aboutsummaryrefslogtreecommitdiffstats
path: root/riscV/BTL_SEsimplify.v
blob: a4a2785a2a1f04af3f532514e97f3937f696e26f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
Require Import Coqlib Floats Values Memory.
Require Import Integers.
Require Import Op Registers.
Require Import BTL_SEtheory.
Require Import BTL_SEsimuref.
Require Import Asmgen Asmgenproof1.

(** Useful functions for conditions/branches expansion *)

Definition is_inv_cmp_int (cmp: comparison) : bool :=
  match cmp with | Cle | Cgt => true | _ => false end.

Definition is_inv_cmp_float (cmp: comparison) : bool :=
  match cmp with | Cge | Cgt => true | _ => false end.

Definition make_optR (is_x0 is_inv: bool) : option oreg :=
  if is_x0 then
    (if is_inv then Some (X0_L)
    else Some (X0_R))
  else None.

(** Functions to manage lists of "fake" values *)

Definition make_lfsv_cmp (is_inv: bool) (fsv1 fsv2: sval) : list_sval :=
  let (fsvfirst, fsvsec) := if is_inv then (fsv1, fsv2) else (fsv2, fsv1) in
  let lfsv := fScons fsvfirst fSnil in
  fScons fsvsec lfsv.

Definition make_lfsv_single (fsv: sval) : list_sval :=
  fScons fsv fSnil.

(** * Expansion functions *)

(** ** Immediate loads *)

Definition load_hilo32 (hi lo: int) :=
  if Int.eq lo Int.zero then
    fSop (OEluiw hi) fSnil
  else
    let fsv := fSop (OEluiw hi) fSnil in
    let hl := make_lfsv_single fsv in
    fSop (OEaddiw None lo) hl.

Definition load_hilo64 (hi lo: int64) :=
  if Int64.eq lo Int64.zero then
    fSop (OEluil hi) fSnil
  else
    let fsv := fSop (OEluil hi) fSnil in
    let hl := make_lfsv_single fsv in
    fSop (OEaddil None lo) hl.

Definition loadimm32 (n: int) :=
  match make_immed32 n with
  | Imm32_single imm =>
      fSop (OEaddiw (Some X0_R) imm) fSnil
  | Imm32_pair hi lo => load_hilo32 hi lo
  end.

Definition loadimm64 (n: int64) :=
  match make_immed64 n with
  | Imm64_single imm =>
      fSop (OEaddil (Some X0_R) imm) fSnil
  | Imm64_pair hi lo => load_hilo64 hi lo
  | Imm64_large imm => fSop (OEloadli imm) fSnil
  end.

Definition opimm32 (hv1: sval) (n: int) (op: operation) (opimm: int -> operation) :=
  match make_immed32 n with
  | Imm32_single imm =>
      let hl := make_lfsv_single hv1 in
      fSop (opimm imm) hl
  | Imm32_pair hi lo =>
      let fsv := load_hilo32 hi lo in
      let hl := make_lfsv_cmp false hv1 fsv in
      fSop op hl
  end.

Definition opimm64 (hv1: sval) (n: int64) (op: operation) (opimm: int64 -> operation) :=
  match make_immed64 n with
  | Imm64_single imm =>
      let hl := make_lfsv_single hv1 in
      fSop (opimm imm) hl
  | Imm64_pair hi lo =>
      let fsv := load_hilo64 hi lo in
      let hl := make_lfsv_cmp false hv1 fsv in
      fSop op hl
  | Imm64_large imm =>
      let fsv := fSop (OEloadli imm) fSnil in
      let hl := make_lfsv_cmp false hv1 fsv in
      fSop op hl
  end.

Definition addimm32 (hv1: sval) (n: int) (or: option oreg) := opimm32 hv1 n Oadd (OEaddiw or).
Definition andimm32 (hv1: sval) (n: int) := opimm32 hv1 n Oand OEandiw.
Definition orimm32 (hv1: sval) (n: int) := opimm32 hv1 n Oor OEoriw.
Definition xorimm32 (hv1: sval) (n: int) := opimm32 hv1 n Oxor OExoriw.
Definition sltimm32 (hv1: sval) (n: int) := opimm32 hv1 n (OEsltw None) OEsltiw.
Definition sltuimm32 (hv1: sval) (n: int) := opimm32 hv1 n (OEsltuw None) OEsltiuw.
Definition addimm64 (hv1: sval) (n: int64) (or: option oreg) := opimm64 hv1 n Oaddl (OEaddil or).
Definition andimm64 (hv1: sval) (n: int64) := opimm64 hv1 n Oandl OEandil.
Definition orimm64 (hv1: sval) (n: int64) := opimm64 hv1 n Oorl OEoril.
Definition xorimm64 (hv1: sval) (n: int64) := opimm64 hv1 n Oxorl OExoril.
Definition sltimm64 (hv1: sval) (n: int64) := opimm64 hv1 n (OEsltl None) OEsltil.
Definition sltuimm64 (hv1: sval) (n: int64) := opimm64 hv1 n (OEsltul None) OEsltiul.
(** ** Comparisons intructions *)

Definition cond_int32s (cmp: comparison) (lsv: list_sval) (optR: option oreg) :=
  match cmp with
  | Ceq => fSop (OEseqw optR) lsv
  | Cne => fSop (OEsnew optR) lsv
  | Clt | Cgt => fSop (OEsltw optR) lsv
  | Cle | Cge =>
      let fsv := (fSop (OEsltw optR) lsv) in
      let lfsv := make_lfsv_single fsv in
      fSop (OExoriw Int.one) lfsv
  end.

Definition cond_int32u (cmp: comparison) (lsv: list_sval) (optR: option oreg) :=
  match cmp with
  | Ceq => fSop (OEsequw optR) lsv
  | Cne => fSop (OEsneuw optR) lsv
  | Clt | Cgt => fSop (OEsltuw optR) lsv
  | Cle | Cge =>
      let fsv := (fSop (OEsltuw optR) lsv) in
      let lfsv := make_lfsv_single fsv in
      fSop (OExoriw Int.one) lfsv
  end.

Definition cond_int64s (cmp: comparison) (lsv: list_sval) (optR: option oreg) :=
  match cmp with
  | Ceq => fSop (OEseql optR) lsv
  | Cne => fSop (OEsnel optR) lsv
  | Clt | Cgt => fSop (OEsltl optR) lsv
  | Cle | Cge =>
      let fsv := (fSop (OEsltl optR) lsv) in
      let lfsv := make_lfsv_single fsv in
      fSop (OExoriw Int.one) lfsv
  end.

