aboutsummaryrefslogtreecommitdiffstats
path: root/mppa_k1c/abstractbb/AbstractBasicBlocksDef.v
blob: 21e7bd989d344f55b9747e5d4863810252f37517 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
(** Syntax and Sequential Semantics of Abstract Basic Blocks.
*)


Module Type ResourceNames.

Parameter t: Type.

Parameter eq_dec: forall (x y: t), { x = y } + { x<>y }.

End ResourceNames.


(** * Parameters of the language of Basic Blocks *)
Module Type LangParam.

Declare Module R: ResourceNames.

Parameter value: Type.

(** Declare the type of operations *)

Parameter op: Type. (* type of operations *)

Parameter genv: Type. (* environment to be used for evaluating an op *)

(* NB: possible generalization
 - relation after/before.
*)
Parameter op_eval: genv -> op -> list value -> option value.

End LangParam.



(** * Syntax and (sequential) semantics of "basic blocks" *)
Module MkSeqLanguage(P: LangParam).

Export P.

Local Open Scope list.

Section SEQLANG.

Variable ge: genv.

Definition mem := R.t -> value.

Definition assign (m: mem) (x:R.t) (v: value): mem 
  := fun y => if R.eq_dec x y then v else m y.

Inductive exp :=
  | Name (x:R.t)
  | Op (o:op) (le: list_exp)
  | Old (e: exp)
with list_exp :=
  | Enil
  | Econs (e:exp) (le:list_exp)
  | LOld (le: list_exp)
  .

Fixpoint exp_eval (e: exp) (m old: mem): option value :=
  match e with
  | Name x => Some (m x)
  | Op o le => 
     match list_exp_eval le m old with
     | Some lv => op_eval ge o lv
     | _ => None
     end
  | Old e => exp_eval e old old
  end
with list_exp_eval (le: list_exp) (m old: mem): option (list value) :=
  match le with
  | Enil => Some nil
  | Econs e le' =>
     match exp_eval e m old, list_exp_eval le' m old with
     | Some v, Some lv => Some (v::lv)
     | _, _ => None
     end
  | LOld le => list_exp_eval le old old
  end.

Definition macro := list (R.t * exp). (* = a sequence of assignments *) 

Fixpoint macro_run (i: macro) (m old: mem): option mem :=
  match i with
  | nil => Some m
  | (x, e)::i' =>
     match exp_eval e m old with
     | Some v' => macro_run i' (assign m x v') old
     | None => None
     end
  end.

Definition bblock := list macro.

Fixpoint run (p: bblock) (m: mem): option mem :=
  match p with
  | nil => Some m
  | i::p' =>
     match macro_run i m m with
     | Some m' => run p' m'
     | None => None
     end
  end.

(* A few useful lemma *)
Lemma assign_eq m x v:
  (assign m x v) x = v.
Proof.
  unfold assign. destruct (R.eq_dec x x); try congruence.
Qed.

Lemma assign_diff m x y v:
  x<>y -> (assign m x v) y = m y.
Proof.
  unfold assign. destruct (R.eq_dec x y); try congruence.
Qed.

Lemma assign_skips m x y:
  (assign m x (m x)) y = m y.
Proof.
  unfold assign. destruct (R.eq_dec x y); try congruence.
Qed.

Lemma assign_swap m x1 v1 x2 v2 y:
 x1 <> x2 -> (assign (assign m x1 v1) x2 v2) y = (assign (assign m x2 v2) x1 v1) y.
Proof.
  intros; destruct (R.eq_dec x2 y).
  - subst. rewrite assign_eq, assign_diff; auto. rewrite assign_eq; auto.
  - rewrite assign_diff; auto. 
    destruct (R.eq_dec x1 y).
    + subst; rewrite! assign_eq. auto.
    + rewrite! assign_diff; auto. 
Qed.


(** A small theory of bblockram equality *)

(* equalities on bblockram outputs *)
Definition res_eq (om1 om2: option mem): Prop :=
  match om1 with
  | Some m1 => exists m2, om2 = Some m2 /\ forall x, m1 x = m2 x 
  | None => om2 = None
  end.

Scheme exp_mut := Induction for exp Sort Prop
with list_exp_mut := Induction for list_exp Sort Prop.

Lemma exp_equiv e old1 old2:
  (forall x, old1 x = old2 x) ->
  forall m1 m2, (forall x, m1 x = m2 x) -> 
   (exp_eval e m1 old1) = (exp_eval e m2 old2).
Proof.
  intros H1.
  induction e using exp_mut with (P0:=fun l =>  forall m1 m2, (forall x, m1 x = m2 x) -> list_exp_eval l m1 old1 = list_exp_eval l m2 old2); simpl; try congruence; auto.
  - intros; erewrite IHe; eauto.
  - intros; erewrite IHe, IHe0; auto.
Qed.

Definition bblock_equiv (p1 p2: bblock): Prop
  := forall m, res_eq (run p1 m) (run p2 m).

Lemma alt_macro_equiv_refl i old1 old2: 
  (forall x, old1 x = old2 x) ->
  forall m1 m2, (forall x, m1 x = m2 x) -> 
  res_eq (macro_run i m1 old1) (macro_run i m2 old2).
Proof.
  intro H; induction i as [ | [x e]]; simpl; eauto.
  intros m1 m2 H1. erewrite exp_equiv; eauto.
  destruct (exp_eval e m2 old2); simpl; auto.
  apply IHi.
  unfold assign; intro y. destruct (R.eq_dec x y); auto. 
Qed.

Lemma alt_bblock_equiv_refl p: forall m1 m2, (forall x, m1 x = m2 x) -> res_eq (run p m1) (run p m2).
Proof.
  induction p as [ | i p']; simpl; eauto.
  intros m1 m2 H; lapply (alt_macro_equiv_refl i m1 m2); auto.
  intros X; lapply (X m1 m2); auto; clear X.
  destruct (macro_run i m1 m1); simpl.
  - intros [m3 [H1 H2]]; rewrite H1; simpl; auto.
  - intros H1; rewrite H1; simpl; auto.
Qed.

Lemma res_eq_sym om1 om2: res_eq om1 om2 -> res_eq om2 om1.
Proof.
  destruct om1; simpl.
  - intros [m2 [H1 H2]]; subst; simpl. eauto.
  - intros; subst; simpl; eauto.
Qed.

Lemma res_eq_trans (om1 om2 om3: option mem): 
  (res_eq om1 om2) -> (res_eq om2 om3) -> (res_eq om1 om3).
Proof.
  destruct om1; simpl.
  - intros [m2 [H1 H2]]; subst; simpl.
    intros [m3 [H3 H4]]; subst; simpl.
    eapply ex_intro; intuition eauto. rewrite H2; auto.
  - intro; subst; simpl; auto.
Qed.

Lemma bblock_equiv_alt p1 p2: bblock_equiv p1 p2 <-> (forall m1 m2,  (forall x, m1 x = m2 x) -> res_eq (run p1 m1) (run p2 m2)).
Proof.
  unfold bblock_equiv; intuition.
  intros; eapply res_eq_trans. eapply alt_bblock_equiv_refl; eauto.
  eauto.
Qed.
 
End SEQLANG.

End MkSeqLanguage.


Module Type SeqLanguage.

Declare Module LP: LangParam.

Include MkSeqLanguage LP.

End SeqLanguage.