aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Maps.v
blob: 19d1fb5b2af165ba6922efdced8ac961a5116b01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*     Xavier Leroy and Damien Doligez, INRIA Paris-Rocquencourt       *)
(*     Andrew W. Appel, Princeton University                           *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU Lesser General Public License as        *)
(*  published by the Free Software Foundation, either version 2.1 of   *)
(*  the License, or  (at your option) any later version.               *)
(*  This file is also distributed under the terms of the               *)
(*  INRIA Non-Commercial License Agreement.                            *)
(*                                                                     *)
(* *********************************************************************)

(** Applicative finite maps are the main data structure used in this
  project.  A finite map associates data to keys.  The two main operations
  are [set k d m], which returns a map identical to [m] except that [d]
  is associated to [k], and [get k m] which returns the data associated
  to key [k] in map [m].  In this library, we distinguish two kinds of maps:
- Trees: the [get] operation returns an option type, either [None]
  if no data is associated to the key, or [Some d] otherwise.
- Maps: the [get] operation always returns a data.  If no data was explicitly
  associated with the key, a default data provided at map initialization time
  is returned.

  In this library, we provide efficient implementations of trees and
  maps whose keys range over the type [positive] of binary positive
  integers or any type that can be injected into [positive].  The
  implementation is based on radix-2 search trees (uncompressed
  Patricia trees) and guarantees logarithmic-time operations.  An
  inefficient implementation of maps as functions is also provided.
*)

Require Import Coqlib.

(* To avoid useless definitions of inductors in extracted code. *)
Local Unset Elimination Schemes.
Local Unset Case Analysis Schemes.

Set Implicit Arguments.

(** * The abstract signatures of trees *)

Module Type TREE.
  Parameter elt: Type.
  Parameter elt_eq: forall (a b: elt), {a = b} + {a <> b}.
  Parameter t: Type -> Type.
  Parameter empty: forall (A: Type), t A.
  Parameter get: forall (A: Type), elt -> t A -> option A.
  Parameter set: forall (A: Type), elt -> A -> t A -> t A.
  Parameter remove: forall (A: Type), elt -> t A -> t A.

  (** The ``good variables'' properties for trees, expressing
    commutations between [get], [set] and [remove]. *)
  Axiom gempty:
    forall (A: Type) (i: elt), get i (empty A) = None.
  Axiom gss:
    forall (A: Type) (i: elt) (x: A) (m: t A), get i (set i x m) = Some x.
  Axiom gso:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
  Axiom gsspec:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    get i (set j x m) = if elt_eq i j then Some x else get i m.
  Axiom grs:
    forall (A: Type) (i: elt) (m: t A), get i (remove i m) = None.
  Axiom gro:
    forall (A: Type) (i j: elt) (m: t A),
    i <> j -> get i (remove j m) = get i m.
  Axiom grspec:
    forall (A: Type) (i j: elt) (m: t A),
    get i (remove j m) = if elt_eq i j then None else get i m.

  (** Extensional equality between trees. *)
  Parameter beq: forall (A: Type), (A -> A -> bool) -> t A -> t A -> bool.
  Axiom beq_correct:
    forall (A: Type) (eqA: A -> A -> bool) (t1 t2: t A),
    beq eqA t1 t2 = true <->
    (forall (x: elt),
     match get x t1, get x t2 with
     | None, None => True
     | Some y1, Some y2 => eqA y1 y2 = true
     | _, _ => False
    end).

  (** Applying a function to all data of a tree. *)
  Parameter map:
    forall (A B: Type), (elt -> A -> B) -> t A -> t B.
  Axiom gmap:
    forall (A B: Type) (f: elt -> A -> B) (i: elt) (m: t A),
    get i (map f m) = option_map (f i) (get i m).

  (** Same as [map], but the function does not receive the [elt] argument. *)
  Parameter map1:
    forall (A B: Type), (A -> B) -> t A -> t B.
  Axiom gmap1:
    forall (A B: Type) (f: A -> B) (i: elt) (m: t A),
    get i (map1 f m) = option_map f (get i m).

  (** Applying a function pairwise to all data of two trees. *)
  Parameter combine:
    forall (A B C: Type), (option A -> option B -> option C) -> t A -> t B -> t C.
  Axiom gcombine:
    forall (A B C: Type) (f: option A -> option B -> option C),
    f None None = None ->
    forall (m1: t A) (m2: t B) (i: elt),
    get i (combine f m1 m2) = f (get i m1) (get i m2).

  (** Enumerating the bindings of a tree. *)
  Parameter elements:
    forall (A: Type), t A -> list (elt * A).
  Axiom elements_correct:
    forall (A: Type) (m: t A) (i: elt) (v: A),
    get i m = Some v -> In (i, v) (elements m).
  Axiom elements_complete:
    forall (A: Type) (m: t A) (i: elt) (v: A),
    In (i, v) (elements m) -> get i m = Some v.
  Axiom elements_keys_norepet:
    forall (A: Type) (m: t A),
    list_norepet (List.map (@fst elt A) (elements m)).
  Axiom elements_extensional:
    forall (A: Type) (m n: t A),
    (forall i, get i m = get i n) ->
    elements m = elements n.
  Axiom elements_remove:
    forall (A: Type) i v (m: t A),
    get i m = Some v ->
    exists l1 l2, elements m = l1 ++ (i,v) :: l2 /\ elements (remove i m) = l1 ++ l2.

  (** Folding a function over all bindings of a tree. *)
  Parameter fold:
    forall (A B: Type), (B -> elt -> A -> B) -> t A -> B -> B.
  Axiom fold_spec:
    forall (A B: Type) (f: B -> elt -> A -> B) (v: B) (m: t A),
    fold f m v =
    List.fold_left (fun a p => f a (fst p) (snd p)) (elements m) v.
  (** Same as [fold], but the function does not receive the [elt] argument. *)
  Parameter fold1:
    forall (A B: Type), (B -> A -> B) -> t A -> B -> B.
  Axiom fold1_spec:
    forall (A B: Type) (f: B -> A -> B) (v: B) (m: t A),
    fold1 f m v =
    List.fold_left (fun a p => f a (snd p)) (elements m) v.
End TREE.

(** * The abstract signatures of maps *)

Module Type MAP.
  Parameter elt: Type.
  Parameter elt_eq: forall (a b: elt), {a = b} + {a <> b}.
  Parameter t: Type -> Type.
  Parameter init: forall (A: Type), A -> t A.
  Parameter get: forall (A: Type), elt -> t A -> A.
  Parameter set: forall (A: Type), elt -> A -> t A -> t A.
  Axiom gi:
    forall (A: Type) (i: elt) (x: A), get i (init x) = x.
  Axiom gss:
    forall (A: Type) (i: elt) (x: A) (m: t A), get i (set i x m) = x.
  Axiom gso:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
  Axiom gsspec:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    get i (set j x m) = if elt_eq i j then x else get i m.
  Axiom gsident:
    forall (A: Type) (i j: elt) (m: t A), get j (set i (get i m) m) = get j m.
  Parameter map: forall (A B: Type), (A -> B) -> t A -> t B.
  Axiom gmap:
    forall (A B: Type) (f: A -> B) (i: elt) (m: t A),
    get i (map f m) = f(get i m).
End MAP.

(** * An implementation of trees over type [positive] *)

Module PTree <: TREE.
  Definition elt := positive.
  Definition elt_eq := peq.

(** ** Representation of trees *)

(** The type [tree'] of nonempty trees.  Each constructor is of the form
    [NodeXYZ], where the bit [X] says whether there is a left subtree,
    [Y] whether there is a value at this node, and [Z] whether there is
    a right subtree. *)

  Inductive tree' (A: Type) : Type := 
  | Node001: tree' A -> tree' A
  | Node010: A -> tree' A
  | Node011: A -> tree' A -> tree' A
  | Node100: tree' A -> tree' A
  | Node101: tree' A -> tree' A ->tree' A
  | Node110: tree' A -> A -> tree' A
  | Node111: tree' A -> A -> tree' A -> tree' A.

  Inductive tree (A: Type) : Type := 
  | Empty : tree A
  | Nodes: tree' A -> tree A.

  Arguments Node001 {A} _.
  Arguments Node010 {A} _.
  Arguments Node011 {A} _ _.
  Arguments Node100 {A} _.
  Arguments Node101 {A} _ _.
  Arguments Node110 {A} _ _.
  Arguments Node111 {A} _ _ _.

  Arguments Empty {A}.
  Arguments Nodes {A} _.

  Scheme tree'_ind := Induction for tree' Sort Prop.

  Definition t := tree.

  (** A smart constructor for type [tree]: given a (possibly empty)
      left subtree, a (possibly absent) value, and a (possibly empty)
      right subtree, it builds the corresponding tree. *)

  Definition Node {A} (l: tree A) (o: option A) (r: tree A) : tree A := 
    match l,o,r with
    | Empty, None, Empty => Empty
    | Empty, None, Nodes r' => Nodes (Node001 r')
    | Empty, Some x, Empty => Nodes (Node010 x)
    | Empty, Some x, Nodes r' => Nodes (Node011 x r')
    | Nodes l', None, Empty => Nodes (Node100 l')
    | Nodes l', None, Nodes r' => Nodes (Node101 l' r')
    | Nodes l', Some x, Empty => Nodes (Node110 l' x)
    | Nodes l', Some x, Nodes r' => Nodes (Node111 l' x r')
    end.

(** ** Basic operations: [empty], [get], [set], [remove] *)

  Definition empty (A: Type) : t A := Empty.

  Fixpoint get' {A} (p: positive) (m: tree' A) : option A :=
    match p, m with
    | xH, Node001 _ => None
    | xH, Node010 x => Some x
    | xH, Node011 x _ => Some x
    | xH, Node100 _ => None
    | xH, Node101 _ _ => None
    | xH, Node110 _ x => Some x
    | xH, Node111 _ x _ => Some x
    | xO q, Node001 _ => None
    | xO q, Node010 _ => None
    | xO q, Node011 _ _ => None
    | xO q, Node100 m' => get' q m'
    | xO q, Node101 m' _ => get' q m'
    | xO q, Node110 m' _ => get' q m'
    | xO q, Node111 m' _ _ => get' q m'
    | xI q, Node001 m' => get' q m'
    | xI q, Node010 _ => None
    | xI q, Node011 _ m' => get' q m'
    | xI q, Node100 m' => None
    | xI q, Node101 _ m' => get' q m'
    | xI q, Node110 _ _ => None
    | xI q, Node111 _ _ m' => get' q m'
    end.

