aboutsummaryrefslogtreecommitdiffstats
path: root/riscV/ExpansionOracle.ml
blob: e0c9b9b2349b82de2dd4b358936ff8ecd49f3a09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
(* *************************************************************)
(*                                                             *)
(*             The Compcert verified compiler                  *)
(*                                                             *)
(*           Léo Gourdin        UGA, VERIMAG                   *)
(*                                                             *)
(*  Copyright VERIMAG. All rights reserved.                    *)
(*  This file is distributed under the terms of the INRIA      *)
(*  Non-Commercial License Agreement.                          *)
(*                                                             *)
(* *************************************************************)

open RTLpathLivegenaux
open RTLpathCommon
open Datatypes
open Maps
open RTL
open Op
open Asmgen
open RTLpath
open! Integers
open Camlcoq
open Option
open AST
open Printf

(** Mini CSE (a dynamic numbering is applied during expansion. 
    The CSE algorithm is inspired by the "static" one used in backend/CSE.v *)

let exp_debug = false

(** Managing virtual registers and node index *)

let reg = ref 1

let node = ref 1

let p2i r = P.to_int r

let r2p () = P.of_int !reg

let n2p () = P.of_int !node

let r2pi () =
  reg := !reg + 1;
  r2p ()

let n2pi () =
  node := !node + 1;
  n2p ()

(** Below are the types for rhs and equations *)

type rhs = Sop of operation * int list | Smove

type seq = Seq of int * rhs

(** This is a mini abstraction to have a simpler representation during expansion
    - Snop will be converted to Inop
    - (Sr r) is inserted if the value was found in register r
    - (Sexp dest rhs args succ) represent an instruction
      (succesor may not be defined at this point, hence the use of type option)
    - (Sfinalcond cond args succ1 succ2 info) represents a condition (which must
      always be the last instruction in expansion list *)

type expl =
  | Snop of P.t
  | Sr of P.t
  | Sexp of P.t * rhs * P.t list * node option
  | Sfinalcond of condition * P.t list * node * node * bool option

(** Record used during the "dynamic" value numbering *)

type numb = {
  mutable nnext : int;  (** Next unusued value number *)
  mutable seqs : seq list;  (** equations *)
  mutable nreg : (P.t, int) Hashtbl.t;  (** mapping registers to values *)
  mutable nval : (int, P.t list) Hashtbl.t;
      (** reverse mapping values to registers containing it *)
}

let print_list_pos l =
  if exp_debug then eprintf "[";
  List.iter (fun i -> if exp_debug then eprintf "%d;" (p2i i)) l;
  if exp_debug then eprintf "]\n"

let empty_numbering () =
  { nnext = 1; seqs = []; nreg = Hashtbl.create 100; nval = Hashtbl.create 100 }

let rec get_nvalues vn = function
  | [] -> []
  | r :: rs ->
      let v =
        match Hashtbl.find_opt !vn.nreg r with
        | Some v ->
            if exp_debug then eprintf "getnval r=%d |-> v=%d\n" (p2i r) v;
            v
        | None ->
            let n = !vn.nnext in
            if exp_debug then eprintf "getnval r=%d |-> v=%d\n" (p2i r) n;
            !vn.nnext <- !vn.nnext + 1;
            Hashtbl.replace !vn.nreg r n;
            Hashtbl.replace !vn.nval n [ r ];
            n
      in
      let vs = get_nvalues vn rs in
      v :: vs

let get_nval_ornil vn v =
  match Hashtbl.find_opt !vn.nval v with None -> [] | Some l -> l

let forget_reg vn rd =
  match Hashtbl.find_opt !vn.nreg rd with
  | Some v ->
      if exp_debug then eprintf "forget_reg: r=%d |-> v=%d\n" (p2i rd) v;
      let old_regs = get_nval_ornil vn v in
      if exp_debug then eprintf "forget_reg: old_regs are:\n";
      print_list_pos old_regs;
      Hashtbl.replace !vn.nval v
        (List.filter (fun n -> not (P.eq n rd)) old_regs)
  | None ->
      if exp_debug then eprintf "forget_reg: no mapping for r=%d\n" (p2i rd)

let update_reg vn rd v =
  if exp_debug then eprintf "update_reg: update v=%d with r=%d\n" v (p2i rd);
  forget_reg vn rd;
  let old_regs = get_nval_ornil vn v in
  Hashtbl.replace !vn.nval v (rd :: old_regs)

let rec find_valnum_rhs rh = function
  | [] -> None
  | Seq (v, rh') :: tl -> if rh = rh' then Some v else find_valnum_rhs rh tl

let set_unknown vn rd =
  if exp_debug then eprintf "set_unknown: rd=%d\n" (p2i rd);
  forget_reg vn rd;
  Hashtbl.remove !vn.nreg rd

let set_res_unknown vn res = match res with BR r -> set_unknown vn r | _ -> ()

let addrhs vn rd rh =
  match find_valnum_rhs rh !vn.seqs with
  | Some vres ->
      if exp_debug then eprintf "addrhs: Some v=%d\n" vres;
      Hashtbl.replace !vn.nreg rd vres;
      update_reg vn rd vres
  | None ->
      let n = !vn.nnext in
      if exp_debug then eprintf "addrhs: None v=%d\n" n;
      !vn.nnext <- !vn.nnext + 1;
      !vn.seqs <- Seq (n, rh) :: !vn.seqs;
      update_reg vn rd n;
      Hashtbl.replace !vn.nreg rd n

let addsop vn v op rd =
  if exp_debug then eprintf "addsop\n";
  if op = Omove then (
    update_reg vn rd (List.hd v);
    Hashtbl.replace !vn.nreg rd (List.hd v))
  else addrhs vn rd (Sop (op, v))

let rec kill_mem_operations = function
  | (Seq (v, Sop (op, vl)) as eq) :: tl ->
      if op_depends_on_memory op then kill_mem_operations tl
      else eq :: kill_mem_operations tl
  | [] -> []
  | eq :: tl -> eq :: kill_mem_operations tl

let reg_valnum vn v =
  if exp_debug then eprintf "reg_valnum: trying to find a mapping for v=%d\n" v;
  match Hashtbl.find !vn.nval v with
  | [] -> None
  | r :: rs ->
      if exp_debug then eprintf "reg_valnum: found a mapping r=%d\n" (p2i r);
      Some r

let rec reg_valnums vn = function
  | [] -> Some []
  | v :: vs -> (
      match (reg_valnum vn v, reg_valnums vn vs) with
      | Some r, Some rs -> Some (r :: rs)
      | _, _ -> None)

let find_rhs vn rh =
  match find_valnum_rhs rh !vn.seqs with
  | None -> None
  | Some vres -> reg_valnum vn vres