Definition cond_int64u (cmp: comparison) (lsv: list_sval) (optR: option oreg) :=
  match cmp with
  | Ceq => fSop (OEsequl optR) lsv
  | Cne => fSop (OEsneul optR) lsv
  | Clt | Cgt => fSop (OEsltul optR) lsv
  | Cle | Cge =>
      let fsv := (fSop (OEsltul optR) lsv) in
      let lfsv := make_lfsv_single fsv in
      fSop (OExoriw Int.one) lfsv
  end.

Definition expanse_condimm_int32s (cmp: comparison) (fsv1: sval) (n: int) :=
  let is_inv := is_inv_cmp_int cmp in
  if Int.eq n Int.zero then
    let optR := make_optR true is_inv in
    let lfsv := make_lfsv_cmp is_inv fsv1 fsv1 in
    cond_int32s cmp lfsv optR
  else
    match cmp with
    | Ceq | Cne =>
        let optR := make_optR true is_inv in
        let fsv := xorimm32 fsv1 n in
        let lfsv := make_lfsv_cmp false fsv fsv in
        cond_int32s cmp lfsv optR
    | Clt => sltimm32 fsv1 n
    | Cle =>
        if Int.eq n (Int.repr Int.max_signed) then
          let fsv := loadimm32 Int.one in
          let lfsv := make_lfsv_cmp false fsv1 fsv in
          fSop (OEmayundef MUint) lfsv
        else sltimm32 fsv1 (Int.add n Int.one)
    | _ =>
        let optR := make_optR false is_inv in
        let fsv := loadimm32 n in
        let lfsv := make_lfsv_cmp is_inv fsv1 fsv in
        cond_int32s cmp lfsv optR
    end.

Definition expanse_condimm_int32u (cmp: comparison) (fsv1: sval) (n: int) :=
  let is_inv := is_inv_cmp_int cmp in
  if Int.eq n Int.zero then
    let optR := make_optR true is_inv in
    let lfsv := make_lfsv_cmp is_inv fsv1 fsv1 in
    cond_int32u cmp lfsv optR
  else
    match cmp with
    | Clt => sltuimm32 fsv1 n
    | _ =>
        let optR := make_optR false is_inv in
        let fsv := loadimm32 n in
        let lfsv := make_lfsv_cmp is_inv fsv1 fsv in
        cond_int32u cmp lfsv optR
    end.

Definition expanse_condimm_int64s (cmp: comparison) (fsv1: sval) (n: int64) :=
  let is_inv := is_inv_cmp_int cmp in
  if Int64.eq n Int64.zero then
    let optR := make_optR true is_inv in
    let lfsv := make_lfsv_cmp is_inv fsv1 fsv1 in
    cond_int64s cmp lfsv optR
  else
    match cmp with
    | Ceq | Cne =>
        let optR := make_optR true is_inv in
        let fsv := xorimm64 fsv1 n in
        let lfsv := make_lfsv_cmp false fsv fsv in
        cond_int64s cmp lfsv optR
    | Clt => sltimm64 fsv1 n
    | Cle =>
        if Int64.eq n (Int64.repr Int64.max_signed) then
          let fsv := loadimm32 Int.one in
          let lfsv := make_lfsv_cmp false fsv1 fsv in
          fSop (OEmayundef MUlong) lfsv
        else sltimm64 fsv1 (Int64.add n Int64.one)
    | _ =>
        let optR := make_optR false is_inv in
        let fsv := loadimm64 n in
        let lfsv := make_lfsv_cmp is_inv fsv1 fsv in
        cond_int64s cmp lfsv optR
    end.

Definition expanse_condimm_int64u (cmp: comparison) (fsv1: sval) (n: int64) :=
  let is_inv := is_inv_cmp_int cmp in
  if Int64.eq n Int64.zero then
    let optR := make_optR true is_inv in
    let lfsv := make_lfsv_cmp is_inv fsv1 fsv1 in
    cond_int64u cmp lfsv optR
  else
    match cmp with
    | Clt => sltuimm64 fsv1 n
    | _ =>
        let optR := make_optR false is_inv in
        let fsv := loadimm64 n in
        let lfsv := make_lfsv_cmp is_inv fsv1 fsv in
        cond_int64u cmp lfsv optR
    end.

Definition cond_float (cmp: comparison) (lsv: list_sval) :=
  match cmp with
  | Ceq | Cne => fSop OEfeqd lsv
  | Clt | Cgt => fSop OEfltd lsv
  | Cle | Cge => fSop OEfled lsv
  end.

Definition cond_single (cmp: comparison) (lsv: list_sval) :=
  match cmp with
  | Ceq | Cne => fSop OEfeqs lsv
  | Clt | Cgt => fSop OEflts lsv
  | Cle | Cge => fSop OEfles lsv
  end.

Definition is_normal_cmp cmp :=
  match cmp with | Cne => false | _ => true end.

Definition expanse_cond_fp (cnot: bool) fn_cond cmp (lsv: list_sval) :=
  let normal := is_normal_cmp cmp in
  let normal' := if cnot then negb normal else normal in
  let fsv := fn_cond cmp lsv in
  let lfsv := make_lfsv_single fsv in
  if normal' then fsv else fSop (OExoriw Int.one) lfsv.

(** Target op simplifications using "fake" values *)