  Definition get {A} (p: positive) (m: tree A) : option A :=
    match m with
    | Empty => None
    | Nodes m' => get' p m'
    end.

  (** [set0 p x] constructs the singleton tree that maps [p] to [x]
      and has no other bindings. *)

  Fixpoint set0 {A} (p: positive) (x: A) : tree' A :=
  match p with
  | xH => Node010 x
  | xO q => Node100 (set0 q x)
  | xI q => Node001 (set0 q x)
  end.

  Fixpoint set' {A} (p: positive) (x: A) (m: tree' A) : tree' A :=
  match p, m with
  | xH, Node001 r => Node011 x r
  | xH, Node010 _ => Node010 x
  | xH, Node011 _ r => Node011 x r
  | xH, Node100 l => Node110 l x
  | xH, Node101 l r => Node111 l x r
  | xH, Node110 l _ => Node110 l x
  | xH, Node111 l _ r => Node111 l x r
  | xO q, Node001 r => Node101 (set0 q x) r
  | xO q, Node010 y => Node110 (set0 q x) y
  | xO q, Node011 y r => Node111 (set0 q x) y r
  | xO q, Node100 l => Node100 (set' q x l)
  | xO q, Node101 l r => Node101 (set' q x l) r
  | xO q, Node110 l y => Node110 (set' q x l) y
  | xO q, Node111 l y r => Node111 (set' q x l) y r
  | xI q, Node001 r => Node001 (set' q x r)
  | xI q, Node010 y => Node011 y (set0 q x)
  | xI q, Node011 y r => Node011 y (set' q x r)
  | xI q, Node100 l => Node101 l (set0 q x)
  | xI q, Node101 l r => Node101 l (set' q x r)
  | xI q, Node110 l y => Node111 l y (set0 q x)
  | xI q, Node111 l y r => Node111 l y (set' q x r)
  end.

  Definition set {A} (p: positive) (x: A) (m: tree A) : tree A :=
  match m with
  | Empty => Nodes (set0 p x)
  | Nodes m' => Nodes (set' p x m')
  end.

  (** Removal in a nonempty tree produces a possibly empty tree.
      To simplify the code, we use the [Node] smart constructor in the
      cases where the result can be empty or nonempty, depending on the
      results of the recursive calls. *)

  Fixpoint rem' {A} (p: positive) (m: tree' A) : tree A :=
  match p, m with
  | xH, Node001 r => Nodes m
  | xH, Node010 _ => Empty
  | xH, Node011 _ r => Nodes (Node001 r)
  | xH, Node100 l => Nodes m
  | xH, Node101 l r => Nodes m
  | xH, Node110 l _ => Nodes (Node100 l)
  | xH, Node111 l _ r => Nodes (Node101 l r)
  | xO q, Node001 r => Nodes m
  | xO q, Node010 y => Nodes m
  | xO q, Node011 y r => Nodes m
  | xO q, Node100 l => Node (rem' q l) None Empty
  | xO q, Node101 l r => Node (rem' q l) None (Nodes r)
  | xO q, Node110 l y => Node (rem' q l) (Some y) Empty
  | xO q, Node111 l y r => Node (rem' q l) (Some y) (Nodes r)
  | xI q, Node001 r => Node Empty None (rem' q r)
  | xI q, Node010 y => Nodes m
  | xI q, Node011 y r => Node Empty (Some y) (rem' q r)
  | xI q, Node100 l => Nodes m
  | xI q, Node101 l r => Node (Nodes l) None (rem' q r)
  | xI q, Node110 l y => Nodes m
  | xI q, Node111 l y r => Node (Nodes l) (Some y) (rem' q r)
  end.

  (** This use of [Node] causes some run-time overhead, which we eliminate
      by partial evaluation within Coq. *)

  Definition remove' := Eval cbv [rem' Node] in @rem'.

  Definition remove {A} (p: positive) (m: tree A) : tree A :=
  match m with
  | Empty => Empty
  | Nodes m' => remove' p m'
  end.

(** ** Good variable properties for the basic operations *)

  Theorem gempty:
    forall (A: Type) (i: positive), get i (empty A) = None.
  Proof. reflexivity. Qed.

  Lemma gEmpty:
    forall (A: Type) (i: positive), get i (@Empty A) = None.
  Proof. reflexivity. Qed.

  Lemma gss0: forall {A} p (x: A), get' p (set0 p x) = Some x.
  Proof. induction p; simpl; auto. Qed.

  Lemma gso0: forall {A} p q (x: A), p<>q -> get' p (set0 q x) = None.
  Proof.
    induction p; destruct q; simpl; intros; auto; try apply IHp; congruence.
  Qed.

  Theorem gss:
    forall (A: Type) (i: positive) (x: A) (m: tree A), get i (set i x m) = Some x.
  Proof.
   intros. destruct m as [|m]; simpl.
   - apply gss0.
   - revert m; induction i; destruct m; simpl; intros; auto using gss0.
  Qed.

  Theorem gso:
    forall (A: Type) (i j: positive) (x: A) (m: tree A),
    i <> j -> get i (set j x m) = get i m.
  Proof.
   intros. destruct m as [|m]; simpl.
   - apply gso0; auto.
   - revert m j H; induction i; destruct j,m; simpl; intros; auto;
     solve [apply IHi; congruence | apply gso0; congruence | congruence].
  Qed.

  Theorem gsspec:
    forall (A: Type) (i j: positive) (x: A) (m: t A),
    get i (set j x m) = if peq i j then Some x else get i m.
  Proof.
    intros.
    destruct (peq i j); [ rewrite e; apply gss | apply gso; auto ].
  Qed.

  Lemma gNode:
    forall {A} (i: positive) (l: tree A) (x: option A) (r: tree A),
    get i (Node l x r) = match i with xH => x | xO j => get j l | xI j => get j r end.
  Proof.
    intros. destruct l, x, r; simpl; auto; destruct i; auto.
  Qed.

  Theorem grs:
    forall (A: Type) (i: positive) (m: tree A), get i (remove i m) = None.
  Proof.
    Local Opaque Node.
    destruct m as [ |m]; simpl. auto.
    change (remove' i m) with (rem' i m).
    revert m. induction i; destruct m; simpl; auto; rewrite gNode; auto.
  Qed.

  Theorem gro:
    forall (A: Type) (i j: positive) (m: tree A),
    i <> j -> get i (remove j m) = get i m.
  Proof.
    Local Opaque Node.
    destruct m as [ |m]; simpl. auto.
    change (remove' j m) with (rem' j m).
    revert j m. induction i; destruct j, m; simpl; intros; auto;
    solve [ congruence
          | rewrite gNode; auto; apply IHi; congruence ].
  Qed.

  Theorem grspec:
    forall (A: Type) (i j: elt) (m: t A),
    get i (remove j m) = if elt_eq i j then None else get i m.
  Proof.
    intros. destruct (elt_eq i j). subst j. apply grs. apply gro; auto.
  Qed.

(** ** Custom case analysis principles and induction principles *)

(** We can view trees as being of one of two (non-exclusive)
    cases: either [Empty] for an empty tree, or [Node l o r] for a
    nonempty tree, with [l] and [r] the left and right subtrees
    and [o] an optional value.  The [Empty] constructor and the [Node]
    smart function defined above provide one half of the view: the one
    that lets us construct values of type [tree A].

    We now define the other half of the view: the one that lets us
    inspect and recurse over values of type [tree A].  This is achieved
    by defining appropriate principles for case analysis and induction. *)

  Definition not_trivially_empty {A} (l: tree A) (o: option A) (r: tree A) :=
    match l, o, r with
    | Empty, None, Empty => False
    | _, _, _ => True
    end.

  (** A case analysis principle *)

  Section TREE_CASE.

  Context {A B: Type}
          (empty: B)
          (node: tree A -> option A -> tree A -> B).

  Definition tree_case (m: tree A) : B :=
    match m with
    | Empty => empty
    | Nodes (Node001 r) => node Empty None (Nodes r)
    | Nodes (Node010 x) => node Empty (Some x) Empty
    | Nodes (Node011 x r) => node Empty (Some x) (Nodes r)
    | Nodes (Node100 l) => node (Nodes l) None Empty
    | Nodes (Node101 l r) => node (Nodes l) None (Nodes r)
    | Nodes (Node110 l x) => node (Nodes l) (Some x) Empty
    | Nodes (Node111 l x r) => node (Nodes l) (Some x) (Nodes r)
    end.

  Lemma unroll_tree_case: forall l o r,
    not_trivially_empty l o r ->
    tree_case (Node l o r) = node l o r.
  Proof.
    destruct l, o, r; simpl; intros; auto. contradiction.
  Qed.

  End TREE_CASE.

  (** A recursion principle *)

  Section TREE_REC.

  Context {A B: Type}
          (empty: B)
          (node: tree A -> B -> option A -> tree A -> B -> B).

  Fixpoint tree_rec' (m: tree' A) : B :=
    match m with
    | Node001 r => node Empty empty None (Nodes r) (tree_rec' r)
    | Node010 x => node Empty empty (Some x) Empty empty
    | Node011 x r => node Empty empty (Some x) (Nodes r) (tree_rec' r)
    | Node100 l => node (Nodes l) (tree_rec' l) None Empty empty
    | Node101 l r => node (Nodes l) (tree_rec' l) None (Nodes r) (tree_rec' r)
    | Node110 l x => node (Nodes l) (tree_rec' l) (Some x) Empty empty
    | Node111 l x r => node (Nodes l) (tree_rec' l) (Some x) (Nodes r) (tree_rec' r)
    end.

  Definition tree_rec (m: tree A) : B :=
    match m with
    | Empty => empty
    | Nodes m' => tree_rec' m'
    end.

  Lemma unroll_tree_rec: forall l o r,
    not_trivially_empty l o r ->
    tree_rec (Node l o r) = node l (tree_rec l) o r (tree_rec r).
  Proof.
    destruct l, o, r; simpl; intros; auto. contradiction.
  Qed.

  End TREE_REC.

  (** A double recursion principle *)

  Section TREE_REC2.