(** Functions to perform the dynamic reduction during CSE *)

let extract_arg l =
  if List.length l > 0 then
    match List.hd l with
    | Sr r -> (r, List.tl l)
    | Sexp (rd, _, _, _) -> (rd, l)
    | _ -> failwith "extract_arg: final instruction arg can not be extracted"
  else failwith "extract_arg: trying to extract on an empty list"

let extract_final vn fl fdest succ =
  if List.length fl > 0 then
    match List.hd fl with
    | Sr r ->
        if not (P.eq r fdest) then (
          let v = get_nvalues vn [ r ] in
          addsop vn v Omove fdest;
          Sexp (fdest, Smove, [ r ], Some succ) :: List.tl fl)
        else Snop succ :: List.tl fl
    | Sexp (rd, rh, args, None) ->
        assert (rd = fdest);
        Sexp (fdest, rh, args, Some succ) :: List.tl fl
    | _ -> fl
  else failwith "extract_final: trying to extract on an empty list"

let addinst vn op args rd =
  let v = get_nvalues vn args in
  let rh = Sop (op, v) in
  match find_rhs vn rh with
  | Some r ->
      if exp_debug then eprintf "addinst: rhs found with r=%d\n" (p2i r);
      Sr r
  | None ->
      addsop vn v op rd;
      Sexp (rd, rh, args, None)

(** Expansion functions *)

type immt =
  | Addiw
  | Addil
  | Andiw
  | Andil
  | Oriw
  | Oril
  | Xoriw
  | Xoril
  | Sltiw
  | Sltiuw
  | Sltil
  | Sltiul

let load_hilo32 vn dest hi lo =
  let op1 = OEluiw hi in
  if Int.eq lo Int.zero then [ addinst vn op1 [] dest ]
  else
    let r = r2pi () in
    let op2 = OEaddiw (None, lo) in
    let i1 = addinst vn op1 [] r in
    let r', l = extract_arg [ i1 ] in
    let i2 = addinst vn op2 [ r' ] dest in
    i2 :: l

let load_hilo64 vn dest hi lo =
  let op1 = OEluil hi in
  if Int64.eq lo Int64.zero then [ addinst vn op1 [] dest ]
  else
    let r = r2pi () in
    let op2 = OEaddil (None, lo) in
    let i1 = addinst vn op1 [] r in
    let r', l = extract_arg [ i1 ] in
    let i2 = addinst vn op2 [ r' ] dest in
    i2 :: l

let loadimm32 vn dest n =
  match make_immed32 n with
  | Imm32_single imm ->
      let op1 = OEaddiw (Some X0_R, imm) in
      [ addinst vn op1 [] dest ]
  | Imm32_pair (hi, lo) -> load_hilo32 vn dest hi lo

let loadimm64 vn dest n =
  match make_immed64 n with
  | Imm64_single imm ->
      let op1 = OEaddil (Some X0_R, imm) in
      [ addinst vn op1 [] dest ]
  | Imm64_pair (hi, lo) -> load_hilo64 vn dest hi lo
  | Imm64_large imm ->
      let op1 = OEloadli imm in
      [ addinst vn op1 [] dest ]

let get_opimm optR imm = function
  | Addiw -> OEaddiw (optR, imm)
  | Andiw -> OEandiw imm
  | Oriw -> OEoriw imm
  | Xoriw -> OExoriw imm
  | Sltiw -> OEsltiw imm
  | Sltiuw -> OEsltiuw imm
  | Addil -> OEaddil (optR, imm)
  | Andil -> OEandil imm
  | Oril -> OEoril imm
  | Xoril -> OExoril imm
  | Sltil -> OEsltil imm
  | Sltiul -> OEsltiul imm

let opimm32 vn a1 dest n optR op opimm =
  match make_immed32 n with
  | Imm32_single imm -> [ addinst vn (get_opimm optR imm opimm) [ a1 ] dest ]
  | Imm32_pair (hi, lo) ->
      let r = r2pi () in
      let l = load_hilo32 vn r hi lo in
      let r', l' = extract_arg l in
      let i = addinst vn op [ a1; r' ] dest in
      i :: l'

let opimm64 vn a1 dest n optR op opimm =
  match make_immed64 n with
  | Imm64_single imm -> [ addinst vn (get_opimm optR imm opimm) [ a1 ] dest ]
  | Imm64_pair (hi, lo) ->
      let r = r2pi () in
      let l = load_hilo64 vn r hi lo in
      let r', l' = extract_arg l in
      let i = addinst vn op [ a1; r' ] dest in
      i :: l'
  | Imm64_large imm ->
      let r = r2pi () in
      let op1 = OEloadli imm in
      let i1 = addinst vn op1 [] r in
      let r', l' = extract_arg [ i1 ] in
      let i2 = addinst vn op [ a1; r' ] dest in
      i2 :: l'