Definition target_op_simplify (op: operation) (lr: list reg) (hrs: ristate): option sval :=
  match op, lr with
  | Ocmp (Ccomp c), a1 :: a2 :: nil =>
      let fsv1 := ris_sreg_get hrs a1 in
      let fsv2 := ris_sreg_get hrs a2 in
      let is_inv := is_inv_cmp_int c in
      let optR := make_optR false is_inv in
      let lfsv := make_lfsv_cmp is_inv fsv1 fsv2 in
      Some (cond_int32s c lfsv optR)
  | Ocmp (Ccompu c), a1 :: a2 :: nil =>
      let fsv1 := ris_sreg_get hrs a1 in
      let fsv2 := ris_sreg_get hrs a2 in
      let is_inv := is_inv_cmp_int c in
      let optR := make_optR false is_inv in
      let lfsv := make_lfsv_cmp is_inv fsv1 fsv2 in
      Some (cond_int32u c lfsv optR)
  | Ocmp (Ccompimm c imm), a1 :: nil =>
      let fsv1 := ris_sreg_get hrs a1 in
      Some (expanse_condimm_int32s c fsv1 imm)
  | Ocmp (Ccompuimm c imm), a1 :: nil =>
      let fsv1 := ris_sreg_get hrs a1 in
      Some (expanse_condimm_int32u c fsv1 imm)
  | Ocmp (Ccompl c), a1 :: a2 :: nil =>
      let fsv1 := ris_sreg_get hrs a1 in
      let fsv2 := ris_sreg_get hrs a2 in
      let is_inv := is_inv_cmp_int c in
      let optR := make_optR false is_inv in
      let lfsv := make_lfsv_cmp is_inv fsv1 fsv2 in
      Some (cond_int64s c lfsv optR)
  | Ocmp (Ccomplu c), a1 :: a2 :: nil =>
      let fsv1 := ris_sreg_get hrs a1 in
      let fsv2 := ris_sreg_get hrs a2 in
      let is_inv := is_inv_cmp_int c in
      let optR := make_optR false is_inv in
      let lfsv := make_lfsv_cmp is_inv fsv1 fsv2 in
      Some (cond_int64u c lfsv optR)
  | Ocmp (Ccomplimm c imm), a1 :: nil =>
      let fsv1 := ris_sreg_get hrs a1 in
      Some (expanse_condimm_int64s c fsv1 imm)
  | Ocmp (Ccompluimm c imm), a1 :: nil =>
      let fsv1 := ris_sreg_get hrs a1 in
      Some (expanse_condimm_int64u c fsv1 imm)
  | Ocmp (Ccompf c), f1 :: f2 :: nil =>
      let fsv1 := ris_sreg_get hrs f1 in
      let fsv2 := ris_sreg_get hrs f2 in
      let is_inv := is_inv_cmp_float c in
      let lfsv := make_lfsv_cmp is_inv fsv1 fsv2 in
      Some (expanse_cond_fp false cond_float c lfsv)
  | Ocmp (Cnotcompf c), f1 :: f2 :: nil =>
      let fsv1 := ris_sreg_get hrs f1 in
      let fsv2 := ris_sreg_get hrs f2 in
      let is_inv := is_inv_cmp_float c in
      let lfsv := make_lfsv_cmp is_inv fsv1 fsv2 in
      Some (expanse_cond_fp true cond_float c lfsv)
  | Ocmp (Ccompfs c), f1 :: f2 :: nil =>
      let fsv1 := ris_sreg_get hrs f1 in
      let fsv2 := ris_sreg_get hrs f2 in
      let is_inv := is_inv_cmp_float c in
      let lfsv := make_lfsv_cmp is_inv fsv1 fsv2 in
      Some (expanse_cond_fp false cond_single c lfsv)
  | Ocmp (Cnotcompfs c), f1 :: f2 :: nil =>
      let fsv1 := ris_sreg_get hrs f1 in
      let fsv2 := ris_sreg_get hrs f2 in
      let is_inv := is_inv_cmp_float c in
      let lfsv := make_lfsv_cmp is_inv fsv1 fsv2 in
      Some (expanse_cond_fp true cond_single c lfsv)
  | _, _ => None
  end.

Definition target_cbranch_expanse (prev: ristate) (cond: condition) (args: list reg) : option (condition * list_sval) :=
  None.

(** * Auxiliary lemmas on comparisons *)

(** ** Signed ints *)

Lemma xor_neg_ltle_cmp: forall v1 v2,
  Some (Val.xor (Val.cmp Clt v1 v2) (Vint Int.one)) =
  Some (Val.of_optbool (Val.cmp_bool Cle v2 v1)).
Proof.
  intros. eapply f_equal.
  destruct v1, v2; simpl; try congruence.
  unfold Val.cmp; simpl;
  try rewrite Int.eq_sym;
  try destruct (Int.eq _ _); try destruct (Int.lt _ _) eqn:ELT ; simpl;
  try rewrite Int.xor_one_one; try rewrite Int.xor_zero_one;
  auto.
Qed.
Local Hint Resolve xor_neg_ltle_cmp: core.

(** ** Unsigned ints *)

Lemma xor_neg_ltle_cmpu: forall mptr v1 v2,
  Some (Val.xor (Val.cmpu (Mem.valid_pointer mptr) Clt v1 v2) (Vint Int.one)) =
  Some (Val.of_optbool (Val.cmpu_bool (Mem.valid_pointer mptr) Cle v2 v1)).
Proof.
  intros. eapply f_equal.
  destruct v1, v2; simpl; try congruence.
  unfold Val.cmpu; simpl;
  try rewrite Int.eq_sym;
  try destruct (Int.eq _ _); try destruct (Int.ltu _ _) eqn:ELT ; simpl;
  try rewrite Int.xor_one_one; try rewrite Int.xor_zero_one;
  auto.
  1,2:
    unfold Val.cmpu, Val.cmpu_bool;
    destruct Archi.ptr64; try destruct (_ && _); try destruct (_ || _);
    try destruct (eq_block _ _); auto.
  unfold Val.cmpu, Val.cmpu_bool; simpl;
  destruct Archi.ptr64; try destruct (_ || _); simpl; auto;
  destruct (eq_block b b0); destruct (eq_block b0 b);
  try congruence;
  try destruct (_ || _); simpl; try destruct (Ptrofs.ltu _ _);
  simpl; auto;
  repeat destruct (_ && _); simpl; auto.
Qed.
Local Hint Resolve xor_neg_ltle_cmpu: core.

Remark ltu_12_wordsize:
  Int.ltu (Int.repr 12) Int.iwordsize = true.
Proof.
  unfold Int.iwordsize, Int.zwordsize. simpl.
  unfold Int.ltu. apply zlt_true.
  rewrite !Int.unsigned_repr; try cbn; try lia.
Qed.
Local Hint Resolve ltu_12_wordsize: core.

(** ** Signed longs *)

Lemma xor_neg_ltle_cmpl: forall v1 v2,
  Some (Val.xor (Val.maketotal (Val.cmpl Clt v1 v2)) (Vint Int.one)) =
  Some (Val.of_optbool (Val.cmpl_bool Cle v2 v1)).
Proof.
  intros. eapply f_equal.
  destruct v1, v2; simpl; try congruence.
  destruct (Int64.lt _ _); auto.
Qed.
Local Hint Resolve xor_neg_ltle_cmpl: core.

