aboutsummaryrefslogtreecommitdiffstats
path: root/mppa_k1c/abstractbb/ImpDep.v
blob: eebf396d3cacb96478cfe2ffde29146747edbd9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
(** Dependency Graph of Abstract Basic Blocks

using imperative hash-consing technique in order to get a linear equivalence test.

*)

Require Export Impure.ImpHCons.
Export Notations.

Require Export DepTreeTheory.

Require Import PArith.


Local Open Scope impure.

Import ListNotations.
Local Open Scope list_scope.


Module Type ImpParam.

Include LangParam.

Parameter op_eq: op -> op -> ?? bool.

Parameter op_eq_correct: forall o1 o2, 
 WHEN op_eq o1 o2 ~> b THEN
  b=true -> o1 = o2.

End ImpParam.


Module Type ISeqLanguage.

Declare Module LP: ImpParam.

Include MkSeqLanguage LP.

End ISeqLanguage.


Module Type ImpDict.

Include PseudoRegDictionary.

Parameter eq_test: forall {A}, t A -> t A -> ?? bool.

Parameter eq_test_correct: forall A (d1 d2: t A),
 WHEN eq_test d1 d2 ~> b THEN
  b=true -> forall x, get d1 x = get d2 x.

(* NB: we could also take an eq_test on R.t (but not really useful with "pure" dictionaries  *)


(* only for debugging *)
Parameter not_eq_witness: forall {A}, t A -> t A -> ?? option R.t.

End ImpDict.

Module ImpDepTree (L: ISeqLanguage) (Dict: ImpDict with Module R:=L.LP.R).

Module DT := DepTree L Dict.

Import DT.

Section CanonBuilding.

Variable hC_tree: pre_hashV tree -> ?? hashV tree.
Hypothesis hC_tree_correct: forall t, WHEN hC_tree t ~> t' THEN pre_data t=data t'.

Variable hC_list_tree: pre_hashV list_tree -> ?? hashV list_tree.
Hypothesis hC_list_tree_correct: forall t, WHEN hC_list_tree t ~> t' THEN pre_data t=data t'.

(* First, we wrap constructors for hashed values !*)

Local Open Scope positive.
Local Open Scope list_scope.

Definition hTname (x:R.t) (debug: option pstring): ?? hashV tree :=
   DO hc <~ hash 1;;
   DO hv <~ hash x;;
   hC_tree {| pre_data:=Tname x; hcodes :=[hc;hv]; debug_info := debug |}.

Lemma hTname_correct x dbg: 
  WHEN hTname x dbg ~> t THEN (data t)=(Tname x).
Proof.
  wlp_simplify.
Qed.
Global Opaque hTname.
Hint Resolve hTname_correct: wlp.

Definition hTop (o:op) (l: hashV list_tree) (debug: option pstring) : ?? hashV tree :=
   DO hc <~ hash 2;; 
   DO hv <~ hash o;;
   hC_tree {| pre_data:=Top o (data l); 
              hcodes:=[hc;hv;hid l]; 
              debug_info := debug  |}.

Lemma hTop_correct o l dbg : 
  WHEN hTop o l dbg ~> t THEN (data t)=(Top o (data l)).
Proof.
  wlp_simplify.
Qed.
Global Opaque hTop.
Hint Resolve hTop_correct: wlp.

Definition hTnil (_: unit): ?? hashV list_tree :=
   hC_list_tree {| pre_data:=Tnil; hcodes := nil; debug_info := None |} .

Lemma hTnil_correct x: 
  WHEN hTnil x ~> l THEN (data l)=Tnil.
Proof.
  wlp_simplify.
Qed.
Global Opaque hTnil.
Hint Resolve hTnil_correct: wlp.


Definition hTcons (t: hashV tree) (l: hashV list_tree): ?? hashV list_tree :=
   hC_list_tree {| pre_data:=Tcons (data t) (data l); hcodes := [hid t; hid l]; debug_info := None |}.

Lemma hTcons_correct t l: 
  WHEN hTcons t l ~> l' THEN (data l')=Tcons (data t) (data l).
Proof.
  wlp_simplify.
Qed.
Global Opaque hTcons.
Hint Resolve hTcons_correct: wlp.

(* Second, we use these hashed constructors ! *)


Record hdeps:= {hpre: list (hashV tree); hpost: Dict.t (hashV tree)}.

Coercion hpost: hdeps >-> Dict.t.

(* pseudo deps_get *)
Definition pdeps_get (d:Dict.t (hashV tree)) x : tree := 
   match Dict.get d x with 
   | None => Tname x
   | Some t => (data t)
   end.

Definition hdeps_get (d:hdeps) x dbg : ?? hashV tree := 
   match Dict.get d x with 
   | None => hTname x dbg
   | Some t => RET t
   end.