let addimm32 vn a1 dest n optR = opimm32 vn a1 dest n optR Oadd Addiw

let andimm32 vn a1 dest n = opimm32 vn a1 dest n None Oand Andiw

let orimm32 vn a1 dest n = opimm32 vn a1 dest n None Oor Oriw

let xorimm32 vn a1 dest n = opimm32 vn a1 dest n None Oxor Xoriw

let sltimm32 vn a1 dest n = opimm32 vn a1 dest n None (OEsltw None) Sltiw

let sltuimm32 vn a1 dest n = opimm32 vn a1 dest n None (OEsltuw None) Sltiuw

let addimm64 vn a1 dest n optR = opimm64 vn a1 dest n optR Oaddl Addil

let andimm64 vn a1 dest n = opimm64 vn a1 dest n None Oandl Andil

let orimm64 vn a1 dest n = opimm64 vn a1 dest n None Oorl Oril

let xorimm64 vn a1 dest n = opimm64 vn a1 dest n None Oxorl Xoril

let sltimm64 vn a1 dest n = opimm64 vn a1 dest n None (OEsltl None) Sltil

let sltuimm64 vn a1 dest n = opimm64 vn a1 dest n None (OEsltul None) Sltiul

let is_inv_cmp = function Cle | Cgt -> true | _ -> false

let make_optR is_x0 is_inv =
  if is_x0 then if is_inv then Some X0_L else Some X0_R else None

let cbranch_int32s is_x0 cmp a1 a2 info succ1 succ2 k =
  let optR = make_optR is_x0 (is_inv_cmp cmp) in
  match cmp with
  | Ceq -> Sfinalcond (CEbeqw optR, [ a1; a2 ], succ1, succ2, info) :: k
  | Cne -> Sfinalcond (CEbnew optR, [ a1; a2 ], succ1, succ2, info) :: k
  | Clt -> Sfinalcond (CEbltw optR, [ a1; a2 ], succ1, succ2, info) :: k
  | Cle -> Sfinalcond (CEbgew optR, [ a2; a1 ], succ1, succ2, info) :: k
  | Cgt -> Sfinalcond (CEbltw optR, [ a2; a1 ], succ1, succ2, info) :: k
  | Cge -> Sfinalcond (CEbgew optR, [ a1; a2 ], succ1, succ2, info) :: k

let cbranch_int32u is_x0 cmp a1 a2 info succ1 succ2 k =
  let optR = make_optR is_x0 (is_inv_cmp cmp) in
  match cmp with
  | Ceq -> Sfinalcond (CEbequw optR, [ a1; a2 ], succ1, succ2, info) :: k
  | Cne -> Sfinalcond (CEbneuw optR, [ a1; a2 ], succ1, succ2, info) :: k
  | Clt -> Sfinalcond (CEbltuw optR, [ a1; a2 ], succ1, succ2, info) :: k
  | Cle -> Sfinalcond (CEbgeuw optR, [ a2; a1 ], succ1, succ2, info) :: k
  | Cgt -> Sfinalcond (CEbltuw optR, [ a2; a1 ], succ1, succ2, info) :: k
  | Cge -> Sfinalcond (CEbgeuw optR, [ a1; a2 ], succ1, succ2, info) :: k

let cbranch_int64s is_x0 cmp a1 a2 info succ1 succ2 k =
  let optR = make_optR is_x0 (is_inv_cmp cmp) in
  match cmp with
  | Ceq -> Sfinalcond (CEbeql optR, [ a1; a2 ], succ1, succ2, info) :: k
  | Cne -> Sfinalcond (CEbnel optR, [ a1; a2 ], succ1, succ2, info) :: k
  | Clt -> Sfinalcond (CEbltl optR, [ a1; a2 ], succ1, succ2, info) :: k
  | Cle -> Sfinalcond (CEbgel optR, [ a2; a1 ], succ1, succ2, info) :: k
  | Cgt -> Sfinalcond (CEbltl optR, [ a2; a1 ], succ1, succ2, info) :: k
  | Cge -> Sfinalcond (CEbgel optR, [ a1; a2 ], succ1, succ2, info) :: k

let cbranch_int64u is_x0 cmp a1 a2 info succ1 succ2 k =
  let optR = make_optR is_x0 (is_inv_cmp cmp) in
  match cmp with
  | Ceq -> Sfinalcond (CEbequl optR, [ a1; a2 ], succ1, succ2, info) :: k
  | Cne -> Sfinalcond (CEbneul optR, [ a1; a2 ], succ1, succ2, info) :: k
  | Clt -> Sfinalcond (CEbltul optR, [ a1; a2 ], succ1, succ2, info) :: k
  | Cle -> Sfinalcond (CEbgeul optR, [ a2; a1 ], succ1, succ2, info) :: k
  | Cgt -> Sfinalcond (CEbltul optR, [ a2; a1 ], succ1, succ2, info) :: k
  | Cge -> Sfinalcond (CEbgeul optR, [ a1; a2 ], succ1, succ2, info) :: k

let cond_int32s vn is_x0 cmp a1 a2 dest =
  let optR = make_optR is_x0 (is_inv_cmp cmp) in
  match cmp with
  | Ceq -> [ addinst vn (OEseqw optR) [ a1; a2 ] dest ]
  | Cne -> [ addinst vn (OEsnew optR) [ a1; a2 ] dest ]
  | Clt -> [ addinst vn (OEsltw optR) [ a1; a2 ] dest ]
  | Cle ->
      let r = r2pi () in
      let op = OEsltw optR in
      let i1 = addinst vn op [ a2; a1 ] r in
      let r', l = extract_arg [ i1 ] in
      addinst vn (OExoriw Int.one) [ r' ] dest :: l
  | Cgt -> [ addinst vn (OEsltw optR) [ a2; a1 ] dest ]
  | Cge ->
      let r = r2pi () in
      let op = OEsltw optR in
      let i1 = addinst vn op [ a1; a2 ] r in
      let r', l = extract_arg [ i1 ] in
      addinst vn (OExoriw Int.one) [ r' ] dest :: l