Lemma xor_neg_ltge_cmpl: forall v1 v2,
  Some (Val.xor (Val.maketotal (Val.cmpl Clt v1 v2)) (Vint Int.one)) =
  Some (Val.of_optbool (Val.cmpl_bool Cge v1 v2)).
Proof.
  intros. eapply f_equal.
  destruct v1, v2; simpl; try congruence.
  destruct (Int64.lt _ _); auto.
Qed.
Local Hint Resolve xor_neg_ltge_cmpl: core.

Lemma xorl_zero_eq_cmpl: forall c v1 v2,
  c = Ceq \/ c = Cne ->
  Some
    (Val.maketotal
     (option_map Val.of_bool
       (Val.cmpl_bool c (Val.xorl v1 v2) (Vlong Int64.zero)))) =
  Some (Val.of_optbool (Val.cmpl_bool c v1 v2)).
Proof.
  intros. destruct c; inv H; try discriminate;
  destruct v1, v2; simpl; auto;
  destruct (Int64.eq i i0) eqn:EQ0.
  1,3:
    apply Int64.same_if_eq in EQ0; subst;
    rewrite Int64.xor_idem;
    rewrite Int64.eq_true; trivial.
  1,2:
    destruct (Int64.eq (Int64.xor i i0) Int64.zero) eqn:EQ1; simpl; try congruence;
    rewrite Int64.xor_is_zero in EQ1; congruence.
Qed.
Local Hint Resolve xorl_zero_eq_cmpl: core.

Lemma cmp_ltle_add_one: forall v n,
  Int.eq n (Int.repr Int.max_signed) = false ->
  Some (Val.of_optbool (Val.cmp_bool Clt v (Vint (Int.add n Int.one)))) =
  Some (Val.of_optbool (Val.cmp_bool Cle v (Vint n))).
Proof.
  intros v n EQMAX. unfold Val.cmp_bool; destruct v; simpl; auto.
  unfold Int.lt. replace (Int.signed (Int.add n Int.one)) with (Int.signed n + 1).
  destruct (zlt (Int.signed n) (Int.signed i)).
  rewrite zlt_false by lia. auto.
  rewrite zlt_true by lia. auto.
  rewrite Int.add_signed. symmetry; apply Int.signed_repr. 
  specialize (Int.eq_spec n (Int.repr Int.max_signed)).
  rewrite EQMAX; simpl; intros.
  assert (Int.signed n <> Int.max_signed).
  { red; intros E. elim H. rewrite <- (Int.repr_signed n). rewrite E. auto. }
  generalize (Int.signed_range n); lia.
Qed.
Local Hint Resolve cmp_ltle_add_one: core.

Lemma cmpl_ltle_add_one: forall v n,
  Int64.eq n (Int64.repr Int64.max_signed) = false ->
  Some (Val.of_optbool (Val.cmpl_bool Clt v (Vlong (Int64.add n Int64.one)))) =
  Some (Val.of_optbool (Val.cmpl_bool Cle v (Vlong n))).
Proof.
  intros v n EQMAX. unfold Val.cmpl_bool; destruct v; simpl; auto.
  unfold Int64.lt. replace (Int64.signed (Int64.add n Int64.one)) with (Int64.signed n + 1).
  destruct (zlt (Int64.signed n) (Int64.signed i)).
  rewrite zlt_false by lia. auto.
  rewrite zlt_true by lia. auto.
  rewrite Int64.add_signed. symmetry; apply Int64.signed_repr. 
  specialize (Int64.eq_spec n (Int64.repr Int64.max_signed)).
  rewrite EQMAX; simpl; intros.
  assert (Int64.signed n <> Int64.max_signed).
  { red; intros E. elim H. rewrite <- (Int64.repr_signed n). rewrite E. auto. }
  generalize (Int64.signed_range n); lia.
Qed.
Local Hint Resolve cmpl_ltle_add_one: core.

Remark lt_maxsgn_false_int: forall i,
  Int.lt (Int.repr Int.max_signed) i = false.
Proof.
  intros; unfold Int.lt.
  specialize  Int.signed_range with i; intros.
  rewrite zlt_false; auto. destruct H.
  rewrite Int.signed_repr; try (cbn; lia).
  apply Z.le_ge. trivial.
Qed.
Local Hint Resolve lt_maxsgn_false_int: core.

Remark lt_maxsgn_false_long: forall i,
  Int64.lt (Int64.repr Int64.max_signed) i = false.
Proof.
  intros; unfold Int64.lt.
  specialize  Int64.signed_range with i; intros.
  rewrite zlt_false; auto. destruct H.
  rewrite Int64.signed_repr; try (cbn; lia).
  apply Z.le_ge. trivial.
Qed.
Local Hint Resolve lt_maxsgn_false_long: core.

(** ** Unsigned longs *)

Lemma xor_neg_ltle_cmplu: forall mptr v1 v2,
  Some (Val.xor (Val.maketotal (Val.cmplu (Mem.valid_pointer mptr) Clt v1 v2)) (Vint Int.one)) =
  Some (Val.of_optbool (Val.cmplu_bool (Mem.valid_pointer mptr) Cle v2 v1)).
Proof.
  intros. eapply f_equal.
  destruct v1, v2; simpl; try congruence.
  destruct (Int64.ltu _ _); auto.
  1,2: unfold Val.cmplu; simpl; auto;
  destruct (Archi.ptr64); simpl;
  try destruct (eq_block _ _); simpl;
  try destruct (_ && _); simpl;
  try destruct (Ptrofs.cmpu _ _);
  try destruct cmp; simpl; auto.
  unfold Val.cmplu; simpl;
  destruct Archi.ptr64; try destruct (_ || _); simpl; auto;
  destruct (eq_block b b0); destruct (eq_block b0 b);
  try congruence;
  try destruct (_ || _); simpl; try destruct (Ptrofs.ltu _ _);
  simpl; auto;
  repeat destruct (_ && _); simpl; auto.
Qed.
Local Hint Resolve xor_neg_ltle_cmplu: core.