  Context {A B C: Type}
          (base: C)
          (base1: tree B -> C) 
          (base2: tree A -> C)
          (nodes: forall (l1: tree A) (o1: option A) (r1: tree A)
                         (l2: tree B) (o2: option B) (r2: tree B)
                         (lrec: C) (rrec: C), C).

  Fixpoint tree_rec2' (m1: tree' A) (m2: tree' B) : C.
  Proof.
    destruct m1 as [ r1 | x1 | x1 r1 | l1 | l1 r1 | l1 x1 | l1 x1 r1 ];
    destruct m2 as [ r2 | x2 | x2 r2 | l2 | l2 r2 | l2 x2 | l2 x2 r2 ];
    (apply nodes;
    [ solve [ exact (Nodes l1) | exact Empty ]
    | solve [ exact (Some x1)  | exact None ]
    | solve [ exact (Nodes r1) | exact Empty ]
    | solve [ exact (Nodes l2) | exact Empty ]
    | solve [ exact (Some x2)  | exact None ]
    | solve [ exact (Nodes r2) | exact Empty ]
    | solve [ exact (tree_rec2' l1 l2) | exact (base2 (Nodes l1)) | exact (base1 (Nodes l2)) | exact base ]
    | solve [ exact (tree_rec2' r1 r2) | exact (base2 (Nodes r1)) | exact (base1 (Nodes r2)) | exact base ]
    ]).
  Defined.

  Definition tree_rec2 (a: tree A) (b: tree B) : C :=
    match a, b with
    | Empty, Empty => base
    | Empty, _ => base1 b
    | _, Empty => base2 a
    | Nodes a', Nodes b' => tree_rec2' a' b'
    end.

  Lemma unroll_tree_rec2_NE:
    forall l1 o1 r1,
    not_trivially_empty l1 o1 r1 ->
    tree_rec2 (Node l1 o1 r1) Empty = base2 (Node l1 o1 r1).
  Proof.
    intros. destruct l1, o1, r1; try contradiction; reflexivity.
  Qed.

  Lemma unroll_tree_rec2_EN:
    forall l2 o2 r2,
    not_trivially_empty l2 o2 r2 ->
    tree_rec2 Empty (Node l2 o2 r2) = base1 (Node l2 o2 r2).
  Proof.
    intros. destruct l2, o2, r2; try contradiction; reflexivity.
  Qed.

  Lemma unroll_tree_rec2_NN:
    forall l1 o1 r1 l2 o2 r2,
    not_trivially_empty l1 o1 r1 -> not_trivially_empty l2 o2 r2 ->
    tree_rec2 (Node l1 o1 r1) (Node l2 o2 r2) =
    nodes l1 o1 r1 l2 o2 r2 (tree_rec2 l1 l2) (tree_rec2 r1 r2).
  Proof.
    intros.
    destruct l1, o1, r1; try contradiction; destruct l2, o2, r2; try contradiction; reflexivity.
  Qed.

  End TREE_REC2.

(** An induction principle *)

  Section TREE_IND.

  Context {A: Type} (P: tree A -> Type)
          (empty: P Empty)
          (node: forall l, P l -> forall o r, P r -> not_trivially_empty l o r ->
                 P (Node l o r)).

  Program Fixpoint tree_ind' (m: tree' A) : P (Nodes m) :=
    match m with
    | Node001 r => @node Empty empty None (Nodes r) (tree_ind' r) _
    | Node010 x => @node Empty empty (Some x) Empty empty _
    | Node011 x r => @node Empty empty (Some x) (Nodes r) (tree_ind' r) _
    | Node100 l => @node (Nodes l) (tree_ind' l) None Empty empty _
    | Node101 l r => @node (Nodes l) (tree_ind' l) None (Nodes r) (tree_ind' r) _
    | Node110 l x => @node (Nodes l) (tree_ind' l) (Some x) Empty empty _
    | Node111 l x r => @node (Nodes l) (tree_ind' l) (Some x) (Nodes r) (tree_ind' r) _
    end.

  Definition tree_ind (m: tree A) : P m :=
    match m with
    | Empty => empty
    | Nodes m' => tree_ind' m'
    end.

  End TREE_IND.

(** ** Extensionality property *)

  Lemma tree'_not_empty:
    forall {A} (m: tree' A), exists i, get' i m <> None.
  Proof.
   induction m; simpl; try destruct IHm as [p H].
   - exists (xI p); auto.
   - exists xH; simpl; congruence.
   - exists xH; simpl; congruence.
   - exists (xO p); auto.
   - destruct IHm1 as [p H]; exists (xO p); auto.
   - exists xH; simpl; congruence.
   - exists xH; simpl; congruence.
  Qed.

  Corollary extensionality_empty:
    forall {A} (m: tree A),
    (forall i, get i m = None) -> m = Empty.
  Proof.
    intros. destruct m as [ | m]; auto. destruct (tree'_not_empty m) as [i GET].
    elim GET. apply H.
  Qed.

  Theorem extensionality:
    forall (A: Type) (m1 m2: tree A),
    (forall i, get i m1 = get i m2) -> m1 = m2.
  Proof.
    intros A. induction m1 using tree_ind; induction m2 using tree_ind; intros.
  - auto.
  - symmetry. apply extensionality_empty. intros; symmetry; apply H0.
  - apply extensionality_empty. apply H0.
  - f_equal.
    + apply IHm1_1. intros. specialize (H1 (xO i)); rewrite ! gNode in H1. auto.
    + specialize (H1 xH); rewrite ! gNode in H1. auto.
    + apply IHm1_2. intros. specialize (H1 (xI i)); rewrite ! gNode in H1. auto.
  Qed.

  (** Some consequences of extensionality *)

  Theorem gsident:
    forall {A} (i: positive) (m: t A) (v: A),
    get i m = Some v -> set i v m = m.
  Proof.
    intros; apply extensionality; intros j.
    rewrite gsspec. destruct (peq j i); congruence.
  Qed.

  Theorem set2:
    forall {A} (i: elt) (m: t A) (v1 v2: A),
    set i v2 (set i v1 m) = set i v2 m.
  Proof.
    intros; apply extensionality; intros j.
    rewrite ! gsspec. destruct (peq j i); auto.
  Qed.

(** ** Boolean equality *)

  Section BOOLEAN_EQUALITY.

    Variable A: Type.
    Variable beqA: A -> A -> bool.

    Fixpoint beq' (m1 m2: tree' A) {struct m1} : bool :=
    match m1, m2 with
    | Node001 r1, Node001 r2 => beq' r1 r2
    | Node010 x1, Node010 x2 => beqA x1 x2
    | Node011 x1 r1, Node011 x2 r2 => beqA x1 x2 && beq' r1 r2
    | Node100 l1, Node100 l2 => beq' l1 l2
    | Node101 l1 r1, Node101 l2 r2 => beq' l1 l2 && beq' r1 r2
    | Node110 l1 x1, Node110 l2 x2 => beqA x1 x2 && beq' l1 l2
    | Node111 l1 x1 r1, Node111 l2 x2 r2  => beqA x1 x2 && beq' l1 l2 && beq' r1 r2
    | _, _ => false
    end.

    Definition beq (m1 m2: t A) : bool :=
    match m1, m2 with
    | Empty, Empty => true
    | Nodes m1', Nodes m2' => beq' m1' m2'
    | _, _ => false
    end.

    Let beq_optA (o1 o2: option A) : bool :=
      match o1, o2 with
      | None, None => true
      | Some a1, Some a2 => beqA a1 a2
      | _, _ => false
      end.

    Lemma beq_correct_bool:
      forall m1 m2,
      beq m1 m2 = true <-> (forall x, beq_optA (get x m1) (get x m2) = true).
    Proof.
      Local Transparent Node.
      assert (beq_NN: forall l1 o1 r1 l2 o2 r2,
              not_trivially_empty l1 o1 r1 ->
              not_trivially_empty l2 o2 r2 ->
              beq (Node l1 o1 r1) (Node l2 o2 r2) =
              beq l1 l2 && beq_optA o1 o2 && beq r1 r2).
      { intros.
        destruct l1, o1, r1; try contradiction; destruct l2, o2, r2; try contradiction;
        simpl; rewrite ? andb_true_r, ? andb_false_r; auto.
        rewrite andb_comm; auto.
        f_equal; rewrite andb_comm; auto. }
      induction m1 using tree_ind; [|induction m2 using tree_ind].
    - intros. simpl; split; intros.
      + destruct m2; try discriminate. simpl; auto.
      + replace m2 with (@Empty A); auto. apply extensionality; intros x.
        specialize (H x). destruct (get x m2); simpl; congruence.
    - split; intros.
      + destruct (Node l o r); try discriminate. simpl; auto.
      + replace (Node l o r) with (@Empty A); auto. apply extensionality; intros x.
        specialize (H0 x). destruct (get x (Node l o r)); simpl in *; congruence.
    - rewrite beq_NN by auto. split; intros.
      + InvBooleans. rewrite ! gNode. destruct x.
        * apply IHm0; auto.
        * apply IHm1; auto.
        * auto.
      + apply andb_true_intro; split; [apply andb_true_intro; split|].
        * apply IHm1. intros. specialize (H1 (xO x)); rewrite ! gNode in H1; auto.
        * specialize (H1 xH); rewrite ! gNode in H1; auto.
        * apply IHm0. intros. specialize (H1 (xI x)); rewrite ! gNode in H1; auto.
    Qed.

    Theorem beq_correct:
      forall m1 m2,
      beq m1 m2 = true <->
      (forall (x: elt),
       match get x m1, get x m2 with
       | None, None => True
       | Some y1, Some y2 => beqA y1 y2 = true
       | _, _ => False
       end).
    Proof.
      intros. rewrite beq_correct_bool. unfold beq_optA. split; intros.
    - specialize (H x). destruct (get x m1), (get x m2); intuition congruence.
    - specialize (H x). destruct (get x m1), (get x m2); intuition auto.
    Qed.

  End BOOLEAN_EQUALITY.

(** ** Collective operations *)

  Fixpoint prev_append (i j: positive) {struct i} : positive :=
    match i with
      | xH => j
      | xI i' => prev_append i' (xI j)
      | xO i' => prev_append i' (xO j)
    end.

  Definition prev (i: positive) : positive :=
    prev_append i xH.

  Lemma prev_append_prev i j:
    prev (prev_append i j) = prev_append j i.
  Proof.
    revert j. unfold prev.
    induction i as [i IH|i IH|]. 3: reflexivity.
    intros j. simpl. rewrite IH. reflexivity.
    intros j. simpl. rewrite IH. reflexivity.
  Qed.