let cond_int32u vn is_x0 cmp a1 a2 dest =
  let optR = make_optR is_x0 (is_inv_cmp cmp) in
  match cmp with
  | Ceq -> [ addinst vn (OEsequw optR) [ a1; a2 ] dest ]
  | Cne -> [ addinst vn (OEsneuw optR) [ a1; a2 ] dest ]
  | Clt -> [ addinst vn (OEsltuw optR) [ a1; a2 ] dest ]
  | Cle ->
      let r = r2pi () in
      let op = OEsltuw optR in
      let i1 = addinst vn op [ a2; a1 ] r in
      let r', l = extract_arg [ i1 ] in
      addinst vn (OExoriw Int.one) [ r' ] dest :: l
  | Cgt -> [ addinst vn (OEsltuw optR) [ a2; a1 ] dest ]
  | Cge ->
      let r = r2pi () in
      let op = OEsltuw optR in
      let i1 = addinst vn op [ a1; a2 ] r in
      let r', l = extract_arg [ i1 ] in
      addinst vn (OExoriw Int.one) [ r' ] dest :: l

let cond_int64s vn is_x0 cmp a1 a2 dest =
  let optR = make_optR is_x0 (is_inv_cmp cmp) in
  match cmp with
  | Ceq -> [ addinst vn (OEseql optR) [ a1; a2 ] dest ]
  | Cne -> [ addinst vn (OEsnel optR) [ a1; a2 ] dest ]
  | Clt -> [ addinst vn (OEsltl optR) [ a1; a2 ] dest ]
  | Cle ->
      let r = r2pi () in
      let op = OEsltl optR in
      let i1 = addinst vn op [ a2; a1 ] r in
      let r', l = extract_arg [ i1 ] in
      addinst vn (OExoriw Int.one) [ r' ] dest :: l
  | Cgt -> [ addinst vn (OEsltl optR) [ a2; a1 ] dest ]
  | Cge ->
      let r = r2pi () in
      let op = OEsltl optR in
      let i1 = addinst vn op [ a1; a2 ] r in
      let r', l = extract_arg [ i1 ] in
      addinst vn (OExoriw Int.one) [ r' ] dest :: l

let cond_int64u vn is_x0 cmp a1 a2 dest =
  let optR = make_optR is_x0 (is_inv_cmp cmp) in
  match cmp with
  | Ceq -> [ addinst vn (OEsequl optR) [ a1; a2 ] dest ]
  | Cne -> [ addinst vn (OEsneul optR) [ a1; a2 ] dest ]
  | Clt -> [ addinst vn (OEsltul optR) [ a1; a2 ] dest ]
  | Cle ->
      let r = r2pi () in
      let op = OEsltul optR in
      let i1 = addinst vn op [ a2; a1 ] r in
      let r', l = extract_arg [ i1 ] in
      addinst vn (OExoriw Int.one) [ r' ] dest :: l
  | Cgt -> [ addinst vn (OEsltul optR) [ a2; a1 ] dest ]
  | Cge ->
      let r = r2pi () in
      let op = OEsltul optR in
      let i1 = addinst vn op [ a1; a2 ] r in
      let r', l = extract_arg [ i1 ] in
      addinst vn (OExoriw Int.one) [ r' ] dest :: l

let is_normal_cmp = function Cne -> false | _ -> true

let cond_float vn cmp f1 f2 dest =
  match cmp with
  | Ceq -> [ addinst vn OEfeqd [ f1; f2 ] dest ]
  | Cne -> [ addinst vn OEfeqd [ f1; f2 ] dest ]
  | Clt -> [ addinst vn OEfltd [ f1; f2 ] dest ]
  | Cle -> [ addinst vn OEfled [ f1; f2 ] dest ]
  | Cgt -> [ addinst vn OEfltd [ f2; f1 ] dest ]
  | Cge -> [ addinst vn OEfled [ f2; f1 ] dest ]

let cond_single vn cmp f1 f2 dest =
  match cmp with
  | Ceq -> [ addinst vn OEfeqs [ f1; f2 ] dest ]
  | Cne -> [ addinst vn OEfeqs [ f1; f2 ] dest ]
  | Clt -> [ addinst vn OEflts [ f1; f2 ] dest ]
  | Cle -> [ addinst vn OEfles [ f1; f2 ] dest ]
  | Cgt -> [ addinst vn OEflts [ f2; f1 ] dest ]
  | Cge -> [ addinst vn OEfles [ f2; f1 ] dest ]

let expanse_cbranchimm_int32s vn cmp a1 n info succ1 succ2 =
  if Int.eq n Int.zero then cbranch_int32s true cmp a1 a1 info succ1 succ2 []
  else
    let r = r2pi () in
    let l = loadimm32 vn r n in
    let r', l' = extract_arg l in
    cbranch_int32s false cmp a1 r' info succ1 succ2 l'

let expanse_cbranchimm_int32u vn cmp a1 n info succ1 succ2 =
  if Int.eq n Int.zero then cbranch_int32u true cmp a1 a1 info succ1 succ2 []
  else
    let r = r2pi () in
    let l = loadimm32 vn r n in
    let r', l' = extract_arg l in
    cbranch_int32u false cmp a1 r' info succ1 succ2 l'

let expanse_cbranchimm_int64s vn cmp a1 n info succ1 succ2 =
  if Int64.eq n Int64.zero then
    cbranch_int64s true cmp a1 a1 info succ1 succ2 []
  else
    let r = r2pi () in
    let l = loadimm64 vn r n in
    let r', l' = extract_arg l in
    cbranch_int64s false cmp a1 r' info succ1 succ2 l'

let expanse_cbranchimm_int64u vn cmp a1 n info succ1 succ2 =
  if Int64.eq n Int64.zero then
    cbranch_int64u true cmp a1 a1 info succ1 succ2 []
  else
    let r = r2pi () in
    let l = loadimm64 vn r n in
    let r', l' = extract_arg l in
    cbranch_int64u false cmp a1 r' info succ1 succ2 l'