Lemma hdeps_get_correct (d:hdeps) x dbg:
  WHEN hdeps_get d x dbg ~> t THEN (data t) = pdeps_get d x.
Proof.
  unfold hdeps_get, pdeps_get; destruct (Dict.get d x); wlp_simplify.
Qed.
Global Opaque hdeps_get.
Hint Resolve hdeps_get_correct: wlp.

Definition hdeps_valid ge (hd:hdeps) m := forall ht, List.In ht hd.(hpre) -> tree_eval ge (data ht) m <> None.


Definition deps_model ge (d: deps) (hd:hdeps): Prop :=
  (forall m, hdeps_valid ge hd m <-> valid ge d m) 
  /\ (forall m x, valid ge d m -> tree_eval ge (pdeps_get hd x) m = (deps_eval ge d x m)).

Lemma deps_model_valid_alt ge d hd: deps_model ge d hd -> 
 forall m x, valid ge d m -> tree_eval ge (pdeps_get hd x) m <> None.
Proof.
  intros (H1 & H2) m x H. rewrite H2; auto.
  unfold valid in H. intuition eauto.
Qed.

Lemma deps_model_hdeps_valid_alt ge d hd: deps_model ge d hd -> 
 forall m x, hdeps_valid ge hd m -> tree_eval ge (pdeps_get hd x) m <> None.
Proof.
  intros (H1 & H2) m x H. eapply deps_model_valid_alt.
  - split; eauto.
  - rewrite <- H1; auto.
Qed.

Fixpoint hexp_tree (e: exp) (d od: hdeps) (dbg: option pstring) : ?? hashV tree :=
  match e with
  | PReg x => hdeps_get d x dbg
  | Op o le =>
     DO lt <~ hlist_exp_tree le d od;; 
     hTop o lt dbg
  | Old e => hexp_tree e od od dbg
  end
with hlist_exp_tree (le: list_exp) (d od: hdeps): ?? hashV list_tree :=
  match le with
  | Enil => hTnil tt
  | Econs e le' => 
     DO t <~ hexp_tree e d od None;;
     DO lt <~ hlist_exp_tree le' d od;;
     hTcons t lt
  | LOld le => hlist_exp_tree le od od
  end.

Lemma hexp_tree_correct_x ge e hod od:
  deps_model ge od hod ->
 forall hd d dbg,
  deps_model ge d hd ->
  WHEN hexp_tree e hd hod dbg ~> t THEN forall m, valid ge d m -> valid ge od m -> tree_eval ge (data t) m = tree_eval ge (exp_tree e d od) m.
Proof.
  intro H.
  induction e using exp_mut with (P0:=fun le =>  forall d hd,
     deps_model ge d hd ->
     WHEN hlist_exp_tree le hd hod ~> lt THEN forall m, valid ge d m -> valid ge od m -> list_tree_eval ge (data lt) m = list_tree_eval ge (list_exp_tree le d od) m); 
     unfold deps_model, deps_eval in * |- * ; simpl; wlp_simplify.
  - rewrite H1, H4; auto.
  - rewrite H4, <- H0; simpl; auto.
  - rewrite H1; simpl; auto.
  - rewrite H5, <- H0, <- H4; simpl; auto.
Qed.
Global Opaque hexp_tree.

Lemma hexp_tree_correct e hd hod dbg:
  WHEN hexp_tree e hd hod dbg ~> t THEN forall ge od d m, deps_model ge od hod -> deps_model ge d hd -> valid ge d m -> valid ge od m -> tree_eval ge (data t) m = tree_eval ge (exp_tree e d od) m.
Proof.
  unfold wlp; intros; eapply hexp_tree_correct_x; eauto.
Qed.
Hint Resolve hexp_tree_correct: wlp.

Definition failsafe (t: tree): bool :=
  match t with
  | Tname x => true
  | Top o Tnil => is_constant o
  | _ => false
  end.

Local Hint Resolve is_constant_correct.

Lemma failsafe_correct ge (t: tree) m: failsafe t = true -> tree_eval ge t m <> None.
Proof.
  destruct t; simpl; try congruence.
  destruct l; simpl; try congruence.
  eauto.
Qed.
Local Hint Resolve failsafe_correct.

Definition naive_set (hd:hdeps) x (t:hashV tree) := 
  {| hpre:= t::hd.(hpre); hpost:=Dict.set hd x t |}.

