in *.
    destruct (zlt ix 0). lia.
    reflexivity.
  }
  destruct (zlt _ _) as [LOW' | HIGH']; trivial.
  destruct x as [ix RANGE].
  simpl in *.
  rewrite half_modulus_modulus in *.
  lia.
Qed.
Local Opaque repr.

Lemma bits_signed:
  forall x i, 0 <= i ->
  Z.testbit (signed x) i = testbit x (if zlt i zwordsize then i else zwordsize - 1).
Proof.
  intros.
  destruct (zlt i zwordsize).
  - apply same_bits_eqm. apply eqm_signed_unsigned. lia.
  - unfold signed. rewrite sign_bit_of_unsigned. destruct (zlt (unsigned x) half_modulus).
    + apply Ztestbit_above with wordsize. apply unsigned_range. auto.
    + apply Ztestbit_above_neg with wordsize.
      fold modulus. generalize (unsigned_range x). lia. auto.
Qed.

Lemma bits_le:
  forall x y,
  (forall i, 0 <= i < zwordsize -> testbit x i = true -> testbit y i = true) ->
  unsigned x <= unsigned y.
Proof.
  intros. apply Ztestbit_le. generalize (unsigned_range y); lia.
  intros. fold (testbit y i). destruct (zlt i zwordsize).
  apply H. lia. auto.
  fold (testbit x i) in H1. rewrite bits_above in H1; auto. congruence.
Qed.

(** ** Properties of bitwise and, or, xor *)

Lemma bits_and:
  forall x y i, 0 <= i < zwordsize ->
  testbit (and x y) i = testbit x i && testbit y i.
Proof.
  intros. unfold and. rewrite testbit_repr; auto. rewrite Z.land_spec; intuition.
Qed.

Lemma bits_or:
  forall x y i, 0 <= i < zwordsize ->
  testbit (or x y) i = testbit x i || testbit y i.
Proof.
  intros. unfold or. rewrite testbit_repr; auto. rewrite Z.lor_spec; intuition.
Qed.

Lemma bits_xor:
  forall x y i, 0 <= i < zwordsize ->
  testbit (xor x y) i = xorb (testbit x i) (testbit y i).
Proof.
  intros. unfold xor. rewrite testbit_repr; auto. rewrite Z.lxor_spec; intuition.
Qed.

Lemma bits_not:
  forall x i, 0 <= i < zwordsize ->
  testbit (not x) i = negb (testbit x i).
Proof.
  intros. unfold not. rewrite bits_xor; auto. rewrite bits_mone; auto.
Qed.

Hint Rewrite bits_and bits_or bits_xor bits_not: ints.

Theorem and_commut: forall x y, and x y = and y x.
Proof.
  bit_solve.
Qed.

Theorem and_assoc: forall x y z, and (and x y) z = and x (and y z).
Proof.
  bit_solve.
Qed.

Theorem and_zero: forall x, and x zero = zero.
Proof.
  bit_solve. apply andb_b_false.
Qed.

Corollary and_zero_l: forall x, and zero x = zero.
Proof.
  intros. rewrite and_commut. apply and_zero.
Qed.

Theorem and_mone: forall x, and x mone = x.
Proof.
  bit_solve. apply andb_b_true.
Qed.

Corollary and_mone_l: forall x, and mone x = x.
Proof.
  intros. rewrite and_commut. apply and_mone.
Qed.

Theorem and_idem: forall x, and x x = x.
Proof.
  bit_solve. destruct (testbit x i); auto.
Qed.

Theorem or_commut: forall x y, or x y = or y x.
Proof.
  bit_solve.
Qed.

Theorem or_assoc: forall x y z, or (or x y) z = or x (or y z).
Proof.
  bit_solve.
Qed.

Theorem or_zero: forall x, or x zero = x.
Proof.
  bit_solve.
Qed.

Corollary or_zero_l: forall x, or zero x = x.
Proof.
  intros. rewrite or_commut. apply or_zero.
Qed.

Theorem or_mone: forall x, or x mone = mone.
Proof.
  bit_solve.
Qed.

Theorem or_idem: forall x, or x x = x.
Proof.
  bit_solve. destruct (testbit x i); auto.
Qed.

Theorem and_or_distrib:
  forall x y z,
  and x (or y z) = or (and x y) (and x z).
Proof.
  bit_solve. apply demorgan1.
Qed.

Corollary and_or_distrib_l:
  forall x y z,
  and (or x y) z = or (and x z) (and y z).
Proof.
  intros. rewrite (and_commut (or x y)). rewrite and_or_distrib. f_equal; apply and_commut.
Qed.

Theorem or_and_distrib:
  forall x y z,
  or x (and y z) = and (or x y) (or x z).
Proof.
  bit_solve. apply orb_andb_distrib_r.
Qed.

Corollary or_and_distrib_l:
  forall x y z,
  or (and x y) z = and (or x z) (or y z).
Proof.
  intros. rewrite (or_commut (and x y)). rewrite or_and_distrib. f_equal; apply or_commut.
Qed.

Theorem and_or_absorb: forall x y, and x (or x y) = x.
Proof.
  bit_solve.
  assert (forall a b, a && (a || b) = a) by destr_bool.
  auto.
Qed.

Theorem or_and_absorb: forall x y, or x (and x y) = x.
Proof.
  bit_solve.
  assert (forall a b, a || (a && b) = a) by destr_bool.
  auto.
Qed.

Theorem xor_commut: forall x y, xor x y = xor y x.
Proof.
  bit_solve. apply xorb_comm.
Qed.

Theorem xor_assoc: forall x y z, xor (xor x y) z = xor x (xor y z).
Proof.
  bit_solve. apply xorb_assoc.
Qed.

Theorem xor_zero: forall x, xor x zero = x.
Proof.
  bit_solve. apply xorb_false.
Qed.

Corollary xor_zero_l: forall x, xor zero x = x.
Proof.
  intros. rewrite xor_commut. apply xor_zero.
Qed.

Theorem xor_idem: forall x, xor x x = zero.
Proof.
  bit_solve. apply xorb_nilpotent.
Qed.

Theorem xor_zero_one: xor zero one = one.
Proof. rewrite xor_commut. apply xor_zero. Qed.

Theorem xor_one_one: xor one one = zero.
Proof. apply xor_idem. Qed.

Theorem xor_zero_equal: forall x y, xor x y = zero -> x = y.
Proof.
  intros. apply same_bits_eq; intros.
  assert (xorb (testbit x i) (testbit y i) = false).
    rewrite <- bits_xor; auto. rewrite H. apply bits_zero.
  destruct (testbit x i); destruct (testbit y i); reflexivity || discriminate.
Qed.

Theorem xor_is_zero: forall x y, eq (xor x y) zero = eq x y.
Proof.
  intros. predSpec eq eq_spec (xor x y) zero.
- apply xor_zero_equal in H. subst y. rewrite eq_true; auto. 
- predSpec eq eq_spec x y.
+ elim H; subst y; apply xor_idem. 
+ auto.
Qed. 

Theorem and_xor_distrib:
  forall x y z,
  and x (xor y z) = xor (and x y) (and x z).
Proof.
  bit_solve.
  assert (forall a b c, a && (xorb b c) = xorb (a && b) (a && c)) by destr_bool.
  auto.
Qed.

Theorem and_le:
  forall x y, unsigned (and x y) <= unsigned x.
Proof.
  intros. apply bits_le; intros.
  rewrite bits_and in H0; auto. rewrite andb_true_iff in H0. tauto.
Qed.

Theorem or_le:
  forall x y, unsigned x <= unsigned (or x y).
Proof.
  intros. apply bits_le; intros.
  rewrite bits_or; auto. rewrite H0; auto.
Qed.

(** ** Properties of bitwise complement.*)

Theorem not_involutive:
  forall (x: int), not (not x) = x.
Proof.
  intros. unfold not. rewrite xor_assoc. rewrite xor_idem. apply xor_zero.
Qed.

Theorem not_zero:
  not zero = mone.
Proof.
  unfold not. rewrite xor_commut. apply xor_zero.
Qed.

Theorem not_mone:
  not mone = zero.
Proof.
  rewrite <- (not_involutive zero). symmetry. decEq. apply not_zero.
Qed.

Theorem not_or_and_not:
  forall x y, not (or x y) = and (not x) (not y).
Proof.
  bit_solve. apply negb_orb.
Qed.

Theorem not_and_or_not:
  forall x y, not (and x y) = or (not x) (not y).
Proof.
  bit_solve. apply negb_andb.
Qed.

Theorem and_not_self:
  forall x, and x (not x) = zero.
Proof.
  bit_solve.
Qed.

Theorem or_not_self:
  forall x, or x (not x) = mone.
Proof.
  bit_solve.
Qed.

Theorem xor_not_self:
  forall x, xor x (not x) = mone.
Proof.
  bit_solve. destruct (testbit x i); auto.
Qed.

Lemma unsigned_not:
  forall x, unsigned (not x) = max_unsigned - unsigned x.
Proof.
  intros. transitivity (unsigned (repr(-unsigned x - 1))).
  f_equal. bit_solve. rewrite testbit_repr; auto. symmetry. apply Z_one_complement. lia.
  rewrite unsigned_repr_eq. apply Zmod_unique with (-1).
  unfold max_unsigned. lia.
  generalize (unsigned_range x). unfold max_unsigned. lia.
Qed.

Theorem not_neg:
  forall x, not x = add (neg x) mone.
Proof.
  bit_solve.
  rewrite <- (repr_unsigned x) at 1. unfold add.
  rewrite !testbit_repr; auto.
  transitivity (Z.testbit (-unsigned x - 1) i).
  symmetry. apply Z_one_complement. lia.
  apply same_bits_eqm; auto.
  replace (-unsigned x - 1) with (-unsigned x + (-1)) by lia.
  apply eqm_add.
  unfold neg. apply eqm_unsigned_repr.
  rewrite unsigned_mone. exists (-1). ring.
Qed.

Theorem neg_not:
  forall x, neg x = add (not x) one.
Proof.
  intros. rewrite not_neg. rewrite add_assoc.
  replace (add mone one) with zero. rewrite add_zero. auto.
  apply eqm_samerepr. rewrite unsigned_mone. rewrite unsigned_one.
  exists (-1). ring.
Qed.

Theorem sub_add_not:
  forall x y, sub x y = add (add x (not y)) one.
Proof.
  intros. rewrite sub_add_opp. rewrite neg_not.
  rewrite ! add_assoc. auto.
Qed.

Theorem sub_add_not_3:
  forall x y b,
  b = zero \/ b = one ->
  sub (sub x y) b = add (add x (not y)) (xor b one).
Proof.
  intros. rewrite ! sub_add_not. rewrite ! add_assoc. f_equal. f_equal.
  rewrite <- neg_not. rewrite <- sub_add_opp. destruct H; subst b.
  rewrite xor_zero_l. rewrite sub_zero_l. auto.
  rewrite xor_idem. rewrite sub_idem. auto.
Qed.

Theorem sub_borrow_add_carry:
  forall x y b,
  b = zero \/ b = one ->
  sub_borrow x y b = xor (add_carry x (not y) (xor b one)) one.
Proof.
  intros. unfold sub_borrow, add_carry. rewrite unsigned_not.
  replace (unsigned (xor b one)) with (1 - unsigned b).
  destruct (zlt (unsigned x - unsigned y - unsigned b)).
  rewrite zlt_true. rewrite xor_zero_l; auto.
  unfold max_unsigned; lia.
  rewrite zlt_false. rewrite xor_idem; auto.
  unfold max_unsigned; lia.
  destruct H; subst b.
  rewrite xor_zero_l. rewrite unsigned_one, unsigned_zero; auto.
  rewrite xor_idem. rewrite unsigned_one, unsigned_zero; auto.
Qed.

(** ** Connections between [add] and bitwise logical operations. *)

Lemma Z_add_is_or:
  forall i, 0 <= i ->
  forall x y,
  (forall j, 0 <= j <= i -> Z.testbit x j && Z.testbit y j = false) ->
  Z.testbit (x + y) i = Z.testbit x i || Z.testbit y i.
Proof.
  intros i0 POS0. pattern i0. apply Zlt_0_ind; auto.
  intros i IND POS x y EXCL.
  rewrite (Zdecomp x) in *. rewrite (Zdecomp y) in *.
  transitivity (Z.testbit (Zshiftin (Z.odd x || Z.odd y) (Z.div2 x + Z.div2 y)) i).
  - f_equal. rewrite !Zshiftin_spec.
    exploit (EXCL 0). lia. rewrite !Ztestbit_shiftin_base. intros.
Opaque Z.mul.
    destruct (Z.odd x); destruct (Z.odd y); simpl in *; discriminate || ring.
  - rewrite !Ztestbit_shiftin; auto.
    destruct (zeq i 0).
    + auto.
    + apply IND. lia. intros.
      exploit (EXCL (Z.succ j)). lia.
      rewrite !Ztestbit_shiftin_succ. auto.
      lia. lia.
Qed.

Theorem add_is_or:
  forall x y,
  and x y = zero ->
  add x y = or x y.
Proof.
  bit_solve. unfold add. rewrite testbit_repr; auto.
  apply Z_add_is_or. lia.
  intros.
  assert (testbit (and x y) j = testbit zero j) by congruence.
  autorewrite with ints in H2. assumption. lia.
Qed.

Theorem xor_is_or:
  forall x y, and x y = zero -> xor x y = or x y.
Proof.
  bit_solve.
  assert (testbit (and x y) i = testbit zero i) by congruence.
  autorewrite with ints in H1; auto.
  destruct (testbit x i); destruct (testbit y i); simpl in *; congruence.
Qed.

Theorem add_is_xor:
  forall x y,
  and x y = zero ->
  add x y = xor x y.
Proof.
  intros. rewrite xor_is_or; auto. apply add_is_or; auto.
Qed.

Theorem add_and:
  forall x y z,
  and y z = zero ->
  add (and x y) (and x z) = and x (or y z).
Proof.
  intros. rewrite add_is_or.
  rewrite and_or_distrib; auto.
  rewrite (and_commut x y).
  rewrite and_assoc.
  repeat rewrite <- (and_assoc x).
  rewrite (and_commut (and x x)).
  rewrite <- and_assoc.
  rewrite H. rewrite and_commut. apply and_zero.
Qed.

(** ** Properties of shifts *)

Lemma bits_shl:
  forall x y i,
  0 <= i < zwordsize ->
  testbit (shl x y) i =
  if zlt i (unsigned y) then false else testbit x (i - unsigned y).
Proof.
  intros. unfold shl. rewrite testbit_repr; auto.
  destruct (zlt i (unsigned y)).
  apply Z.shiftl_spec_low. auto.
  apply Z.shiftl_spec_high. lia. lia.
Qed.

Lemma bits_shru:
  forall x y i,
  0 <= i < zwordsize ->
  testbit (shru x y) i =
  if zlt (i + unsigned y) zwordsize then testbit x (i + unsigned y) else false.
Proof.
  intros. unfold shru. rewrite testbit_repr; auto.
  rewrite Z.shiftr_spec. fold (testbit x (i + unsigned y)).
  destruct (zlt (i + unsigned y) zwordsize).
  auto.
  apply bits_above; auto.
  lia.
Qed.

Lemma bits_shr:
  forall x y i,
  0 <= i < zwordsize ->
  testbit (shr x y) i =
  testbit x (if zlt (i + unsigned y) zwordsize then i + unsigned y else zwordsize - 1).
Proof.
  intros. unfold shr. rewrite testbit_repr; auto.
  rewrite Z.shiftr_spec. apply bits_signed.
  generalize (unsigned_range y); lia.
  lia.
Qed.

Hint Rewrite bits_shl bits_shru bits_shr: ints.

Theorem shl_zero: forall x, shl x zero = x.
Proof.
  bit_solve. rewrite unsigned_zero. rewrite zlt_false. f_equal; lia. lia.
Qed.

Lemma bitwise_binop_shl:
  forall f f' x y n,
  (forall x y i, 0 <= i < zwordsize -> testbit (f x y) i = f' (testbit x i) (testbit y i)) ->
  f' false false = false ->
  f (shl x n) (shl y n) = shl (f x y) n.
Proof.
  intros. apply same_bits_eq; intros.
  rewrite H; auto. rewrite !bits_shl; auto.
  destruct (zlt i (unsigned n)); auto.
  rewrite H; auto. generalize (unsigned_range n); lia.
Qed.

Theorem and_shl:
  forall x y n,
  and (shl x n) (shl y n) = shl (and x y) n.
Proof.
  intros. apply bitwise_binop_shl with andb. exact bits_and. auto.
Qed.

Theorem or_shl:
  forall x y n,
  or (shl x n) (shl y n) = shl (or x y) n.
Proof.
  intros. apply bitwise_binop_shl with orb. exact bits_or. auto.
Qed.

Theorem xor_shl:
  forall x y n,
  xor (shl x n) (shl y n) = shl (xor x y) n.
Proof.
  intros. apply bitwise_binop_shl with xorb. exact bits_xor. auto.
Qed.

Lemma ltu_inv:
  forall x y, ltu x y = true -> 0 <= unsigned x < unsigned y.
Proof.
  unfold ltu; intros. destruct (zlt (unsigned x) (unsigned y)).
  split; auto. generalize (unsigned_range x); lia.
  discriminate.
Qed.

Lemma ltu_iwordsize_inv:
  forall x, ltu x iwordsize = true -> 0 <= unsigned x < zwordsize.
Proof.
  intros. generalize (ltu_inv _ _ H). rewrite unsigned_repr_wordsize. auto.
Qed.

Theorem shl_shl:
  forall x y z,
  ltu y iwordsize = true ->
  ltu z iwordsize = true ->
  ltu (add y z) iwordsize = true ->
  shl (shl x y) z = shl x (add y z).
Proof.
  intros.
  generalize (ltu_iwordsize_inv _ H) (ltu_iwordsize_inv _ H0); intros.
  assert (unsigned (add y z) = unsigned y + unsigned z).
    unfold add. apply unsigned_repr.
    generalize two_wordsize_max_unsigned; lia.
  apply same_bits_eq; intros.
  rewrite bits_shl; auto.
  destruct (zlt i (unsigned z)).
  - rewrite bits_shl; auto. rewrite zlt_true. auto. lia.
  - rewrite bits_shl. destruct (zlt (i - unsigned z) (unsigned y)).
    + rewrite bits_shl; auto. rewrite zlt_true. auto. lia.
    + rewrite bits_shl; auto. rewrite zlt_false. f_equal. lia. lia.
    + lia.
Qed.

Theorem sub_ltu:
  forall x y,
    ltu x y = true ->
    0 <= unsigned y - unsigned x <= unsigned y.
Proof.
  intros.
  generalize (ltu_inv x y H). intros .
  split. lia. lia.
Qed.

Theorem shru_zero: forall x, shru x zero = x.
Proof.
  bit_solve. rewrite unsigned_zero. rewrite zlt_true. f_equal; lia. lia.
Qed.

Lemma bitwise_binop_shru:
  forall f f' x y n,
  (forall x y i, 0 <= i < zwordsize -> testbit (f x y) i = f' (testbit x i) (testbit y i)) ->
  f' false false = false ->
  f (shru x n) (shru y n) = shru (f x y) n.
Proof.
  intros. apply same_bits_eq; intros.
  rewrite H; auto. rewrite !bits_shru; auto.
  destruct (zlt (i + unsigned n) zwordsize); auto.
  rewrite H; auto. generalize (unsigned_range n); lia.
Qed.

Theorem and_shru:
  forall x y n,
  and (shru x n) (shru y n) = shru (and x y) n.
Proof.
  intros. apply bitwise_binop_shru with andb; auto. exact bits_and.
Qed.

Theorem or_shru:
  forall x y n,
  or (shru x n) (shru y n) = shru (or x y) n.
Proof.
  intros. apply bitwise_binop_shru with orb; auto. exact bits_or.
Qed.

Theorem xor_shru:
  forall x y n,
  xor (shru x n) (shru y n) = shru (xor x y) n.
Proof.
  intros. apply bitwise_binop_shru with xorb; auto. exact bits_xor.
Qed.

Theorem shru_shru:
  forall x y z,
  ltu y iwordsize = true ->
  ltu z iwordsize = true ->
  ltu (add y z) iwordsize = true ->
  shru (shru x y) z = shru x (add y z).
Proof.
  intros.
  generalize (ltu_iwordsize_inv _ H) (ltu_iwordsize_inv _ H0); intros.
  assert (unsigned (add y z) = unsigned y + unsigned z).
    unfold add. apply unsigned_repr.
    generalize two_wordsize_max_unsigned; lia.
  apply same_bits_eq; intros.
  rewrite bits_shru; auto.
  destruct (zlt (i + unsigned z) zwordsize).
  - rewrite bits_shru. destruct (zlt (i + unsigned z + unsigned y) zwordsize).
    + rewrite bits_shru; auto. rewrite zlt_true. f_equal. lia. lia.
    + rewrite bits_shru; auto. rewrite zlt_false. auto. lia.
    + lia.
  - rewrite bits_shru; auto. rewrite zlt_false. auto. lia.
Qed.

Theorem shr_zero: forall x, shr x zero = x.
Proof.
  bit_solve. rewrite unsigned_zero. rewrite zlt_true. f_equal; lia. lia.
Qed.