let expanse_condimm_int32s vn cmp a1 n dest =
  if Int.eq n Int.zero then cond_int32s vn true cmp a1 a1 dest
  else
    match cmp with
    | Ceq | Cne ->
        let r = r2pi () in
        let l = xorimm32 vn a1 r n in
        let r', l' = extract_arg l in
        cond_int32s vn true cmp r' r' dest @ l'
    | Clt -> sltimm32 vn a1 dest n
    | Cle ->
        if Int.eq n (Int.repr Int.max_signed) then
          let l = loadimm32 vn dest Int.one in
          let r, l' = extract_arg l in
          addinst vn (OEmayundef MUint) [ a1; r ] dest :: l'
        else sltimm32 vn a1 dest (Int.add n Int.one)
    | _ ->
        let r = r2pi () in
        let l = loadimm32 vn r n in
        let r', l' = extract_arg l in
        cond_int32s vn false cmp a1 r' dest @ l'

let expanse_condimm_int32u vn cmp a1 n dest =
  if Int.eq n Int.zero then cond_int32u vn true cmp a1 a1 dest
  else
    match cmp with
    | Clt -> sltuimm32 vn a1 dest n
    | _ ->
        let r = r2pi () in
        let l = loadimm32 vn r n in
        let r', l' = extract_arg l in
        cond_int32u vn false cmp a1 r' dest @ l'

let expanse_condimm_int64s vn cmp a1 n dest =
  if Int64.eq n Int64.zero then cond_int64s vn true cmp a1 a1 dest
  else
    match cmp with
    | Ceq | Cne ->
        let r = r2pi () in
        let l = xorimm64 vn a1 r n in
        let r', l' = extract_arg l in
        cond_int64s vn true cmp r' r' dest @ l'
    | Clt -> sltimm64 vn a1 dest n
    | Cle ->
        if Int64.eq n (Int64.repr Int64.max_signed) then
          let l = loadimm32 vn dest Int.one in
          let r, l' = extract_arg l in
          addinst vn (OEmayundef MUlong) [ a1; r ] dest :: l'
        else sltimm64 vn a1 dest (Int64.add n Int64.one)
    | _ ->
        let r = r2pi () in
        let l = loadimm64 vn r n in
        let r', l' = extract_arg l in
        cond_int64s vn false cmp a1 r' dest @ l'

let expanse_condimm_int64u vn cmp a1 n dest =
  if Int64.eq n Int64.zero then cond_int64u vn true cmp a1 a1 dest
  else
    match cmp with
    | Clt -> sltuimm64 vn a1 dest n
    | _ ->
        let r = r2pi () in
        let l = loadimm64 vn r n in
        let r', l' = extract_arg l in
        cond_int64u vn false cmp a1 r' dest @ l'

let expanse_cond_fp vn cnot fn_cond cmp f1 f2 dest =
  let normal = is_normal_cmp cmp in
  let normal' = if cnot then not normal else normal in
  let insn = fn_cond vn cmp f1 f2 dest in
  if normal' then insn
  else
    let r', l = extract_arg insn in
    addinst vn (OExoriw Int.one) [ r' ] dest :: l

let expanse_cbranch_fp vn cnot fn_cond cmp f1 f2 info succ1 succ2 =
  let r = r2pi () in
  let normal = is_normal_cmp cmp in
  let normal' = if cnot then not normal else normal in
  let insn = fn_cond vn cmp f1 f2 r in
  let r', l = extract_arg insn in
  if normal' then
    Sfinalcond (CEbnew (Some X0_R), [ r'; r' ], succ1, succ2, info) :: l
  else Sfinalcond (CEbeqw (Some X0_R), [ r'; r' ], succ1, succ2, info) :: l

let addptrofs vn n dest =
  if Ptrofs.eq_dec n Ptrofs.zero then [ addinst vn OEmoveSP [] dest ]
  else if Archi.ptr64 then
    match make_immed64 (Ptrofs.to_int64 n) with
    | Imm64_single imm -> [ addinst vn (OEaddil (Some SP_S, imm)) [] dest ]
    | Imm64_pair (hi, lo) ->
        let r = r2pi () in
        let l = load_hilo64 vn r hi lo in
        let r', l' = extract_arg l in
        addinst vn (OEaddil (Some SP_S, Int64.zero)) [ r' ] dest :: l'
    | Imm64_large imm ->
        let r = r2pi () in
        let op1 = OEloadli imm in
        let i1 = addinst vn op1 [] r in
        let r', l = extract_arg [ i1 ] in
        addinst vn (OEaddil (Some SP_S, Int64.zero)) [ r' ] dest :: l
  else
    match make_immed32 (Ptrofs.to_int n) with
    | Imm32_single imm -> [ addinst vn (OEaddiw (Some SP_S, imm)) [] dest ]
    | Imm32_pair (hi, lo) ->
        let r = r2pi () in
        let l = load_hilo32 vn r hi lo in
        let r', l' = extract_arg l in
        addinst vn (OEaddiw (Some SP_S, Int.zero)) [ r' ] dest :: l'

(** Form a list containing both sources and destination regs of an instruction *)

let get_regindent = function Coq_inr _ -> [] | Coq_inl r -> [ r ]

let get_regs_inst = function
  | Inop _ -> []
  | Iop (_, args, dest, _) -> dest :: args
  | Iload (_, _, _, args, dest, _) -> dest :: args
  | Istore (_, _, args, src, _) -> src :: args
  | Icall (_, t, args, dest, _) -> dest :: (get_regindent t @ args)
  | Itailcall (_, t, args) -> get_regindent t @ args
  | Ibuiltin (_, args, dest, _) ->
      AST.params_of_builtin_res dest @ AST.params_of_builtin_args args
  | Icond (_, args, _, _, _) -> args
  | Ijumptable (arg, _) -> [ arg ]
  | Ireturn (Some r) -> [ r ]
  | _ -> []