Lemma xor_neg_ltge_cmplu: forall mptr v1 v2,
  Some (Val.xor (Val.maketotal (Val.cmplu (Mem.valid_pointer mptr) Clt v1 v2)) (Vint Int.one)) =
  Some (Val.of_optbool (Val.cmplu_bool (Mem.valid_pointer mptr) Cge v1 v2)).
Proof.
  intros. eapply f_equal.
  destruct v1, v2; simpl; try congruence.
  destruct (Int64.ltu _ _); auto.
  1,2: unfold Val.cmplu; simpl; auto;
  destruct (Archi.ptr64); simpl;
  try destruct (eq_block _ _); simpl;
  try destruct (_ && _); simpl;
  try destruct (Ptrofs.cmpu _ _);
  try destruct cmp; simpl; auto.
  unfold Val.cmplu; simpl;
  destruct Archi.ptr64; try destruct (_ || _); simpl; auto;
  destruct (eq_block b b0); destruct (eq_block b0 b);
  try congruence;
  try destruct (_ || _); simpl; try destruct (Ptrofs.ltu _ _);
  simpl; auto;
  repeat destruct (_ && _); simpl; auto.
Qed.
Local Hint Resolve xor_neg_ltge_cmplu: core.

(** ** Floats *)

Lemma xor_neg_eqne_cmpf: forall v1 v2,
  Some (Val.xor (Val.cmpf Ceq v1 v2) (Vint Int.one)) =
  Some (Val.of_optbool (Val.cmpf_bool Cne v1 v2)).
Proof.
  intros. eapply f_equal.
  destruct v1, v2; simpl; try congruence;
  unfold Val.cmpf; simpl.
  rewrite Float.cmp_ne_eq.
  destruct (Float.cmp _ _ _); simpl; auto.
Qed.
Local Hint Resolve xor_neg_eqne_cmpf: core.

(** ** Singles *)

Lemma xor_neg_eqne_cmpfs: forall v1 v2,
  Some (Val.xor (Val.cmpfs Ceq v1 v2) (Vint Int.one)) =
  Some (Val.of_optbool (Val.cmpfs_bool Cne v1 v2)).
Proof.
  intros. eapply f_equal.
  destruct v1, v2; simpl; try congruence;
  unfold Val.cmpfs; simpl.
  rewrite Float32.cmp_ne_eq.
  destruct (Float32.cmp _ _ _); simpl; auto.
Qed.
Local Hint Resolve xor_neg_eqne_cmpfs: core.

(** ** More useful lemmas *)

Lemma xor_neg_optb: forall v,
  Some (Val.xor (Val.of_optbool (option_map negb v))
    (Vint Int.one)) = Some (Val.of_optbool v).
Proof.
  intros.
  destruct v; simpl; trivial.
  destruct b; simpl; auto.
Qed.
Local Hint Resolve xor_neg_optb: core.

Lemma xor_neg_optb': forall v,
  Some (Val.xor (Val.of_optbool v) (Vint Int.one)) =
  Some (Val.of_optbool (option_map negb v)).
Proof.
  intros.
  destruct v; simpl; trivial.
  destruct b; simpl; auto.
Qed.
Local Hint Resolve xor_neg_optb': core.

Lemma optbool_mktotal: forall v,
  Val.maketotal (option_map Val.of_bool v) =
  Val.of_optbool v.
Proof.
  intros.
  destruct v; simpl; auto.
Qed.
Local Hint Resolve optbool_mktotal: core.

(* TODO gourdinl move to common/Values ? *)
Theorem swap_cmpf_bool:
  forall c x y,
  Val.cmpf_bool (swap_comparison c) x y = Val.cmpf_bool c y x.
Proof.
  destruct x; destruct y; simpl; auto. rewrite Float.cmp_swap. auto.
Qed.
Local Hint Resolve swap_cmpf_bool: core.

Theorem swap_cmpfs_bool:
  forall c x y,
  Val.cmpfs_bool (swap_comparison c) x y = Val.cmpfs_bool c y x.
Proof.
  destruct x; destruct y; simpl; auto. rewrite Float32.cmp_swap. auto.
Qed.
Local Hint Resolve swap_cmpfs_bool: core.

(** * Intermediates lemmas on each expanded instruction *)

Lemma simplify_ccomp_correct (ctx: iblock_exec_context) (hrs: ristate) (st: sistate)
  c r r0 v v0: forall
  (REG_EQ : forall r : positive, eval_sval ctx (hrs r) = eval_sval ctx (st r))
  (OKv1 : eval_sval ctx (st r) = Some v)
  (OKv2 : eval_sval ctx (st r0) = Some v0),
  eval_sval ctx
    (cond_int32s c (make_lfsv_cmp (is_inv_cmp_int c) (hrs r) (hrs r0)) None) =
  Some (Val.of_optbool (Val.cmp_bool c v v0)).
Proof.
  intros.
  unfold cond_int32s in *; destruct c; simpl;
  erewrite !REG_EQ, OKv1, OKv2; trivial;
  unfold Val.cmp. eauto.
  - replace (Clt) with (swap_comparison Cgt) by auto;
    rewrite Val.swap_cmp_bool; trivial.
  - replace (Clt) with (negate_comparison Cge) by auto;
    rewrite Val.negate_cmp_bool; eauto.
Qed.

Lemma simplify_ccompu_correct (ctx: iblock_exec_context) (hrs: ristate) (st: sistate)
  c r r0 v v0: forall
  (REG_EQ : forall r : positive, eval_sval ctx (hrs r) = eval_sval ctx (st r))
  (OKv1 : eval_sval ctx (st r) = Some v)
  (OKv2 : eval_sval ctx (st r0) = Some v0),
  eval_sval ctx
    (cond_int32u c (make_lfsv_cmp (is_inv_cmp_int c) (hrs r) (hrs r0)) None) =
  Some (Val.of_optbool (Val.cmpu_bool (Mem.valid_pointer (cm0 ctx)) c v v0)).
Proof.
  intros.
  unfold cond_int32u in *; destruct c; simpl;
  rewrite !REG_EQ, OKv1, OKv2; trivial;
  unfold Val.cmpu.
  - replace (Clt) with (swap_comparison Cgt) by auto;
    rewrite Val.swap_cmpu_bool; trivial.
  - replace (Clt) with (negate_comparison Cge) by auto;
    rewrite Val.negate_cmpu_bool; eauto.
Qed.