Lemma bitwise_binop_shr:
  forall f f' x y n,
  (forall x y i, 0 <= i < zwordsize -> testbit (f x y) i = f' (testbit x i) (testbit y i)) ->
  f (shr x n) (shr y n) = shr (f x y) n.
Proof.
  intros. apply same_bits_eq; intros.
  rewrite H; auto. rewrite !bits_shr; auto.
  rewrite H; auto.
  destruct (zlt (i + unsigned n) zwordsize).
  generalize (unsigned_range n); lia.
  lia.
Qed.

Theorem and_shr:
  forall x y n,
  and (shr x n) (shr y n) = shr (and x y) n.
Proof.
  intros. apply bitwise_binop_shr with andb. exact bits_and.
Qed.

Theorem or_shr:
  forall x y n,
  or (shr x n) (shr y n) = shr (or x y) n.
Proof.
  intros. apply bitwise_binop_shr with orb. exact bits_or.
Qed.

Theorem xor_shr:
  forall x y n,
  xor (shr x n) (shr y n) = shr (xor x y) n.
Proof.
  intros. apply bitwise_binop_shr with xorb. exact bits_xor.
Qed.

Theorem shr_shr:
  forall x y z,
  ltu y iwordsize = true ->
  ltu z iwordsize = true ->
  ltu (add y z) iwordsize = true ->
  shr (shr x y) z = shr x (add y z).
Proof.
  intros.
  generalize (ltu_iwordsize_inv _ H) (ltu_iwordsize_inv _ H0); intros.
  assert (unsigned (add y z) = unsigned y + unsigned z).
    unfold add. apply unsigned_repr.
    generalize two_wordsize_max_unsigned; lia.
  apply same_bits_eq; intros.
  rewrite !bits_shr; auto. f_equal.
  destruct (zlt (i + unsigned z) zwordsize).
  rewrite H4. replace (i + (unsigned y + unsigned z)) with (i + unsigned z + unsigned y) by lia. auto.
  rewrite (zlt_false _ (i + unsigned (add y z))).
  destruct (zlt (zwordsize - 1 + unsigned y) zwordsize); lia.
  lia.
  destruct (zlt (i + unsigned z) zwordsize); lia.
Qed.

Theorem and_shr_shru:
  forall x y z,
  and (shr x z) (shru y z) = shru (and x y) z.
Proof.
  intros. apply same_bits_eq; intros.
  rewrite bits_and; auto. rewrite bits_shr; auto. rewrite !bits_shru; auto.
  destruct (zlt (i + unsigned z) zwordsize).
  - rewrite bits_and; auto. generalize (unsigned_range z); lia.
  - apply andb_false_r.
Qed.

Theorem shr_and_shru_and:
  forall x y z,
  shru (shl z y) y = z ->
  and (shr x y) z = and (shru x y) z.
Proof.
  intros.
  rewrite <- H.
  rewrite and_shru. rewrite and_shr_shru. auto.
Qed.

Theorem shru_lt_zero:
  forall x,
  shru x (repr (zwordsize - 1)) = if lt x zero then one else zero.
Proof.
  intros. apply same_bits_eq; intros.
  rewrite bits_shru; auto.
  rewrite unsigned_repr.
  destruct (zeq i 0).
  subst i. rewrite Z.add_0_l. rewrite zlt_true.
  rewrite sign_bit_of_unsigned.
  unfold lt. rewrite signed_zero. unfold signed.
  destruct (zlt (unsigned x) half_modulus).
  rewrite zlt_false. auto. generalize (unsigned_range x); lia.
  rewrite zlt_true. unfold one; rewrite testbit_repr; auto.
  generalize (unsigned_range x); lia.
  lia.
  rewrite zlt_false.
  unfold testbit. rewrite Ztestbit_eq. rewrite zeq_false.
  destruct (lt x zero).
  rewrite unsigned_one. simpl Z.div2. rewrite Z.testbit_0_l; auto.
  rewrite unsigned_zero. simpl Z.div2. rewrite Z.testbit_0_l; auto.
  auto. lia. lia.
  generalize wordsize_max_unsigned; lia.
Qed.

Theorem shr_lt_zero:
  forall x,
  shr x (repr (zwordsize - 1)) = if lt x zero then mone else zero.
Proof.
  intros. apply same_bits_eq; intros.
  rewrite bits_shr; auto.
  rewrite unsigned_repr.
  transitivity (testbit x (zwordsize - 1)).
  f_equal. destruct (zlt (i + (zwordsize - 1)) zwordsize); lia.
  rewrite sign_bit_of_unsigned.
  unfold lt. rewrite signed_zero. unfold signed.
  destruct (zlt (unsigned x) half_modulus).
  rewrite zlt_false. rewrite bits_zero; auto. generalize (unsigned_range x); lia.
  rewrite zlt_true. rewrite bits_mone; auto. generalize (unsigned_range x); lia.
  generalize wordsize_max_unsigned; lia.
Qed.

(** ** Properties of rotations *)

Lemma bits_rol:
  forall x y i,
  0 <= i < zwordsize ->
  testbit (rol x y) i = testbit x ((i - unsigned y) mod zwordsize).
Proof.
  intros. unfold rol.
  exploit (Z_div_mod_eq (unsigned y) zwordsize). apply wordsize_pos.
  set (j := unsigned y mod zwordsize). set (k := unsigned y / zwordsize).
  intros EQ.
  exploit (Z_mod_lt (unsigned y) zwordsize). apply wordsize_pos.
  fold j. intros RANGE.
  rewrite testbit_repr; auto.
  rewrite Z.lor_spec. rewrite Z.shiftr_spec. 2: lia.
  destruct (zlt i j).
  - rewrite Z.shiftl_spec_low; auto. simpl.
    unfold testbit. f_equal.
    symmetry. apply Zmod_unique with (-k - 1).
    rewrite EQ. ring.
    lia.
  - rewrite Z.shiftl_spec_high.
    fold (testbit x (i + (zwordsize - j))).
    rewrite bits_above. rewrite orb_false_r.
    fold (testbit x (i - j)).
    f_equal. symmetry. apply Zmod_unique with (-k).
    rewrite EQ. ring.
    lia. lia. lia. lia.
Qed.

Lemma bits_ror:
  forall x y i,
  0 <= i < zwordsize ->
  testbit (ror x y) i = testbit x ((i + unsigned y) mod zwordsize).
Proof.
  intros. unfold ror.
  exploit (Z_div_mod_eq (unsigned y) zwordsize). apply wordsize_pos.
  set (j := unsigned y mod zwordsize). set (k := unsigned y / zwordsize).
  intros EQ.
  exploit (Z_mod_lt (unsigned y) zwordsize). apply wordsize_pos.
  fold j. intros RANGE.
  rewrite testbit_repr; auto.
  rewrite Z.lor_spec. rewrite Z.shiftr_spec. 2: lia.
  destruct (zlt (i + j) zwordsize).
  - rewrite Z.shiftl_spec_low; auto. rewrite orb_false_r.
    unfold testbit. f_equal.
    symmetry. apply Zmod_unique with k.
    rewrite EQ. ring.
    lia. lia.
  - rewrite Z.shiftl_spec_high.
    fold (testbit x (i + j)).
    rewrite bits_above. simpl.
    unfold testbit. f_equal.
    symmetry. apply Zmod_unique with (k + 1).
    rewrite EQ. ring.
    lia. lia. lia. lia.
Qed.

Hint Rewrite bits_rol bits_ror: ints.

Theorem shl_rolm:
  forall x n,
  ltu n iwordsize = true ->
  shl x n = rolm x n (shl mone n).
Proof.
  intros. generalize (ltu_inv _ _ H). rewrite unsigned_repr_wordsize; intros.
  unfold rolm. apply same_bits_eq; intros.
  rewrite bits_and; auto. rewrite !bits_shl; auto. rewrite bits_rol; auto.
  destruct (zlt i (unsigned n)).
  - rewrite andb_false_r; auto.
  - generalize (unsigned_range n); intros.
    rewrite bits_mone. rewrite andb_true_r. f_equal.
    symmetry. apply Z.mod_small. lia.
    lia.
Qed.

Theorem shru_rolm:
  forall x n,
  ltu n iwordsize = true ->
  shru x n = rolm x (sub iwordsize n) (shru mone n).
Proof.
  intros. generalize (ltu_inv _ _ H). rewrite unsigned_repr_wordsize; intros.
  unfold rolm. apply same_bits_eq; intros.
  rewrite bits_and; auto. rewrite !bits_shru; auto. rewrite bits_rol; auto.
  destruct (zlt (i + unsigned n) zwordsize).
  - generalize (unsigned_range n); intros.
    rewrite bits_mone. rewrite andb_true_r. f_equal.
    unfold sub. rewrite unsigned_repr. rewrite unsigned_repr_wordsize.
    symmetry. apply Zmod_unique with (-1). ring. lia.
    rewrite unsigned_repr_wordsize. generalize wordsize_max_unsigned. lia.
    lia.
  - rewrite andb_false_r; auto.
Qed.

Theorem rol_zero:
  forall x,
  rol x zero = x.
Proof.
  bit_solve. f_equal. rewrite unsigned_zero. rewrite Z.sub_0_r.
  apply Z.mod_small; auto.
Qed.

Lemma bitwise_binop_rol:
  forall f f' x y n,
  (forall x y i, 0 <= i < zwordsize -> testbit (f x y) i = f' (testbit x i) (testbit y i)) ->
  rol (f x y) n = f (rol x n) (rol y n).
Proof.
  intros. apply same_bits_eq; intros.
  rewrite H; auto. rewrite !bits_rol; auto. rewrite H; auto.
  apply Z_mod_lt. apply wordsize_pos.
Qed.

Theorem rol_and:
  forall x y n,
  rol (and x y) n = and (rol x n) (rol y n).
Proof.
  intros. apply bitwise_binop_rol with andb. exact bits_and.
Qed.

Theorem rol_or:
  forall x y n,
  rol (or x y) n = or (rol x n) (rol y n).
Proof.
  intros. apply bitwise_binop_rol with orb. exact bits_or.
Qed.

Theorem rol_xor:
  forall x y n,
  rol (xor x y) n = xor (rol x n) (rol y n).
Proof.
  intros. apply bitwise_binop_rol with xorb. exact bits_xor.
Qed.

Theorem rol_rol:
  forall x n m,
  Z.divide zwordsize modulus ->
  rol (rol x n) m = rol x (modu (add n m) iwordsize).
Proof.
  bit_solve. f_equal. apply eqmod_mod_eq. apply wordsize_pos.
  set (M := unsigned m); set (N := unsigned n).
  apply eqmod_trans with (i - M - N).
  apply eqmod_sub.
  apply eqmod_sym. apply eqmod_mod. apply wordsize_pos.
  apply eqmod_refl.
  replace (i - M - N) with (i - (M + N)) by lia.
  apply eqmod_sub.
  apply eqmod_refl.
  apply eqmod_trans with (Z.modulo (unsigned n + unsigned m) zwordsize).
  replace (M + N) with (N + M) by lia. apply eqmod_mod. apply wordsize_pos.
  unfold modu, add. fold M; fold N. rewrite unsigned_repr_wordsize.
  assert (forall a, eqmod zwordsize a (unsigned (repr a))).
    intros. eapply eqmod_divides. apply eqm_unsigned_repr. assumption.
  eapply eqmod_trans. 2: apply H1.
  apply eqmod_refl2. apply eqmod_mod_eq. apply wordsize_pos. auto.
  apply Z_mod_lt. apply wordsize_pos.
Qed.

Theorem rolm_zero:
  forall x m,
  rolm x zero m = and x m.
Proof.
  intros. unfold rolm. rewrite rol_zero. auto.
Qed.

Theorem rolm_rolm:
  forall x n1 m1 n2 m2,
  Z.divide zwordsize modulus ->
  rolm (rolm x n1 m1) n2 m2 =
    rolm x (modu (add n1 n2) iwordsize)
           (and (rol m1 n2) m2).
Proof.
  intros.
  unfold rolm. rewrite rol_and. rewrite and_assoc.
  rewrite rol_rol. reflexivity. auto.
Qed.

Theorem or_rolm:
  forall x n m1 m2,
  or (rolm x n m1) (rolm x n m2) = rolm x n (or m1 m2).
Proof.
  intros; unfold rolm. symmetry. apply and_or_distrib.
Qed.

Theorem ror_rol:
  forall x y,
  ltu y iwordsize = true ->
  ror x y = rol x (sub iwordsize y).
Proof.
  intros.
  generalize (ltu_iwordsize_inv _ H); intros.
  apply same_bits_eq; intros.
  rewrite bits_ror; auto. rewrite bits_rol; auto. f_equal.
  unfold sub. rewrite unsigned_repr. rewrite unsigned_repr_wordsize.
  apply eqmod_mod_eq. apply wordsize_pos. exists 1. ring.
  rewrite unsigned_repr_wordsize.
  generalize wordsize_pos; generalize wordsize_max_unsigned; lia.
Qed.

Theorem ror_rol_neg:
  forall x y, (zwordsize | modulus) -> ror x y = rol x (neg y).
Proof.
  intros. apply same_bits_eq; intros.
  rewrite bits_ror by auto. rewrite bits_rol by auto.
  f_equal. apply eqmod_mod_eq. lia.
  apply eqmod_trans with (i - (- unsigned y)).
  apply eqmod_refl2; lia.
  apply eqmod_sub. apply eqmod_refl.
  apply eqmod_divides with modulus.
  apply eqm_unsigned_repr. auto.
Qed.

Theorem or_ror:
  forall x y z,
  ltu y iwordsize = true ->
  ltu z iwordsize = true ->
  add y z = iwordsize ->
  ror x z = or (shl x y) (shru x z).
Proof.
  intros.
  generalize (ltu_iwordsize_inv _ H) (ltu_iwordsize_inv _ H0); intros.
  unfold ror, or, shl, shru. apply same_bits_eq; intros.
  rewrite !testbit_repr; auto.
  rewrite !Z.lor_spec. rewrite orb_comm. f_equal; apply same_bits_eqm; auto.
  - apply eqm_unsigned_repr_r. apply eqm_refl2. f_equal.
    rewrite Z.mod_small; auto.
    assert (unsigned (add y z) = zwordsize).
      rewrite H1. apply unsigned_repr_wordsize.
    unfold add in H5. rewrite unsigned_repr in H5.
    lia.
    generalize two_wordsize_max_unsigned; lia.
  - apply eqm_unsigned_repr_r. apply eqm_refl2. f_equal.
    apply Z.mod_small; auto.
Qed.

(** ** Properties of [is_power2]. *)

Remark is_power2_inv:
  forall n logn,
  is_power2 n = Some logn ->
  Z_is_power2 (unsigned n) = Some (unsigned logn) /\ 0 <= unsigned logn < zwordsize.
Proof.
  unfold is_power2; intros.
  destruct (Z_is_power2 (unsigned n)) as [i|] eqn:E; inv H.
  assert (0 <= i < zwordsize).
  { apply Z_is_power2_range with (unsigned n). 
    generalize wordsize_pos; lia.
    rewrite <- modulus_power. apply unsigned_range.
    auto. }
  rewrite unsigned_repr; auto. generalize wordsize_max_unsigned; lia.
Qed.

Lemma is_power2_rng:
  forall n logn,
  is_power2 n = Some logn ->
  0 <= unsigned logn < zwordsize.
Proof.
  intros. apply (is_power2_inv n logn); auto.
Qed.

Theorem is_power2_range:
  forall n logn,
  is_power2 n = Some logn -> ltu logn iwordsize = true.
Proof.
  intros. unfold ltu. rewrite unsigned_repr_wordsize.
  apply zlt_true. generalize (is_power2_rng _ _ H). tauto.
Qed.

Lemma is_power2_correct:
  forall n logn,
  is_power2 n = Some logn ->
  unsigned n = two_p (unsigned logn).
Proof.
  intros. apply is_power2_inv in H. destruct H as [P Q].
  apply Z_is_power2_sound in P. tauto.
Qed.

Remark two_p_range:
  forall n,
  0 <= n < zwordsize ->
  0 <= two_p n <= max_unsigned.
Proof.
  intros. split.
  assert (two_p n > 0). apply two_p_gt_ZERO. lia. lia.
  generalize (two_p_monotone_strict _ _ H).
  unfold zwordsize; rewrite <- two_power_nat_two_p.
  unfold max_unsigned, modulus. lia.
Qed.

Lemma is_power2_two_p:
  forall n, 0 <= n < zwordsize ->
  is_power2 (repr (two_p n)) = Some (repr n).
Proof.
  intros. unfold is_power2. rewrite unsigned_repr.
  rewrite Z_is_power2_complete by lia; auto.
  apply two_p_range. auto.
Qed.

(** ** Relation between bitwise operations and multiplications / divisions by powers of 2 *)

(** Left shifts and multiplications by powers of 2. *)

Lemma shl_mul_two_p:
  forall x y,
  shl x y = mul x (repr (two_p (unsigned y))).
Proof.
  intros. unfold shl, mul. apply eqm_samerepr.
  rewrite Zshiftl_mul_two_p. auto with ints.
  generalize (unsigned_range y); lia.
Qed.

Theorem shl_mul:
  forall x y,
  shl x y = mul x (shl one y).
Proof.
  intros.
  assert (shl one y = repr (two_p (unsigned y))).
  {
    rewrite shl_mul_two_p. rewrite mul_commut. rewrite mul_one. auto.
  }
  rewrite H. apply shl_mul_two_p.
Qed.

Theorem mul_pow2:
  forall x n logn,
  is_power2 n = Some logn ->
  mul x n = shl x logn.
Proof.
  intros. generalize (is_power2_correct n logn H); intro.
  rewrite shl_mul_two_p. rewrite <- H0. rewrite repr_unsigned.
  auto.
Qed.

Theorem shifted_or_is_add:
  forall x y n,
  0 <= n < zwordsize ->
  unsigned y < two_p n ->
  or (shl x (repr n)) y = repr(unsigned x * two_p n + unsigned y).
Proof.
  intros. rewrite <- add_is_or.
  - unfold add. apply eqm_samerepr. apply eqm_add; auto with ints.
    rewrite shl_mul_two_p. unfold mul. apply eqm_unsigned_repr_l.
    apply eqm_mult; auto with ints. apply eqm_unsigned_repr_l.
    apply eqm_refl2. rewrite unsigned_repr. auto.
    generalize wordsize_max_unsigned; lia.
  - bit_solve.
    rewrite unsigned_repr.
    destruct (zlt i n).
    + auto.
    + replace (testbit y i) with false. apply andb_false_r.
      symmetry. unfold testbit.
      assert (EQ: Z.of_nat (Z.to_nat n) = n) by (apply Z2Nat.id; lia).
      apply Ztestbit_above with (Z.to_nat n).
      rewrite <- EQ in H0. rewrite <- two_power_nat_two_p in H0.
      generalize (unsigned_range y); lia.
      rewrite EQ; auto.
    + generalize wordsize_max_unsigned; lia.
Qed.

(** Unsigned right shifts and unsigned divisions by powers of 2. *)

Lemma shru_div_two_p:
  forall x y,
  shru x y = repr (unsigned x / two_p (unsigned y)).
Proof.
  intros. unfold shru.
  rewrite Zshiftr_div_two_p. auto.
  generalize (unsigned_range y); lia.
Qed.

Theorem divu_pow2:
  forall x n logn,
  is_power2 n = Some logn ->
  divu x n = shru x logn.
Proof.
  intros. generalize (is_power2_correct n logn H). intro.
  symmetry. unfold divu. rewrite H0. apply shru_div_two_p.
Qed.

(** Signed right shifts and signed divisions by powers of 2. *)

Lemma shr_div_two_p:
  forall x y,
  shr x y = repr (signed x / two_p (unsigned y)).
Proof.
  intros. unfold shr.
  rewrite Zshiftr_div_two_p. auto.
  generalize (unsigned_range y); lia.
Qed.

Theorem divs_pow2:
  forall x n logn,
  is_power2 n = Some logn ->
  divs x n = shrx x logn.
Proof.
  intros. generalize (is_power2_correct _ _ H); intro.
  unfold shrx. rewrite shl_mul_two_p.
  rewrite mul_commut. rewrite mul_one.
  rewrite <- H0. rewrite repr_unsigned. auto.
Qed.

(** Unsigned modulus over [2^n] is masking with [2^n-1]. *)

Theorem modu_and:
  forall x n logn,
  is_power2 n = Some logn ->
  modu x n = and x (sub n one).
Proof.
  intros. generalize (is_power2_correct _ _ H); intro.
  generalize (is_power2_rng _ _ H); intro.
  apply same_bits_eq; intros.
  rewrite bits_and; auto.
  unfold sub. rewrite testbit_repr; auto.
  rewrite H0. rewrite unsigned_one.
  unfold modu. rewrite testbit_repr; auto. rewrite H0.
  rewrite Ztestbit_mod_two_p. rewrite Ztestbit_two_p_m1.
  destruct (zlt i (unsigned logn)).
  rewrite andb_true_r; auto.
  rewrite andb_false_r; auto.
  tauto. tauto. tauto. tauto.
Qed.