Lemma naive_set_correct hd x ht ge d t:
    deps_model ge d hd ->
    (forall m, valid ge d m -> tree_eval ge (data ht) m = tree_eval ge t m) ->
    deps_model ge (deps_set d x t) (naive_set hd x ht).
Proof.
  unfold naive_set; intros (DM0 & DM1) EQT; split.
  - intros m.
    destruct (DM0 m) as (PRE & VALID0); clear DM0.
    assert (VALID1: hdeps_valid ge hd m -> pre d ge m). { unfold valid in PRE; tauto. }
    assert (VALID2: hdeps_valid ge hd m -> forall x : Dict.R.t, deps_eval ge d x m <> None). { unfold valid in PRE; tauto. }
    unfold hdeps_valid in * |- *; simpl.
    intuition (subst; eauto).
    + eapply valid_set_proof; eauto.
      erewrite <- EQT; eauto.
    + exploit valid_set_decompose_1; eauto.
      intros X1; exploit valid_set_decompose_2; eauto.
      rewrite <- EQT; eauto.
    + exploit valid_set_decompose_1; eauto.
  - clear DM0. unfold deps_eval, pdeps_get, deps_get in * |- *; simpl.
    Local Hint Resolve valid_set_decompose_1.
    intros; case (R.eq_dec x x0).
    + intros; subst; rewrite !Dict.set_spec_eq; simpl; eauto.
    + intros; rewrite !Dict.set_spec_diff; simpl; eauto.
Qed.
Local Hint Resolve naive_set_correct.

Definition equiv_hdeps ge (hd1 hd2: hdeps) := 
      (forall m, hdeps_valid ge hd1 m <-> hdeps_valid ge hd2 m)
   /\ (forall m x, hdeps_valid ge hd1 m -> tree_eval ge (pdeps_get hd1 x) m = tree_eval ge (pdeps_get hd2 x) m).

Lemma equiv_deps_symmetry ge hd1 hd2:
  equiv_hdeps ge hd1 hd2 -> equiv_hdeps ge hd2 hd1.
Proof.
  intros (V1 & P1); split.
  - intros; symmetry; auto.
  - intros; symmetry; eapply P1. rewrite V1; auto.
Qed.

Lemma equiv_hdeps_models ge hd1 hd2 d: 
   deps_model ge d hd1 -> equiv_hdeps ge hd1 hd2 -> deps_model ge d hd2.
Proof.
  intros (VALID & EQUIV) (HEQUIV & PEQUIV); split.
  - intros m; rewrite <- VALID; auto. symmetry; auto.
  - intros m x H. rewrite <- EQUIV; auto. 
    rewrite PEQUIV; auto.
    rewrite VALID; auto.
Qed.

Definition hdeps_set (hd:hdeps) x (t:hashV tree) :=
     DO ot <~ hdeps_get hd x None;;
     DO b <~ phys_eq ot t;;
     if b then
        RET hd
     else
        RET {| hpre:= if failsafe (data t) then hd.(hpre) else t::hd.(hpre);
               hpost:=Dict.set hd x t |}.

Lemma hdeps_set_correct hd x ht:
  WHEN hdeps_set hd x ht ~> nhd THEN
    forall ge d t, deps_model ge d hd ->
    (forall m, valid ge d m -> tree_eval ge (data ht) m = tree_eval ge t m) ->
    deps_model ge (deps_set d x t) nhd.
Proof.
  intros; wlp_simplify; eapply equiv_hdeps_models; eauto; unfold equiv_hdeps, hdeps_valid; simpl.
  + split; eauto.
    * intros m; split.
      - intros X1 ht0 X2; apply X1; auto.
      - intros X1 ht0 [Y1 | Y1]. subst.
        rewrite H; eapply deps_model_hdeps_valid_alt; eauto.
        eauto.
    * intros m x0 X1. case (R.eq_dec x x0).
      - intros; subst. unfold pdeps_get at 1. rewrite Dict.set_spec_eq. congruence.
      - intros; unfold pdeps_get; rewrite Dict.set_spec_diff; auto.
  + split; eauto. intros m.
    generalize (failsafe_correct ge (data ht) m); intros FAILSAFE.
    destruct (failsafe _); simpl; intuition (subst; eauto).
Qed.
Local Hint Resolve hdeps_set_correct: wlp.
Global Opaque hdeps_set.

Variable debug_assign: R.t -> ?? option pstring.

Fixpoint hinst_deps (i: inst) (d od: hdeps): ?? hdeps :=
  match i with
  | nil => RET d
  | (x, e)::i' =>
     DO dbg <~ debug_assign x;;
     DO ht <~ hexp_tree e d od dbg;;
     DO nd <~ hdeps_set d x ht;;
     hinst_deps i' nd od
  end.


Lemma hinst_deps_correct i: forall hd hod,
  WHEN hinst_deps i hd hod ~> hd' THEN
    forall ge od d, deps_model ge od hod -> deps_model ge d hd -> (forall m, valid ge d m -> valid ge od m) -> deps_model ge (inst_deps i d od) hd'.
Proof.
  Local Hint Resolve valid_set_proof.
  induction i; simpl; wlp_simplify; eauto 20.
Qed.
Global Opaque hinst_deps.
Local Hint Resolve hinst_deps_correct: wlp.

(* logging info: we log the number of inst-instructions passed ! *)
Variable log: unit -> ?? unit. 