Lemma simplify_ccompimm_correct (ctx: iblock_exec_context) (hrs: ristate) (st: sistate)
  c r v n: forall
  (REG_EQ : forall r : positive, eval_sval ctx (hrs r) = eval_sval ctx (st r))
  (OKv1 : eval_sval ctx (st r) = Some v),
  eval_sval ctx (expanse_condimm_int32s c (hrs r) n) =
  Some (Val.of_optbool (Val.cmp_bool c v (Vint n))).
Proof.
  intros.
  unfold expanse_condimm_int32s, cond_int32s in *; destruct c;
  intros; destruct (Int.eq n Int.zero) eqn:EQIMM; simpl;
  try apply Int.same_if_eq in EQIMM; subst;
  unfold loadimm32, sltimm32, xorimm32, opimm32, load_hilo32;
  try rewrite !REG_EQ, OKv1;
  unfold Val.cmp, zero32.
  all:
    try apply xor_neg_ltle_cmp; 
    try apply xor_neg_ltge_cmp; trivial.
  4: 
    try destruct (Int.eq n (Int.repr Int.max_signed)) eqn:EQMAX; subst;
    try apply Int.same_if_eq in EQMAX; subst; simpl.
  4:
    intros; try (specialize make_immed32_sound with (Int.one);
    destruct (make_immed32 Int.one) eqn:EQMKI_A1); intros; simpl.
  6:
    intros; try (specialize make_immed32_sound with (Int.add n Int.one);
    destruct (make_immed32 (Int.add n Int.one)) eqn:EQMKI_A2); intros; simpl.
  1,2,3,8,9:
    intros; try (specialize make_immed32_sound with (n);
    destruct (make_immed32 n) eqn:EQMKI); intros; simpl.
  all: 
    try destruct (Int.eq lo Int.zero) eqn:EQLO32;
    try apply Int.same_if_eq in EQLO32; subst;
    try rewrite !REG_EQ, OKv1;
    try rewrite (Int.add_commut _ Int.zero), Int.add_zero_l in H; subst; simpl;
    unfold Val.cmp, eval_may_undef, zero32, Val.add; simpl;
    destruct v; auto.
  all:
    try rewrite ltu_12_wordsize;
    try rewrite <- H;
    try (apply cmp_ltle_add_one; auto);
    try rewrite Int.add_commut, Int.add_zero_l in *;
    try (
    simpl; trivial;
    try rewrite Int.xor_is_zero;
    try destruct (Int.lt _ _) eqn:EQLT; trivial;
    try rewrite lt_maxsgn_false_int in EQLT;
    simpl; trivial; try discriminate; fail).
Qed.

Lemma simplify_ccompuimm_correct (ctx: iblock_exec_context) (hrs: ristate) (st: sistate)
  c r v n: forall
  (REG_EQ : forall r : positive, eval_sval ctx (hrs r) = eval_sval ctx (st r))
  (OKv1 : eval_sval ctx (st r) = Some v),
  eval_sval ctx (expanse_condimm_int32u c (hrs r) n) =
  Some (Val.of_optbool (Val.cmpu_bool (Mem.valid_pointer (cm0 ctx)) c v (Vint n))).
Proof.
  intros.
  unfold expanse_condimm_int32u, cond_int32u in *; destruct c;
  intros; destruct (Int.eq n Int.zero) eqn:EQIMM; simpl;
  try apply Int.same_if_eq in EQIMM; subst;
  unfold loadimm32, sltuimm32, opimm32, load_hilo32;
  try rewrite !REG_EQ, OKv1; trivial;
  try rewrite xor_neg_ltle_cmpu;
  unfold Val.cmpu, zero32.
  all:
    try (specialize make_immed32_sound with n;
    destruct (make_immed32 n) eqn:EQMKI);
    try destruct (Int.eq lo Int.zero) eqn:EQLO;
    try apply Int.same_if_eq in EQLO; subst;
    intros; subst; simpl;
    try rewrite !REG_EQ, OKv1;
    unfold eval_may_undef, Val.cmpu;
    destruct v; simpl; auto;
    try rewrite EQIMM; try destruct (Archi.ptr64) eqn:EQARCH; simpl;
    try rewrite ltu_12_wordsize; trivial;
    try rewrite Int.add_commut, Int.add_zero_l in *;
    try destruct (Int.ltu _ _) eqn:EQLTU; simpl;
    try rewrite EQLTU; simpl; try rewrite EQIMM;
    try rewrite EQARCH; trivial.
Qed.

Lemma simplify_ccompl_correct (ctx: iblock_exec_context) (hrs: ristate) (st: sistate)
  c r r0 v v0: forall
  (REG_EQ : forall r : positive, eval_sval ctx (hrs r) = eval_sval ctx (st r))
  (OKv1 : eval_sval ctx (st r) = Some v)
  (OKv2 : eval_sval ctx (st r0) = Some v0),
  eval_sval ctx
    (cond_int64s c (make_lfsv_cmp (is_inv_cmp_int c) (hrs r) (hrs r0)) None) =
  Some (Val.of_optbool (Val.cmpl_bool c v v0)).
Proof.
  intros.
  unfold cond_int64s in *; destruct c; simpl;
  rewrite !REG_EQ, OKv1, OKv2; trivial;
  unfold Val.cmpl.
  1,2,3: rewrite optbool_mktotal; trivial.
  replace (Clt) with (swap_comparison Cgt) by auto;
  rewrite Val.swap_cmpl_bool; trivial.
  rewrite optbool_mktotal; trivial.
Qed.

Lemma simplify_ccomplu_correct (ctx: iblock_exec_context) (hrs: ristate) (st: sistate)
  c r r0 v v0: forall
  (REG_EQ : forall r : positive, eval_sval ctx (hrs r) = eval_sval ctx (st r))
  (OKv1 : eval_sval ctx (st r) = Some v)
  (OKv2 : eval_sval ctx (st r0) = Some v0),
  eval_sval ctx
    (cond_int64u c (make_lfsv_cmp (is_inv_cmp_int c) (hrs r) (hrs r0)) None) =
  Some (Val.of_optbool (Val.cmplu_bool (Mem.valid_pointer (cm0 ctx)) c v v0)).
Proof.
  intros.
  unfold cond_int64u in *; destruct c; simpl;
  rewrite !REG_EQ, OKv1, OKv2; trivial;
  unfold Val.cmplu.
  1,2,3: rewrite optbool_mktotal; trivial; eauto.
  replace (Clt) with (swap_comparison Cgt) by auto;
  rewrite Val.swap_cmplu_bool; trivial.
  rewrite optbool_mktotal; trivial.
Qed.