(** ** Properties of [shrx] (signed division by a power of 2) *)

Theorem shrx_zero:
  forall x, zwordsize > 1 -> shrx x zero = x.
Proof.
  intros. unfold shrx. rewrite shl_zero. unfold divs. rewrite signed_one by auto.
  rewrite Z.quot_1_r. apply repr_signed.
Qed. 

Theorem shrx_shr:
  forall x y,
  ltu y (repr (zwordsize - 1)) = true ->
  shrx x y = shr (if lt x zero then add x (sub (shl one y) one) else x) y.
Proof.
  intros.
  set (uy := unsigned y).
  assert (0 <= uy < zwordsize - 1).
    generalize (ltu_inv _ _ H). rewrite unsigned_repr. auto.
    generalize wordsize_pos wordsize_max_unsigned; lia.
  rewrite shr_div_two_p. unfold shrx. unfold divs.
  assert (shl one y = repr (two_p uy)).
    transitivity (mul one (repr (two_p uy))).
    symmetry. apply mul_pow2. replace y with (repr uy).
    apply is_power2_two_p. lia. apply repr_unsigned.
    rewrite mul_commut. apply mul_one.
  assert (two_p uy > 0). apply two_p_gt_ZERO. lia.
  assert (two_p uy < half_modulus).
    rewrite half_modulus_power.
    apply two_p_monotone_strict. auto.
  assert (two_p uy < modulus).
    rewrite modulus_power. apply two_p_monotone_strict. lia.
  assert (unsigned (shl one y) = two_p uy).
    rewrite H1. apply unsigned_repr. unfold max_unsigned. lia.
  assert (signed (shl one y) = two_p uy).
    rewrite H1. apply signed_repr.
    unfold max_signed. generalize min_signed_neg. lia.
  rewrite H6.
  rewrite Zquot_Zdiv; auto.
  unfold lt. rewrite signed_zero.
  destruct (zlt (signed x) 0); auto.
  rewrite add_signed.
  assert (signed (sub (shl one y) one) = two_p uy - 1).
    unfold sub. rewrite H5. rewrite unsigned_one.
    apply signed_repr.
    generalize min_signed_neg. unfold max_signed. lia.
  rewrite H7. rewrite signed_repr. f_equal. f_equal. lia.
  generalize (signed_range x). intros.
  assert (two_p uy - 1 <= max_signed). unfold max_signed. lia. lia.
Qed.

Theorem shrx_shr_2:
  forall x y,
  ltu y (repr (zwordsize - 1)) = true ->
  shrx x y = shr (add x (shru (shr x (repr (zwordsize - 1))) (sub iwordsize y))) y.
Proof.
  intros.
  rewrite shrx_shr by auto. f_equal.
  rewrite shr_lt_zero. destruct (lt x zero).
- set (uy := unsigned y).
  generalize (unsigned_range y); fold uy; intros.
  assert (0 <= uy < zwordsize - 1).
    generalize (ltu_inv _ _ H). rewrite unsigned_repr. auto.
    generalize wordsize_pos wordsize_max_unsigned; lia.
  assert (two_p uy < modulus).
    rewrite modulus_power. apply two_p_monotone_strict. lia.
  f_equal. rewrite shl_mul_two_p. fold uy. rewrite mul_commut. rewrite mul_one.
  unfold sub. rewrite unsigned_one. rewrite unsigned_repr.
  rewrite unsigned_repr_wordsize. fold uy.
  apply same_bits_eq; intros. rewrite bits_shru by auto.
  rewrite testbit_repr by auto. rewrite Ztestbit_two_p_m1 by lia.
  rewrite unsigned_repr by (generalize wordsize_max_unsigned; lia).
  destruct (zlt i uy).
  rewrite zlt_true by lia. rewrite bits_mone by lia. auto.
  rewrite zlt_false by lia. auto.
  assert (two_p uy > 0) by (apply two_p_gt_ZERO; lia). unfold max_unsigned; lia.
- replace (shru zero (sub iwordsize y)) with zero.
  rewrite add_zero; auto.
  bit_solve. destruct (zlt (i + unsigned (sub iwordsize y)) zwordsize); auto.
Qed.

Theorem shrx1_shr:
  forall x,
  ltu one (repr (zwordsize - 1)) = true ->
  shrx x (repr 1) = shr (add x (shru x (repr (zwordsize - 1)))) (repr 1).
Proof.
  intros.
  rewrite shrx_shr by assumption.
  rewrite shl_mul_two_p.
  rewrite mul_commut. rewrite mul_one.
  change (repr 1) with one.
  rewrite unsigned_one.
  change (two_p 1) with 2.
  unfold sub.
  rewrite unsigned_one.
  assert (0 <= 2 <= max_unsigned).
  {
    unfold max_unsigned, modulus.
    unfold zwordsize in *.
    unfold ltu in *.
    rewrite unsigned_one in H.
    rewrite unsigned_repr in H.
    {
      destruct (zlt 1 (Z.of_nat wordsize - 1)) as [ LT | NONE].
      2: discriminate.
      clear H.
      rewrite two_power_nat_two_p.
      split.
      lia.
      set (w := (Z.of_nat wordsize)) in *.
      assert ((two_p 2) <= (two_p w)) as MONO.
      {
        apply two_p_monotone.
        lia.
      }
      change (two_p 2) with 4 in MONO.
      lia.
    }
    generalize wordsize_max_unsigned.
    fold zwordsize.
    generalize wordsize_pos.
    lia.
  }
  rewrite unsigned_repr by assumption.
  simpl.
  rewrite shru_lt_zero.
  destruct (lt x zero).
  reflexivity.
  rewrite add_zero.
  reflexivity.
Qed.

Theorem shrx_carry:
  forall x y,
  ltu y (repr (zwordsize - 1)) = true ->
  shrx x y = add (shr x y) (shr_carry x y).
Proof.
  intros. rewrite shrx_shr; auto. unfold shr_carry.
  unfold lt. set (sx := signed x). rewrite signed_zero.
  destruct (zlt sx 0); simpl.
  2: rewrite add_zero; auto.
  set (uy := unsigned y).
  assert (0 <= uy < zwordsize - 1).
    generalize (ltu_inv _ _ H). rewrite unsigned_repr. auto.
    generalize wordsize_pos wordsize_max_unsigned; lia.
  assert (shl one y = repr (two_p uy)).
    rewrite shl_mul_two_p. rewrite mul_commut. apply mul_one.
  assert (and x (sub (shl one y) one) = modu x (repr (two_p uy))).
    symmetry. rewrite H1. apply modu_and with (logn := y).
    rewrite is_power2_two_p. unfold uy. rewrite repr_unsigned. auto.
    lia.
  rewrite H2. rewrite H1.
  repeat rewrite shr_div_two_p. fold sx. fold uy.
  assert (two_p uy > 0). apply two_p_gt_ZERO. lia.
  assert (two_p uy < modulus).
    rewrite modulus_power. apply two_p_monotone_strict. lia.
  assert (two_p uy < half_modulus).
    rewrite half_modulus_power.
    apply two_p_monotone_strict. auto.
  assert (two_p uy < modulus).
    rewrite modulus_power. apply two_p_monotone_strict. lia.
  assert (sub (repr (two_p uy)) one = repr (two_p uy - 1)).
    unfold sub. apply eqm_samerepr. apply eqm_sub. apply eqm_sym; apply eqm_unsigned_repr.
    rewrite unsigned_one. apply eqm_refl.
  rewrite H7. rewrite add_signed. fold sx.
  rewrite (signed_repr (two_p uy - 1)). rewrite signed_repr.
  unfold modu. rewrite unsigned_repr.
  unfold eq. rewrite unsigned_zero. rewrite unsigned_repr.
  assert (unsigned x mod two_p uy = sx mod two_p uy).
    apply eqmod_mod_eq; auto. apply eqmod_divides with modulus.
    fold eqm. unfold sx. apply eqm_sym. apply eqm_signed_unsigned.
    unfold modulus. rewrite two_power_nat_two_p.
    exists (two_p (zwordsize - uy)). rewrite <- two_p_is_exp.
    f_equal. fold zwordsize; lia. lia. lia.
  rewrite H8. rewrite Zdiv_shift; auto.
  unfold add. apply eqm_samerepr. apply eqm_add.
  apply eqm_unsigned_repr.
  destruct (zeq (sx mod two_p uy) 0); simpl.
  rewrite unsigned_zero. apply eqm_refl.
  rewrite unsigned_one. apply eqm_refl.
  generalize (Z_mod_lt (unsigned x) (two_p uy) H3). unfold max_unsigned. lia.
  unfold max_unsigned; lia.
  generalize (signed_range x). fold sx. intros. split. lia. unfold max_signed. lia.
  generalize min_signed_neg. unfold max_signed. lia.
Qed.

(** Connections between [shr] and [shru]. *)

Lemma shr_shru_positive:
  forall x y,
  signed x >= 0 ->
  shr x y = shru x y.
Proof.
  intros.
  rewrite shr_div_two_p. rewrite shru_div_two_p.
  rewrite signed_eq_unsigned. auto. apply signed_positive. auto.
Qed.

Lemma and_positive:
  forall x y, signed y >= 0 -> signed (and x y) >= 0.
Proof.
  intros.
  assert (unsigned y < half_modulus). rewrite signed_positive in H. unfold max_signed in H; lia.
  generalize (sign_bit_of_unsigned y). rewrite zlt_true; auto. intros A.
  generalize (sign_bit_of_unsigned (and x y)). rewrite bits_and. rewrite A.
  rewrite andb_false_r. unfold signed.
  destruct (zlt (unsigned (and x y)) half_modulus).
  intros. generalize (unsigned_range (and x y)); lia.
  congruence.
  generalize wordsize_pos; lia.
Qed.

Theorem shr_and_is_shru_and:
  forall x y z,
  lt y zero = false -> shr (and x y) z = shru (and x y) z.
Proof.
  intros. apply shr_shru_positive. apply and_positive.
  unfold lt in H. rewrite signed_zero in H. destruct (zlt (signed y) 0). congruence. auto.
Qed.

(** ** Properties of integer zero extension and sign extension. *)

Lemma bits_zero_ext:
  forall n x i, 0 <= i ->
  testbit (zero_ext n x) i = if zlt i n then testbit x i else false.
Proof.
  intros. unfold zero_ext. destruct (zlt i zwordsize).
  rewrite testbit_repr; auto. rewrite Zzero_ext_spec. auto. auto.
  rewrite !bits_above; auto. destruct (zlt i n); auto.
Qed.

Lemma bits_sign_ext:
  forall n x i, 0 <= i < zwordsize ->
  testbit (sign_ext n x) i = testbit x (if zlt i n then i else n - 1).
Proof.
  intros. unfold sign_ext.
  rewrite testbit_repr; auto. apply Zsign_ext_spec. lia. 
Qed.

Hint Rewrite bits_zero_ext bits_sign_ext: ints.

Theorem zero_ext_above:
  forall n x, n >= zwordsize -> zero_ext n x = x.
Proof.
  intros. apply same_bits_eq; intros.
  rewrite bits_zero_ext. apply zlt_true. lia. lia.
Qed.

Theorem zero_ext_below:
  forall n x, n <= 0 -> zero_ext n x = zero.
Proof.
  intros. bit_solve. destruct (zlt i n); auto. apply bits_below; lia. lia.
Qed.

Theorem sign_ext_above:
  forall n x, n >= zwordsize -> sign_ext n x = x.
Proof.
  intros. apply same_bits_eq; intros.
  unfold sign_ext; rewrite testbit_repr; auto.
  rewrite Zsign_ext_spec. rewrite zlt_true. auto. lia. lia.
Qed.

Theorem sign_ext_below:
  forall n x, n <= 0 -> sign_ext n x = zero.
Proof.
  intros. bit_solve. apply bits_below. destruct (zlt i n); lia.
Qed.

Theorem zero_ext_and:
  forall n x, 0 <= n -> zero_ext n x = and x (repr (two_p n - 1)).
Proof.
  bit_solve. rewrite testbit_repr; auto. rewrite Ztestbit_two_p_m1; intuition.
  destruct (zlt i n).
  rewrite andb_true_r; auto.
  rewrite andb_false_r; auto.
  tauto.
Qed.

Theorem zero_ext_mod:
  forall n x, 0 <= n < zwordsize ->
  unsigned (zero_ext n x) = Z.modulo (unsigned x) (two_p n).
Proof.
  intros. apply equal_same_bits. intros.
  rewrite Ztestbit_mod_two_p; auto.
  fold (testbit (zero_ext n x) i).
  destruct (zlt i zwordsize).
  rewrite bits_zero_ext; auto.
  rewrite bits_above. rewrite zlt_false; auto. lia. lia.
  lia.
Qed.

Theorem zero_ext_widen:
  forall x n n', 0 <= n <= n' ->
  zero_ext n' (zero_ext n x) = zero_ext n x.
Proof.
  bit_solve. destruct (zlt i n).
  apply zlt_true. lia.
  destruct (zlt i n'); auto.
  tauto. tauto.
Qed.

Theorem sign_ext_widen:
  forall x n n', 0 < n <= n' ->
  sign_ext n' (sign_ext n x) = sign_ext n x.
Proof.
  intros. destruct (zlt n' zwordsize).
  bit_solve. destruct (zlt i n').
  auto.
  rewrite (zlt_false _ i n).
  destruct (zlt (n' - 1) n); f_equal; lia.
  lia.
  destruct (zlt i n'); lia.
  apply sign_ext_above; auto.
Qed.

Theorem sign_zero_ext_widen:
  forall x n n', 0 <= n < n' ->
  sign_ext n' (zero_ext n x) = zero_ext n x.
Proof.
  intros. destruct (zlt n' zwordsize).
  bit_solve.
  destruct (zlt i n').
  auto.
  rewrite !zlt_false. auto. lia. lia. lia.
  destruct (zlt i n'); lia.
  apply sign_ext_above; auto.
Qed.

Theorem zero_ext_narrow:
  forall x n n', 0 <= n <= n' ->
  zero_ext n (zero_ext n' x) = zero_ext n x.
Proof.
  bit_solve. destruct (zlt i n).
  apply zlt_true. lia.
  auto.
  lia. lia. lia.
Qed.

Theorem sign_ext_narrow:
  forall x n n', 0 < n <= n' ->
  sign_ext n (sign_ext n' x) = sign_ext n x.
Proof.
  intros. destruct (zlt n zwordsize).
  bit_solve. destruct (zlt i n); f_equal; apply zlt_true; lia.
  destruct (zlt i n); lia.
  rewrite (sign_ext_above n'). auto. lia.
Qed.

Theorem zero_sign_ext_narrow:
  forall x n n', 0 < n <= n' ->
  zero_ext n (sign_ext n' x) = zero_ext n x.
Proof.
  intros. destruct (zlt n' zwordsize).
  bit_solve.
  destruct (zlt i n); auto.
  rewrite zlt_true; auto. lia.
  lia. lia.
  rewrite sign_ext_above; auto.
Qed.

Theorem zero_ext_idem:
  forall n x, 0 <= n -> zero_ext n (zero_ext n x) = zero_ext n x.
Proof.
  intros. apply zero_ext_widen. lia.
Qed.

Theorem sign_ext_idem:
  forall n x, 0 < n -> sign_ext n (sign_ext n x) = sign_ext n x.
Proof.
  intros. apply sign_ext_widen. lia.
Qed.
 
Theorem sign_ext_zero_ext:
  forall n x, 0 < n -> sign_ext n (zero_ext n x) = sign_ext n x.
Proof.
  intros. destruct (zlt n zwordsize).
  bit_solve.
  destruct (zlt i n).
  rewrite zlt_true; auto.
  rewrite zlt_true; auto. lia.
  destruct (zlt i n); lia.
  rewrite zero_ext_above; auto.
Qed.

Theorem zero_ext_sign_ext:
  forall n x, 0 < n -> zero_ext n (sign_ext n x) = zero_ext n x.
Proof.
  intros. apply zero_sign_ext_narrow. lia.
Qed.

Theorem sign_ext_equal_if_zero_equal:
  forall n x y, 0 < n ->
  zero_ext n x = zero_ext n y ->
  sign_ext n x = sign_ext n y.
Proof.
  intros. rewrite <- (sign_ext_zero_ext n x H).
  rewrite <- (sign_ext_zero_ext n y H). congruence.
Qed.

Theorem shru_shl:
  forall x y z, ltu y iwordsize = true -> ltu z iwordsize = true ->
  shru (shl x y) z =
  if ltu z y then shl (zero_ext (zwordsize - unsigned y) x) (sub y z)
             else zero_ext (zwordsize - unsigned z) (shru x (sub z y)).
Proof.
  intros. apply ltu_iwordsize_inv in H; apply ltu_iwordsize_inv in H0.
  unfold ltu. set (Y := unsigned y) in *; set (Z := unsigned z) in *.
  apply same_bits_eq; intros. rewrite bits_shru by auto. fold Z.
  destruct (zlt Z Y).
- assert (A: unsigned (sub y z) = Y - Z).
  { apply unsigned_repr. generalize wordsize_max_unsigned; lia. }
  symmetry; rewrite bits_shl, A by lia.
  destruct (zlt (i + Z) zwordsize).
+ rewrite bits_shl by lia. fold Y.
  destruct (zlt i (Y - Z)); [rewrite zlt_true by lia|rewrite zlt_false by lia]; auto.
  rewrite bits_zero_ext by lia. rewrite zlt_true by lia. f_equal; lia.
+ rewrite bits_zero_ext by lia. rewrite ! zlt_false by lia. auto.
- assert (A: unsigned (sub z y) = Z - Y).
  { apply unsigned_repr. generalize wordsize_max_unsigned; lia. }
  rewrite bits_zero_ext, bits_shru, A by lia.
  destruct (zlt (i + Z) zwordsize); [rewrite zlt_true by lia|rewrite zlt_false by lia]; auto.
  rewrite bits_shl by lia. fold Y.
  destruct (zlt (i + Z) Y).
+ rewrite zlt_false by lia. auto.
+ rewrite zlt_true by lia. f_equal; lia.
Qed.

Corollary zero_ext_shru_shl:
  forall n x,
  0 < n < zwordsize ->
  let y := repr (zwordsize - n) in
  zero_ext n x = shru (shl x y) y.
Proof.
  intros.
  assert (A: unsigned y = zwordsize - n).
  { unfold y. apply unsigned_repr. generalize wordsize_max_unsigned. lia. }
  assert (B: ltu y iwordsize = true).
  { unfold ltu; rewrite A, unsigned_repr_wordsize. apply zlt_true; lia. }
  rewrite shru_shl by auto. unfold ltu; rewrite zlt_false by lia.
  rewrite sub_idem, shru_zero. f_equal. rewrite A; lia.
Qed.

Theorem shr_shl:
  forall x y z, ltu y iwordsize = true -> ltu z iwordsize = true ->
  shr (shl x y) z =
  if ltu z y then shl (sign_ext (zwordsize - unsigned y) x) (sub y z)
             else sign_ext (zwordsize - unsigned z) (shr x (sub z y)).
Proof.
  intros. apply ltu_iwordsize_inv in H; apply ltu_iwordsize_inv in H0.
  unfold ltu. set (Y := unsigned y) in *; set (Z := unsigned z) in *.
  apply same_bits_eq; intros. rewrite bits_shr by auto. fold Z.
  rewrite bits_shl by (destruct (zlt (i + Z) zwordsize); lia). fold Y.
  destruct (zlt Z Y).
- assert (A: unsigned (sub y z) = Y - Z).
  { apply unsigned_repr. generalize wordsize_max_unsigned; lia. }
  rewrite bits_shl, A by lia.
  destruct (zlt i (Y - Z)).
+ apply zlt_true. destruct (zlt (i + Z) zwordsize); lia.
+ rewrite zlt_false by (destruct (zlt (i + Z) zwordsize); lia).
  rewrite bits_sign_ext by lia. f_equal. 
  destruct (zlt (i + Z) zwordsize).
  rewrite zlt_true by lia. lia.
  rewrite zlt_false by lia. lia.
- assert (A: unsigned (sub z y) = Z - Y).
  { apply unsigned_repr. generalize wordsize_max_unsigned; lia. }
  rewrite bits_sign_ext by lia.
  rewrite bits_shr by (destruct (zlt i (zwordsize - Z)); lia).
  rewrite A. rewrite zlt_false by (destruct (zlt (i + Z) zwordsize); lia).
  f_equal. destruct (zlt i (zwordsize - Z)).
+ rewrite ! zlt_true by lia. lia.
+ rewrite ! zlt_false by lia. rewrite zlt_true by lia. lia.
Qed.

Corollary sign_ext_shr_shl:
  forall n x,
  0 < n <= zwordsize ->
  let y := repr (zwordsize - n) in
  sign_ext n x = shr (shl x y) y.
Proof.
  intros.
  assert (A: unsigned y = zwordsize - n).
  { unfold y. apply unsigned_repr. generalize wordsize_max_unsigned. lia. }
  assert (B: ltu y iwordsize = true).
  { unfold ltu; rewrite A, unsigned_repr_wordsize. apply zlt_true; lia. }
  rewrite shr_shl by auto. unfold ltu; rewrite zlt_false by lia.
  rewrite sub_idem, shr_zero. f_equal. rewrite A; lia.
Qed.