(** Modify pathmap according to the size of the expansion list *)

let write_pathmap initial esize pm' =
  if exp_debug then
    eprintf "write_pathmap: initial=%d, esize=%d\n" (p2i initial) esize;
  let path = get_some @@ PTree.get initial !pm' in
  let npsize = Camlcoq.Nat.of_int (esize + Camlcoq.Nat.to_int path.psize) in
  let path' =
    {
      psize = npsize;
      input_regs = path.input_regs;
      pre_output_regs = path.pre_output_regs;
      output_regs = path.output_regs;
    }
  in
  pm' := PTree.set initial path' !pm'

(** Write a single instruction in the tree and update order *)

let write_inst target_node inst code' new_order =
  code' := PTree.set (P.of_int target_node) inst !code';
  new_order := P.of_int target_node :: !new_order

(** Return olds args if the CSE numbering is empty *)

let get_arguments vn vals args =
  match reg_valnums vn vals with Some args' -> args' | None -> args

(** Update the code tree with the expansion list *)

let rec write_tree vn exp initial current code' new_order fturn =
  if exp_debug then eprintf "wt: node is %d\n" !node;
  let target_node, next_node =
    if fturn then (P.to_int initial, current) else (current, current - 1)
  in
  match exp with
  | Sr r :: _ ->
      failwith "write_tree: there are still some symbolic values in the list"
  | Sexp (rd, Sop (op, vals), args, None) :: k ->
      let args = get_arguments vn vals args in
      let inst = Iop (op, args, rd, P.of_int next_node) in
      write_inst target_node inst code' new_order;
      write_tree vn k initial next_node code' new_order false
  | [ Snop succ ] ->
      let inst = Inop succ in
      write_inst target_node inst code' new_order
  | [ Sexp (rd, Sop (op, vals), args, Some succ) ] ->
      let args = get_arguments vn vals args in
      let inst = Iop (op, args, rd, succ) in
      write_inst target_node inst code' new_order
  | [ Sexp (rd, Smove, args, Some succ) ] ->
      let inst = Iop (Omove, args, rd, succ) in
      write_inst target_node inst code' new_order
  | [ Sfinalcond (cond, args, succ1, succ2, info) ] ->
      let inst = Icond (cond, args, succ1, succ2, info) in
      write_inst target_node inst code' new_order
  | [] -> ()
  | _ -> failwith "write_tree: invalid list"