Lemma simplify_ccomplimm_correct (ctx: iblock_exec_context) (hrs: ristate) (st: sistate)
  c r v n: forall
  (REG_EQ : forall r : positive, eval_sval ctx (hrs r) = eval_sval ctx (st r))
  (OKv1 : eval_sval ctx (st r) = Some v),
  eval_sval ctx (expanse_condimm_int64s c (hrs r) n) =
  Some (Val.of_optbool (Val.cmpl_bool c v (Vlong n))).
Proof.
  intros.
  unfold expanse_condimm_int64s, cond_int64s in *; destruct c;
  intros; destruct (Int64.eq n Int64.zero) eqn:EQIMM; simpl;
  try apply Int64.same_if_eq in EQIMM; subst;
  unfold loadimm32, loadimm64, sltimm64, xorimm64, opimm64, load_hilo32, load_hilo64;
  try rewrite !REG_EQ, OKv1;
  unfold Val.cmpl, zero64.
  all:
    try apply xor_neg_ltle_cmpl; 
    try apply xor_neg_ltge_cmpl;
    try rewrite optbool_mktotal; trivial.
  4: 
    try destruct (Int64.eq n (Int64.repr Int64.max_signed)) eqn:EQMAX; subst;
    try apply Int64.same_if_eq in EQMAX; subst; simpl.
  4:
    intros; try (specialize make_immed32_sound with (Int.one);
    destruct (make_immed32 Int.one) eqn:EQMKI_A1); intros; simpl.
  6:
    intros; try (specialize make_immed64_sound with (Int64.add n Int64.one);
    destruct (make_immed64 (Int64.add n Int64.one)) eqn:EQMKI_A2); intros; simpl.
  1,2,3,9,10:
    intros; try (specialize make_immed64_sound with (n);
    destruct (make_immed64 n) eqn:EQMKI); intros; simpl.
  all: 
    try destruct (Int.eq lo Int.zero) eqn:EQLO32;
    try apply Int.same_if_eq in EQLO32; subst;
    try destruct (Int64.eq lo Int64.zero) eqn:EQLO64;
    try apply Int64.same_if_eq in EQLO64; subst; simpl;
    try rewrite !REG_EQ, OKv1;
    try rewrite (Int64.add_commut _ Int64.zero), Int64.add_zero_l in H; subst;
    unfold Val.cmpl, Val.addl;
    try rewrite optbool_mktotal; trivial;
    destruct v; auto.
  all:
    try rewrite <- optbool_mktotal; trivial;
    try rewrite Int64.add_commut, Int64.add_zero_l in *;
    try fold (Val.cmpl Clt (Vlong i) (Vlong imm));
    try fold (Val.cmpl Clt (Vlong i) (Vlong (Int64.sign_ext 32 (Int64.shl hi (Int64.repr 12)))));
    try fold (Val.cmpl Clt (Vlong i) (Vlong (Int64.add (Int64.sign_ext 32 (Int64.shl hi (Int64.repr 12))) lo))).
  all:
    try rewrite <- cmpl_ltle_add_one; auto;
    try rewrite ltu_12_wordsize;
    try rewrite Int.add_commut, Int.add_zero_l in *;
    simpl; try rewrite lt_maxsgn_false_long;
    try (rewrite <- H; trivial; fail);
    simpl; trivial.
Qed.

Lemma simplify_ccompluimm_correct (ctx: iblock_exec_context) (hrs: ristate) (st: sistate)
  c r v n: forall
  (REG_EQ : forall r : positive, eval_sval ctx (hrs r) = eval_sval ctx (st r))
  (OKv1 : eval_sval ctx (st r) = Some v),
  eval_sval ctx (expanse_condimm_int64u c (hrs r) n) =
  Some (Val.of_optbool
     (Val.cmplu_bool (Mem.valid_pointer (cm0 ctx)) c v (Vlong n))).
Proof.
  intros.
  unfold expanse_condimm_int64u, cond_int64u in *; destruct c;
  intros; destruct (Int64.eq n Int64.zero) eqn:EQIMM; simpl;
  unfold loadimm64, sltuimm64, opimm64, load_hilo64;
  try rewrite !REG_EQ, OKv1;
  unfold Val.cmplu, zero64.
  (* Simplify make immediate and decompose subcases *)
  all:
    try (specialize make_immed64_sound with n;
    destruct (make_immed64 n) eqn:EQMKI);
    try destruct (Int64.eq lo Int64.zero) eqn:EQLO; simpl;
    try rewrite !REG_EQ, OKv1.
  (* Ceq, Cne, Clt = itself *)
  all: intros; try apply Int64.same_if_eq in EQIMM; subst; trivial.
  (* Cle = xor (Clt) *)
  all: try apply xor_neg_ltle_cmplu; trivial.
  (* Others subcases with swap/negation *)
  all:
    unfold Val.cmplu, eval_may_undef, zero64, Val.addl;
    try apply Int64.same_if_eq in EQLO; subst;
    try rewrite Int64.add_commut, Int64.add_zero_l in *; trivial;
    try (rewrite <- xor_neg_ltle_cmplu; unfold Val.cmplu;
    trivial; fail);
    try rewrite optbool_mktotal; trivial.
  all:
    try destruct v; simpl; auto;
    try destruct (Archi.ptr64); simpl;
    try rewrite EQIMM;
    try destruct (Int64.ltu _ _);
    try rewrite <- optbool_mktotal; trivial.
Qed.

Lemma simplify_ccompf_correct (ctx: iblock_exec_context) (hrs: ristate) (st: sistate)
  c r r0 v v0: forall
  (REG_EQ : forall r : positive, eval_sval ctx (hrs r) = eval_sval ctx (st r))
  (OKv1 : eval_sval ctx (st r) = Some v)
  (OKv2 : eval_sval ctx (st r0) = Some v0),
  eval_sval ctx
    (expanse_cond_fp false cond_float c
       (make_lfsv_cmp (is_inv_cmp_float c) (hrs r) (hrs r0))) =
  Some (Val.of_optbool (Val.cmpf_bool c v v0)).
Proof.
  intros.
  unfold expanse_cond_fp in *; destruct c; simpl;
  rewrite !REG_EQ, OKv1, OKv2; trivial;
  unfold Val.cmpf.
  - replace (Clt) with (swap_comparison Cgt) by auto;
    rewrite swap_cmpf_bool; trivial.
  - replace (Cle) with (swap_comparison Cge) by auto;
    rewrite swap_cmpf_bool; trivial.
Qed.