  Lemma prev_involutive i :
    prev (prev i) = i.
  Proof (prev_append_prev i xH).

  Lemma prev_append_inj i j j' :
    prev_append i j = prev_append i j' -> j = j'.
  Proof.
    revert j j'.
    induction i as [i Hi|i Hi|]; intros j j' H; auto;
    specialize (Hi _ _ H); congruence.
  Qed.

  Fixpoint map' {A B} (f: positive -> A -> B) (m: tree' A) (i: positive)
           {struct m} : tree' B :=
    match m with
    | Node001 r => Node001 (map' f r (xI i))
    | Node010 x => Node010 (f (prev i) x)
    | Node011 x r => Node011 (f (prev i) x) (map' f r (xI i))
    | Node100 l => Node100 (map' f l (xO i))
    | Node101 l r => Node101 (map' f l (xO i)) (map' f r (xI i))
    | Node110 l x => Node110 (map' f l (xO i)) (f (prev i) x)
    | Node111 l x r => Node111 (map' f l (xO i)) (f (prev i) x) (map' f r (xI i))
    end.

  Definition map {A B} (f: positive -> A -> B) (m: tree A) :=
    match m with
    | Empty => Empty
    | Nodes m => Nodes (map' f m xH)
    end.

  Lemma gmap':
    forall {A B} (f: positive -> A -> B) (i j : positive) (m: tree' A),
    get' i (map' f m j) = option_map (f (prev (prev_append i j))) (get' i m).
  Proof.
    induction i; intros; destruct m; simpl; auto.
  Qed.

  Theorem gmap:
    forall {A B} (f: positive -> A -> B) (i: positive) (m: t A),
    get i (map f m) = option_map (f i) (get i m).
  Proof.
    intros; destruct m as [|m]; simpl. auto. rewrite gmap'. repeat f_equal. exact (prev_involutive i).
  Qed.

  Fixpoint map1' {A B} (f: A -> B) (m: tree' A) {struct m} : tree' B :=
    match m with
    | Node001 r => Node001 (map1' f r)
    | Node010 x => Node010 (f x)
    | Node011 x r => Node011 (f x) (map1' f r)
    | Node100 l => Node100 (map1' f l)
    | Node101 l r => Node101 (map1' f l) (map1' f r)
    | Node110 l x => Node110 (map1' f l) (f x)
    | Node111 l x r => Node111 (map1' f l) (f x) (map1' f r)
    end.

  Definition map1 {A B} (f: A -> B) (m: t A) : t B :=
    match m with
    | Empty => Empty
    | Nodes m => Nodes (map1' f m)
    end.

  Theorem gmap1:
    forall {A B} (f: A -> B) (i: elt) (m: t A),
    get i (map1 f m) = option_map f (get i m).
  Proof.
    intros. destruct m as [|m]; simpl. auto.
    revert i; induction m; destruct i; simpl; auto.
  Qed.

  Definition map_filter1_nonopt {A B} (f: A -> option B) (m: tree A) : tree B :=
    tree_rec
      Empty
      (fun l lrec o r rrec => Node lrec (match o with None => None | Some a => f a end) rrec)
      m.

  Local Transparent Node.

  Definition map_filter1 :=
    Eval cbv [map_filter1_nonopt tree_rec tree_rec' Node] in @map_filter1_nonopt.

  Lemma gmap_filter1:
    forall {A B} (f: A -> option B) (m: tree A) (i: positive),
    get i (map_filter1 f m) = match get i m with None => None | Some a => f a end.
  Proof.
    change @map_filter1 with @map_filter1_nonopt. unfold map_filter1_nonopt.
    intros until f. induction m using tree_ind; intros.
  - auto.
  - rewrite unroll_tree_rec by auto. rewrite ! gNode; destruct i; auto.
  Qed.

  Definition filter1 {A} (pred: A -> bool) (m: t A) : t A :=
    map_filter1 (fun a => if pred a then Some a else None) m.

  Theorem gfilter1:
    forall {A} (pred: A -> bool) (i: elt) (m: t A),
    get i (filter1 pred m) =
    match get i m with None => None | Some x => if pred x then Some x else None end.
  Proof.
    intros. apply gmap_filter1.
  Qed. 

  Section COMBINE.

  Variables A B C: Type.
  Variable f: option A -> option B -> option C.
  Hypothesis f_none_none: f None None = None.

  Let combine_l := map_filter1 (fun a => f (Some a) None).
  Let combine_r := map_filter1 (fun b => f None (Some b)).

  Let combine_nonopt (m1: tree A) (m2: tree B) : tree C :=
    tree_rec2
      Empty
      combine_r
      combine_l
      (fun l1 o1 r1 l2 o2 r2 lrec rrec =>
        Node lrec
             (match o1, o2 with None, None => None | _, _ => f o1 o2 end)
             rrec)
      m1 m2.

  Definition combine :=
    Eval cbv [combine_nonopt tree_rec2 tree_rec2'] in combine_nonopt.

  Lemma gcombine_l: forall m i, get i (combine_l m) = f (get i m) None.
  Proof.
    intros; unfold combine_l; rewrite gmap_filter1. destruct (get i m); auto.
  Qed.

  Lemma gcombine_r: forall m i, get i (combine_r m) = f None (get i m).
  Proof.
    intros; unfold combine_r; rewrite gmap_filter1. destruct (get i m); auto.
  Qed.

  Theorem gcombine:
      forall (m1: t A) (m2: t B) (i: positive),
      get i (combine m1 m2) = f (get i m1) (get i m2).
  Proof.
    change combine with combine_nonopt.
    induction m1 using tree_ind; induction m2 using tree_ind; intros.
  - auto.
  - unfold combine_nonopt; rewrite unroll_tree_rec2_EN by auto. apply gcombine_r.
  - unfold combine_nonopt; rewrite unroll_tree_rec2_NE by auto. apply gcombine_l.
  - unfold combine_nonopt; rewrite unroll_tree_rec2_NN by auto.
    rewrite ! gNode; destruct i; auto. destruct o, o0; auto.
  Qed.

  End COMBINE.

  Theorem combine_commut:
    forall (A B: Type) (f g: option A -> option A -> option B),
    f None None = None -> g None None = None ->
    (forall (i j: option A), f i j = g j i) ->
    forall (m1 m2: t A),
    combine f m1 m2 = combine g m2 m1.
  Proof.
    intros. apply extensionality; intros i. rewrite ! gcombine by auto. auto.
  Qed.

(** ** List of all bindings *)

  Fixpoint xelements' {A} (m : tree' A) (i: positive) (k: list (positive * A))
                     {struct m} : list (positive * A) :=
    match m with
    | Node001 r => xelements' r (xI i) k
    | Node010 x => (prev i, x) :: k
    | Node011 x r => (prev i, x) :: xelements' r (xI i) k
    | Node100 l => xelements' l (xO i) k
    | Node101 l r => xelements' l (xO i) (xelements' r (xI i) k)
    | Node110 l x => xelements' l (xO i) ((prev i, x)::k)
    | Node111 l x r => xelements' l (xO i) ((prev i, x):: (xelements' r (xI i) k))
    end.

  Definition elements {A} (m : t A) : list (positive * A) := 
    match m with Empty => nil | Nodes m' => xelements' m' xH nil end.

  Definition xelements {A} (m : t A) (i: positive) : list (positive * A) := 
    match m with Empty => nil | Nodes m' => xelements' m' i nil end.

  Lemma xelements'_append:
    forall A (m: tree' A) i k1 k2,
    xelements' m i (k1 ++ k2) = xelements' m i k1 ++ k2.
  Proof.
    induction m; intros; simpl; auto.
  - f_equal; auto.
  - rewrite IHm2, IHm1. auto.
  - rewrite <- IHm. auto.
  - rewrite IHm2, <- IHm1. auto.
  Qed.

  Lemma xelements_Node:
    forall A (l: tree A) (o: option A) (r: tree A) i,
    xelements (Node l o r) i =
       xelements l (xO i)
    ++ match o with None => nil | Some v => (prev i, v) :: nil end
    ++ xelements r (xI i).
  Proof.
    Local Transparent Node.
    intros; destruct l, o, r; simpl; rewrite <- ? xelements'_append; auto.
  Qed.

  Lemma xelements_correct:
    forall A (m: tree A) i j v,
    get i m = Some v -> In (prev (prev_append i j), v) (xelements m j).
  Proof.
    intros A. induction m using tree_ind; intros.
  - discriminate.
  - rewrite xelements_Node, ! in_app. rewrite gNode in H0. destruct i.
    + right; right. apply (IHm2 i (xI j)); auto.
    + left. apply (IHm1 i (xO j)); auto.
    + right; left. subst o. rewrite prev_append_prev. auto with coqlib.
  Qed.

  Theorem elements_correct:
    forall A (m: t A) (i: positive) (v: A),
    get i m = Some v -> In (i, v) (elements m).
  Proof.
    intros A m i v H.
    generalize (xelements_correct m i xH H). rewrite prev_append_prev. auto.
  Qed.

  Lemma in_xelements:
    forall A (m: tree A) (i k: positive) (v: A) ,
    In (k, v) (xelements m i) ->
    exists j, k = prev (prev_append j i) /\ get j m = Some v.
  Proof.
    intros A. induction m using tree_ind; intros.
  - elim H.
  - rewrite xelements_Node, ! in_app in H0. destruct H0 as [P | [P | P]].
    + exploit IHm1; eauto. intros (j & Q & R). exists (xO j); rewrite gNode; auto.
    + destruct o; simpl in P; intuition auto. inv H0. exists xH; rewrite gNode; auto.
    + exploit IHm2; eauto. intros (j & Q & R). exists (xI j); rewrite gNode; auto.
  Qed.

  Theorem elements_complete:
    forall A (m: t A) (i: positive) (v: A),
    In (i, v) (elements m) -> get i m = Some v.
  Proof.
    intros A m i v H. exploit in_xelements; eauto. intros (j & P & Q).
    rewrite prev_append_prev in P. change i with (prev_append 1 i) in P.
    exploit prev_append_inj; eauto. intros; congruence.
  Qed.

  Definition xkeys {A} (m: t A) (i: positive) := List.map fst (xelements m i).