Fixpoint hbblock_deps_rec (p: bblock) (d: hdeps): ?? hdeps :=
  match p with
  | nil => RET d
  | i::p' =>
     log tt;;
     DO d' <~ hinst_deps i d d;;
     hbblock_deps_rec p' d'
  end.

Lemma hbblock_deps_rec_correct p: forall hd,
  WHEN hbblock_deps_rec p hd ~> hd' THEN forall ge d, deps_model ge d hd -> deps_model ge (bblock_deps_rec p d) hd'.
Proof.
  induction p; simpl; wlp_simplify.
Qed.
Global Opaque hbblock_deps_rec.
Local Hint Resolve hbblock_deps_rec_correct: wlp.


Definition hbblock_deps: bblock -> ?? hdeps
 := fun p => hbblock_deps_rec p {| hpre:= nil ; hpost := Dict.empty |}.

Lemma hbblock_deps_correct p:
  WHEN hbblock_deps p ~> hd THEN forall ge, deps_model ge (bblock_deps p) hd.
Proof.
  unfold bblock_deps; wlp_simplify. eapply H. clear H.
  unfold deps_model, valid, pdeps_get, hdeps_valid, deps_eval, deps_get; simpl; intuition;
  rewrite !Dict.empty_spec in * |- *; simpl in * |- *; try congruence.
Qed.
Global Opaque hbblock_deps.

End CanonBuilding.

(* Now, we build the hash-Cons value from a "hash_eq".

Informal specification: 
  [hash_eq] must be consistent with the "hashed" constructors defined above.

We expect that pre_hashV values in the code of these "hashed" constructors verify:

  (hash_eq (pre_data x) (pre_data y) ~> true) <-> (hcodes x)=(hcodes y)    

*)

Definition tree_hash_eq (ta tb: tree): ?? bool := 
  match ta, tb with
  | Tname xa, Tname xb =>
     if R.eq_dec xa xb  (* Inefficient in some cases ? *)
     then RET true
     else RET false
  | Top oa lta, Top ob ltb => 
     DO b <~ op_eq oa ob ;;
     if b then phys_eq lta ltb
     else RET false
  | _,_ => RET false
  end.

Local Hint Resolve op_eq_correct: wlp.

Lemma tree_hash_eq_correct: forall ta tb, WHEN tree_hash_eq ta tb ~> b THEN b=true -> ta=tb.
Proof.
  destruct ta, tb; wlp_simplify; (discriminate || (subst; auto)).
Qed.
Global Opaque tree_hash_eq.
Hint Resolve tree_hash_eq_correct: wlp.

Definition list_tree_hash_eq (lta ltb: list_tree): ?? bool := 
  match lta, ltb with
  | Tnil, Tnil => RET true
  | Tcons ta lta, Tcons tb ltb => 
      DO b <~ phys_eq ta tb ;;
     if b then phys_eq lta ltb
     else RET false
  | _,_ => RET false
  end.

Lemma list_tree_hash_eq_correct: forall lta ltb, WHEN list_tree_hash_eq lta ltb ~> b THEN b=true -> lta=ltb.
Proof.
  destruct lta, ltb; wlp_simplify; (discriminate || (subst; auto)).
Qed.
Global Opaque list_tree_hash_eq.
Hint Resolve list_tree_hash_eq_correct: wlp.

Lemma pdeps_get_intro (d1 d2: hdeps):
  (forall x, Dict.get d1 x = Dict.get d2 x) -> (forall x, pdeps_get d1 x = pdeps_get d2 x).
Proof.
  unfold pdeps_get; intros H x; rewrite H. destruct (Dict.get d2 x); auto.
Qed.

Local Hint Resolve hbblock_deps_correct Dict.eq_test_correct: wlp.

(* TODO: 
  A REVOIR pour que Dict.test_eq qui soit insensible aux infos de debug !
  (cf. definition ci-dessous).
  Il faut pour généraliser hash_params sur des Setoid (et les Dict aussi, avec ListSetoid, etc)... 
 *)
Program Definition mk_hash_params (log: hashV tree -> ?? unit): Dict.hash_params (hashV tree) :=
 {| (* Dict.test_eq := fun (ht1 ht2: hashV tree) => phys_eq (data ht1) (data ht2); *)
    Dict.test_eq := phys_eq;
    Dict.hashing := fun (ht: hashV tree) => RET (hid ht);
    Dict.log := log |}.
Obligation 1.
  eauto with wlp.
Qed.

(*** A GENERIC EQ_TEST: IN ORDER TO SUPPORT SEVERAL DEBUGGING MODE !!! ***)

Section Prog_Eq_Gen.