Lemma simplify_cnotcompf_correct (ctx: iblock_exec_context) (hrs: ristate) (st: sistate)
  c r r0 v v0: forall
  (REG_EQ : forall r : positive, eval_sval ctx (hrs r) = eval_sval ctx (st r))
  (OKv1 : eval_sval ctx (st r) = Some v)
  (OKv2 : eval_sval ctx (st r0) = Some v0),
  eval_sval ctx
    (expanse_cond_fp true cond_float c
       (make_lfsv_cmp (is_inv_cmp_float c) (hrs r) (hrs r0))) =
  Some (Val.of_optbool (option_map negb (Val.cmpf_bool c v v0))).
Proof.
  intros.
  unfold expanse_cond_fp in *; destruct c; simpl;
  rewrite !REG_EQ, OKv1, OKv2; trivial;
  unfold Val.cmpf.
  1,3,4: apply xor_neg_optb'.
  all: destruct v, v0; simpl; trivial.
  rewrite Float.cmp_ne_eq; rewrite negb_involutive; trivial.
  1: replace (Clt) with (swap_comparison Cgt) by auto; rewrite <- Float.cmp_swap; simpl.
  2: replace (Cle) with (swap_comparison Cge) by auto; rewrite <- Float.cmp_swap; simpl.
  all: destruct (Float.cmp _ _ _); trivial.
Qed.

Lemma simplify_ccompfs_correct (ctx: iblock_exec_context) (hrs: ristate) (st: sistate)
  c r r0 v v0: forall
  (REG_EQ : forall r : positive, eval_sval ctx (hrs r) = eval_sval ctx (st r))
  (OKv1 : eval_sval ctx (st r) = Some v)
  (OKv2 : eval_sval ctx (st r0) = Some v0),  eval_sval ctx
    (expanse_cond_fp false cond_single c
       (make_lfsv_cmp (is_inv_cmp_float c) (hrs r) (hrs r0))) =
  Some (Val.of_optbool (Val.cmpfs_bool c v v0)).
Proof.
  intros.
  unfold expanse_cond_fp in *; destruct c; simpl;
  rewrite !REG_EQ, OKv1, OKv2; trivial;
  unfold Val.cmpfs.
  - replace (Clt) with (swap_comparison Cgt) by auto;
    rewrite swap_cmpfs_bool; trivial.
  - replace (Cle) with (swap_comparison Cge) by auto;
    rewrite swap_cmpfs_bool; trivial.
Qed.

Lemma simplify_cnotcompfs_correct (ctx: iblock_exec_context) (hrs: ristate) (st: sistate)
  c r r0 v v0: forall
  (REG_EQ : forall r : positive, eval_sval ctx (hrs r) = eval_sval ctx (st r))
  (OKv1 : eval_sval ctx (st r) = Some v)
  (OKv2 : eval_sval ctx (st r0) = Some v0),
  eval_sval ctx
    (expanse_cond_fp true cond_single c
       (make_lfsv_cmp (is_inv_cmp_float c) (hrs r) (hrs r0))) =
  Some (Val.of_optbool (option_map negb (Val.cmpfs_bool c v v0))).
Proof.
  intros.
  unfold expanse_cond_fp in *; destruct c; simpl;
  rewrite !REG_EQ, OKv1, OKv2; trivial;
  unfold Val.cmpfs.
  1,3,4: apply xor_neg_optb'.
  all: destruct v, v0; simpl; trivial.
  rewrite Float32.cmp_ne_eq; rewrite negb_involutive; trivial.
  1: replace (Clt) with (swap_comparison Cgt) by auto; rewrite <- Float32.cmp_swap; simpl.
  2: replace (Cle) with (swap_comparison Cge) by auto; rewrite <- Float32.cmp_swap; simpl.
  all: destruct (Float32.cmp _ _ _); trivial.
Qed.

(* Main proof of simplification *)

Lemma target_op_simplify_correct ctx op lr hrs fsv st args: forall
   (H: target_op_simplify op lr hrs = Some fsv)
   (REF: ris_refines ctx hrs st)
   (OK0: ris_ok ctx hrs)
   (OK1: eval_list_sval ctx (list_sval_inj (map (si_sreg st) lr)) = Some args),
   eval_sval ctx fsv = eval_operation (cge ctx) (csp ctx) op args (cm0 ctx).
Proof.
  unfold target_op_simplify; simpl.
  intros H ? ? ?; inv REF.
  destruct op; try congruence.
  (* Ocmp expansions *)
  destruct cond; repeat (destruct lr; simpl; try congruence);
  simpl in OK1;
  try (destruct (eval_sval ctx (si_sreg st r)) eqn:OKv1; try congruence);
  try (destruct (eval_sval ctx (si_sreg st r0)) eqn:OKv2; try congruence);
  inv H; inv OK1.
  - eapply simplify_ccomp_correct; eauto.
  - eapply simplify_ccompu_correct; eauto.
  - eapply simplify_ccompimm_correct; eauto.
  - eapply simplify_ccompuimm_correct; eauto.
  - eapply simplify_ccompl_correct; eauto.
  - eapply simplify_ccomplu_correct; eauto.
  - eapply simplify_ccomplimm_correct; eauto.
  - eapply simplify_ccompluimm_correct; eauto.
  - eapply simplify_ccompf_correct; eauto.
  - eapply simplify_cnotcompf_correct; eauto.
  - eapply simplify_ccompfs_correct; eauto.
  - eapply simplify_cnotcompfs_correct; eauto.
Qed.

(*
Lemma target_cbranch_expanse_correct hrs c l ge sp rs0 m0 st c' l': forall
  (TARGET: target_cbranch_expanse hrs c l = Some (c', l'))
  (LREF : hsilocal_refines ge sp rs0 m0 hrs st)
  (OK: hsok_local ge sp rs0 m0 hrs),
  seval_condition ge sp c' (hsval_list_proj l') (si_smem st) rs0 m0 =
  seval_condition ge sp c (list_sval_inj (map (si_sreg st) l)) (si_smem st) rs0 m0.
Proof.
  unfold target_cbranch_expanse, seval_condition; simpl.
  intros H (LREF & SREF & SREG & SMEM) ?.
  congruence.
Qed.
Global Opaque target_op_simplify.
   Global Opaque target_cbranch_expanse.*)