  Lemma xkeys_Node:
    forall A (m1: t A) o (m2: t A) i,
    xkeys (Node m1 o m2) i =
       xkeys m1 (xO i)
    ++ match o with None => nil | Some v => prev i :: nil end
    ++ xkeys m2 (xI i).
  Proof.
    intros. unfold xkeys. rewrite xelements_Node, ! map_app. destruct o; auto.
  Qed.

  Lemma in_xkeys:
    forall (A: Type) (m: t A) (i k: positive),
    In k (xkeys m i) ->
    (exists j, k = prev (prev_append j i)).
  Proof.
    unfold xkeys; intros.
    apply (list_in_map_inv) in H. destruct H as ((j, v) & -> & H).
    exploit in_xelements; eauto. intros (k & P & Q). exists k; auto.
  Qed.

  Lemma xelements_keys_norepet:
    forall (A: Type) (m: t A) (i: positive),
    list_norepet (xkeys m i).
  Proof.
    intros A; induction m using tree_ind; intros.
  - constructor.
  - assert (NOTIN1: ~ In (prev i) (xkeys l (xO i))).
    { red; intros. exploit in_xkeys; eauto. intros (j & EQ).
      rewrite prev_append_prev in EQ. simpl in EQ. apply prev_append_inj in EQ. discriminate. }
    assert (NOTIN2: ~ In (prev i) (xkeys r (xI i))).
    { red; intros. exploit in_xkeys; eauto. intros (j & EQ).
      rewrite prev_append_prev in EQ. simpl in EQ. apply prev_append_inj in EQ. discriminate. }
    assert (DISJ: forall x, In x (xkeys l (xO i)) -> In x (xkeys r (xI i)) -> False).
    { intros. exploit in_xkeys. eexact H0. intros (j1 & EQ1).
      exploit in_xkeys. eexact H1. intros (j2 & EQ2).
      rewrite prev_append_prev in *. simpl in *. rewrite EQ2 in EQ1. apply prev_append_inj in EQ1. discriminate. }
    rewrite xkeys_Node. apply list_norepet_append. auto.
    destruct o; simpl; auto. constructor; auto.
    red; intros. red; intros; subst y. destruct o; simpl in H1.
    destruct H1. subst x. tauto. eauto. eauto.
  Qed.

  Theorem elements_keys_norepet:
    forall A (m: t A),
    list_norepet (List.map (@fst elt A) (elements m)).
  Proof.
    intros. apply (xelements_keys_norepet m xH).
  Qed.

  Remark xelements_empty:
    forall A (m: t A) i, (forall i, get i m = None) -> xelements m i = nil.
  Proof.
    intros. replace m with (@Empty A). auto.
    apply extensionality; intros. symmetry; auto.
  Qed.

  Theorem elements_canonical_order':
    forall (A B: Type) (R: A -> B -> Prop) (m: t A) (n: t B),
    (forall i, option_rel R (get i m) (get i n)) ->
    list_forall2
      (fun i_x i_y => fst i_x = fst i_y /\ R (snd i_x) (snd i_y))
      (elements m) (elements n).
  Proof.
    intros until n.
    change (elements m) with (xelements m xH). change (elements n) with (xelements n xH).
    generalize 1%positive. revert m n.
    induction m using tree_ind; [ | induction n using tree_ind]; intros until p; intros REL.
  - replace n with (@Empty B). constructor.
    apply extensionality; intros. specialize (REL i). simpl in *. inv REL; auto.
  - replace (Node l o r) with (@Empty A). constructor.
    apply extensionality; intros. specialize (REL i). simpl in *. inv REL; auto.
  - rewrite ! xelements_Node. repeat apply list_forall2_app.
    + apply IHm. intros. specialize (REL (xO i)). rewrite ! gNode in REL; auto.
    + specialize (REL xH). rewrite ! gNode in REL. inv REL; constructor; auto using list_forall2_nil.
    + apply IHm0. intros. specialize (REL (xI i)). rewrite ! gNode in REL; auto.
  Qed.

  Theorem elements_canonical_order:
    forall (A B: Type) (R: A -> B -> Prop) (m: t A) (n: t B),
    (forall i x, get i m = Some x -> exists y, get i n = Some y /\ R x y) ->
    (forall i y, get i n = Some y -> exists x, get i m = Some x /\ R x y) ->
    list_forall2
      (fun i_x i_y => fst i_x = fst i_y /\ R (snd i_x) (snd i_y))
      (elements m) (elements n).
  Proof.
    intros. apply elements_canonical_order'.
    intros. destruct (get i m) as [x|] eqn:GM.
    exploit H; eauto. intros (y & P & Q). rewrite P; constructor; auto.
    destruct (get i n) as [y|] eqn:GN.
    exploit H0; eauto. intros (x & P & Q). congruence.
    constructor.
  Qed.

  Theorem elements_extensional:
    forall (A: Type) (m n: t A),
    (forall i, get i m = get i n) ->
    elements m = elements n.
  Proof.
    intros. replace n with m; auto. apply extensionality; auto.
  Qed.

  Lemma xelements_remove:
    forall A v (m: t A) i j,
    get i m = Some v ->
    exists l1 l2,
    xelements m j = l1 ++ (prev (prev_append i j), v) :: l2
    /\ xelements (remove i m) j = l1 ++ l2.
  Proof.
    intros A; induction m using tree_ind; intros.
  - discriminate.
  - assert (REMOVE: remove i (Node l o r) =
                    match i with
                    | xH => Node l None r
                    | xO ii => Node (remove ii l) o r
                    | xI ii => Node l o (remove ii r)
                    end).
    { destruct l, o, r, i; reflexivity. }
    rewrite gNode in H0. rewrite REMOVE. destruct i; rewrite ! xelements_Node.
    + destruct (IHm0 i (xI j) H0) as (l1 & l2 & EQ & EQ').
      exists (xelements l (xO j) ++
              match o with None => nil | Some x => (prev j, x) :: nil end ++
              l1);
      exists l2; split.
      rewrite EQ, ! app_ass. auto.
      rewrite EQ', ! app_ass. auto.
    + destruct (IHm i (xO j) H0) as (l1 & l2 & EQ & EQ').
      exists l1;
      exists (l2 ++
              match o with None => nil | Some x => (prev j, x) :: nil end ++
              xelements r (xI j));
      split.
      rewrite EQ, ! app_ass. auto.
      rewrite EQ', ! app_ass. auto.
    + subst o. exists (xelements l (xO j)); exists (xelements r (xI j)); split.
      rewrite prev_append_prev. auto.
      auto.
  Qed.

  Theorem elements_remove:
    forall A i v (m: t A),
    get i m = Some v ->
    exists l1 l2, elements m = l1 ++ (i,v) :: l2 /\ elements (remove i m) = l1 ++ l2.
  Proof.
    intros. exploit xelements_remove. eauto. instantiate (1 := xH).
    rewrite prev_append_prev. auto.
  Qed.

(** ** Folding over a tree *)

  Fixpoint fold' {A B} (f: B -> positive -> A -> B)
                 (i: positive) (m: tree' A) (v: B) {struct m} : B :=
    match m with
    | Node001 r => fold' f (xI i) r v
    | Node010 x => f v (prev i) x
    | Node011 x r => fold' f (xI i) r (f v (prev i) x)
    | Node100 l => fold' f (xO i) l v
    | Node101 l r => fold' f (xI i) r (fold' f (xO i) l v)
    | Node110 l x => f (fold' f (xO i) l v) (prev i) x
    | Node111 l x r => fold' f (xI i) r (f (fold' f (xO i) l v) (prev i) x)
    end.

  Definition fold {A B} (f: B -> positive -> A -> B) (m: t A) (v: B) :=
   match m with Empty => v | Nodes m' => fold' f xH m' v end.

  Lemma fold'_xelements':
    forall A B (f: B -> positive -> A -> B) m i v l,
    List.fold_left (fun a p => f a (fst p) (snd p)) l (fold' f i m v) =
    List.fold_left (fun a p => f a (fst p) (snd p)) (xelements' m i l) v.
  Proof.
    induction m; intros; simpl; auto.
    rewrite <- IHm1, <- IHm2; auto.
    rewrite <- IHm; auto.
    rewrite <- IHm1. simpl. rewrite <- IHm2; auto.
  Qed.

  Theorem fold_spec:
    forall A B (f: B -> positive -> A -> B) (v: B) (m: t A),
    fold f m v =
    List.fold_left (fun a p => f a (fst p) (snd p)) (elements m) v.
  Proof.
    intros. unfold fold, elements. destruct m; auto. rewrite <- fold'_xelements'. auto.
  Qed.

  Fixpoint fold1' {A B} (f: B -> A -> B) (m: tree' A) (v: B) {struct m} : B :=
    match m with
    | Node001 r => fold1' f r v
    | Node010 x => f v x
    | Node011 x r => fold1' f r (f v x)
    | Node100 l => fold1' f l v
    | Node101 l r => fold1' f r (fold1' f l v)
    | Node110 l x => f (fold1' f l v) x
    | Node111 l x r => fold1' f r (f (fold1' f l v) x)
    end.


  Definition fold1 {A B} (f: B -> A -> B) (m: t A) (v: B) : B :=
    match m with Empty => v | Nodes m' => fold1' f m' v end.

  Lemma fold1'_xelements':
    forall A B (f: B -> A -> B) m i v l,
    List.fold_left (fun a p => f a (snd p)) l (fold1' f m v) =
    List.fold_left (fun a p => f a (snd p)) (xelements' m i l) v.
  Proof.
    induction m; simpl; intros; auto.
    rewrite <- IHm1. rewrite <- IHm2. auto.
    rewrite <- IHm. auto. 
    rewrite <- IHm1. simpl. rewrite <- IHm2. auto.
  Qed.

  Theorem fold1_spec:
    forall A B (f: B -> A -> B) (v: B) (m: t A),
    fold1 f m v =
    List.fold_left (fun a p => f a (snd p)) (elements m) v.
  Proof.
    intros. destruct m as [|m]. reflexivity.
    apply fold1'_xelements' with (l := @nil (positive * A)).
  Qed.