Variable dbg1: R.t -> ?? option pstring. (* debugging of p1 insts *)
Variable dbg2: R.t -> ?? option pstring. (* log of p2 insts *)
Variable log1: unit -> ?? unit. (* log of p1 insts *)
Variable log2: unit -> ?? unit. (* log of p2 insts *)

Variable hco_tree: hashConsing tree.
Hypothesis hco_tree_correct: hCons_spec hco_tree.
Variable hco_list: hashConsing list_tree.
Hypothesis hco_list_correct: hCons_spec hco_list.

Variable print_error_end: hdeps -> hdeps -> ?? unit.
Variable print_error: pstring -> ?? unit.

Variable check_failpreserv: bool.
Variable dbg_failpreserv: hashV tree -> ?? unit. (* info of additional failure of the output bbloc p2 wrt the input bbloc p1 *) 

Program Definition g_bblock_simu_test (p1 p2: bblock): ?? bool :=
  DO failure_in_failpreserv <~ make_cref false;;
  DO r <~ (TRY
    DO d1 <~ hbblock_deps (hC hco_tree) (hC hco_list) dbg1 log1 p1 ;;
    DO d2 <~ hbblock_deps (hC_known hco_tree) (hC_known hco_list) dbg2 log2 p2 ;;
    DO b <~ Dict.eq_test d1 d2 ;;
    if b then (
      if check_failpreserv then (
          let hp := mk_hash_params dbg_failpreserv in
          failure_in_failpreserv.(set)(true);;
          Sets.assert_list_incl hp d2.(hpre) d1.(hpre);;
          RET true
      ) else RET false
    ) else (
      print_error_end d1 d2 ;;
      RET false
    )
  CATCH_FAIL s, _ =>
    DO b <~ failure_in_failpreserv.(get)();;
    if b then RET false 
         else print_error s;; RET false
  ENSURE (fun b => b=true -> forall ge, bblock_simu ge p1 p2));;
  RET (`r).
Obligation 1.
  destruct hco_tree_correct as [TEQ1 TEQ2], hco_list_correct as [LEQ1 LEQ2].
  constructor 1; wlp_simplify; try congruence.
  destruct (H ge) as (EQPRE1&EQPOST1); destruct (H0 ge) as (EQPRE2&EQPOST2); clear H H0.
  apply bblock_deps_simu; auto.
  + intros m; rewrite <- EQPRE1, <- EQPRE2.
    unfold incl, hdeps_valid in * |- *; intuition eauto.
  + intros m0 x m1 VALID; rewrite <- EQPOST1, <- EQPOST2; auto.
    erewrite pdeps_get_intro; auto.
    auto.
    erewrite <- EQPRE2; auto.
    erewrite <- EQPRE1 in VALID.
    unfold incl, hdeps_valid in * |- *; intuition eauto.
Qed.

Theorem g_bblock_simu_test_correct p1 p2:
  WHEN g_bblock_simu_test p1 p2 ~> b THEN b=true -> forall ge, bblock_simu ge p1 p2.
Proof.
  wlp_simplify.
  destruct exta0; simpl in * |- *; auto.
Qed.
Global Opaque g_bblock_simu_test.

End Prog_Eq_Gen.



Definition skip (_:unit): ?? unit := RET tt.
Definition no_dbg (_:R.t): ?? option pstring := RET None.


Definition msg_prefix: pstring := "*** ERROR INFO from bblock_simu_test: ".
Definition msg_error_on_end: pstring := "mismatch in final assignments !".
Definition msg_unknow_tree: pstring := "unknown tree node".
Definition msg_unknow_list_tree: pstring := "unknown list node".
Definition msg_number: pstring := "on 2nd bblock -- on inst num ".
Definition msg_notfailpreserv: pstring := "a possible failure of 2nd bblock is absent in 1st bblock".

Definition print_error_end (_ _: hdeps): ?? unit
 := println (msg_prefix +; msg_error_on_end).

Definition print_error (log: logger unit) (s:pstring): ?? unit
 := DO n <~ log_info log ();;
    println (msg_prefix +; msg_number +; n +; " -- " +; s). 

Definition failpreserv_error (_: hashV tree): ?? unit
  := println (msg_prefix +; msg_notfailpreserv).

Program Definition bblock_simu_test (p1 p2: bblock): ?? bool :=
  DO log <~ count_logger ();;
  DO hco_tree <~ mk_annot (hCons tree_hash_eq (fun _ => RET msg_unknow_tree));;
  DO hco_list <~ mk_annot (hCons list_tree_hash_eq (fun _ => RET msg_unknow_list_tree));;
  g_bblock_simu_test
    no_dbg
    no_dbg
    skip
    (log_insert log)
    hco_tree _
    hco_list _
    print_error_end
    (print_error log)
    true (* check_failpreserv *)
    failpreserv_error
    p1 p2.
Obligation 1.
  generalize (hCons_correct _ _ _ _ H0); clear H0.
  constructor 1; wlp_simplify.
Qed.
Obligation 2.
  generalize (hCons_correct _ _ _ _ H); clear H.
  constructor 1; wlp_simplify.
Qed.