(** [zero_ext n x] is the unique integer congruent to [x] modulo [2^n]
    in the range [0...2^n-1]. *)

Lemma zero_ext_range:
  forall n x, 0 <= n < zwordsize -> 0 <= unsigned (zero_ext n x) < two_p n.
Proof.
  intros. rewrite zero_ext_mod; auto. apply Z_mod_lt. apply two_p_gt_ZERO. lia.
Qed.

Lemma eqmod_zero_ext:
  forall n x, 0 <= n < zwordsize -> eqmod (two_p n) (unsigned (zero_ext n x)) (unsigned x).
Proof.
  intros. rewrite zero_ext_mod; auto. apply eqmod_sym. apply eqmod_mod.
  apply two_p_gt_ZERO. lia.
Qed.

(** [sign_ext n x] is the unique integer congruent to [x] modulo [2^n]
    in the range [-2^(n-1)...2^(n-1) - 1]. *)

Lemma sign_ext_range:
  forall n x, 0 < n < zwordsize -> -two_p (n-1) <= signed (sign_ext n x) < two_p (n-1).
Proof.
  intros. rewrite sign_ext_shr_shl by lia.
  set (X := shl x (repr (zwordsize - n))).
  assert (two_p (n - 1) > 0) by (apply two_p_gt_ZERO; lia).
  assert (unsigned (repr (zwordsize - n)) = zwordsize - n).
    apply unsigned_repr.
    split. lia. generalize wordsize_max_unsigned; lia.
  rewrite shr_div_two_p.
  rewrite signed_repr.
  rewrite H1.
  apply Zdiv_interval_1.
  lia. lia. apply two_p_gt_ZERO; lia.
  replace (- two_p (n - 1) * two_p (zwordsize - n))
     with (- (two_p (n - 1) * two_p (zwordsize - n))) by ring.
  rewrite <- two_p_is_exp.
  replace (n - 1 + (zwordsize - n)) with (zwordsize - 1) by lia.
  rewrite <- half_modulus_power.
  generalize (signed_range X). unfold min_signed, max_signed. lia.
  lia. lia.
  apply Zdiv_interval_2. apply signed_range.
  generalize min_signed_neg; lia.
  generalize max_signed_pos; lia.
  rewrite H1. apply two_p_gt_ZERO. lia.
Qed.

Lemma eqmod_sign_ext':
  forall n x, 0 < n < zwordsize ->
  eqmod (two_p n) (unsigned (sign_ext n x)) (unsigned x).
Proof.
  intros.
  set (N := Z.to_nat n).
  assert (Z.of_nat N = n) by (apply Z2Nat.id; lia).
  rewrite <- H0. rewrite <- two_power_nat_two_p.
  apply eqmod_same_bits; intros.
  rewrite H0 in H1. rewrite H0.
  fold (testbit (sign_ext n x) i). rewrite bits_sign_ext.
  rewrite zlt_true. auto. lia. lia.
Qed.

Lemma eqmod_sign_ext:
  forall n x, 0 < n < zwordsize ->
  eqmod (two_p n) (signed (sign_ext n x)) (unsigned x).
Proof.
  intros. apply eqmod_trans with (unsigned (sign_ext n x)).
  apply eqmod_divides with modulus. apply eqm_signed_unsigned.
  exists (two_p (zwordsize - n)).
  unfold modulus. rewrite two_power_nat_two_p. fold zwordsize.
  rewrite <- two_p_is_exp. f_equal. lia. lia. lia.
  apply eqmod_sign_ext'; auto.
Qed.

(** Combinations of shifts and zero/sign extensions *)

Lemma shl_zero_ext:
  forall n m x, 0 <= n ->
  shl (zero_ext n x) m = zero_ext (n + unsigned m) (shl x m).
Proof.
  intros. apply same_bits_eq; intros.
  rewrite bits_zero_ext, ! bits_shl by lia.
  destruct (zlt i (unsigned m)).
- rewrite zlt_true by lia; auto.
- rewrite bits_zero_ext by lia.
  destruct (zlt (i - unsigned m) n); [rewrite zlt_true by lia|rewrite zlt_false by lia]; auto.
Qed.

Lemma shl_sign_ext:
  forall n m x, 0 < n ->
  shl (sign_ext n x) m = sign_ext (n + unsigned m) (shl x m).
Proof.
  intros. generalize (unsigned_range m); intros.
  apply same_bits_eq; intros.
  rewrite bits_sign_ext, ! bits_shl by lia.
  destruct (zlt i (n + unsigned m)).
- rewrite bits_shl by auto. destruct (zlt i (unsigned m)); auto.
  rewrite bits_sign_ext by lia. f_equal. apply zlt_true. lia.
- rewrite zlt_false by lia. rewrite bits_shl by lia. rewrite zlt_false by lia.
  rewrite bits_sign_ext by lia. f_equal. rewrite zlt_false by lia. lia.
Qed.

Lemma shru_zero_ext:
  forall n m x, 0 <= n ->
  shru (zero_ext (n + unsigned m) x) m = zero_ext n (shru x m).
Proof.
  intros. bit_solve.
- destruct (zlt (i + unsigned m) zwordsize).
* destruct (zlt i n); [rewrite zlt_true by lia|rewrite zlt_false by lia]; auto.
* destruct (zlt i n); auto.
- generalize (unsigned_range m); lia.
- lia.
Qed.

Lemma shru_zero_ext_0:
  forall n m x, n <= unsigned m ->
  shru (zero_ext n x) m = zero.
Proof.
  intros. bit_solve.
- destruct (zlt (i + unsigned m) zwordsize); auto.
  apply zlt_false. lia.
- generalize (unsigned_range m); lia.
Qed.

Lemma shr_sign_ext:
  forall n m x, 0 < n -> n + unsigned m < zwordsize ->
  shr (sign_ext (n + unsigned m) x) m = sign_ext n (shr x m).
Proof.
  intros. generalize (unsigned_range m); intros.
  apply same_bits_eq; intros.
  rewrite bits_sign_ext, bits_shr by auto.
  rewrite bits_sign_ext, bits_shr.
- f_equal.
  destruct (zlt i n), (zlt (i + unsigned m) zwordsize).
+ apply zlt_true; lia.
+ apply zlt_true; lia.
+ rewrite zlt_false by lia. rewrite zlt_true by lia. lia.
+ rewrite zlt_false by lia. rewrite zlt_true by lia. lia.
- destruct (zlt i n); lia.
- destruct (zlt (i + unsigned m) zwordsize); lia.
Qed.

Lemma zero_ext_shru_min:
  forall s x n, ltu n iwordsize = true ->
  zero_ext s (shru x n) = zero_ext (Z.min s (zwordsize - unsigned n)) (shru x n).
Proof.
  intros. apply ltu_iwordsize_inv in H.
  apply Z.min_case_strong; intros; auto.
  bit_solve; try lia.
  destruct (zlt i (zwordsize - unsigned n)).
  rewrite zlt_true by lia. auto.
  destruct (zlt i s); auto. rewrite zlt_false by lia; auto.
Qed.

Lemma sign_ext_shr_min:
  forall s x n, ltu n iwordsize = true ->
  sign_ext s (shr x n) = sign_ext (Z.min s (zwordsize - unsigned n)) (shr x n).
Proof.
  intros. apply ltu_iwordsize_inv in H.
  rewrite Z.min_comm. 
  destruct (Z.min_spec (zwordsize - unsigned n) s) as [[A B] | [A B]]; rewrite B; auto.
  apply same_bits_eq; intros. rewrite ! bits_sign_ext by auto.
  destruct (zlt i (zwordsize - unsigned n)). 
  rewrite zlt_true by lia. auto.
  assert (C: testbit (shr x n) (zwordsize - unsigned n - 1) = testbit x (zwordsize - 1)).
  { rewrite bits_shr by lia. rewrite zlt_true by lia. f_equal; lia. }
  rewrite C. destruct (zlt i s); rewrite bits_shr by lia.
  rewrite zlt_false by lia. auto.
  rewrite zlt_false by lia. auto.
Qed.

Lemma shl_zero_ext_min:
  forall s x n, ltu n iwordsize = true ->
  shl (zero_ext s x) n = shl (zero_ext (Z.min s (zwordsize - unsigned n)) x) n.
Proof.
  intros. apply ltu_iwordsize_inv in H.
  apply Z.min_case_strong; intros; auto.
  apply same_bits_eq; intros. rewrite ! bits_shl by auto.
  destruct (zlt i (unsigned n)); auto.
  rewrite ! bits_zero_ext by lia.
  destruct (zlt (i - unsigned n) s).
  rewrite zlt_true by lia; auto.
  rewrite zlt_false by lia; auto.
Qed.

Lemma shl_sign_ext_min:
  forall s x n, ltu n iwordsize = true ->
  shl (sign_ext s x) n = shl (sign_ext (Z.min s (zwordsize - unsigned n)) x) n.
Proof.
  intros. apply ltu_iwordsize_inv in H.
  rewrite Z.min_comm. 
  destruct (Z.min_spec (zwordsize - unsigned n) s) as [[A B] | [A B]]; rewrite B; auto.
  apply same_bits_eq; intros. rewrite ! bits_shl by auto.
  destruct (zlt i (unsigned n)); auto.
  rewrite ! bits_sign_ext by lia. f_equal.
  destruct (zlt (i - unsigned n) s).
  rewrite zlt_true by lia; auto.
  extlia.
Qed.

(** ** Properties of [one_bits] (decomposition in sum of powers of two) *)

Theorem one_bits_range:
  forall x i, In i (one_bits x) -> ltu i iwordsize = true.
Proof.
  assert (A: forall p, 0 <= p < zwordsize -> ltu (repr p) iwordsize = true).
    intros. unfold ltu, iwordsize. apply zlt_true.
    repeat rewrite unsigned_repr. tauto.
    generalize wordsize_max_unsigned; lia.
    generalize wordsize_max_unsigned; lia.
  unfold one_bits. intros.
  destruct (list_in_map_inv _ _ _ H) as [i0 [EQ IN]].
  subst i. apply A. apply Z_one_bits_range with (unsigned x); auto.
Qed.

Fixpoint int_of_one_bits (l: list int) : int :=
  match l with
  | nil => zero
  | a :: b => add (shl one a) (int_of_one_bits b)
  end.

Theorem one_bits_decomp:
  forall x, x = int_of_one_bits (one_bits x).
Proof.
  intros.
  transitivity (repr (powerserie (Z_one_bits wordsize (unsigned x) 0))).
  transitivity (repr (unsigned x)).
  auto with ints. decEq. apply Z_one_bits_powerserie.
  auto with ints.
  unfold one_bits.
  generalize (Z_one_bits_range wordsize (unsigned x)).
  generalize (Z_one_bits wordsize (unsigned x) 0).
  induction l.
  intros; reflexivity.
  intros; simpl. rewrite <- IHl. unfold add. apply eqm_samerepr.
  apply eqm_add. rewrite shl_mul_two_p. rewrite mul_commut.
  rewrite mul_one. apply eqm_unsigned_repr_r.
  rewrite unsigned_repr. auto with ints.
  generalize (H a (in_eq _ _)). change (Z.of_nat wordsize) with zwordsize.
  generalize wordsize_max_unsigned. lia.
  auto with ints.
  intros; apply H; auto with coqlib.
Qed.

(** ** Properties of comparisons *)

Theorem negate_cmp:
  forall c x y, cmp (negate_comparison c) x y = negb (cmp c x y).
Proof.
  intros. destruct c; simpl; try rewrite negb_elim; auto.
Qed.

Theorem negate_cmpu:
  forall c x y, cmpu (negate_comparison c) x y = negb (cmpu c x y).
Proof.
  intros. destruct c; simpl; try rewrite negb_elim; auto.
Qed.

Theorem swap_cmp:
  forall c x y, cmp (swap_comparison c) x y = cmp c y x.
Proof.
  intros. destruct c; simpl; auto. apply eq_sym. decEq. apply eq_sym.
Qed.

Theorem swap_cmpu:
  forall c x y, cmpu (swap_comparison c) x y = cmpu c y x.
Proof.
  intros. destruct c; simpl; auto. apply eq_sym. decEq. apply eq_sym.
Qed.

Lemma translate_eq:
  forall x y d,
  eq (add x d) (add y d) = eq x y.
Proof.
  intros. unfold eq. case (zeq (unsigned x) (unsigned y)); intro.
  unfold add. rewrite e. apply zeq_true.
  apply zeq_false. unfold add. red; intro. apply n.
  apply eqm_small_eq; auto with ints.
  replace (unsigned x) with ((unsigned x + unsigned d) - unsigned d).
  replace (unsigned y) with ((unsigned y + unsigned d) - unsigned d).
  apply eqm_sub. apply eqm_trans with (unsigned (repr (unsigned x + unsigned d))).
  eauto with ints. apply eqm_trans with (unsigned (repr (unsigned y + unsigned d))).
  eauto with ints. eauto with ints. eauto with ints.
  lia. lia.
Qed.

Lemma translate_ltu:
  forall x y d,
  0 <= unsigned x + unsigned d <= max_unsigned ->
  0 <= unsigned y + unsigned d <= max_unsigned ->
  ltu (add x d) (add y d) = ltu x y.
Proof.
  intros. unfold add. unfold ltu.
  repeat rewrite unsigned_repr; auto. case (zlt (unsigned x) (unsigned y)); intro.
  apply zlt_true. lia.
  apply zlt_false. lia.
Qed.

Theorem translate_cmpu:
  forall c x y d,
  0 <= unsigned x + unsigned d <= max_unsigned ->
  0 <= unsigned y + unsigned d <= max_unsigned ->
  cmpu c (add x d) (add y d) = cmpu c x y.
Proof.
  intros. unfold cmpu.
  rewrite translate_eq. repeat rewrite translate_ltu; auto.
Qed.

Lemma translate_lt:
  forall x y d,
  min_signed <= signed x + signed d <= max_signed ->
  min_signed <= signed y + signed d <= max_signed ->
  lt (add x d) (add y d) = lt x y.
Proof.
  intros. repeat rewrite add_signed. unfold lt.
  repeat rewrite signed_repr; auto. case (zlt (signed x) (signed y)); intro.
  apply zlt_true. lia.
  apply zlt_false. lia.
Qed.

Theorem translate_cmp:
  forall c x y d,
  min_signed <= signed x + signed d <= max_signed ->
  min_signed <= signed y + signed d <= max_signed ->
  cmp c (add x d) (add y d) = cmp c x y.
Proof.
  intros. unfold cmp.
  rewrite translate_eq. repeat rewrite translate_lt; auto.
Qed.

Theorem notbool_isfalse_istrue:
  forall x, is_false x -> is_true (notbool x).
Proof.
  unfold is_false, is_true, notbool; intros; subst x.
  rewrite eq_true. apply one_not_zero.
Qed.

Theorem notbool_istrue_isfalse:
  forall x, is_true x -> is_false (notbool x).
Proof.
  unfold is_false, is_true, notbool; intros.
  generalize (eq_spec x zero). case (eq x zero); intro.
  contradiction. auto.
Qed.

Theorem ltu_range_test:
  forall x y,
  ltu x y = true -> unsigned y <= max_signed ->
  0 <= signed x < unsigned y.
Proof.
  intros.
  unfold ltu in H. destruct (zlt (unsigned x) (unsigned y)); try discriminate.
  rewrite signed_eq_unsigned.
  generalize (unsigned_range x). lia. lia.
Qed.

Theorem lt_sub_overflow:
  forall x y,
  xor (sub_overflow x y zero) (negative (sub x y)) = if lt x y then one else zero.
Proof.
  intros. unfold negative, sub_overflow, lt. rewrite sub_signed.
  rewrite signed_zero. rewrite Z.sub_0_r.
  generalize (signed_range x) (signed_range y).
  set (X := signed x); set (Y := signed y). intros RX RY.
  unfold min_signed, max_signed in *.
  generalize half_modulus_pos half_modulus_modulus; intros HM MM.
  destruct (zle 0 (X - Y)).
- unfold proj_sumbool at 1; rewrite zle_true at 1 by lia. simpl.
  rewrite (zlt_false _ X) by lia.
  destruct (zlt (X - Y) half_modulus).
  + unfold proj_sumbool; rewrite zle_true by lia.
    rewrite signed_repr. rewrite zlt_false by lia. apply xor_idem.
    unfold min_signed, max_signed; lia.
  + unfold proj_sumbool; rewrite zle_false by lia.
    replace (signed (repr (X - Y))) with (X - Y - modulus).
    rewrite zlt_true by lia. apply xor_idem.
    rewrite signed_repr_eq. replace ((X - Y) mod modulus) with (X - Y).
    rewrite zlt_false; auto.
    symmetry. apply Zmod_unique with 0; lia.
- unfold proj_sumbool at 2. rewrite zle_true at 1 by lia. rewrite andb_true_r.
  rewrite (zlt_true _ X) by lia.
  destruct (zlt (X - Y) (-half_modulus)).
  + unfold proj_sumbool; rewrite zle_false by lia.
    replace (signed (repr (X - Y))) with (X - Y + modulus).
    rewrite zlt_false by lia. apply xor_zero.
    rewrite signed_repr_eq. replace ((X - Y) mod modulus) with (X - Y + modulus).
    rewrite zlt_true by lia; auto.
    symmetry. apply Zmod_unique with (-1); lia.
  + unfold proj_sumbool; rewrite zle_true by lia.
    rewrite signed_repr. rewrite zlt_true by lia. apply xor_zero_l.
    unfold min_signed, max_signed; lia.
Qed.

Lemma signed_eq:
  forall x y, eq x y = zeq (signed x) (signed y).
Proof.
  intros. unfold eq. unfold proj_sumbool.
  destruct (zeq (unsigned x) (unsigned y));
  destruct (zeq (signed x) (signed y)); auto.
  elim n. unfold signed. rewrite e; auto.
  elim n. apply eqm_small_eq; auto with ints.
  eapply eqm_trans. apply eqm_sym. apply eqm_signed_unsigned.
  rewrite e. apply eqm_signed_unsigned.
Qed.

Lemma not_lt:
  forall x y, negb (lt y x) = (lt x y || eq x y).
Proof.
  intros. unfold lt. rewrite signed_eq. unfold proj_sumbool.
  destruct (zlt (signed y) (signed x)).
  rewrite zlt_false. rewrite zeq_false. auto. lia. lia.
  destruct (zeq (signed x) (signed y)).
  rewrite zlt_false. auto. lia.
  rewrite zlt_true. auto. lia.
Qed.

Lemma lt_not:
  forall x y, lt y x = negb (lt x y) && negb (eq x y).
Proof.
  intros. rewrite <- negb_orb. rewrite <- not_lt. rewrite negb_involutive. auto.
Qed.

Lemma not_ltu:
  forall x y, negb (ltu y x) = (ltu x y || eq x y).
Proof.
  intros. unfold ltu, eq.
  destruct (zlt (unsigned y) (unsigned x)).
  rewrite zlt_false. rewrite zeq_false. auto. lia. lia.
  destruct (zeq (unsigned x) (unsigned y)).
  rewrite zlt_false. auto. lia.
  rewrite zlt_true. auto. lia.
Qed.

Lemma ltu_not:
  forall x y, ltu y x = negb (ltu x y) && negb (eq x y).
Proof.
  intros. rewrite <- negb_orb. rewrite <- not_ltu. rewrite negb_involutive. auto.
Qed.

(** ** Non-overlapping test *)

Definition no_overlap (ofs1: int) (sz1: Z) (ofs2: int) (sz2: Z) : bool :=
  let x1 := unsigned ofs1 in let x2 := unsigned ofs2 in
     zlt (x1 + sz1) modulus && zlt (x2 + sz2) modulus
  && (zle (x1 + sz1) x2 || zle (x2 + sz2) x1).

Lemma no_overlap_sound:
  forall ofs1 sz1 ofs2 sz2 base,
  sz1 > 0 -> sz2 > 0 -> no_overlap ofs1 sz1 ofs2 sz2 = true ->
  unsigned (add base ofs1) + sz1 <= unsigned (add base ofs2)
  \/ unsigned (add base ofs2) + sz2 <= unsigned (add base ofs1).
Proof.
  intros.
  destruct (andb_prop _ _ H1). clear H1.
  destruct (andb_prop _ _ H2). clear H2.
  apply proj_sumbool_true in H1.
  apply proj_sumbool_true in H4.
  assert (unsigned ofs1 + sz1 <= unsigned ofs2 \/ unsigned ofs2 + sz2 <= unsigned ofs1).
  destruct (orb_prop _ _ H3). left. eapply proj_sumbool_true; eauto. right. eapply proj_sumbool_true; eauto.
  clear H3.
  generalize (unsigned_range ofs1) (unsigned_range ofs2). intros P Q.
  generalize (unsigned_add_either base ofs1) (unsigned_add_either base ofs2).
  intros [C|C] [D|D]; lia.
Qed.

(** ** Size of integers, in bits. *)

Definition size (x: int) : Z := Zsize (unsigned x).

Theorem size_zero: size zero = 0.
Proof.
  unfold size; rewrite unsigned_zero; auto.
Qed.