(** Main expansion function - TODO gourdinl to split? *)
let expanse (sb : superblock) code pm =
  if exp_debug then eprintf "#### New superblock for expansion oracle\n";
  let new_order = ref [] in
  let liveins = ref sb.liveins in
  let exp = ref [] in
  let was_branch = ref false in
  let was_exp = ref false in
  let code' = ref code in
  let pm' = ref pm in
  let vn = ref (empty_numbering ()) in
  Array.iter
    (fun n ->
      was_branch := false;
      was_exp := false;
      let inst = get_some @@ PTree.get n code in
      if exp_debug then eprintf "We are checking node %d\n" (p2i n);
      (if !Clflags.option_fexpanse_rtlcond then
       match inst with
       (* Expansion of conditions - Ocmp *)
       | Iop (Ocmp (Ccomp c), a1 :: a2 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Ccomp\n";
           exp := cond_int32s vn false c a1 a2 dest;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocmp (Ccompu c), a1 :: a2 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Ccompu\n";
           exp := cond_int32u vn false c a1 a2 dest;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocmp (Ccompimm (c, imm)), a1 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Ccompimm\n";
           exp := expanse_condimm_int32s vn c a1 imm dest;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocmp (Ccompuimm (c, imm)), a1 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Ccompuimm\n";
           exp := expanse_condimm_int32u vn c a1 imm dest;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocmp (Ccompl c), a1 :: a2 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Ccompl\n";
           exp := cond_int64s vn false c a1 a2 dest;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocmp (Ccomplu c), a1 :: a2 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Ccomplu\n";
           exp := cond_int64u vn false c a1 a2 dest;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocmp (Ccomplimm (c, imm)), a1 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Ccomplimm\n";
           exp := expanse_condimm_int64s vn c a1 imm dest;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocmp (Ccompluimm (c, imm)), a1 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Ccompluimm\n";
           exp := expanse_condimm_int64u vn c a1 imm dest;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocmp (Ccompf c), f1 :: f2 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Ccompf\n";
           exp := expanse_cond_fp vn false cond_float c f1 f2 dest;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocmp (Cnotcompf c), f1 :: f2 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Cnotcompf\n";
           exp := expanse_cond_fp vn true cond_float c f1 f2 dest;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocmp (Ccompfs c), f1 :: f2 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Ccompfs\n";
           exp := expanse_cond_fp vn false cond_single c f1 f2 dest;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocmp (Cnotcompfs c), f1 :: f2 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Cnotcompfs\n";
           exp := expanse_cond_fp vn true cond_single c f1 f2 dest;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       (* Expansion of branches - Ccomp *)
       | Icond (Ccomp c, a1 :: a2 :: nil, succ1, succ2, info) ->
           if exp_debug then eprintf "Icond/Ccomp\n";
           exp := cbranch_int32s false c a1 a2 info succ1 succ2 [];
           was_branch := true;
           was_exp := true
       | Icond (Ccompu c, a1 :: a2 :: nil, succ1, succ2, info) ->
           if exp_debug then eprintf "Icond/Ccompu\n";
           exp := cbranch_int32u false c a1 a2 info succ1 succ2 [];
           was_branch := true;
           was_exp := true
       | Icond (Ccompimm (c, imm), a1 :: nil, succ1, succ2, info) ->
           if exp_debug then eprintf "Icond/Ccompimm\n";
           exp := expanse_cbranchimm_int32s vn c a1 imm info succ1 succ2;
           was_branch := true;
           was_exp := true
       | Icond (Ccompuimm (c, imm), a1 :: nil, succ1, succ2, info) ->
           if exp_debug then eprintf "Icond/Ccompuimm\n";
           exp := expanse_cbranchimm_int32u vn c a1 imm info succ1 succ2;
           was_branch := true;
           was_exp := true
       | Icond (Ccompl c, a1 :: a2 :: nil, succ1, succ2, info) ->
           if exp_debug then eprintf "Icond/Ccompl\n";
           exp := cbranch_int64s false c a1 a2 info succ1 succ2 [];
           was_branch := true;
           was_exp := true
       | Icond (Ccomplu c, a1 :: a2 :: nil, succ1, succ2, info) ->
           if exp_debug then eprintf "Icond/Ccomplu\n";
           exp := cbranch_int64u false c a1 a2 info succ1 succ2 [];
           was_branch := true;
           was_exp := true
       | Icond (Ccomplimm (c, imm), a1 :: nil, succ1, succ2, info) ->
           if exp_debug then eprintf "Icond/Ccomplimm\n";
           exp := expanse_cbranchimm_int64s vn c a1 imm info succ1 succ2;
           was_branch := true;
           was_exp := true
       | Icond (Ccompluimm (c, imm), a1 :: nil, succ1, succ2, info) ->
           if exp_debug then eprintf "Icond/Ccompluimm\n";
           exp := expanse_cbranchimm_int64u vn c a1 imm info succ1 succ2;
           was_branch := true;
           was_exp := true
       | Icond (Ccompf c, f1 :: f2 :: nil, succ1, succ2, info) ->
           if exp_debug then eprintf "Icond/Ccompf\n";
           exp :=
             expanse_cbranch_fp vn false cond_float c f1 f2 info succ1 succ2;
           was_branch := true;
           was_exp := true
       | Icond (Cnotcompf c, f1 :: f2 :: nil, succ1, succ2, info) ->
           if exp_debug then eprintf "Icond/Cnotcompf\n";
           exp := expanse_cbranch_fp vn true cond_float c f1 f2 info succ1 succ2;
           was_branch := true;
           was_exp := true
       | Icond (Ccompfs c, f1 :: f2 :: nil, succ1, succ2, info) ->
           if exp_debug then eprintf "Icond/Ccompfs\n";
           exp :=
             expanse_cbranch_fp vn false cond_single c f1 f2 info succ1 succ2;
           was_branch := true;
           was_exp := true
       | Icond (Cnotcompfs c, f1 :: f2 :: nil, succ1, succ2, info) ->
           if exp_debug then eprintf "Icond/Cnotcompfs\n";
           exp :=
             expanse_cbranch_fp vn true cond_single c f1 f2 info succ1 succ2;
           was_branch := true;
           was_exp := true
       | _ -> ());
      (if !Clflags.option_fexpanse_others && not !was_exp then
       match inst with
       | Iop (Ofloatconst f, nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Ofloatconst\n";
           let r = r2pi () in
           let l = loadimm64 vn r (Floats.Float.to_bits f) in
           let r', l' = extract_arg l in
           exp := addinst vn Ofloat_of_bits [ r' ] dest :: l';
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Osingleconst f, nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Osingleconst\n";
           let r = r2pi () in
           let l = loadimm32 vn r (Floats.Float32.to_bits f) in
           let r', l' = extract_arg l in
           exp := addinst vn Osingle_of_bits [ r' ] dest :: l';
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ointconst n, nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Ointconst\n";
           exp := loadimm32 vn dest n;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Olongconst n, nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Olongconst\n";
           exp := loadimm64 vn dest n;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Oaddimm n, a1 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Oaddimm\n";
           exp := addimm32 vn a1 dest n None;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Oaddlimm n, a1 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Oaddlimm\n";
           exp := addimm64 vn a1 dest n None;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Oandimm n, a1 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Oandimm\n";
           exp := andimm32 vn a1 dest n;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Oandlimm n, a1 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Oandlimm\n";
           exp := andimm64 vn a1 dest n;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Oorimm n, a1 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Oorimm\n";
           exp := orimm32 vn a1 dest n;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Oorlimm n, a1 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Oorlimm\n";
           exp := orimm64 vn a1 dest n;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocast8signed, a1 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/cast8signed\n";
           let op = Oshlimm (Int.repr (Z.of_sint 24)) in
           let r = r2pi () in
           let i1 = addinst vn op [ a1 ] r in
           let r', l = extract_arg [ i1 ] in
           exp :=
             addinst vn (Oshrimm (Int.repr (Z.of_sint 24))) [ r' ] dest :: l;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocast16signed, a1 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/cast16signed\n";
           let op = Oshlimm (Int.repr (Z.of_sint 16)) in
           let r = r2pi () in
           let i1 = addinst vn op [ a1 ] r in
           let r', l = extract_arg [ i1 ] in
           exp :=
             addinst vn (Oshrimm (Int.repr (Z.of_sint 16))) [ r' ] dest :: l;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Ocast32unsigned, a1 :: nil, dest, succ) ->
           if exp_debug then eprintf "Iop/Ocast32unsigned\n";
           let r1 = r2pi () in
           let r2 = r2pi () in
           let op1 = Ocast32signed in
           let i1 = addinst vn op1 [ a1 ] r1 in
           let r1', l1 = extract_arg [ i1 ] in

           let op2 = Oshllimm (Int.repr (Z.of_sint 32)) in
           let i2 = addinst vn op2 [ r1' ] r2 in
           let r2', l2 = extract_arg (i2 :: l1) in

           let op3 = Oshrluimm (Int.repr (Z.of_sint 32)) in
           exp := addinst vn op3 [ r2' ] dest :: l2;
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Oshrximm n, a1 :: nil, dest, succ) ->
           if Int.eq n Int.zero then (
             if exp_debug then eprintf "Iop/Oshrximm1\n";
             exp := [ addinst vn (OEmayundef (MUshrx n)) [ a1; a1 ] dest ])
           else if Int.eq n Int.one then (
             if exp_debug then eprintf "Iop/Oshrximm2\n";
             let r1 = r2pi () in
             let r2 = r2pi () in
             let op1 = Oshruimm (Int.repr (Z.of_sint 31)) in
             let i1 = addinst vn op1 [ a1 ] r1 in
             let r1', l1 = extract_arg [ i1 ] in