Local Hint Resolve g_bblock_simu_test_correct.

Theorem bblock_simu_test_correct p1 p2:
  WHEN bblock_simu_test p1 p2 ~> b THEN b=true -> forall ge, bblock_simu ge p1 p2.
Proof.
  wlp_simplify.
Qed.
Global Opaque bblock_simu_test.



(** This is only to print info on each bblock_simu_test run **)
Section Verbose_version.

Variable string_of_name: R.t -> ?? pstring.
Variable string_of_op: op -> ?? pstring.

Definition tree_id (id: caml_string): pstring := "E" +; (CamlStr id).
Definition list_id (id: caml_string): pstring := "L" +; (CamlStr id).

Local Open Scope string_scope.

Definition print_raw_htree (td: pre_hashV tree): ?? unit :=
  match pre_data td, hcodes td with
  | (Tname x), _ => 
    DO s <~ string_of_name x;;
    println( "init_access " +; s)
  | (Top o Tnil), _ => 
    DO so <~ string_of_op o;;
    println so
  | (Top o _), [ _; _; lid ] =>
    DO so <~ string_of_op o;;
    DO sl <~ string_of_hashcode lid;;
    println (so +; " " +; (list_id sl))
  | _, _ => FAILWITH "unexpected hcodes"
  end.

Definition print_raw_hlist(ld: pre_hashV list_tree): ?? unit :=
  match pre_data ld, hcodes ld with
  | Tnil, _ => println ""
  | (Tcons _ _), [ t ; l ] =>
    DO st <~ string_of_hashcode t ;;
    DO sl <~ string_of_hashcode l ;;
    println((tree_id st) +; " " +; (list_id sl))
  | _, _ => FAILWITH "unexpected hcodes"
  end.

Section PrettryPrint.

Variable get_htree: hashcode -> ?? pre_hashV tree. 
Variable get_hlist: hashcode -> ?? pre_hashV list_tree.

(* NB: requires [t = pre_data pt] *)
Fixpoint string_of_tree (t: tree) (pt: pre_hashV tree) : ?? pstring :=
  match debug_info pt with
  | Some x => RET x
  | None => 
    match t, hcodes pt with
    | Tname x, _ => string_of_name x
    | Top o Tnil, _ => string_of_op o
    | Top o (_ as l), [ _; _; lid ] => 
      DO so <~ string_of_op o;;
      DO pl <~ get_hlist lid;;
      DO sl <~ string_of_list_tree l pl;;
      RET (so +; "(" +; sl +; ")")
    | _, _ => FAILWITH "unexpected hcodes"
    end
  end
(* NB: requires [l = pre_data pl] *)
with string_of_list_tree (l: list_tree) (lt: pre_hashV list_tree): ?? pstring :=
  match l, hcodes lt with
  | Tnil, _ => RET (Str "")
  | Tcons t Tnil, [ tid ; l ] => 
     DO pt <~ get_htree tid;;
     string_of_tree t pt
  | Tcons t l', [ tid ; lid' ] => 
     DO pt <~ get_htree tid;;
     DO st <~ string_of_tree t pt;;
     DO pl' <~ get_hlist lid';;
     DO sl <~ string_of_list_tree l' pl';;
     RET (st +; "," +; sl)
    | _, _ => FAILWITH "unexpected hcodes"
  end.


End PrettryPrint.


Definition pretty_tree ext exl pt :=
  DO r <~ string_of_tree (get_hashV ext) (get_hashV exl) (pre_data pt) pt;;
  println(r).

Fixpoint print_head (head: list pstring): ?? unit :=
  match head with
  | i::head' => println ("--- inst " +; i);; print_head head'
  | _ => RET tt
  end.

Definition print_htree ext exl (head: list pstring) (hid: hashcode) (td: pre_hashV tree): ?? unit :=
  print_head head;;
  DO s <~ string_of_hashcode hid ;;
  print ((tree_id s) +; ": ");;
  print_raw_htree td;;
  match debug_info td with
  | Some x => 
     print("//  " +; x +; " <- ");;
     pretty_tree ext exl {| pre_data:=(pre_data td); hcodes:=(hcodes td); debug_info:=None |}
  | None => RET tt
  end.

Definition print_hlist (head: list pstring) (hid: hashcode) (ld: pre_hashV list_tree): ?? unit :=
  print_head head;;
  DO s <~ string_of_hashcode hid ;;
  print ((list_id s) +; ": ");;
  print_raw_hlist ld.

Definition print_tables ext exl: ?? unit :=
  println "-- tree table --" ;;
  iterall ext (print_htree ext exl);;
  println "-- list table --" ;;
  iterall exl print_hlist;;
  println "----------------".