Theorem bits_size_1:
  forall x, x = zero \/ testbit x (Z.pred (size x)) = true.
Proof.
  intros. destruct (zeq (unsigned x) 0).
  left. rewrite <- (repr_unsigned x). rewrite e; auto.
  right. apply Ztestbit_size_1. generalize (unsigned_range x); lia.
Qed.

Theorem bits_size_2:
  forall x i, size x <= i -> testbit x i = false.
Proof.
  intros. apply Ztestbit_size_2. generalize (unsigned_range x); lia.
  fold (size x); lia.
Qed.

Theorem size_range:
  forall x, 0 <= size x <= zwordsize.
Proof.
  intros; split. apply Zsize_pos.
  destruct (bits_size_1 x).
  subst x; unfold size; rewrite unsigned_zero; simpl. generalize wordsize_pos; lia.
  destruct (zle (size x) zwordsize); auto.
  rewrite bits_above in H. congruence. lia.
Qed.

Theorem bits_size_3:
  forall x n,
  0 <= n ->
  (forall i, n <= i < zwordsize -> testbit x i = false) ->
  size x <= n.
Proof.
  intros. destruct (zle (size x) n). auto.
  destruct (bits_size_1 x).
  subst x. unfold size; rewrite unsigned_zero; assumption.
  rewrite (H0 (Z.pred (size x))) in H1. congruence.
  generalize (size_range x); lia.
Qed.

Theorem bits_size_4:
  forall x n,
  0 <= n ->
  testbit x (Z.pred n) = true ->
  (forall i, n <= i < zwordsize -> testbit x i = false) ->
  size x = n.
Proof.
  intros.
  assert (size x <= n).
    apply bits_size_3; auto.
  destruct (zlt (size x) n).
  rewrite bits_size_2 in H0. congruence. lia.
  lia.
Qed.

Theorem size_interval_1:
  forall x, 0 <= unsigned x < two_p (size x).
Proof.
  intros; apply Zsize_interval_1. generalize (unsigned_range x); lia.
Qed.

Theorem size_interval_2:
  forall x n, 0 <= n -> 0 <= unsigned x < two_p n -> n >= size x.
Proof.
  intros. apply Zsize_interval_2; auto.
Qed.

Theorem size_and:
  forall a b, size (and a b) <= Z.min (size a) (size b).
Proof.
  intros.
  assert (0 <= Z.min (size a) (size b)).
    generalize (size_range a) (size_range b). zify; lia.
  apply bits_size_3. auto. intros.
  rewrite bits_and by lia.
  rewrite andb_false_iff.
  generalize (bits_size_2 a i).
  generalize (bits_size_2 b i).
  zify; intuition.
Qed.

Corollary and_interval:
  forall a b, 0 <= unsigned (and a b) < two_p (Z.min (size a) (size b)).
Proof.
  intros.
  generalize (size_interval_1 (and a b)); intros.
  assert (two_p (size (and a b)) <= two_p (Z.min (size a) (size b))).
  apply two_p_monotone. split. generalize (size_range (and a b)); lia.
  apply size_and.
  lia.
Qed.

Theorem size_or:
  forall a b, size (or a b) = Z.max (size a) (size b).
Proof.
  intros. generalize (size_range a) (size_range b); intros.
  destruct (bits_size_1 a).
  subst a. rewrite size_zero. rewrite or_zero_l. zify; lia.
  destruct (bits_size_1 b).
  subst b. rewrite size_zero. rewrite or_zero. zify; lia.
  zify. destruct H3 as [[P Q] | [P Q]]; subst.
  apply bits_size_4. tauto. rewrite bits_or. rewrite H2. apply orb_true_r.
  lia.
  intros. rewrite bits_or. rewrite !bits_size_2. auto. lia. lia. lia.
  apply bits_size_4. tauto. rewrite bits_or. rewrite H1. apply orb_true_l.
  destruct (zeq (size a) 0). unfold testbit in H1. rewrite Z.testbit_neg_r in H1.
  congruence. lia. lia.
  intros. rewrite bits_or. rewrite !bits_size_2. auto. lia. lia. lia.
Qed.

Corollary or_interval:
  forall a b, 0 <= unsigned (or a b) < two_p (Z.max (size a) (size b)).
Proof.
  intros. rewrite <- size_or. apply size_interval_1.
Qed.

Theorem size_xor:
  forall a b, size (xor a b) <= Z.max (size a) (size b).
Proof.
  intros.
  assert (0 <= Z.max (size a) (size b)).
    generalize (size_range a) (size_range b). zify; lia.
  apply bits_size_3. auto. intros.
  rewrite bits_xor. rewrite !bits_size_2. auto.
  zify; lia.
  zify; lia.
  lia.
Qed.

Corollary xor_interval:
  forall a b, 0 <= unsigned (xor a b) < two_p (Z.max (size a) (size b)).
Proof.
  intros.
  generalize (size_interval_1 (xor a b)); intros.
  assert (two_p (size (xor a b)) <= two_p (Z.max (size a) (size b))).
  apply two_p_monotone. split. generalize (size_range (xor a b)); lia.
  apply size_xor.
  lia.
Qed.

(** ** Accessing bit fields *)

Definition unsigned_bitfield_extract (pos width: Z) (n: int) : int :=
  zero_ext width (shru n (repr pos)).

Definition signed_bitfield_extract (pos width: Z) (n: int) : int :=
  sign_ext width (shru n (repr pos)).

Definition bitfield_insert (pos width: Z) (n p: int) : int :=
  let mask := shl (repr (two_p width - 1)) (repr pos) in
  or (shl (zero_ext width p) (repr pos))
     (and n (not mask)).

Lemma bits_unsigned_bitfield_extract:
  forall pos width n i,
  0 <= pos -> 0 < width -> pos + width <= zwordsize ->
  0 <= i < zwordsize ->
  testbit (unsigned_bitfield_extract pos width n) i =
  if zlt i width then testbit n (i + pos) else false.
Proof.
  intros. unfold unsigned_bitfield_extract. rewrite bits_zero_ext by lia.
  destruct (zlt i width); auto.
  rewrite bits_shru by auto. rewrite unsigned_repr, zlt_true. auto.
  lia.
  generalize wordsize_max_unsigned; lia.
Qed.

Lemma bits_signed_bitfield_extract:
  forall pos width n i,
  0 <= pos -> 0 < width -> pos + width <= zwordsize ->
  0 <= i < zwordsize ->
  testbit (signed_bitfield_extract pos width n) i =
  testbit n (if zlt i width then i + pos else width - 1 + pos).
Proof.
  intros. unfold signed_bitfield_extract. rewrite bits_sign_ext by lia.
  rewrite bits_shru, unsigned_repr, zlt_true.
  destruct (zlt i width); auto.
  destruct (zlt i width); lia.
  generalize wordsize_max_unsigned; lia.
  destruct (zlt i width); lia.
Qed.

Lemma bits_bitfield_insert:
  forall pos width n p i,
  0 <= pos -> 0 < width -> pos + width <= zwordsize ->
  0 <= i < zwordsize ->
  testbit (bitfield_insert pos width n p) i =
  if zle pos i && zlt i (pos + width) then testbit p (i - pos) else testbit n i.
Proof.
  intros. unfold bitfield_insert.
  assert (P: unsigned (repr pos) = pos).
  { apply unsigned_repr. generalize wordsize_max_unsigned; lia. }
  rewrite bits_or, bits_and, bits_not, ! bits_shl, ! P by auto.
  destruct (zlt i pos).
- unfold proj_sumbool; rewrite zle_false by lia. cbn. apply andb_true_r.
- unfold proj_sumbool; rewrite zle_true by lia; cbn.
  rewrite bits_zero_ext, testbit_repr, Ztestbit_two_p_m1 by lia.
  destruct (zlt (i - pos) width); cbn.
+ rewrite zlt_true by lia. rewrite andb_false_r, orb_false_r. auto.
+ rewrite zlt_false by lia. apply andb_true_r.
Qed.

Lemma unsigned_bitfield_extract_by_shifts:
  forall pos width n,
  0 <= pos -> 0 < width -> pos + width <= zwordsize ->
  unsigned_bitfield_extract pos width n =
  shru (shl n (repr (zwordsize - pos - width))) (repr (zwordsize - width)).
Proof.
  intros. apply same_bits_eq; intros.
  rewrite bits_unsigned_bitfield_extract by lia.
  rewrite bits_shru by auto.
  rewrite unsigned_repr by (generalize wordsize_max_unsigned; lia).
  destruct (zlt i width).
- rewrite bits_shl by lia.
  rewrite unsigned_repr by (generalize wordsize_max_unsigned; lia).
  rewrite zlt_true by lia. rewrite zlt_false by lia. f_equal; lia.
- rewrite zlt_false by lia. auto.
Qed.

Lemma signed_bitfield_extract_by_shifts:
  forall pos width n,
  0 <= pos -> 0 < width -> pos + width <= zwordsize ->
  signed_bitfield_extract pos width n =
  shr (shl n (repr (zwordsize - pos - width))) (repr (zwordsize - width)).
Proof.
  intros. apply same_bits_eq; intros.
  rewrite bits_signed_bitfield_extract by lia.
  rewrite bits_shr by auto.
  rewrite unsigned_repr by (generalize wordsize_max_unsigned; lia).
  rewrite bits_shl.
  rewrite unsigned_repr by (generalize wordsize_max_unsigned; lia).
  symmetry. rewrite zlt_false. f_equal.
  destruct (zlt i width); [rewrite zlt_true | rewrite zlt_false]; lia.
  destruct zlt; lia.
  destruct zlt; lia.
Qed.

Lemma bitfield_insert_alternative:
  forall pos width n p,
  0 <= width ->
  bitfield_insert pos width n p =
  let mask := shl (repr (two_p width - 1)) (repr pos) in
  or (and (shl p (repr pos)) mask)
     (and n (not mask)).
Proof.
  intros. unfold bitfield_insert. 
  set (m1 := repr (two_p width - 1)).
  set (m2 := shl m1 (repr pos)).
  f_equal.
  rewrite zero_ext_and by lia. fold m1. unfold m2. rewrite <- and_shl. auto.
Qed.

End Make.

(** * Specialization to integers of size 8, 32, and 64 bits *)

Module Wordsize_32.
  Definition wordsize := 32%nat.
  Remark wordsize_not_zero: wordsize <> 0%nat.
  Proof. unfold wordsize; congruence. Qed.
End Wordsize_32.

Strategy opaque [Wordsize_32.wordsize].

Module Int := Make(Wordsize_32).

Strategy 0 [Wordsize_32.wordsize].

Notation int := Int.int.

Remark int_wordsize_divides_modulus:
  Z.divide (Z.of_nat Int.wordsize) Int.modulus.
Proof.
  exists (two_p (32-5)); reflexivity.
Qed.

Module Wordsize_8.
  Definition wordsize := 8%nat.
  Remark wordsize_not_zero: wordsize <> 0%nat.
  Proof. unfold wordsize; congruence. Qed.
End Wordsize_8.

Strategy opaque [Wordsize_8.wordsize].

Module Byte := Make(Wordsize_8).

Strategy 0 [Wordsize_8.wordsize].

Notation byte := Byte.int.

Module Wordsize_64.
  Definition wordsize := 64%nat.
  Remark wordsize_not_zero: wordsize <> 0%nat.
  Proof. unfold wordsize; congruence. Qed.
End Wordsize_64.

Strategy opaque [Wordsize_64.wordsize].

Module Int64.

Include Make(Wordsize_64).

(** Shifts with amount given as a 32-bit integer *)

Definition iwordsize': Int.int := Int.repr zwordsize.

Definition shl' (x: int) (y: Int.int): int :=
  repr (Z.shiftl (unsigned x) (Int.unsigned y)).
Definition shru' (x: int) (y: Int.int): int :=
  repr (Z.shiftr (unsigned x) (Int.unsigned y)).
Definition shr' (x: int) (y: Int.int): int :=
  repr (Z.shiftr (signed x) (Int.unsigned y)).
Definition rol' (x: int) (y: Int.int): int :=
  rol x (repr (Int.unsigned y)).
Definition shrx' (x: int) (y: Int.int): int :=
  divs x (shl' one y).
Definition shr_carry' (x: int) (y: Int.int): int :=
  if lt x zero && negb (eq (and x (sub (shl' one y) one)) zero)
  then one else zero.

Lemma bits_shl':
  forall x y i,
  0 <= i < zwordsize ->
  testbit (shl' x y) i =
  if zlt i (Int.unsigned y) then false else testbit x (i - Int.unsigned y).
Proof.
  intros. unfold shl'. rewrite testbit_repr; auto.
  destruct (zlt i (Int.unsigned y)).
  apply Z.shiftl_spec_low. auto.
  apply Z.shiftl_spec_high. lia. lia.
Qed.

Lemma bits_shru':
  forall x y i,
  0 <= i < zwordsize ->
  testbit (shru' x y) i =
  if zlt (i + Int.unsigned y) zwordsize then testbit x (i + Int.unsigned y) else false.
Proof.
  intros. unfold shru'. rewrite testbit_repr; auto.
  rewrite Z.shiftr_spec. fold (testbit x (i + Int.unsigned y)).
  destruct (zlt (i + Int.unsigned y) zwordsize).
  auto.
  apply bits_above; auto.
  lia.
Qed.

Lemma bits_shr':
  forall x y i,
  0 <= i < zwordsize ->
  testbit (shr' x y) i =
  testbit x (if zlt (i + Int.unsigned y) zwordsize then i + Int.unsigned y else zwordsize - 1).
Proof.
  intros. unfold shr'. rewrite testbit_repr; auto.
  rewrite Z.shiftr_spec. apply bits_signed.
  generalize (Int.unsigned_range y); lia.
  lia.
Qed.

Lemma shl'_mul_two_p:
  forall x y,
  shl' x y = mul x (repr (two_p (Int.unsigned y))).
Proof.
  intros. unfold shl', mul. apply eqm_samerepr.
  rewrite Zshiftl_mul_two_p. apply eqm_mult. apply eqm_refl. apply eqm_unsigned_repr.
  generalize (Int.unsigned_range y); lia.
Qed.

Lemma shl'_one_two_p:
  forall y, shl' one y = repr (two_p (Int.unsigned y)).
Proof.
  intros. rewrite shl'_mul_two_p. rewrite mul_commut. rewrite mul_one. auto.
Qed.

Theorem shl'_mul:
  forall x y,
  shl' x y = mul x (shl' one y).
Proof.
  intros. rewrite shl'_one_two_p. apply shl'_mul_two_p.
Qed.

Theorem shl'_zero:
  forall x, shl' x Int.zero = x.
Proof.
  intros. unfold shl'. rewrite Int.unsigned_zero. unfold Z.shiftl.
  apply repr_unsigned.
Qed.

Theorem shru'_zero :
  forall x, shru' x Int.zero = x.
Proof.
  intros. unfold shru'. rewrite Int.unsigned_zero. unfold Z.shiftr.
  apply repr_unsigned.
Qed.

Theorem shr'_zero :
  forall x, shr' x Int.zero = x.
Proof.
  intros. unfold shr'. rewrite Int.unsigned_zero. unfold Z.shiftr.
  apply repr_signed.
Qed.

Theorem shrx'_zero:
  forall x, shrx' x Int.zero = x.
Proof.
  intros. change (shrx' x Int.zero) with (shrx x zero). apply shrx_zero. compute; auto.
Qed.

Theorem shrx'_carry:
  forall x y,
  Int.ltu y (Int.repr 63) = true ->
  shrx' x y = add (shr' x y) (shr_carry' x y).
Proof.
  intros. apply Int.ltu_inv in H. change (Int.unsigned (Int.repr 63)) with 63 in H.
  set (y1 := Int64.repr (Int.unsigned y)).
  assert (U: unsigned y1 = Int.unsigned y).
  { apply unsigned_repr. assert (63 < max_unsigned) by reflexivity. lia. }
  transitivity (shrx x y1).
- unfold shrx', shrx, shl', shl. rewrite U; auto.
- rewrite shrx_carry. 
+ f_equal. 
  unfold shr, shr'. rewrite U; auto.
  unfold shr_carry, shr_carry', shl, shl'. rewrite U; auto.
+ unfold ltu. apply zlt_true. rewrite U; tauto. 
Qed.

Theorem shrx'_shr_2:
  forall x y,
  Int.ltu y (Int.repr 63) = true ->
  shrx' x y = shr' (add x (shru' (shr' x (Int.repr 63)) (Int.sub (Int.repr 64) y))) y.
Proof.
  intros.
  set (z := repr (Int.unsigned y)).
  apply Int.ltu_inv in H. change (Int.unsigned (Int.repr 63)) with 63 in H.
  assert (N1: 63 < max_unsigned) by reflexivity.
  assert (N2: 63 < Int.max_unsigned) by reflexivity.
  assert (A: unsigned z = Int.unsigned y).
  { unfold z; apply unsigned_repr; lia. }
  assert (B: unsigned (sub (repr 64) z) = Int.unsigned (Int.sub (Int.repr 64) y)).
  { unfold z. unfold sub, Int.sub.
    change (unsigned (repr 64)) with 64.
    change (Int.unsigned (Int.repr 64)) with 64.
    rewrite (unsigned_repr (Int.unsigned y)) by lia.
    rewrite unsigned_repr, Int.unsigned_repr by lia.
    auto. }
  unfold shrx', shr', shru', shl'.
  rewrite <- A.
  change (Int.unsigned (Int.repr 63)) with (unsigned (repr 63)).
  rewrite <- B.
  apply shrx_shr_2.
  unfold ltu. apply zlt_true. change (unsigned z < 63). rewrite A; lia.
Qed.

Lemma shr'63:
  forall x, (shr' x (Int.repr 63)) = if lt x zero then mone else zero.
Proof.
  intro.
  unfold shr', mone, zero.
  rewrite Int.unsigned_repr by (change Int.max_unsigned with 4294967295; lia).
  apply same_bits_eq.
  intros i BIT.
  rewrite testbit_repr by assumption.
  rewrite Z.shiftr_spec by lia.
  rewrite bits_signed by lia.
  simpl.
  change zwordsize with 64 in *.
  destruct (zlt _ _) as [LT | GE].
  {
    replace i with 0 in * by lia.
    change (0 + 63) with (zwordsize - 1).
    rewrite  sign_bit_of_signed.
    destruct (lt x _).
    all: rewrite testbit_repr by (change zwordsize with 64 in *; lia).
    all: simpl; reflexivity.
  }
  change (64 - 1) with (zwordsize - 1).
  rewrite  sign_bit_of_signed.
  destruct (lt x _).
  all: rewrite testbit_repr by (change zwordsize with 64 in *; lia).
  { symmetry.
    apply Ztestbit_m1.
    tauto.
  }
  symmetry.
  apply Ztestbit_0.
Qed.

Lemma shru'63:
  forall x, (shru' x (Int.repr 63)) = if lt x zero then one else zero.
Proof.
  intro.
  unfold shru'.
  rewrite Int.unsigned_repr by (change Int.max_unsigned with 4294967295; lia).
  apply same_bits_eq.
  intros i BIT.
  rewrite testbit_repr by assumption.
  rewrite Z.shiftr_spec by lia.
  unfold lt.
  rewrite signed_zero.
  unfold one, zero.
  destruct (zlt _ 0) as [LT | GE].
  {
    rewrite testbit_repr by assumption.
    destruct (zeq i 0) as [IZERO | INONZERO].
    { subst i.
      change (Z.testbit (unsigned x) (0 + 63)) with (testbit x (zwordsize - 1)).
      rewrite sign_bit_of_signed.
      unfold lt.
      rewrite signed_zero.
      destruct (zlt _ _); try lia.
      reflexivity.
    }
    change (Z.testbit (unsigned x) (i + 63)) with (testbit x (i+63)).
    rewrite bits_above by (change zwordsize with 64; lia).
    rewrite Ztestbit_1.
    destruct (zeq i 0); trivial.
    subst i.
    lia.
  }
  destruct (zeq i 0) as [IZERO | INONZERO].
  { subst i.
    change (Z.testbit (unsigned x) (0 + 63)) with (testbit x (zwordsize - 1)).
    rewrite sign_bit_of_signed.
    unfold lt.
    rewrite signed_zero.
    rewrite bits_zero.
    destruct (zlt _ _); try lia; reflexivity.
  }
  change (Z.testbit (unsigned x) (i + 63)) with (testbit x (i + 63)).
  rewrite bits_zero.
  apply bits_above.
  change zwordsize with 64.
  lia.
Qed.
  
Theorem shrx'1_shr':
  forall x,
  Int.ltu Int.one (Int.repr (zwordsize - 1)) = true ->
  shrx' x (Int.repr 1) = shr' (add x (shru' x (Int.repr (Int64.zwordsize - 1)))) (Int.repr 1).
Proof.
  intros.
  rewrite shrx'_shr_2 by reflexivity.
  change (Int.sub (Int.repr 64) (Int.repr 1)) with (Int.repr 63).
  f_equal. f_equal.
  rewrite shr'63.
  rewrite shru'63.
  rewrite shru'63.
  destruct (lt x zero); reflexivity.
Qed.  