  Local Open Scope positive.
  Lemma set_disjoint1:
    forall (A: Type)(i d : elt) (m: t A)  (x y: A),
      set (i + d) y (set i x m) = set i x (set (i + d) y m).
  Proof.
    intros.
    apply extensionality.
    intro j.
    destruct (peq j i) as [EQ_i_j | NEQ_j_i].
    - subst i.
      rewrite gss.
      rewrite gso by lia.
      apply gss.
    - rewrite (gso _ _ NEQ_j_i).
      destruct (peq j (i + d)) as [EQ | NEQ].
      + subst j.
        rewrite gss.
        rewrite gss.
        reflexivity.
      + rewrite (gso _ _ NEQ).
        rewrite (gso _ _ NEQ).
        apply (gso _ _ NEQ_j_i).
  Qed.
  
  Local Open Scope positive.
  Lemma set_disjoint:
    forall (A: Type)(i j : elt) (m: t A)  (x y: A),
      i <> j ->
      set j y (set i x m) = set i x (set j y m).
  Proof.
    intros.
    destruct (Pos.compare_spec i j) as [Heq | Hlt | Hlt].
    { congruence. }
    {
      rewrite (Pos.lt_iff_add i j) in Hlt.
      destruct Hlt as [d Hd].
      subst j.
      apply set_disjoint1.
    }
      rewrite (Pos.lt_iff_add j i) in Hlt.
      destruct Hlt as [d Hd].
      subst i.
      symmetry.
      apply set_disjoint1.
  Qed.

  Arguments empty A : simpl never.
  Arguments get {A} p m : simpl never.
  Arguments set {A} p x m : simpl never.
  Arguments remove {A} p m : simpl never.
End PTree.

(** * An implementation of maps over type [positive] *)

Module PMap <: MAP.
  Definition elt := positive.
  Definition elt_eq := peq.

  Definition t (A : Type) : Type := (A * PTree.t A)%type.

  Definition init (A : Type) (x : A) :=
    (x, PTree.empty A).

  Definition get (A : Type) (i : positive) (m : t A) :=
    match PTree.get i (snd m) with
    | Some x => x
    | None => fst m
    end.

  Definition set (A : Type) (i : positive) (x : A) (m : t A) :=
    (fst m, PTree.set i x (snd m)).

  Theorem gi:
    forall (A: Type) (i: positive) (x: A), get i (init x) = x.
  Proof.
    intros. reflexivity.
  Qed.

  Theorem gss:
    forall (A: Type) (i: positive) (x: A) (m: t A), get i (set i x m) = x.
  Proof.
    intros. unfold get. unfold set. simpl. rewrite PTree.gss. auto.
  Qed.

  Theorem gso:
    forall (A: Type) (i j: positive) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
  Proof.
    intros. unfold get. unfold set. simpl. rewrite PTree.gso; auto.
  Qed.

  Theorem gsspec:
    forall (A: Type) (i j: positive) (x: A) (m: t A),
    get i (set j x m) = if peq i j then x else get i m.
  Proof.
    intros. destruct (peq i j).
     rewrite e. apply gss. auto.
     apply gso. auto.
  Qed.

  Theorem gsident:
    forall (A: Type) (i j: positive) (m: t A),
    get j (set i (get i m) m) = get j m.
  Proof.
    intros. destruct (peq i j).
     rewrite e. rewrite gss. auto.
     rewrite gso; auto.
  Qed.

  Definition map (A B : Type) (f : A -> B) (m : t A) : t B :=
    (f (fst m), PTree.map1 f (snd m)).

  Theorem gmap:
    forall (A B: Type) (f: A -> B) (i: positive) (m: t A),
    get i (map f m) = f(get i m).
  Proof.
    intros. unfold map. unfold get. simpl. rewrite PTree.gmap1.
    unfold option_map. destruct (PTree.get i (snd m)); auto.
  Qed.

  Theorem set2:
    forall (A: Type) (i: elt) (x y: A) (m: t A),
    set i y (set i x m) = set i y m.
  Proof.
    intros. unfold set. simpl. decEq. apply PTree.set2.
  Qed.

  Local Open Scope positive.
  Lemma set_disjoint:
    forall (A: Type) (i j : elt) (x y: A) (m: t A),
      i <> j ->
      set j y (set i x m) = set i x (set j y m).
  Proof.
    intros. unfold set. decEq. apply PTree.set_disjoint. assumption.
  Qed.

End PMap.

(** * An implementation of maps over any type that injects into type [positive] *)

Module Type INDEXED_TYPE.
  Parameter t: Type.
  Parameter index: t -> positive.
  Axiom index_inj: forall (x y: t), index x = index y -> x = y.
  Parameter eq: forall (x y: t), {x = y} + {x <> y}.
End INDEXED_TYPE.

Module IMap(X: INDEXED_TYPE).

  Definition elt := X.t.
  Definition elt_eq := X.eq.
  Definition t : Type -> Type := PMap.t.
  Definition init (A: Type) (x: A) := PMap.init x.
  Definition get (A: Type) (i: X.t) (m: t A) := PMap.get (X.index i) m.
  Definition set (A: Type) (i: X.t) (v: A) (m: t A) := PMap.set (X.index i) v m.
  Definition map (A B: Type) (f: A -> B) (m: t A) : t B := PMap.map f m.

  Lemma gi:
    forall (A: Type) (x: A) (i: X.t), get i (init x) = x.
  Proof.
    intros. unfold get, init. apply PMap.gi.
  Qed.

  Lemma gss:
    forall (A: Type) (i: X.t) (x: A) (m: t A), get i (set i x m) = x.
  Proof.
    intros. unfold get, set. apply PMap.gss.
  Qed.

  Lemma gso:
    forall (A: Type) (i j: X.t) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
  Proof.
    intros. unfold get, set. apply PMap.gso.
    red. intro. apply H. apply X.index_inj; auto.
  Qed.

  Lemma gsspec:
    forall (A: Type) (i j: X.t) (x: A) (m: t A),
    get i (set j x m) = if X.eq i j then x else get i m.
  Proof.
    intros. unfold get, set.
    rewrite PMap.gsspec.
    case (X.eq i j); intro.
    subst j. rewrite peq_true. reflexivity.
    rewrite peq_false. reflexivity.
    red; intro. elim n. apply X.index_inj; auto.
  Qed.

  Lemma gmap:
    forall (A B: Type) (f: A -> B) (i: X.t) (m: t A),
    get i (map f m) = f(get i m).
  Proof.
    intros. unfold map, get. apply PMap.gmap.
  Qed.

  Lemma set2:
    forall (A: Type) (i: elt) (x y: A) (m: t A),
    set i y (set i x m) = set i y m.
  Proof.
    intros. unfold set. apply PMap.set2.
  Qed.

  Lemma set_disjoint:
    forall (A: Type) (i j : elt) (x y: A) (m: t A),
      i <> j ->
      set j y (set i x m) = set i x (set j y m).
  Proof.
    intros. unfold set. apply PMap.set_disjoint.
    intro INEQ.
    assert (i = j) by (apply X.index_inj; auto).
    auto.
  Qed.
End IMap.

Module ZIndexed.
  Definition t := Z.
  Definition index (z: Z): positive :=
    match z with
    | Z0 => xH
    | Zpos p => xO p
    | Zneg p => xI p
    end.
  Lemma index_inj: forall (x y: Z), index x = index y -> x = y.
  Proof.
    unfold index; destruct x; destruct y; intros;
    try discriminate; try reflexivity.
    congruence.
    congruence.
  Qed.
  Definition eq := zeq.
End ZIndexed.

Module ZMap := IMap(ZIndexed).

Module NIndexed.
  Definition t := N.
  Definition index (n: N): positive :=
    match n with
    | N0 => xH
    | Npos p => xO p
    end.
  Lemma index_inj: forall (x y: N), index x = index y -> x = y.
  Proof.
    unfold index; destruct x; destruct y; intros;
    try discriminate; try reflexivity.
    congruence.
  Qed.
  Lemma eq: forall (x y: N), {x = y} + {x <> y}.
  Proof.
    decide equality. apply peq.
  Qed.
End NIndexed.

Module NMap := IMap(NIndexed).

(** * An implementation of maps over any type with decidable equality *)

Module Type EQUALITY_TYPE.
  Parameter t: Type.
  Parameter eq: forall (x y: t), {x = y} + {x <> y}.
End EQUALITY_TYPE.

Module EMap(X: EQUALITY_TYPE) <: MAP.

  Definition elt := X.t.
  Definition elt_eq := X.eq.
  Definition t (A: Type) := X.t -> A.
  Definition init (A: Type) (v: A) := fun (_: X.t) => v.
  Definition get (A: Type) (x: X.t) (m: t A) := m x.
  Definition set (A: Type) (x: X.t) (v: A) (m: t A) :=
    fun (y: X.t) => if X.eq y x then v else m y.
  Lemma gi:
    forall (A: Type) (i: elt) (x: A), init x i = x.
  Proof.
    intros. reflexivity.
  Qed.
  Lemma gss:
    forall (A: Type) (i: elt) (x: A) (m: t A), (set i x m) i = x.
  Proof.
    intros. unfold set. case (X.eq i i); intro.
    reflexivity. tauto.
  Qed.
  Lemma gso:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    i <> j -> (set j x m) i = m i.
  Proof.
    intros. unfold set. case (X.eq i j); intro.
    congruence. reflexivity.
  Qed.
  Lemma gsspec:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    get i (set j x m) = if elt_eq i j then x else get i m.
  Proof.
    intros. unfold get, set, elt_eq. reflexivity.
  Qed.
  Lemma gsident:
    forall (A: Type) (i j: elt) (m: t A), get j (set i (get i m) m) = get j m.
  Proof.
    intros. unfold get, set. case (X.eq j i); intro.
    congruence. reflexivity.
  Qed.
  Definition map (A B: Type) (f: A -> B) (m: t A) :=
    fun (x: X.t) => f(m x).
  Lemma gmap:
    forall (A B: Type) (f: A -> B) (i: elt) (m: t A),
    get i (map f m) = f(get i m).
  Proof.
    intros. unfold get, map. reflexivity.
  Qed.
End EMap.

(** * A partial implementation of trees over any type that injects into type [positive] *)

Module ITree(X: INDEXED_TYPE).

  Definition elt := X.t.
  Definition elt_eq := X.eq.
  Definition t : Type -> Type := PTree.t.

  Definition empty (A: Type): t A := PTree.empty A.
  Definition get (A: Type) (k: elt) (m: t A): option A := PTree.get (X.index k) m.
  Definition set (A: Type) (k: elt) (v: A) (m: t A): t A := PTree.set (X.index k) v m.
  Definition remove (A: Type) (k: elt) (m: t A): t A := PTree.remove (X.index k) m.