             let op2 = Oadd in
             let i2 = addinst vn op2 [ a1; r1' ] r2 in
             let r2', l2 = extract_arg (i2 :: l1) in

             let op3 = Oshrimm Int.one in
             let i3 = addinst vn op3 [ r2' ] dest in
             let r3, l3 = extract_arg (i3 :: l2) in
             exp := addinst vn (OEmayundef (MUshrx n)) [ r3; r3 ] dest :: l3)
           else (
             if exp_debug then eprintf "Iop/Oshrximm3\n";
             let r1 = r2pi () in
             let r2 = r2pi () in
             let r3 = r2pi () in
             let op1 = Oshrimm (Int.repr (Z.of_sint 31)) in
             let i1 = addinst vn op1 [ a1 ] r1 in
             let r1', l1 = extract_arg [ i1 ] in

             let op2 = Oshruimm (Int.sub Int.iwordsize n) in
             let i2 = addinst vn op2 [ r1' ] r2 in
             let r2', l2 = extract_arg (i2 :: l1) in

             let op3 = Oadd in
             let i3 = addinst vn op3 [ a1; r2' ] r3 in
             let r3', l3 = extract_arg (i3 :: l2) in

             let op4 = Oshrimm n in
             let i4 = addinst vn op4 [ r3' ] dest in
             let r4, l4 = extract_arg (i4 :: l3) in
             exp := addinst vn (OEmayundef (MUshrx n)) [ r4; r4 ] dest :: l4);
           exp := extract_final vn !exp dest succ;
           was_exp := true
       | Iop (Oshrxlimm n, a1 :: nil, dest, succ) ->
           if Int.eq n Int.zero then (
             if exp_debug then eprintf "Iop/Oshrxlimm1\n";
             exp := [ addinst vn (OEmayundef (MUshrxl n)) [ a1; a1 ] dest ])
           else if Int.eq n Int.one then (
             if exp_debug then eprintf "Iop/Oshrxlimm2\n";
             let r1 = r2pi () in
             let r2 = r2pi () in
             let op1 = Oshrluimm (Int.repr (Z.of_sint 63)) in
             let i1 = addinst vn op1 [ a1 ] r1 in
             let r1', l1 = extract_arg [ i1 ] in

             let op2 = Oaddl in
             let i2 = addinst vn op2 [ a1; r1' ] r2 in
             let r2', l2 = extract_arg (i2 :: l1) in

             let op3 = Oshrlimm Int.one in
             let i3 = addinst vn op3 [ r2' ] dest in
             let r3, l3 = extract_arg (i3 :: l2) in
             exp := addinst vn (OEmayundef (MUshrxl n)) [ r3; r3 ] dest :: l3)
           else (
             if exp_debug then eprintf "Iop/Oshrxlimm3\n";
             let r1 = r2pi () in
             let r2 = r2pi () in
             let r3 = r2pi () in
             let op1 = Oshrlimm (Int.repr (Z.of_sint 63)) in
             let i1 = addinst vn op1 [ a1 ] r1 in
             let r1', l1 = extract_arg [ i1 ] in

             let op2 = Oshrluimm (Int.sub Int64.iwordsize' n) in
             let i2 = addinst vn op2 [ r1' ] r2 in
             let r2', l2 = extract_arg (i2 :: l1) in

             let op3 = Oaddl in
             let i3 = addinst vn op3 [ a1; r2' ] r3 in
             let r3', l3 = extract_arg (i3 :: l2) in

             let op4 = Oshrlimm n in
             let i4 = addinst vn op4 [ r3' ] dest in
             let r4, l4 = extract_arg (i4 :: l3) in
             exp := addinst vn (OEmayundef (MUshrxl n)) [ r4; r4 ] dest :: l4);
           exp := extract_final vn !exp dest succ;
           was_exp := true
           (*| Iop (Oaddrstack n, nil, dest, succ) ->*)
           (*if exp_debug then eprintf "Iop/Oaddrstack\n";*)
           (*exp := addptrofs vn n dest;*)
           (*exp := extract_final vn !exp dest succ;*)
           (*was_exp := true*)
       | _ -> ());
      (* Update the CSE numbering *)
      (if not !was_exp then
       match inst with
       | Iop (op, args, dest, succ) ->
           let v = get_nvalues vn args in
           addsop vn v op dest
       | Iload (_, _, _, _, dst, _) -> set_unknown vn dst
       | Istore (chk, addr, args, src, s) ->
           !vn.seqs <- kill_mem_operations !vn.seqs
       | Icall (_, _, _, _, _) | Itailcall (_, _, _) | Ibuiltin (_, _, _, _) ->
           vn := empty_numbering ()
       | _ -> ());
      (* Update code, liveins, pathmap, and order of the superblock for one expansion *)
      if !was_exp then (
        node := !node + List.length !exp - 1;
        (if !was_branch && List.length !exp > 1 then
         let lives = PTree.get n !liveins in
         match lives with
         | Some lives ->
             let new_branch_pc = n2p () in
             liveins := PTree.set new_branch_pc lives !liveins;
             liveins := PTree.remove n !liveins
         | _ -> ());
        write_pathmap sb.instructions.(0) (List.length !exp - 1) pm';
        write_tree vn (List.rev !exp) n !node code' new_order true)
      else new_order := n :: !new_order)
    sb.instructions;
  sb.instructions <- Array.of_list (List.rev !new_order);
  sb.liveins <- !liveins;
  (!code', !pm')

(** Compute the last used node and reg indexs *)

let rec find_last_node_reg = function
  | [] -> ()
  | (pc, i) :: k ->
      let rec traverse_list var = function
        | [] -> ()
        | e :: t ->
            let e' = p2i e in
            if e' > !var then var := e';
            traverse_list var t
      in
      traverse_list node [ pc ];
      traverse_list reg (get_regs_inst i);
      find_last_node_reg k