Remark int_ltu_2_inv:
  forall y z,
  Int.ltu y iwordsize' = true ->
  Int.ltu z iwordsize' = true ->
  Int.unsigned (Int.add y z) <= Int.unsigned iwordsize' ->
  let y' := repr (Int.unsigned y) in
  let z' := repr (Int.unsigned z) in
     Int.unsigned y = unsigned y'
  /\ Int.unsigned z = unsigned z'
  /\ ltu y' iwordsize = true
  /\ ltu z' iwordsize = true
  /\ Int.unsigned (Int.add y z) = unsigned (add y' z')
  /\ add y' z' = repr (Int.unsigned (Int.add y z)).
Proof.
  intros. apply Int.ltu_inv in H. apply Int.ltu_inv in H0.
  change (Int.unsigned iwordsize') with 64 in *.
  assert (128 < max_unsigned) by reflexivity.
  assert (128 < Int.max_unsigned) by reflexivity.
  assert (Y: unsigned y' = Int.unsigned y) by (apply unsigned_repr; lia).
  assert (Z: unsigned z' = Int.unsigned z) by (apply unsigned_repr; lia).
  assert (P: Int.unsigned (Int.add y z) = unsigned (add y' z')).
  { unfold Int.add. rewrite Int.unsigned_repr by lia.
    unfold add. rewrite unsigned_repr by lia. congruence. }
  intuition auto.
  apply zlt_true. rewrite Y; auto.
  apply zlt_true. rewrite Z; auto.
  rewrite P. rewrite repr_unsigned. auto.
Qed.

Theorem or_ror':
  forall x y z,
  Int.ltu y iwordsize' = true ->
  Int.ltu z iwordsize' = true ->
  Int.add y z = iwordsize' ->
  ror x (repr (Int.unsigned z)) = or (shl' x y) (shru' x z).
Proof.
  intros. destruct (int_ltu_2_inv y z) as (A & B & C & D & E & F); auto. rewrite H1; lia.
  replace (shl' x y) with (shl x (repr (Int.unsigned y))).
  replace (shru' x z) with (shru x (repr (Int.unsigned z))).
  apply or_ror; auto. rewrite F, H1. reflexivity.
  unfold shru, shru'; rewrite <- B; auto.
  unfold shl, shl'; rewrite <- A; auto.
Qed.

Theorem shl'_shl':
  forall x y z,
  Int.ltu y iwordsize' = true ->
  Int.ltu z iwordsize' = true ->
  Int.ltu (Int.add y z) iwordsize' = true ->
  shl' (shl' x y) z = shl' x (Int.add y z).
Proof.
  intros. apply Int.ltu_inv in H1.
  destruct (int_ltu_2_inv y z) as (A & B & C & D & E & F); auto. lia.
  set (y' := repr (Int.unsigned y)) in *.
  set (z' := repr (Int.unsigned z)) in *.
  replace (shl' x y) with (shl x y').
  replace (shl' (shl x y') z) with (shl (shl x y') z').
  replace (shl' x (Int.add y z)) with (shl x (add y' z')).
  apply shl_shl; auto. apply zlt_true. rewrite <- E.
  change (unsigned iwordsize) with zwordsize. tauto.
  unfold shl, shl'. rewrite E; auto.
  unfold shl at 1, shl'. rewrite <- B; auto.
  unfold shl, shl'; rewrite <- A; auto.
Qed.

Theorem shru'_shru':
  forall x y z,
  Int.ltu y iwordsize' = true ->
  Int.ltu z iwordsize' = true ->
  Int.ltu (Int.add y z) iwordsize' = true ->
  shru' (shru' x y) z = shru' x (Int.add y z).
Proof.
  intros. apply Int.ltu_inv in H1.
  destruct (int_ltu_2_inv y z) as (A & B & C & D & E & F); auto. lia.
  set (y' := repr (Int.unsigned y)) in *.
  set (z' := repr (Int.unsigned z)) in *.
  replace (shru' x y) with (shru x y').
  replace (shru' (shru x y') z) with (shru (shru x y') z').
  replace (shru' x (Int.add y z)) with (shru x (add y' z')).
  apply shru_shru; auto. apply zlt_true. rewrite <- E.
  change (unsigned iwordsize) with zwordsize. tauto.
  unfold shru, shru'. rewrite E; auto.
  unfold shru at 1, shru'. rewrite <- B; auto.
  unfold shru, shru'; rewrite <- A; auto.
Qed.

Theorem shr'_shr':
  forall x y z,
  Int.ltu y iwordsize' = true ->
  Int.ltu z iwordsize' = true ->
  Int.ltu (Int.add y z) iwordsize' = true ->
  shr' (shr' x y) z = shr' x (Int.add y z).
Proof.
  intros. apply Int.ltu_inv in H1.
  destruct (int_ltu_2_inv y z) as (A & B & C & D & E & F); auto. lia.
  set (y' := repr (Int.unsigned y)) in *.
  set (z' := repr (Int.unsigned z)) in *.
  replace (shr' x y) with (shr x y').
  replace (shr' (shr x y') z) with (shr (shr x y') z').
  replace (shr' x (Int.add y z)) with (shr x (add y' z')).
  apply shr_shr; auto. apply zlt_true. rewrite <- E.
  change (unsigned iwordsize) with zwordsize. tauto.
  unfold shr, shr'. rewrite E; auto.
  unfold shr at 1, shr'. rewrite <- B; auto.
  unfold shr, shr'; rewrite <- A; auto.
Qed.

Theorem shru'_shl':
  forall x y z, Int.ltu y iwordsize' = true -> Int.ltu z iwordsize' = true ->
  shru' (shl' x y) z =
  if Int.ltu z y then shl' (zero_ext (zwordsize - Int.unsigned y) x) (Int.sub y z)
                 else zero_ext (zwordsize - Int.unsigned z) (shru' x (Int.sub z y)).
Proof.
  intros. apply Int.ltu_inv in H; apply Int.ltu_inv in H0.
  change (Int.unsigned iwordsize') with zwordsize in *.
  unfold Int.ltu. set (Y := Int.unsigned y) in *; set (Z := Int.unsigned z) in *.
  apply same_bits_eq; intros. rewrite bits_shru' by auto. fold Z.
  destruct (zlt Z Y).
- assert (A: Int.unsigned (Int.sub y z) = Y - Z).
  { apply Int.unsigned_repr. assert (zwordsize < Int.max_unsigned) by reflexivity. lia. }
  symmetry; rewrite bits_shl', A by lia.
  destruct (zlt (i + Z) zwordsize).
+ rewrite bits_shl' by lia. fold Y.
  destruct (zlt i (Y - Z)); [rewrite zlt_true by lia|rewrite zlt_false by lia]; auto.
  rewrite bits_zero_ext by lia. rewrite zlt_true by lia. f_equal; lia.
+ rewrite bits_zero_ext by lia. rewrite ! zlt_false by lia. auto.
- assert (A: Int.unsigned (Int.sub z y) = Z - Y).
  { apply Int.unsigned_repr. assert (zwordsize < Int.max_unsigned) by reflexivity. lia. }
  rewrite bits_zero_ext, bits_shru', A by lia.
  destruct (zlt (i + Z) zwordsize); [rewrite zlt_true by lia|rewrite zlt_false by lia]; auto.
  rewrite bits_shl' by lia. fold Y.
  destruct (zlt (i + Z) Y).
+ rewrite zlt_false by lia. auto.
+ rewrite zlt_true by lia. f_equal; lia.
Qed.

Theorem shr'_shl':
  forall x y z, Int.ltu y iwordsize' = true -> Int.ltu z iwordsize' = true ->
  shr' (shl' x y) z =
  if Int.ltu z y then shl' (sign_ext (zwordsize - Int.unsigned y) x) (Int.sub y z)
                 else sign_ext (zwordsize - Int.unsigned z) (shr' x (Int.sub z y)).
Proof.
  intros. apply Int.ltu_inv in H; apply Int.ltu_inv in H0.
  change (Int.unsigned iwordsize') with zwordsize in *.
  unfold Int.ltu. set (Y := Int.unsigned y) in *; set (Z := Int.unsigned z) in *.
  apply same_bits_eq; intros. rewrite bits_shr' by auto. fold Z.
  rewrite bits_shl' by (destruct (zlt (i + Z) zwordsize); lia). fold Y.
  destruct (zlt Z Y).
- assert (A: Int.unsigned (Int.sub y z) = Y - Z).
  { apply Int.unsigned_repr. assert (zwordsize < Int.max_unsigned) by reflexivity. lia. }
  rewrite bits_shl', A by lia.
  destruct (zlt i (Y - Z)).
+ apply zlt_true. destruct (zlt (i + Z) zwordsize); lia.
+ rewrite zlt_false by (destruct (zlt (i + Z) zwordsize); lia).
  rewrite bits_sign_ext by lia. f_equal. 
  destruct (zlt (i + Z) zwordsize).
  rewrite zlt_true by lia. lia.
  rewrite zlt_false by lia. lia.
- assert (A: Int.unsigned (Int.sub z y) = Z - Y).
  { apply Int.unsigned_repr. assert (zwordsize < Int.max_unsigned) by reflexivity. lia. }
  rewrite bits_sign_ext by lia.
  rewrite bits_shr' by (destruct (zlt i (zwordsize - Z)); lia).
  rewrite A. rewrite zlt_false by (destruct (zlt (i + Z) zwordsize); lia).
  f_equal. destruct (zlt i (zwordsize - Z)).
+ rewrite ! zlt_true by lia. lia.
+ rewrite ! zlt_false by lia. rewrite zlt_true by lia. lia.
Qed.

Lemma shl'_zero_ext:
  forall n m x, 0 <= n ->
  shl' (zero_ext n x) m = zero_ext (n + Int.unsigned m) (shl' x m).
Proof.
  intros. apply same_bits_eq; intros.
  rewrite bits_zero_ext, ! bits_shl' by lia.
  destruct (zlt i (Int.unsigned m)).
- rewrite zlt_true by lia; auto.
- rewrite bits_zero_ext by lia.
  destruct (zlt (i - Int.unsigned m) n); [rewrite zlt_true by lia|rewrite zlt_false by lia]; auto.
Qed.

Lemma shl'_sign_ext:
  forall n m x, 0 < n ->
  shl' (sign_ext n x) m = sign_ext (n + Int.unsigned m) (shl' x m).
Proof.
  intros. generalize (Int.unsigned_range m); intros.
  apply same_bits_eq; intros.
  rewrite bits_sign_ext, ! bits_shl' by lia.
  destruct (zlt i (n + Int.unsigned m)).
- rewrite bits_shl' by auto. destruct (zlt i (Int.unsigned m)); auto.
  rewrite bits_sign_ext by lia. f_equal. apply zlt_true. lia.
- rewrite zlt_false by lia. rewrite bits_shl' by lia. rewrite zlt_false by lia.
  rewrite bits_sign_ext by lia. f_equal. rewrite zlt_false by lia. lia.
Qed.

Lemma shru'_zero_ext:
  forall n m x, 0 <= n ->
  shru' (zero_ext (n + Int.unsigned m) x) m = zero_ext n (shru' x m).
Proof.
  intros. generalize (Int.unsigned_range m); intros.
  bit_solve; [|lia]. rewrite bits_shru', bits_zero_ext, bits_shru' by lia.
  destruct (zlt (i + Int.unsigned m) zwordsize).
* destruct (zlt i n); [rewrite zlt_true by lia|rewrite zlt_false by lia]; auto.
* destruct (zlt i n); auto.
Qed.

Lemma shru'_zero_ext_0:
  forall n m x, n <= Int.unsigned m ->
  shru' (zero_ext n x) m = zero.
Proof.
  intros. generalize (Int.unsigned_range m); intros.
  bit_solve. rewrite bits_shru', bits_zero_ext by lia.
  destruct (zlt (i + Int.unsigned m) zwordsize); auto.
  apply zlt_false. lia.
Qed.

Lemma shr'_sign_ext:
  forall n m x, 0 < n -> n + Int.unsigned m < zwordsize ->
  shr' (sign_ext (n + Int.unsigned m) x) m = sign_ext n (shr' x m).
Proof.
  intros. generalize (Int.unsigned_range m); intros.
  apply same_bits_eq; intros.
  rewrite bits_sign_ext, bits_shr' by auto.
  rewrite bits_sign_ext, bits_shr'.
- f_equal.
  destruct (zlt i n), (zlt (i + Int.unsigned m) zwordsize).
+ apply zlt_true; lia.
+ apply zlt_true; lia.
+ rewrite zlt_false by lia. rewrite zlt_true by lia. lia.
+ rewrite zlt_false by lia. rewrite zlt_true by lia. lia.
- destruct (zlt i n); lia.
- destruct (zlt (i + Int.unsigned m) zwordsize); lia.
Qed.

Lemma zero_ext_shru'_min:
  forall s x n, Int.ltu n iwordsize' = true ->
  zero_ext s (shru' x n) = zero_ext (Z.min s (zwordsize - Int.unsigned n)) (shru' x n).
Proof.
  intros. apply Int.ltu_inv in H. change (Int.unsigned iwordsize') with zwordsize in H.
  apply Z.min_case_strong; intros; auto.
  bit_solve; try lia. rewrite ! bits_shru' by lia. 
  destruct (zlt i (zwordsize - Int.unsigned n)).
  rewrite zlt_true by lia. auto.
  destruct (zlt i s); auto. rewrite zlt_false by lia; auto.
Qed.

Lemma sign_ext_shr'_min:
  forall s x n, Int.ltu n iwordsize' = true ->
  sign_ext s (shr' x n) = sign_ext (Z.min s (zwordsize - Int.unsigned n)) (shr' x n).
Proof.
  intros. apply Int.ltu_inv in H. change (Int.unsigned iwordsize') with zwordsize in H.
  rewrite Z.min_comm. 
  destruct (Z.min_spec (zwordsize - Int.unsigned n) s) as [[A B] | [A B]]; rewrite B; auto.
  apply same_bits_eq; intros. rewrite ! bits_sign_ext by auto.
  destruct (zlt i (zwordsize - Int.unsigned n)). 
  rewrite zlt_true by lia. auto.
  assert (C: testbit (shr' x n) (zwordsize - Int.unsigned n - 1) = testbit x (zwordsize - 1)).
  { rewrite bits_shr' by lia. rewrite zlt_true by lia. f_equal; lia. }
  rewrite C. destruct (zlt i s); rewrite bits_shr' by lia.
  rewrite zlt_false by lia. auto.
  rewrite zlt_false by lia. auto.
Qed.

Lemma shl'_zero_ext_min:
  forall s x n, Int.ltu n iwordsize' = true ->
  shl' (zero_ext s x) n = shl' (zero_ext (Z.min s (zwordsize - Int.unsigned n)) x) n.
Proof.
  intros. apply Int.ltu_inv in H. change (Int.unsigned iwordsize') with zwordsize in H.
  apply Z.min_case_strong; intros; auto.
  apply same_bits_eq; intros. rewrite ! bits_shl' by auto.
  destruct (zlt i (Int.unsigned n)); auto.
  rewrite ! bits_zero_ext by lia.
  destruct (zlt (i - Int.unsigned n) s).
  rewrite zlt_true by lia; auto.
  rewrite zlt_false by lia; auto.
Qed.

Lemma shl'_sign_ext_min:
  forall s x n, Int.ltu n iwordsize' = true ->
  shl' (sign_ext s x) n = shl' (sign_ext (Z.min s (zwordsize - Int.unsigned n)) x) n.
Proof.
  intros. apply Int.ltu_inv in H. change (Int.unsigned iwordsize') with zwordsize in H.
  rewrite Z.min_comm. 
  destruct (Z.min_spec (zwordsize - Int.unsigned n) s) as [[A B] | [A B]]; rewrite B; auto.
  apply same_bits_eq; intros. rewrite ! bits_shl' by auto.
  destruct (zlt i (Int.unsigned n)); auto.
  rewrite ! bits_sign_ext by lia. f_equal.
  destruct (zlt (i - Int.unsigned n) s).
  rewrite zlt_true by lia; auto.
  extlia.
Qed.

(** Powers of two with exponents given as 32-bit ints *)

Definition one_bits' (x: int) : list Int.int :=
  List.map Int.repr (Z_one_bits wordsize (unsigned x) 0).

Definition is_power2' (x: int) : option Int.int :=
  match Z_one_bits wordsize (unsigned x) 0 with
  | i :: nil => Some (Int.repr i)
  | _ => None
  end.

Theorem one_bits'_range:
  forall x i, In i (one_bits' x) -> Int.ltu i iwordsize' = true.
Proof.
  intros.
  destruct (list_in_map_inv _ _ _ H) as [i0 [EQ IN]].
  exploit Z_one_bits_range; eauto. fold zwordsize. intros R.
  unfold Int.ltu. rewrite EQ. rewrite Int.unsigned_repr.
  change (Int.unsigned iwordsize') with zwordsize. apply zlt_true. lia.
  assert (zwordsize < Int.max_unsigned) by reflexivity. lia.
Qed.

Fixpoint int_of_one_bits' (l: list Int.int) : int :=
  match l with
  | nil => zero
  | a :: b => add (shl' one a) (int_of_one_bits' b)
  end.

Theorem one_bits'_decomp:
  forall x, x = int_of_one_bits' (one_bits' x).
Proof.
  assert (REC: forall l,
           (forall i, In i l -> 0 <= i < zwordsize) ->
           int_of_one_bits' (List.map Int.repr l) = repr (powerserie l)).
  { induction l; simpl; intros.
  - auto.
  - rewrite IHl by eauto. apply eqm_samerepr; apply eqm_add.
  + rewrite shl'_one_two_p. rewrite Int.unsigned_repr. apply eqm_sym; apply eqm_unsigned_repr.
    exploit (H a). auto. assert (zwordsize < Int.max_unsigned) by reflexivity. lia.
  + apply eqm_sym; apply eqm_unsigned_repr.
  }
  intros. rewrite <- (repr_unsigned x) at 1. unfold one_bits'. rewrite REC.
  rewrite <- Z_one_bits_powerserie. auto. apply unsigned_range.
  apply Z_one_bits_range.
Qed.

Lemma is_power2'_rng:
  forall n logn,
  is_power2' n = Some logn ->
  0 <= Int.unsigned logn < zwordsize.
Proof.
  unfold is_power2'; intros n logn P2.
  destruct (Z_one_bits wordsize (unsigned n) 0) as [ | i [ | ? ?]] eqn:B; inv P2.
  assert (0 <= i < zwordsize).
  { apply Z_one_bits_range with (unsigned n). rewrite B; auto with coqlib. }
  rewrite Int.unsigned_repr. auto.
  assert (zwordsize < Int.max_unsigned) by reflexivity.
  lia.
Qed.

Theorem is_power2'_range:
  forall n logn,
  is_power2' n = Some logn -> Int.ltu logn iwordsize' = true.
Proof.
  intros. unfold Int.ltu. change (Int.unsigned iwordsize') with zwordsize.
  apply zlt_true. generalize (is_power2'_rng _ _ H). tauto.
Qed.

Lemma is_power2'_correct:
  forall n logn,
  is_power2' n = Some logn ->
  unsigned n = two_p (Int.unsigned logn).
Proof.
  unfold is_power2'; intros.
  destruct (Z_one_bits wordsize (unsigned n) 0) as [ | i [ | ? ?]] eqn:B; inv H.
  rewrite (Z_one_bits_powerserie wordsize (unsigned n)) by (apply unsigned_range).
  rewrite Int.unsigned_repr. rewrite B; simpl. lia.
  assert (0 <= i < zwordsize).
  { apply Z_one_bits_range with (unsigned n). rewrite B; auto with coqlib. }
  assert (zwordsize < Int.max_unsigned) by reflexivity.
  lia.
Qed.

Theorem mul_pow2':
  forall x n logn,
  is_power2' n = Some logn ->
  mul x n = shl' x logn.
Proof.
  intros. rewrite shl'_mul. f_equal. rewrite shl'_one_two_p.
  rewrite <- (repr_unsigned n). f_equal. apply is_power2'_correct; auto.
Qed.

Theorem divu_pow2':
  forall x n logn,
  is_power2' n = Some logn ->
  divu x n = shru' x logn.
Proof.
  intros. generalize (is_power2'_correct n logn H). intro.
  symmetry. unfold divu. rewrite H0. unfold shru'. rewrite Zshiftr_div_two_p. auto.
  eapply is_power2'_rng; eauto.
Qed.

(** Decomposing 64-bit ints as pairs of 32-bit ints *)

Definition loword (n: int) : Int.int := Int.repr (unsigned n).

Definition hiword (n: int) : Int.int := Int.repr (unsigned (shru n (repr Int.zwordsize))).

Definition ofwords (hi lo: Int.int) : int :=
  or (shl (repr (Int.unsigned hi)) (repr Int.zwordsize)) (repr (Int.unsigned lo)).

Lemma bits_loword:
  forall n i, 0 <= i < Int.zwordsize -> Int.testbit (loword n) i = testbit n i.
Proof.
  intros. unfold loword. rewrite Int.testbit_repr; auto.
Qed.