  Theorem gempty:
    forall (A: Type) (i: elt), get i (empty A) = None.
  Proof.
    intros. apply PTree.gempty.
  Qed.
  Theorem gss:
    forall (A: Type) (i: elt) (x: A) (m: t A), get i (set i x m) = Some x.
  Proof.
    intros. apply PTree.gss.
  Qed.
  Theorem gso:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
  Proof.
    intros. apply PTree.gso. red; intros; elim H; apply X.index_inj; auto.
  Qed.
  Theorem gsspec:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    get i (set j x m) = if elt_eq i j then Some x else get i m.
  Proof.
    intros. destruct (elt_eq i j). subst j; apply gss. apply gso; auto.
  Qed.
  Theorem grs:
    forall (A: Type) (i: elt) (m: t A), get i (remove i m) = None.
  Proof.
    intros. apply PTree.grs.
  Qed.
  Theorem gro:
    forall (A: Type) (i j: elt) (m: t A),
    i <> j -> get i (remove j m) = get i m.
  Proof.
    intros. apply PTree.gro. red; intros; elim H; apply X.index_inj; auto.
  Qed.
  Theorem grspec:
    forall (A: Type) (i j: elt) (m: t A),
    get i (remove j m) = if elt_eq i j then None else get i m.
  Proof.
    intros. destruct (elt_eq i j). subst j; apply grs. apply gro; auto.
  Qed.

  Definition beq: forall (A: Type), (A -> A -> bool) -> t A -> t A -> bool := PTree.beq.
  Theorem beq_sound:
    forall (A: Type) (eqA: A -> A -> bool) (t1 t2: t A),
    beq eqA t1 t2 = true ->
    forall (x: elt),
     match get x t1, get x t2 with
     | None, None => True
     | Some y1, Some y2 => eqA y1 y2 = true
     | _, _ => False
    end.
  Proof.
    unfold beq, get. intros. rewrite PTree.beq_correct in H. apply H.
  Qed.

  Definition combine: forall (A B C: Type), (option A -> option B -> option C) -> t A -> t B -> t C := PTree.combine.
  Theorem gcombine:
    forall (A B C: Type) (f: option A -> option B -> option C),
    f None None = None ->
    forall (m1: t A) (m2: t B) (i: elt),
    get i (combine f m1 m2) = f (get i m1) (get i m2).
  Proof.
    intros. apply PTree.gcombine. auto.
  Qed.
End ITree.

Module ZTree := ITree(ZIndexed).

(** * Additional properties over trees *)

Require Import Equivalence EquivDec.

Module Tree_Properties(T: TREE).

(** Two induction principles over [fold]. *)

Section TREE_FOLD_IND.

Variables V A: Type.
Variable f: A -> T.elt -> V -> A.
Variable P: T.t V -> A -> Type.
Variable init: A.
Variable m_final: T.t V.

Hypothesis H_base:
  forall m,
  (forall k, T.get k m = None) ->
  P m init.

Hypothesis H_rec:
  forall m a k v,
  T.get k m = Some v -> T.get k m_final = Some v ->
  P (T.remove k m) a -> P m (f a k v).

Let f' (p : T.elt * V) (a: A) := f a (fst p) (snd p).

Let P' (l: list (T.elt * V)) (a: A) : Type :=
  forall m, (forall k v, In (k, v) l <-> T.get k m = Some v) -> P m a.

Let H_base':
  P' nil init.
Proof.
  intros m EQV. apply H_base.
  intros. destruct (T.get k m) as [v|] eqn:G; auto.
  apply EQV in G. contradiction.
Qed.

Let H_rec':
  forall k v l a,
  ~In k (List.map fst l) ->
  T.get k m_final = Some v ->
  P' l a ->
  P' ((k, v) :: l) (f a k v).
Proof.
  unfold P'; intros k v l a NOTIN FINAL HR m EQV.
  set (m0 := T.remove k m).
  apply H_rec.
- apply EQV. simpl; auto.
- auto.
- apply HR. intros k' v'. rewrite T.grspec. split; intros; destruct (T.elt_eq k' k).
  + subst k'. elim NOTIN. change k with (fst (k, v')). apply List.in_map; auto.
  + apply EQV. simpl; auto.
  + congruence.
  + apply EQV in H. simpl in H. intuition congruence.
Qed.

Lemma fold_ind_aux:
  forall l,
  (forall k v, In (k, v) l -> T.get k m_final = Some v) ->
  list_norepet (List.map fst l) ->
  P' l (List.fold_right f' init l).
Proof.
  induction l as [ | [k v] l ]; simpl; intros FINAL NOREPET.
- apply H_base'.
- apply H_rec'.
  + inv NOREPET. auto.
  + apply FINAL. auto.
  + apply IHl. auto. inv NOREPET; auto.
Defined.

Theorem fold_ind:
  P m_final (T.fold f m_final init).
Proof.
  intros.
  set (l' := List.rev (T.elements m_final)).
  assert (P' l' (List.fold_right f' init l')).
  { apply fold_ind_aux.
    intros. apply T.elements_complete. apply List.in_rev. auto.
    unfold l'; rewrite List.map_rev. apply list_norepet_rev. apply T.elements_keys_norepet. }
  unfold l', f' in X; rewrite fold_left_rev_right in X.
  rewrite T.fold_spec. apply X.
  intros; simpl. rewrite <- List.in_rev.
  split. apply T.elements_complete. apply T.elements_correct.
Defined.

End TREE_FOLD_IND.

Section TREE_FOLD_REC.

Variables V A: Type.
Variable f: A -> T.elt -> V -> A.
Variable P: T.t V -> A -> Prop.
Variable init: A.
Variable m_final: T.t V.

Hypothesis P_compat:
  forall m m' a,
  (forall x, T.get x m = T.get x m') ->
  P m a -> P m' a.

Hypothesis H_base:
  P (T.empty _) init.

Hypothesis H_rec:
  forall m a k v,
  T.get k m = None -> T.get k m_final = Some v -> P m a -> P (T.set k v m) (f a k v).

Theorem fold_rec:
  P m_final (T.fold f m_final init).
Proof.
  apply fold_ind. 
- intros. apply P_compat with (T.empty V); auto.
  + intros. rewrite T.gempty. auto.
- intros. apply P_compat with (T.set k v (T.remove k m)).
  + intros. rewrite T.gsspec, T.grspec. destruct (T.elt_eq x k); auto. congruence.
  + apply H_rec; auto. apply T.grs.
Qed.

End TREE_FOLD_REC.

(** A nonnegative measure over trees *)

Section MEASURE.

Variable V: Type.

Definition cardinal (x: T.t V) : nat := List.length (T.elements x).

Theorem cardinal_remove:
  forall x m y, T.get x m = Some y -> (cardinal (T.remove x m) < cardinal m)%nat.
Proof.
  unfold cardinal; intros.
  exploit T.elements_remove; eauto. intros (l1 & l2 & P & Q).
  rewrite P, Q. rewrite ! app_length. simpl. lia.
Qed.

Theorem cardinal_set:
  forall x m y, T.get x m = None -> (cardinal m < cardinal (T.set x y m))%nat.
Proof.
  intros. set (m' := T.set x y m).
  replace (cardinal m) with (cardinal (T.remove x m')).
  apply cardinal_remove with y. unfold m'; apply T.gss.
  unfold cardinal. f_equal. apply T.elements_extensional.
  intros. unfold m'. rewrite T.grspec, T.gsspec.
  destruct (T.elt_eq i x); auto. congruence.
Qed.

End MEASURE.

(** Forall and exists *)

Section FORALL_EXISTS.

Variable A: Type.

Definition for_all (m: T.t A) (f: T.elt -> A -> bool) : bool :=
  T.fold (fun b x a => b && f x a) m true.

Lemma for_all_correct:
  forall m f,
  for_all m f = true <-> (forall x a, T.get x m = Some a -> f x a = true).
Proof.
  intros m0 f.
  unfold for_all. apply fold_rec; intros.
- (* Extensionality *)
  rewrite H0. split; intros. rewrite <- H in H2; auto. rewrite H in H2; auto.
- (* Base case *)
  split; intros. rewrite T.gempty in H0; congruence. auto.
- (* Inductive case *)
  split; intros.
  destruct (andb_prop _ _ H2). rewrite T.gsspec in H3. destruct (T.elt_eq x k).
  inv H3. auto.
  apply H1; auto.
  apply andb_true_intro. split.
  rewrite H1. intros. apply H2. rewrite T.gso; auto. congruence.
  apply H2. apply T.gss.
Qed.

Definition exists_ (m: T.t A) (f: T.elt -> A -> bool) : bool :=
  T.fold (fun b x a => b || f x a) m false.

Lemma exists_correct:
  forall m f,
  exists_ m f = true <-> (exists x a, T.get x m = Some a /\ f x a = true).
Proof.
  intros m0 f.
  unfold exists_. apply fold_rec; intros.
- (* Extensionality *)
  rewrite H0. split; intros (x0 & a0 & P & Q); exists x0; exists a0; split; auto; congruence.
- (* Base case *)
  split; intros. congruence. destruct H as (x & a & P & Q). rewrite T.gempty in P; congruence.
- (* Inductive case *)
  split; intros.
  destruct (orb_true_elim _ _ H2).
  rewrite H1 in e. destruct e as (x1 & a1 & P & Q).
  exists x1; exists a1; split; auto. rewrite T.gso; auto. congruence.
  exists k; exists v; split; auto. apply T.gss.
  destruct H2 as (x1 & a1 & P & Q). apply orb_true_intro.
  rewrite T.gsspec in P. destruct (T.elt_eq x1 k).
  inv P. right; auto.
  left. apply H1. exists x1; exists a1; auto.
Qed.

Remark exists_for_all:
  forall m f,
  exists_ m f = negb (for_all m (fun x a => negb (f x a))).
Proof.
  intros. unfold exists_, for_all. rewrite ! T.fold_spec.
  change false with (negb true). generalize (T.elements m) true.
  induction l; simpl; intros.
  auto.
  rewrite <- IHl. f_equal.
  destruct b; destruct (f (fst a) (snd a)); reflexivity.
Qed.