Definition print_final_debug ext exl (d1 d2: hdeps): ?? unit 
 := DO b <~ Dict.not_eq_witness d1 d2 ;;
    match b with
    | Some x =>
      DO s <~ string_of_name x;;
      println("mismatch on: " +; s);;
      match Dict.get d1 x with 
      | None => println("=> unassigned in 1st bblock")
      | Some ht1 =>
         print("=> node expected from 1st bblock: ");;
         DO pt1 <~ get_hashV ext (hid ht1);;
         pretty_tree ext exl pt1
      end;;
      match Dict.get d2 x with 
      | None => println("=> unassigned in 2nd bblock")
      | Some ht2 =>
         print("=> node found from 2nd bblock: ");;
         DO pt2 <~ get_hashV ext (hid ht2);;
         pretty_tree ext exl pt2
      end
    | None => FAILWITH "bug in Dict.not_eq_witness ?"
    end.

Inductive witness:=
  | Htree (pt: pre_hashV tree)
  | Hlist (pl: pre_hashV list_tree)
  | Nothing
  .

Definition msg_tree (cr: cref witness) td :=
  set cr (Htree td);;
  RET msg_unknow_tree.

Definition msg_list (cr: cref witness) tl := 
  set cr (Hlist tl);;
  RET msg_unknow_list_tree.

Definition print_witness ext exl cr msg :=
  DO wit <~ get cr ();;
  match wit with
  | Htree pt =>
     println("=> unknown tree node: ");;
     pretty_tree ext exl {| pre_data:=(pre_data pt); hcodes:=(hcodes pt); debug_info:=None |};;
     println("=> encoded on " +; msg +; " graph as: ");;
     print_raw_htree pt
  | Hlist pl =>
     println("=> unknown list node: ");;
     DO r <~ string_of_list_tree (get_hashV ext) (get_hashV exl) (pre_data pl) pl;;
     println(r);;
     println("=> encoded on " +; msg +; " graph as: ");;
     print_raw_hlist pl
  | _ => println "Unexpected failure: no witness info (hint: hash-consing bug ?)"
  end.


Definition print_error_end1 hct hcl (d1 d2:hdeps): ?? unit
 := println "- GRAPH of 1st bblock";;
    DO ext <~ export hct ();;
    DO exl <~ export hcl ();;
    print_tables ext exl;;
    print_error_end d1 d2;;
    print_final_debug ext exl d1 d2.

Definition print_error1  hct hcl cr log s : ?? unit
 := println "- GRAPH of 1st bblock";;
    DO ext <~ export hct ();;
    DO exl <~ export hcl ();;
    print_tables ext exl;;
    print_error log s;;
    print_witness ext exl cr "1st".


Definition xmsg_number: pstring := "on 1st bblock -- on inst num ".

Definition print_error_end2 hct hcl (d1 d2:hdeps): ?? unit
 := println (msg_prefix +; msg_error_on_end);;
    println "- GRAPH of 2nd bblock";;
    DO ext <~ export hct ();;
    DO exl <~ export hcl ();;
    print_tables ext exl.

Definition print_error2 hct hcl cr (log: logger unit) (s:pstring): ?? unit
 := DO n <~ log_info log ();;
    DO ext <~ export hct ();;
    DO exl <~ export hcl ();;
    println (msg_prefix +; xmsg_number +; n +; " -- " +; s);;
    print_witness ext exl cr "2nd";;
    println "- GRAPH of 2nd bblock";;
    print_tables ext exl.

Definition simple_debug (x: R.t): ?? option pstring :=
  DO s <~ string_of_name x;;
  RET (Some s).

Definition log_debug (log: logger unit) (x: R.t): ?? option pstring :=
  DO i <~ log_info log ();;
  DO sx <~ string_of_name x;;
  RET (Some (sx +; "@" +; i)).

Definition hlog (log: logger unit) (hct: hashConsing tree) (hcl: hashConsing list_tree): unit -> ?? unit :=
   (fun _ =>
      log_insert log tt ;;
      DO s <~ log_info log tt;;
      next_log hct s;;
      next_log hcl s
    ).