Lemma bits_hiword:
  forall n i, 0 <= i < Int.zwordsize -> Int.testbit (hiword n) i = testbit n (i + Int.zwordsize).
Proof.
  intros. unfold hiword. rewrite Int.testbit_repr; auto.
  assert (zwordsize = 2 * Int.zwordsize) by reflexivity.
  fold (testbit (shru n (repr Int.zwordsize)) i). rewrite bits_shru.
  change (unsigned (repr Int.zwordsize)) with Int.zwordsize.
  apply zlt_true. lia. lia.
Qed.

Lemma bits_ofwords:
  forall hi lo i, 0 <= i < zwordsize ->
  testbit (ofwords hi lo) i =
  if zlt i Int.zwordsize then Int.testbit lo i else Int.testbit hi (i - Int.zwordsize).
Proof.
  intros. unfold ofwords. rewrite bits_or; auto. rewrite bits_shl; auto.
  change (unsigned (repr Int.zwordsize)) with Int.zwordsize.
  assert (zwordsize = 2 * Int.zwordsize) by reflexivity.
  destruct (zlt i Int.zwordsize).
  rewrite testbit_repr; auto.
  rewrite !testbit_repr; auto.
  fold (Int.testbit lo i). rewrite Int.bits_above. apply orb_false_r. auto.
  lia.
Qed.

Lemma lo_ofwords:
  forall hi lo, loword (ofwords hi lo) = lo.
Proof.
  intros. apply Int.same_bits_eq; intros.
  rewrite bits_loword; auto. rewrite bits_ofwords. apply zlt_true. lia.
  assert (zwordsize = 2 * Int.zwordsize) by reflexivity. lia.
Qed.

Lemma hi_ofwords:
  forall hi lo, hiword (ofwords hi lo) = hi.
Proof.
  intros. apply Int.same_bits_eq; intros.
  rewrite bits_hiword; auto. rewrite bits_ofwords.
  rewrite zlt_false. f_equal. lia. lia.
  assert (zwordsize = 2 * Int.zwordsize) by reflexivity. lia.
Qed.

Lemma ofwords_recompose:
  forall n, ofwords (hiword n) (loword n) = n.
Proof.
  intros. apply same_bits_eq; intros. rewrite bits_ofwords; auto.
  destruct (zlt i Int.zwordsize).
  apply bits_loword. lia.
  rewrite bits_hiword. f_equal. lia.
  assert (zwordsize = 2 * Int.zwordsize) by reflexivity. lia.
Qed.

Lemma ofwords_add:
  forall lo hi, ofwords hi lo = repr (Int.unsigned hi * two_p 32 + Int.unsigned lo).
Proof.
  intros. unfold ofwords. rewrite shifted_or_is_add.
  apply eqm_samerepr. apply eqm_add. apply eqm_mult.
  apply eqm_sym; apply eqm_unsigned_repr.
  apply eqm_refl.
  apply eqm_sym; apply eqm_unsigned_repr.
  change Int.zwordsize with 32; change zwordsize with 64; lia.
  rewrite unsigned_repr. generalize (Int.unsigned_range lo). intros [A B]. exact B.
  assert (Int.max_unsigned < max_unsigned) by (compute; auto).
  generalize (Int.unsigned_range_2 lo); lia.
Qed.

Lemma ofwords_add':
  forall lo hi, unsigned (ofwords hi lo) = Int.unsigned hi * two_p 32 + Int.unsigned lo.
Proof.
  intros. rewrite ofwords_add. apply unsigned_repr.
  generalize (Int.unsigned_range hi) (Int.unsigned_range lo).
  change (two_p 32) with Int.modulus.
  change Int.modulus with 4294967296.
  change max_unsigned with 18446744073709551615.
  lia.
Qed.

Remark eqm_mul_2p32:
  forall x y, Int.eqm x y -> eqm (x * two_p 32) (y * two_p 32).
Proof.
  intros. destruct H as [k EQ]. exists k. rewrite EQ.
  change Int.modulus with (two_p 32).
  change modulus with (two_p 32 * two_p 32).
  ring.
Qed.

Lemma ofwords_add'':
  forall lo hi, signed (ofwords hi lo) = Int.signed hi * two_p 32 + Int.unsigned lo.
Proof.
  intros. rewrite ofwords_add.
  replace (repr (Int.unsigned hi * two_p 32 + Int.unsigned lo))
     with (repr (Int.signed hi * two_p 32 + Int.unsigned lo)).
  apply signed_repr.
  generalize (Int.signed_range hi) (Int.unsigned_range lo).
  change (two_p 32) with Int.modulus.
  change min_signed with (Int.min_signed * Int.modulus).
  change max_signed with (Int.max_signed * Int.modulus + Int.modulus - 1).
  change Int.modulus with 4294967296.
  lia.
  apply eqm_samerepr. apply eqm_add. apply eqm_mul_2p32. apply Int.eqm_signed_unsigned. apply eqm_refl.
Qed.

(** Expressing 64-bit operations in terms of 32-bit operations *)

Lemma decompose_bitwise_binop:
  forall f f64 f32 xh xl yh yl,
  (forall x y i, 0 <= i < zwordsize -> testbit (f64 x y) i = f (testbit x i) (testbit y i)) ->
  (forall x y i, 0 <= i < Int.zwordsize -> Int.testbit (f32 x y) i = f (Int.testbit x i) (Int.testbit y i)) ->
  f64 (ofwords xh xl) (ofwords yh yl) = ofwords (f32 xh yh) (f32 xl yl).
Proof.
  intros. apply Int64.same_bits_eq; intros.
  rewrite H by auto. rewrite ! bits_ofwords by auto.
  assert (zwordsize = 2 * Int.zwordsize) by reflexivity.
  destruct (zlt i Int.zwordsize); rewrite H0 by lia; auto.
Qed.

Lemma decompose_and:
  forall xh xl yh yl,
  and (ofwords xh xl) (ofwords yh yl) = ofwords (Int.and xh yh) (Int.and xl yl).
Proof.
  intros. apply decompose_bitwise_binop with andb.
  apply bits_and. apply Int.bits_and.
Qed.

Lemma decompose_or:
  forall xh xl yh yl,
  or (ofwords xh xl) (ofwords yh yl) = ofwords (Int.or xh yh) (Int.or xl yl).
Proof.
  intros. apply decompose_bitwise_binop with orb.
  apply bits_or. apply Int.bits_or.
Qed.

Lemma decompose_xor:
  forall xh xl yh yl,
  xor (ofwords xh xl) (ofwords yh yl) = ofwords (Int.xor xh yh) (Int.xor xl yl).
Proof.
  intros. apply decompose_bitwise_binop with xorb.
  apply bits_xor. apply Int.bits_xor.
Qed.

Lemma decompose_not:
  forall xh xl,
  not (ofwords xh xl) = ofwords (Int.not xh) (Int.not xl).
Proof.
  intros. unfold not, Int.not. rewrite <- decompose_xor. f_equal.
  apply (Int64.eq_spec mone (ofwords Int.mone Int.mone)).
Qed.

Lemma decompose_shl_1:
  forall xh xl y,
  0 <= Int.unsigned y < Int.zwordsize ->
  shl' (ofwords xh xl) y =
  ofwords (Int.or (Int.shl xh y) (Int.shru xl (Int.sub Int.iwordsize y)))
          (Int.shl xl y).
Proof.
  intros.
  assert (Int.unsigned (Int.sub Int.iwordsize y) = Int.zwordsize - Int.unsigned y).
  { unfold Int.sub. rewrite Int.unsigned_repr. auto.
    rewrite Int.unsigned_repr_wordsize. generalize Int.wordsize_max_unsigned; lia. }
  assert (zwordsize = 2 * Int.zwordsize) by reflexivity.
  apply Int64.same_bits_eq; intros.
  rewrite bits_shl' by auto. symmetry. rewrite bits_ofwords by auto.
  destruct (zlt i Int.zwordsize). rewrite Int.bits_shl by lia.
  destruct (zlt i (Int.unsigned y)). auto.
  rewrite bits_ofwords by lia. rewrite zlt_true by lia. auto.
  rewrite zlt_false by lia. rewrite bits_ofwords by lia.
  rewrite Int.bits_or by lia. rewrite Int.bits_shl by lia.
  rewrite Int.bits_shru by lia. rewrite H0.
  destruct (zlt (i - Int.unsigned y) (Int.zwordsize)).
  rewrite zlt_true by lia. rewrite zlt_true by lia.
  rewrite orb_false_l. f_equal. lia.
  rewrite zlt_false by lia. rewrite zlt_false by lia.
  rewrite orb_false_r. f_equal. lia.
Qed.

Lemma decompose_shl_2:
  forall xh xl y,
  Int.zwordsize <= Int.unsigned y < zwordsize ->
  shl' (ofwords xh xl) y =
  ofwords (Int.shl xl (Int.sub y Int.iwordsize)) Int.zero.
Proof.
  intros.
  assert (zwordsize = 2 * Int.zwordsize) by reflexivity.
  assert (Int.unsigned (Int.sub y Int.iwordsize) = Int.unsigned y - Int.zwordsize).
  { unfold Int.sub. rewrite Int.unsigned_repr. auto.
    rewrite Int.unsigned_repr_wordsize. generalize (Int.unsigned_range_2 y). lia. }
  apply Int64.same_bits_eq; intros.
  rewrite bits_shl' by auto. symmetry. rewrite bits_ofwords by auto.
  destruct (zlt i Int.zwordsize). rewrite zlt_true by lia. apply Int.bits_zero.
  rewrite Int.bits_shl by lia.
  destruct (zlt i (Int.unsigned y)).
  rewrite zlt_true by lia. auto.
  rewrite zlt_false by lia.
  rewrite bits_ofwords by lia. rewrite zlt_true by lia. f_equal. lia.
Qed.

Lemma decompose_shru_1:
  forall xh xl y,
  0 <= Int.unsigned y < Int.zwordsize ->
  shru' (ofwords xh xl) y =
  ofwords (Int.shru xh y)
          (Int.or (Int.shru xl y) (Int.shl xh (Int.sub Int.iwordsize y))).
Proof.
  intros.
  assert (Int.unsigned (Int.sub Int.iwordsize y) = Int.zwordsize - Int.unsigned y).
  { unfold Int.sub. rewrite Int.unsigned_repr. auto.
    rewrite Int.unsigned_repr_wordsize. generalize Int.wordsize_max_unsigned; lia. }
  assert (zwordsize = 2 * Int.zwordsize) by reflexivity.
  apply Int64.same_bits_eq; intros.
  rewrite bits_shru' by auto. symmetry. rewrite bits_ofwords by auto.
  destruct (zlt i Int.zwordsize).
  rewrite zlt_true by lia.
  rewrite bits_ofwords by lia.
  rewrite Int.bits_or by lia. rewrite Int.bits_shl by lia.
  rewrite Int.bits_shru by lia. rewrite H0.
  destruct (zlt (i + Int.unsigned y) (Int.zwordsize)).
  rewrite zlt_true by lia.
  rewrite orb_false_r. auto.
  rewrite zlt_false by lia.
  rewrite orb_false_l. f_equal. lia.
  rewrite Int.bits_shru by lia.
  destruct (zlt (i + Int.unsigned y) zwordsize).
  rewrite bits_ofwords by lia.
  rewrite zlt_true by lia. rewrite zlt_false by lia. f_equal. lia.
  rewrite zlt_false by lia. auto.
Qed.

Lemma decompose_shru_2:
  forall xh xl y,
  Int.zwordsize <= Int.unsigned y < zwordsize ->
  shru' (ofwords xh xl) y =
  ofwords Int.zero (Int.shru xh (Int.sub y Int.iwordsize)).
Proof.
  intros.
  assert (zwordsize = 2 * Int.zwordsize) by reflexivity.
  assert (Int.unsigned (Int.sub y Int.iwordsize) = Int.unsigned y - Int.zwordsize).
  { unfold Int.sub. rewrite Int.unsigned_repr. auto.
    rewrite Int.unsigned_repr_wordsize. generalize (Int.unsigned_range_2 y). lia. }
  apply Int64.same_bits_eq; intros.
  rewrite bits_shru' by auto. symmetry. rewrite bits_ofwords by auto.
  destruct (zlt i Int.zwordsize).
  rewrite Int.bits_shru by lia. rewrite H1.
  destruct (zlt (i + Int.unsigned y) zwordsize).
  rewrite zlt_true by lia. rewrite bits_ofwords by lia.
  rewrite zlt_false by lia. f_equal; lia.
  rewrite zlt_false by lia. auto.
  rewrite zlt_false by lia. apply Int.bits_zero.
Qed.

Lemma decompose_shr_1:
  forall xh xl y,
  0 <= Int.unsigned y < Int.zwordsize ->
  shr' (ofwords xh xl) y =
  ofwords (Int.shr xh y)
          (Int.or (Int.shru xl y) (Int.shl xh (Int.sub Int.iwordsize y))).
Proof.
  intros.
  assert (Int.unsigned (Int.sub Int.iwordsize y) = Int.zwordsize - Int.unsigned y).
  { unfold Int.sub. rewrite Int.unsigned_repr. auto.
    rewrite Int.unsigned_repr_wordsize. generalize Int.wordsize_max_unsigned; lia. }
  assert (zwordsize = 2 * Int.zwordsize) by reflexivity.
  apply Int64.same_bits_eq; intros.
  rewrite bits_shr' by auto. symmetry. rewrite bits_ofwords by auto.
  destruct (zlt i Int.zwordsize).
  rewrite zlt_true by lia.
  rewrite bits_ofwords by lia.
  rewrite Int.bits_or by lia. rewrite Int.bits_shl by lia.
  rewrite Int.bits_shru by lia. rewrite H0.
  destruct (zlt (i + Int.unsigned y) (Int.zwordsize)).
  rewrite zlt_true by lia.
  rewrite orb_false_r. auto.
  rewrite zlt_false by lia.
  rewrite orb_false_l. f_equal. lia.
  rewrite Int.bits_shr by lia.
  destruct (zlt (i + Int.unsigned y) zwordsize).
  rewrite bits_ofwords by lia.
  rewrite zlt_true by lia. rewrite zlt_false by lia. f_equal. lia.
  rewrite zlt_false by lia. rewrite bits_ofwords by lia.
  rewrite zlt_false by lia. f_equal.
Qed.

Lemma decompose_shr_2:
  forall xh xl y,
  Int.zwordsize <= Int.unsigned y < zwordsize ->
  shr' (ofwords xh xl) y =
  ofwords (Int.shr xh (Int.sub Int.iwordsize Int.one))
          (Int.shr xh (Int.sub y Int.iwordsize)).
Proof.
  intros.
  assert (zwordsize = 2 * Int.zwordsize) by reflexivity.
  assert (Int.unsigned (Int.sub y Int.iwordsize) = Int.unsigned y - Int.zwordsize).
  { unfold Int.sub. rewrite Int.unsigned_repr. auto.
    rewrite Int.unsigned_repr_wordsize. generalize (Int.unsigned_range_2 y). lia. }
  apply Int64.same_bits_eq; intros.
  rewrite bits_shr' by auto. symmetry. rewrite bits_ofwords by auto.
  destruct (zlt i Int.zwordsize).
  rewrite Int.bits_shr by lia. rewrite H1.
  destruct (zlt (i + Int.unsigned y) zwordsize).
  rewrite zlt_true by lia. rewrite bits_ofwords by lia.
  rewrite zlt_false by lia. f_equal; lia.
  rewrite zlt_false by lia. rewrite bits_ofwords by lia.
  rewrite zlt_false by lia. auto.
  rewrite Int.bits_shr by lia.
  change (Int.unsigned (Int.sub Int.iwordsize Int.one)) with (Int.zwordsize - 1).
  destruct (zlt (i + Int.unsigned y) zwordsize);
  rewrite bits_ofwords by lia.
  symmetry. rewrite zlt_false by lia. f_equal.
  destruct (zlt (i - Int.zwordsize + (Int.zwordsize - 1)) Int.zwordsize); lia.
  symmetry. rewrite zlt_false by lia. f_equal.
  destruct (zlt (i - Int.zwordsize + (Int.zwordsize - 1)) Int.zwordsize); lia.
Qed.

Lemma decompose_add:
  forall xh xl yh yl,
  add (ofwords xh xl) (ofwords yh yl) =
  ofwords (Int.add (Int.add xh yh) (Int.add_carry xl yl Int.zero))
          (Int.add xl yl).
Proof.
  intros. symmetry. rewrite ofwords_add. rewrite add_unsigned.
  apply eqm_samerepr.
  rewrite ! ofwords_add'. rewrite (Int.unsigned_add_carry xl yl).
  set (cc := Int.add_carry xl yl Int.zero).
  set (Xl := Int.unsigned xl); set (Xh := Int.unsigned xh);
  set (Yl := Int.unsigned yl); set (Yh := Int.unsigned yh).
  change Int.modulus with (two_p 32).
  replace (Xh * two_p 32 + Xl + (Yh * two_p 32 + Yl))
     with ((Xh + Yh) * two_p 32 + (Xl + Yl)) by ring.
  replace (Int.unsigned (Int.add (Int.add xh yh) cc) * two_p 32 +
              (Xl + Yl - Int.unsigned cc * two_p 32))
     with ((Int.unsigned (Int.add (Int.add xh yh) cc) - Int.unsigned cc) * two_p 32
           + (Xl + Yl)) by ring.
  apply eqm_add. 2: apply eqm_refl. apply eqm_mul_2p32.
  replace (Xh + Yh) with ((Xh + Yh + Int.unsigned cc) - Int.unsigned cc) by ring.
  apply Int.eqm_sub. 2: apply Int.eqm_refl.
  apply Int.eqm_unsigned_repr_l. apply Int.eqm_add. 2: apply Int.eqm_refl.
  apply Int.eqm_unsigned_repr_l. apply Int.eqm_refl.
Qed.

Lemma decompose_sub:
  forall xh xl yh yl,
  sub (ofwords xh xl) (ofwords yh yl) =
  ofwords (Int.sub (Int.sub xh yh) (Int.sub_borrow xl yl Int.zero))
          (Int.sub xl yl).
Proof.
  intros. symmetry. rewrite ofwords_add.
  apply eqm_samerepr.
  rewrite ! ofwords_add'. rewrite (Int.unsigned_sub_borrow xl yl).
  set (bb := Int.sub_borrow xl yl Int.zero).
  set (Xl := Int.unsigned xl); set (Xh := Int.unsigned xh);
  set (Yl := Int.unsigned yl); set (Yh := Int.unsigned yh).
  change Int.modulus with (two_p 32).
  replace (Xh * two_p 32 + Xl - (Yh * two_p 32 + Yl))
     with ((Xh - Yh) * two_p 32 + (Xl - Yl)) by ring.
  replace (Int.unsigned (Int.sub (Int.sub xh yh) bb) * two_p 32 +
              (Xl - Yl + Int.unsigned bb * two_p 32))
     with ((Int.unsigned (Int.sub (Int.sub xh yh) bb) + Int.unsigned bb) * two_p 32
           + (Xl - Yl)) by ring.
  apply eqm_add. 2: apply eqm_refl. apply eqm_mul_2p32.
  replace (Xh - Yh) with ((Xh - Yh - Int.unsigned bb) + Int.unsigned bb) by ring.
  apply Int.eqm_add. 2: apply Int.eqm_refl.
  apply Int.eqm_unsigned_repr_l. apply Int.eqm_add. 2: apply Int.eqm_refl.
  apply Int.eqm_unsigned_repr_l. apply Int.eqm_refl.
Qed.

Lemma decompose_sub':
  forall xh xl yh yl,
  sub (ofwords xh xl) (ofwords yh yl) =
  ofwords (Int.add (Int.add xh (Int.not yh)) (Int.add_carry xl (Int.not yl) Int.one))
          (Int.sub xl yl).
Proof.
  intros. rewrite decompose_sub. f_equal.
  rewrite Int.sub_borrow_add_carry by auto.
  rewrite Int.sub_add_not_3. rewrite Int.xor_assoc. rewrite Int.xor_idem.
  rewrite Int.xor_zero. auto.
  rewrite Int.xor_zero_l. unfold Int.add_carry.
  destruct (zlt (Int.unsigned xl + Int.unsigned (Int.not yl) + Int.unsigned Int.one) Int.modulus);
  compute; [right|left]; apply Int.mkint_eq; auto.
Qed.

Definition mul' (x y: Int.int) : int := repr (Int.unsigned x * Int.unsigned y).

Lemma mul'_mulhu:
  forall x y, mul' x y = ofwords (Int.mulhu x y) (Int.mul x y).
Proof.
  intros.
  rewrite ofwords_add. unfold mul', Int.mulhu, Int.mul.
  set (p := Int.unsigned x * Int.unsigned y).
  set (ph := p / Int.modulus). set (pl := p mod Int.modulus).
  transitivity (repr (ph * Int.modulus + pl)).
- f_equal. rewrite Z.mul_comm. apply Z_div_mod_eq. apply Int.modulus_pos.
- apply eqm_samerepr. apply eqm_add. apply eqm_mul_2p32. auto with ints.
  rewrite Int.unsigned_repr_eq. apply eqm_refl.
Qed.