Remark for_all_exists:
  forall m f,
  for_all m f = negb (exists_ m (fun x a => negb (f x a))).
Proof.
  intros. unfold exists_, for_all. rewrite ! T.fold_spec.
  change true with (negb false). generalize (T.elements m) false.
  induction l; simpl; intros.
  auto.
  rewrite <- IHl. f_equal.
  destruct b; destruct (f (fst a) (snd a)); reflexivity.
Qed.

Lemma for_all_false:
  forall m f,
  for_all m f = false <-> (exists x a, T.get x m = Some a /\ f x a = false).
Proof.
  intros. rewrite for_all_exists.
  rewrite negb_false_iff. rewrite exists_correct.
  split; intros (x & a & P & Q); exists x; exists a; split; auto.
  rewrite negb_true_iff in Q. auto.
  rewrite Q; auto.
Qed.

Lemma exists_false:
  forall m f,
  exists_ m f = false <-> (forall x a, T.get x m = Some a -> f x a = false).
Proof.
  intros. rewrite exists_for_all.
  rewrite negb_false_iff. rewrite for_all_correct.
  split; intros. apply H in H0. rewrite negb_true_iff in H0. auto. rewrite H; auto.
Qed.

End FORALL_EXISTS.

(** More about [beq] *)

Section BOOLEAN_EQUALITY.

Variable A: Type.
Variable beqA: A -> A -> bool.

Theorem beq_false:
  forall m1 m2,
  T.beq beqA m1 m2 = false <->
  exists x, match T.get x m1, T.get x m2 with
            | None, None => False
            | Some a1, Some a2 => beqA a1 a2 = false
            | _, _ => True
            end.
Proof.
  intros; split; intros.
- (* beq = false -> existence *)
  set (p1 := fun x a1 => match T.get x m2 with None => false | Some a2 => beqA a1 a2 end).
  set (p2 := fun x a2 => match T.get x m1 with None => false | Some a1 => beqA a1 a2 end).
  destruct (for_all m1 p1) eqn:F1; [destruct (for_all m2 p2) eqn:F2 | idtac].
  + cut (T.beq beqA m1 m2 = true). congruence.
    rewrite for_all_correct in *. rewrite T.beq_correct; intros.
    destruct (T.get x m1) as [a1|] eqn:X1.
    generalize (F1 _ _ X1). unfold p1. destruct (T.get x m2); congruence.
    destruct (T.get x m2) as [a2|] eqn:X2; auto.
    generalize (F2 _ _ X2). unfold p2. rewrite X1. congruence.
  + rewrite for_all_false in F2. destruct F2 as (x & a & P & Q).
    exists x. rewrite P. unfold p2 in Q. destruct (T.get x m1); auto.
  + rewrite for_all_false in F1. destruct F1 as (x & a & P & Q).
    exists x. rewrite P. unfold p1 in Q. destruct (T.get x m2); auto.
- (* existence -> beq = false *)
  destruct H as [x P].
  destruct (T.beq beqA m1 m2) eqn:E; auto.
  rewrite T.beq_correct in E.
  generalize (E x). destruct (T.get x m1); destruct (T.get x m2); tauto || congruence.
Qed.

End BOOLEAN_EQUALITY.

(** Extensional equality between trees *)

Section EXTENSIONAL_EQUALITY.

Variable A: Type.
Variable eqA: A -> A -> Prop.
Hypothesis eqAeq: Equivalence eqA.

Definition Equal (m1 m2: T.t A) : Prop :=
  forall x, match T.get x m1, T.get x m2 with
                | None, None => True
                | Some a1, Some a2 => a1 === a2
                | _, _ => False
            end.

Lemma Equal_refl: forall m, Equal m m.
Proof.
  intros; red; intros. destruct (T.get x m); auto. reflexivity.
Qed.

Lemma Equal_sym: forall m1 m2, Equal m1 m2 -> Equal m2 m1.
Proof.
  intros; red; intros. generalize (H x). destruct (T.get x m1); destruct (T.get x m2); auto. intros; symmetry; auto.
Qed.

Lemma Equal_trans: forall m1 m2 m3, Equal m1 m2 -> Equal m2 m3 -> Equal m1 m3.
Proof.
  intros; red; intros. generalize (H x) (H0 x).
  destruct (T.get x m1); destruct (T.get x m2); try tauto;
  destruct (T.get x m3); try tauto.
  intros. transitivity a0; auto.
Qed.

Global Instance Equal_Equivalence : Equivalence Equal := {
  Equivalence_Reflexive := Equal_refl;
  Equivalence_Symmetric := Equal_sym;
  Equivalence_Transitive := Equal_trans
}.

Hypothesis eqAdec: EqDec A eqA.

Program Definition Equal_dec (m1 m2: T.t A) : { m1 === m2 } + { m1 =/= m2 } :=
  match T.beq (fun a1 a2 => proj_sumbool (a1 == a2)) m1 m2 with
  | true => left _
  | false => right _
  end.
Next Obligation.
  rename Heq_anonymous into B.
  symmetry in B. rewrite T.beq_correct in B.
  red; intros. generalize (B x).
  destruct (T.get x m1); destruct (T.get x m2); auto.
  intros. eapply proj_sumbool_true; eauto.
Qed.
Next Obligation.
  assert (T.beq (fun a1 a2 => proj_sumbool (a1 == a2)) m1 m2 = true).
  apply T.beq_correct; intros.
  generalize (H x).
  destruct (T.get x m1); destruct (T.get x m2); try tauto.
  intros. apply proj_sumbool_is_true; auto.
  unfold equiv, complement in H0. congruence.
Qed.

Global Instance Equal_EqDec : EqDec (T.t A) Equal := Equal_dec.

End EXTENSIONAL_EQUALITY.

(** Creating a tree from a list of (key, value) pairs. *)

Section OF_LIST.

Variable A: Type.

Let f := fun (m: T.t A) (k_v: T.elt * A) => T.set (fst k_v) (snd k_v) m.

Definition of_list (l: list (T.elt * A)) : T.t A :=
  List.fold_left f l (T.empty _).

Lemma in_of_list:
  forall l k v, T.get k (of_list l) = Some v -> In (k, v) l.
Proof.
  assert (REC: forall k v l m,
           T.get k (fold_left f l m) = Some v -> In (k, v) l \/ T.get k m = Some v).
  { induction l as [ | [k1 v1] l]; simpl; intros.
  - tauto.
  - apply IHl in H. unfold f in H. simpl in H. rewrite T.gsspec in H.
    destruct H; auto.
    destruct (T.elt_eq k k1). inv H. auto. auto.
  }
  intros. apply REC in H. rewrite T.gempty in H. intuition congruence.
Qed.

Lemma of_list_dom:
  forall l k, In k (map fst l) -> exists v, T.get k (of_list l) = Some v.
Proof.
  assert (REC: forall k l m,
            In k (map fst l) \/ (exists v, T.get k m = Some v) ->
            exists v, T.get k (fold_left f l m) = Some v).
  { induction l as [ | [k1 v1] l]; simpl; intros.
  - tauto.
  - apply IHl. unfold f; rewrite T.gsspec. simpl. destruct (T.elt_eq k k1).
    right; econstructor; eauto.
    intuition congruence.
  }
  intros. apply REC. auto.
Qed.

Remark of_list_unchanged:
  forall k l m, ~In k (map fst l) -> T.get k (List.fold_left f l m) = T.get k m.
Proof.
  induction l as [ | [k1 v1] l]; simpl; intros.
- auto.
- rewrite IHl by tauto. unfold f; apply T.gso; intuition auto.
Qed.

Lemma of_list_unique:
  forall k v l1 l2,
  ~In k (map fst l2) -> T.get k (of_list (l1 ++ (k, v) :: l2)) = Some v.
Proof.
  intros. unfold of_list. rewrite fold_left_app. simpl.
  rewrite of_list_unchanged by auto. unfold f; apply T.gss.
Qed.

Lemma of_list_norepet:
  forall l k v, list_norepet (map fst l) -> In (k, v) l -> T.get k (of_list l) = Some v.
Proof.
  assert (REC: forall k v l m,
            list_norepet (map fst l) ->
            In (k, v) l ->
            T.get k (fold_left f l m) = Some v).
  { induction l as [ | [k1 v1] l]; simpl; intros.
    contradiction.
    inv H. destruct H0.
    inv H. rewrite of_list_unchanged by auto. apply T.gss.
    apply IHl; auto.
  }
  intros; apply REC; auto.
Qed.

Lemma of_list_elements:
  forall m k, T.get k (of_list (T.elements m)) = T.get k m.
Proof.
  intros. destruct (T.get k m) as [v|] eqn:M.
- apply of_list_norepet. apply T.elements_keys_norepet. apply T.elements_correct; auto.
- destruct (T.get k (of_list (T.elements m))) as [v|] eqn:M'; auto.
  apply in_of_list in M'. apply T.elements_complete in M'. congruence.
Qed.

End OF_LIST.

Lemma of_list_related:
  forall (A B: Type) (R: A -> B -> Prop) k l1 l2,
  list_forall2 (fun ka kb => fst ka = fst kb /\ R (snd ka) (snd kb)) l1 l2 ->
  option_rel R (T.get k (of_list l1)) (T.get k (of_list l2)).
Proof.
  intros until k. unfold of_list.
  set (R' := fun ka kb => fst ka = fst kb /\ R (snd ka) (snd kb)).
  set (fa := fun (m : T.t A) (k_v : T.elt * A) => T.set (fst k_v) (snd k_v) m).
  set (fb := fun (m : T.t B) (k_v : T.elt * B) => T.set (fst k_v) (snd k_v) m).
  assert (REC: forall l1 l2, list_forall2 R' l1 l2 ->
               forall m1 m2, option_rel R (T.get k m1) (T.get k m2) ->
               option_rel R (T.get k (fold_left fa l1 m1)) (T.get k (fold_left fb l2 m2))).
  { induction 1; intros; simpl.
  - auto.
  - apply IHlist_forall2. unfold fa, fb. rewrite ! T.gsspec.
    destruct H as [E F]. rewrite E. destruct (T.elt_eq k (fst b1)).
    constructor; auto.
    auto. }
  intros. apply REC; auto. rewrite ! T.gempty. constructor.
Qed.

End Tree_Properties.

Module PTree_Properties := Tree_Properties(PTree).

(** * Useful notations *)

Notation "a ! b" := (PTree.get b a) (at level 1).
Notation "a !! b" := (PMap.get b a) (at level 1).