Program Definition verb_bblock_simu_test (p1 p2: bblock): ?? bool :=
  DO log1 <~ count_logger ();;
  DO log2 <~ count_logger ();;
  DO cr <~ make_cref Nothing;;
  DO hco_tree <~ mk_annot (hCons tree_hash_eq (msg_tree cr));;
  DO hco_list <~ mk_annot (hCons list_tree_hash_eq (msg_list cr));;
  DO result1 <~ g_bblock_simu_test
     (log_debug log1)
     simple_debug
     (hlog log1 hco_tree hco_list)
     (log_insert log2)
     hco_tree _
     hco_list _
     (print_error_end1 hco_tree hco_list)
     (print_error1 hco_tree hco_list cr log2)
     true
     failpreserv_error (* TODO: debug info *)
     p1 p2;;
  if result1 
  then RET true
  else
    DO log1 <~ count_logger ();;
    DO log2 <~ count_logger ();;
    DO cr <~ make_cref Nothing;;
    DO hco_tree <~ mk_annot (hCons tree_hash_eq (msg_tree cr));;
    DO hco_list <~ mk_annot (hCons list_tree_hash_eq (msg_list cr));;
    DO result2 <~ g_bblock_simu_test 
       (log_debug log1)
       simple_debug
       (hlog log1 hco_tree hco_list)
       (log_insert log2)
       hco_tree _
       hco_list _
       (print_error_end2 hco_tree hco_list)
       (print_error2 hco_tree hco_list cr log2)
       false
       (fun _ => RET tt)
       p2 p1;;
    if result2 
    then (
      println (msg_prefix +; " OOops - symmetry violation in bblock_simu_test  => this is a bug of bblock_simu_test ??");;
      RET false
    ) else RET false
   .
Obligation 1.  
  generalize (hCons_correct _ _ _ _ H0); clear H0.
  constructor 1; wlp_simplify.
Qed.
Obligation 2.  
  generalize (hCons_correct _ _ _ _ H); clear H.
  constructor 1; wlp_simplify.
Qed.
Obligation 3.  
  generalize (hCons_correct _ _ _ _ H0); clear H0.
  constructor 1; wlp_simplify.
Qed.
Obligation 4.  
  generalize (hCons_correct _ _ _ _ H); clear H.
  constructor 1; wlp_simplify.
Qed.

Theorem verb_bblock_simu_test_correct p1 p2:
  WHEN verb_bblock_simu_test p1 p2 ~> b THEN b=true -> forall ge, bblock_simu ge p1 p2.
Proof.
  wlp_simplify.
Qed.
Global Opaque verb_bblock_simu_test.

End Verbose_version.


End ImpDepTree.

Require Import FMapPositive.

Module ImpPosDict <: ImpDict with Module R:=Pos.

Include PosDict.
Import PositiveMap.

Fixpoint eq_test {A} (d1 d2: t A): ?? bool :=
  match d1, d2 with
  | Leaf _, Leaf _ => RET true
  | Node l1 (Some x1) r1, Node l2 (Some x2) r2 =>
      DO b0 <~ phys_eq x1 x2 ;;
      if b0 then
        DO b1 <~ eq_test l1 l2 ;;
        if b1 then
          eq_test r1 r2
        else
           RET false
      else
         RET false
  | Node l1 None r1, Node l2 None r2 =>
      DO b1 <~ eq_test l1 l2 ;;
      if b1 then
        eq_test r1 r2
      else
        RET false
  | _, _ => RET false
  end.

Lemma eq_test_correct A d1: forall (d2: t A),
 WHEN eq_test d1 d2 ~> b THEN
  b=true -> forall x, get d1 x = get d2 x.
Proof.
  unfold get; induction d1 as [|l1 Hl1 [x1|] r1 Hr1]; destruct d2 as [|l2 [x2|] r2]; simpl; 
  wlp_simplify; (discriminate || (subst; destruct x; simpl; auto)).
Qed.
Global Opaque eq_test.

(* ONLY FOR DEBUGGING INFO: get some key of a non-empty d *)
Fixpoint pick {A} (d: t A): ?? R.t :=
  match d with
  | Leaf _ => FAILWITH "unexpected empty dictionary"
  | Node _ (Some _) _ => RET xH
  | Node (Leaf _) None r => 
    DO p <~ pick r;;
    RET (xI p)
  | Node l None _ =>
    DO p <~ pick l;;
    RET (xO p)
  end. 

(* ONLY FOR DEBUGGING INFO: find one variable on which d1 and d2 differs *)
Fixpoint not_eq_witness {A} (d1 d2: t A): ?? option R.t :=
  match d1, d2 with
  | Leaf _, Leaf _ => RET None
  | Node l1 (Some x1) r1, Node l2 (Some x2) r2 =>
      DO b0 <~ phys_eq x1 x2 ;;
      if b0 then
        DO b1 <~ not_eq_witness l1 l2;;
        match b1 with
        | None => 
          DO b2 <~ not_eq_witness r1 r2;;
          match b2 with
          | None => RET None
          | Some p => RET (Some (xI p))
          end
        | Some p => RET (Some (xO p))
        end
      else
         RET (Some xH)
  | Node l1 None r1, Node l2 None r2 =>
        DO b1 <~ not_eq_witness l1 l2;;
        match b1 with
        | None => 
          DO b2 <~ not_eq_witness r1 r2;;
          match b2 with
          | None => RET None
          | Some p => RET (Some (xI p))
          end
        | Some p => RET (Some (xO p))
        end
  | l, Leaf _ => DO p <~ pick l;; RET (Some p)
  | Leaf _, r => DO p <~ pick r;; RET (Some p)
  | _, _ => RET (Some xH)
  end.

End ImpPosDict.