Lemma decompose_mul:
  forall xh xl yh yl,
  mul (ofwords xh xl) (ofwords yh yl) =
  ofwords (Int.add (Int.add (hiword (mul' xl yl)) (Int.mul xl yh)) (Int.mul xh yl))
          (loword (mul' xl yl)).
Proof.
  intros.
  set (pl := loword (mul' xl yl)); set (ph := hiword (mul' xl yl)).
  assert (EQ0: unsigned (mul' xl yl) = Int.unsigned ph * two_p 32 + Int.unsigned pl).
  { rewrite <- (ofwords_recompose (mul' xl yl)). apply ofwords_add'. }
  symmetry. rewrite ofwords_add. unfold mul. rewrite !ofwords_add'.
  set (XL := Int.unsigned xl); set (XH := Int.unsigned xh);
  set (YL := Int.unsigned yl); set (YH := Int.unsigned yh).
  set (PH := Int.unsigned ph) in *. set (PL := Int.unsigned pl) in *.
  transitivity (repr (((PH + XL * YH) + XH * YL) * two_p 32 + PL)).
  apply eqm_samerepr. apply eqm_add. 2: apply eqm_refl.
  apply eqm_mul_2p32.
  rewrite Int.add_unsigned. apply Int.eqm_unsigned_repr_l. apply Int.eqm_add.
  rewrite Int.add_unsigned. apply Int.eqm_unsigned_repr_l. apply Int.eqm_add.
  apply Int.eqm_refl.
  unfold Int.mul. apply Int.eqm_unsigned_repr_l. apply Int.eqm_refl.
  unfold Int.mul. apply Int.eqm_unsigned_repr_l. apply Int.eqm_refl.
  transitivity (repr (unsigned (mul' xl yl) + (XL * YH + XH * YL) * two_p 32)).
  rewrite EQ0. f_equal. ring.
  transitivity (repr ((XL * YL + (XL * YH + XH * YL) * two_p 32))).
  apply eqm_samerepr. apply eqm_add. 2: apply eqm_refl.
  unfold mul'. apply eqm_unsigned_repr_l. apply eqm_refl.
  transitivity (repr (0 + (XL * YL + (XL * YH + XH * YL) * two_p 32))).
  rewrite Z.add_0_l; auto.
  transitivity (repr (XH * YH * (two_p 32 * two_p 32) + (XL * YL + (XL * YH + XH * YL) * two_p 32))).
  apply eqm_samerepr. apply eqm_add. 2: apply eqm_refl.
  change (two_p 32 * two_p 32) with modulus. exists (- XH * YH). ring.
  f_equal. ring.
Qed.

Lemma decompose_mul_2:
  forall xh xl yh yl,
  mul (ofwords xh xl) (ofwords yh yl) =
  ofwords (Int.add (Int.add (Int.mulhu xl yl) (Int.mul xl yh)) (Int.mul xh yl))
          (Int.mul xl yl).
Proof.
  intros. rewrite decompose_mul. rewrite mul'_mulhu.
  rewrite hi_ofwords, lo_ofwords. auto.
Qed.

Lemma decompose_ltu:
  forall xh xl yh yl,
  ltu (ofwords xh xl) (ofwords yh yl) = if Int.eq xh yh then Int.ltu xl yl else Int.ltu xh yh.
Proof.
  intros. unfold ltu. rewrite ! ofwords_add'. unfold Int.ltu, Int.eq.
  destruct (zeq (Int.unsigned xh) (Int.unsigned yh)).
  rewrite e. destruct (zlt (Int.unsigned xl) (Int.unsigned yl)).
  apply zlt_true; lia.
  apply zlt_false; lia.
  change (two_p 32) with Int.modulus.
  generalize (Int.unsigned_range xl) (Int.unsigned_range yl).
  change Int.modulus with 4294967296. intros.
  destruct (zlt (Int.unsigned xh) (Int.unsigned yh)).
  apply zlt_true; lia.
  apply zlt_false; lia.
Qed.

Lemma decompose_leu:
  forall xh xl yh yl,
  negb (ltu (ofwords yh yl) (ofwords xh xl)) =
  if Int.eq xh yh then negb (Int.ltu yl xl) else Int.ltu xh yh.
Proof.
  intros. rewrite decompose_ltu. rewrite Int.eq_sym.
  unfold Int.eq. destruct (zeq (Int.unsigned xh) (Int.unsigned yh)).
  auto.
  unfold Int.ltu. destruct (zlt (Int.unsigned xh) (Int.unsigned yh)).
  rewrite zlt_false by lia; auto.
  rewrite zlt_true by lia; auto.
Qed.

Lemma decompose_lt:
  forall xh xl yh yl,
  lt (ofwords xh xl) (ofwords yh yl) = if Int.eq xh yh then Int.ltu xl yl else Int.lt xh yh.
Proof.
  intros. unfold lt. rewrite ! ofwords_add''. rewrite Int.eq_signed.
  destruct (zeq (Int.signed xh) (Int.signed yh)).
  rewrite e. unfold Int.ltu. destruct (zlt (Int.unsigned xl) (Int.unsigned yl)).
  apply zlt_true; lia.
  apply zlt_false; lia.
  change (two_p 32) with Int.modulus.
  generalize (Int.unsigned_range xl) (Int.unsigned_range yl).
  change Int.modulus with 4294967296. intros.
  unfold Int.lt. destruct (zlt (Int.signed xh) (Int.signed yh)).
  apply zlt_true; lia.
  apply zlt_false; lia.
Qed.

Lemma decompose_le:
  forall xh xl yh yl,
  negb (lt (ofwords yh yl) (ofwords xh xl)) =
  if Int.eq xh yh then negb (Int.ltu yl xl) else Int.lt xh yh.
Proof.
  intros. rewrite decompose_lt. rewrite Int.eq_sym.
  rewrite Int.eq_signed. destruct (zeq (Int.signed xh) (Int.signed yh)).
  auto.
  unfold Int.lt. destruct (zlt (Int.signed xh) (Int.signed yh)).
  rewrite zlt_false by lia; auto.
  rewrite zlt_true by lia; auto.
Qed.

(** Utility proofs for mixed 32bit and 64bit arithmetic *)

Remark int_unsigned_range:
  forall x, 0 <= Int.unsigned x <= max_unsigned.
Proof.
  intros.
  unfold max_unsigned. unfold modulus.
  generalize (Int.unsigned_range x).
  unfold Int.modulus in *.
  change (wordsize) with  64%nat in *.
  change (Int.wordsize) with 32%nat in *.
  unfold two_power_nat. simpl.
  lia.
Qed.

Remark int_unsigned_repr:
  forall x, unsigned (repr (Int.unsigned x)) = Int.unsigned x.
Proof.
  intros. rewrite unsigned_repr. auto.
  apply int_unsigned_range.
Qed.

Lemma int_sub_ltu:
  forall x y,
    Int.ltu x y= true ->
    Int.unsigned (Int.sub y x) = unsigned (sub (repr (Int.unsigned y)) (repr (Int.unsigned x))).
Proof.
  intros. generalize (Int.sub_ltu x y H). intros. unfold Int.sub. unfold sub.
  rewrite Int.unsigned_repr. rewrite unsigned_repr.
  rewrite unsigned_repr by apply int_unsigned_range. rewrite int_unsigned_repr. reflexivity.
  rewrite unsigned_repr by apply int_unsigned_range.
  rewrite int_unsigned_repr. generalize (int_unsigned_range y).
  lia.
  generalize (Int.sub_ltu x y H). intros.
  generalize (Int.unsigned_range_2 y). intros. lia.
Qed.

End Int64.

Strategy 0 [Wordsize_64.wordsize].

Definition int_eq: forall (i1 i2: int), {i1=i2} + {i1<>i2}.
Proof.
  generalize Z.eq_dec. intros.
  destruct i1. destruct i2. generalize (H intval intval0). intro.
  inversion H0.
  - subst. left. assert (intrange = intrange0) by (apply proof_irr). congruence.
  - right. intro. inversion H2. contradiction.
Qed.

Notation int64 := Int64.int.

Definition int64_eq: forall (i1 i2: int64), {i1=i2} + {i1<>i2}.
Proof.
  generalize Z.eq_dec. intros.
  destruct i1. destruct i2. generalize (H intval intval0). intro.
  inversion H0.
  - subst. left. assert (intrange = intrange0) by (apply proof_irr). congruence.
  - right. intro. inversion H2. contradiction.
Qed.

Global Opaque Int.repr Int64.repr Byte.repr.

(** * Specialization to offsets in pointer values *)

Module Wordsize_Ptrofs.
  Definition wordsize := if Archi.ptr64 then 64%nat else 32%nat.
  Remark wordsize_not_zero: wordsize <> 0%nat.
  Proof. unfold wordsize; destruct Archi.ptr64; congruence. Qed.
End Wordsize_Ptrofs.

Strategy opaque [Wordsize_Ptrofs.wordsize].

Module Ptrofs.

Include Make(Wordsize_Ptrofs).

Definition to_int (x: int): Int.int := Int.repr (unsigned x).

Definition to_int64 (x: int): Int64.int := Int64.repr (unsigned x).

Definition of_int (x: Int.int) : int := repr (Int.unsigned x).

Definition of_intu := of_int.

Definition of_ints (x: Int.int) : int := repr (Int.signed x).

Definition of_int64 (x: Int64.int) : int := repr (Int64.unsigned x).

Definition of_int64u := of_int64.

Definition of_int64s (x: Int64.int) : int := repr (Int64.signed x).

Section AGREE32.

Hypothesis _32: Archi.ptr64 = false.

Lemma modulus_eq32: modulus = Int.modulus.
Proof.
  unfold modulus, wordsize.
  change Wordsize_Ptrofs.wordsize with (if Archi.ptr64 then 64%nat else 32%nat).
  rewrite _32. reflexivity.
Qed.

Lemma eqm32:
  forall x y, Int.eqm x y <-> eqm x y.
Proof.
  intros. unfold Int.eqm, eqm. rewrite modulus_eq32; tauto.
Qed.

Definition agree32 (a: Ptrofs.int) (b: Int.int) : Prop :=
  Ptrofs.unsigned a = Int.unsigned b.

Lemma agree32_repr:
  forall i, agree32 (Ptrofs.repr i) (Int.repr i).
Proof.
  intros; red. rewrite Ptrofs.unsigned_repr_eq, Int.unsigned_repr_eq.
  apply f_equal2. auto. apply modulus_eq32.
Qed.

Lemma agree32_signed:
  forall a b, agree32 a b -> Ptrofs.signed a = Int.signed b.
Proof.
  unfold agree32; intros. unfold signed, Int.signed, half_modulus, Int.half_modulus.
  rewrite modulus_eq32. rewrite H. auto.
Qed.

Lemma agree32_of_int:
  forall b, agree32 (of_int b) b.
Proof.
  unfold of_int; intros. rewrite <- (Int.repr_unsigned b) at 2. apply agree32_repr.
Qed.

Lemma agree32_of_ints:
  forall b, agree32 (of_ints b) b.
Proof.
  unfold of_int; intros. rewrite <- (Int.repr_signed b) at 2. apply agree32_repr.
Qed.

Lemma agree32_of_int_eq:
  forall a b, agree32 a b -> of_int b = a.
Proof.
  unfold agree32, of_int; intros. rewrite <- H. apply repr_unsigned.
Qed.

Lemma agree32_of_ints_eq:
  forall a b, agree32 a b -> of_ints b = a.
Proof.
  unfold of_ints; intros. erewrite <- agree32_signed by eauto. apply repr_signed.
Qed.

Lemma agree32_to_int:
  forall a, agree32 a (to_int a).
Proof.
  unfold agree32, to_int; intros. rewrite <- (agree32_repr (unsigned a)).
  rewrite repr_unsigned; auto.
Qed.

Lemma agree32_to_int_eq:
  forall a b, agree32 a b -> to_int a = b.
Proof.
  unfold agree32, to_int; intros. rewrite H. apply Int.repr_unsigned.
Qed.

Lemma agree32_neg:
  forall a1 b1, agree32 a1 b1 -> agree32 (Ptrofs.neg a1) (Int.neg b1).
Proof.
  unfold agree32, Ptrofs.neg, Int.neg; intros. rewrite H. apply agree32_repr.
Qed.

Lemma agree32_add:
  forall a1 b1 a2 b2,
  agree32 a1 b1 -> agree32 a2 b2 -> agree32 (Ptrofs.add a1 a2) (Int.add b1 b2).
Proof.
  unfold agree32, Ptrofs.add, Int.add; intros. rewrite H, H0. apply agree32_repr.
Qed.

Lemma agree32_sub:
  forall a1 b1 a2 b2,
  agree32 a1 b1 -> agree32 a2 b2 -> agree32 (Ptrofs.sub a1 a2) (Int.sub b1 b2).
Proof.
  unfold agree32, Ptrofs.sub, Int.sub; intros. rewrite H, H0. apply agree32_repr.
Qed.

Lemma agree32_mul:
  forall a1 b1 a2 b2,
  agree32 a1 b1 -> agree32 a2 b2 -> agree32 (Ptrofs.mul a1 a2) (Int.mul b1 b2).
Proof.
  unfold agree32, Ptrofs.mul, Int.mul; intros. rewrite H, H0. apply agree32_repr.
Qed.

Lemma agree32_divs:
  forall a1 b1 a2 b2,
  agree32 a1 b1 -> agree32 a2 b2 -> agree32 (Ptrofs.divs a1 a2) (Int.divs b1 b2).
Proof.
  intros; unfold agree32, Ptrofs.divs, Int.divs.
  erewrite ! agree32_signed by eauto. apply agree32_repr.
Qed.

Lemma of_int_to_int:
  forall n, of_int (to_int n) = n.
Proof.
  intros; unfold of_int, to_int. apply eqm_repr_eq. rewrite <- eqm32.
  apply Int.eqm_sym; apply Int.eqm_unsigned_repr.
Qed.

Lemma to_int_of_int:
  forall n, to_int (of_int n) = n.
Proof.
  intros; unfold of_int, to_int. rewrite unsigned_repr. apply Int.repr_unsigned.
  unfold max_unsigned. rewrite modulus_eq32. destruct (Int.unsigned_range n); lia.
Qed.

End AGREE32.

Section AGREE64.

Hypothesis _64: Archi.ptr64 = true.

Lemma modulus_eq64: modulus = Int64.modulus.
Proof.
  unfold modulus, wordsize.
  change Wordsize_Ptrofs.wordsize with (if Archi.ptr64 then 64%nat else 32%nat).
  rewrite _64. reflexivity.
Qed.

Lemma eqm64:
  forall x y, Int64.eqm x y <-> eqm x y.
Proof.
  intros. unfold Int64.eqm, eqm. rewrite modulus_eq64; tauto.
Qed.

Definition agree64 (a: Ptrofs.int) (b: Int64.int) : Prop :=
  Ptrofs.unsigned a = Int64.unsigned b.

Lemma agree64_repr:
  forall i, agree64 (Ptrofs.repr i) (Int64.repr i).
Proof.
  intros; red. rewrite Ptrofs.unsigned_repr_eq, Int64.unsigned_repr_eq.
  apply f_equal2. auto. apply modulus_eq64.
Qed.

Lemma agree64_signed:
  forall a b, agree64 a b -> Ptrofs.signed a = Int64.signed b.
Proof.
  unfold agree64; intros. unfold signed, Int64.signed, half_modulus, Int64.half_modulus.
  rewrite modulus_eq64. rewrite H. auto.
Qed.

Lemma agree64_of_int:
  forall b, agree64 (of_int64 b) b.
Proof.
  unfold of_int64; intros. rewrite <- (Int64.repr_unsigned b) at 2. apply agree64_repr.
Qed.

Lemma agree64_of_int_eq:
  forall a b, agree64 a b -> of_int64 b = a.
Proof.
  unfold agree64, of_int64; intros. rewrite <- H. apply repr_unsigned.
Qed.

Lemma agree64_to_int:
  forall a, agree64 a (to_int64 a).
Proof.
  unfold agree64, to_int64; intros. rewrite <- (agree64_repr (unsigned a)).
  rewrite repr_unsigned; auto.
Qed.

Lemma agree64_to_int_eq:
  forall a b, agree64 a b -> to_int64 a = b.
Proof.
  unfold agree64, to_int64; intros. rewrite H. apply Int64.repr_unsigned.
Qed.

Lemma agree64_neg:
  forall a1 b1, agree64 a1 b1 -> agree64 (Ptrofs.neg a1) (Int64.neg b1).
Proof.
  unfold agree64, Ptrofs.neg, Int64.neg; intros. rewrite H. apply agree64_repr.
Qed.

Lemma agree64_add:
  forall a1 b1 a2 b2,
  agree64 a1 b1 -> agree64 a2 b2 -> agree64 (Ptrofs.add a1 a2) (Int64.add b1 b2).
Proof.
  unfold agree64, Ptrofs.add, Int.add; intros. rewrite H, H0. apply agree64_repr.
Qed.

Lemma agree64_sub:
  forall a1 b1 a2 b2,
  agree64 a1 b1 -> agree64 a2 b2 -> agree64 (Ptrofs.sub a1 a2) (Int64.sub b1 b2).
Proof.
  unfold agree64, Ptrofs.sub, Int.sub; intros. rewrite H, H0. apply agree64_repr.
Qed.

Lemma agree64_mul:
  forall a1 b1 a2 b2,
  agree64 a1 b1 -> agree64 a2 b2 -> agree64 (Ptrofs.mul a1 a2) (Int64.mul b1 b2).
Proof.
  unfold agree64, Ptrofs.mul, Int.mul; intros. rewrite H, H0. apply agree64_repr.
Qed.

Lemma agree64_divs:
  forall a1 b1 a2 b2,
  agree64 a1 b1 -> agree64 a2 b2 -> agree64 (Ptrofs.divs a1 a2) (Int64.divs b1 b2).
Proof.
  intros; unfold agree64, Ptrofs.divs, Int64.divs.
  erewrite ! agree64_signed by eauto. apply agree64_repr.
Qed.

Lemma of_int64_to_int64:
  forall n, of_int64 (to_int64 n) = n.
Proof.
  intros; unfold of_int64, to_int64. apply eqm_repr_eq. rewrite <- eqm64.
  apply Int64.eqm_sym; apply Int64.eqm_unsigned_repr.
Qed.

Lemma to_int64_of_int64:
  forall n, to_int64 (of_int64 n) = n.
Proof.
  intros; unfold of_int64, to_int64. rewrite unsigned_repr. apply Int64.repr_unsigned.
  unfold max_unsigned. rewrite  modulus_eq64. destruct (Int64.unsigned_range n); lia.
Qed.

End AGREE64.

Global Hint Resolve
  agree32_repr agree32_of_int agree32_of_ints agree32_of_int_eq agree32_of_ints_eq
  agree32_to_int agree32_to_int_eq agree32_neg agree32_add agree32_sub agree32_mul agree32_divs
  agree64_repr agree64_of_int agree64_of_int_eq
  agree64_to_int agree64_to_int_eq agree64_neg agree64_add agree64_sub agree64_mul agree64_divs : ptrofs.

End Ptrofs.

Strategy 0 [Wordsize_Ptrofs.wordsize].

Notation ptrofs := Ptrofs.int.

Definition ptrofs_eq: forall (i1 i2: ptrofs), {i1=i2} + {i1<>i2}.
Proof.
  generalize Z.eq_dec. intros.
  destruct i1. destruct i2. generalize (H intval intval0). intro.
  inversion H0.
  - subst. left. assert (intrange = intrange0) by (apply proof_irr). congruence.
  - right. intro. inversion H2. contradiction.
Qed.

Global Opaque Ptrofs.repr.

Global Hint Resolve
  Int.modulus_pos Int.eqm_refl Int.eqm_refl2 Int.eqm_sym Int.eqm_trans
  Int.eqm_small_eq Int.eqm_add Int.eqm_neg Int.eqm_sub Int.eqm_mult
  Int.eqm_unsigned_repr Int.eqm_unsigned_repr_l Int.eqm_unsigned_repr_r
  Int.unsigned_range Int.unsigned_range_2
  Int.repr_unsigned Int.repr_signed Int.unsigned_repr : ints.

Global Hint Resolve
  Int64.modulus_pos Int64.eqm_refl Int64.eqm_refl2 Int64.eqm_sym Int64.eqm_trans
  Int64.eqm_small_eq Int64.eqm_add Int64.eqm_neg Int64.eqm_sub Int64.eqm_mult
  Int64.eqm_unsigned_repr Int64.eqm_unsigned_repr_l Int64.eqm_unsigned_repr_r
  Int64.unsigned_range Int64.unsigned_range_2
  Int64.repr_unsigned Int64.repr_signed Int64.unsigned_repr : ints.

Global Hint Resolve
  Ptrofs.modulus_pos Ptrofs.eqm_refl Ptrofs.eqm_refl2 Ptrofs.eqm_sym Ptrofs.eqm_trans
  Ptrofs.eqm_small_eq Ptrofs.eqm_add Ptrofs.eqm_neg Ptrofs.eqm_sub Ptrofs.eqm_mult
  Ptrofs.eqm_unsigned_repr Ptrofs.eqm_unsigned_repr_l Ptrofs.eqm_unsigned_repr_r
  Ptrofs.unsigned_range Ptrofs.unsigned_range_2
  Ptrofs.repr_unsigned Ptrofs.repr_signed Ptrofs.unsigned_repr : ints.