aboutsummaryrefslogtreecommitdiffstats
path: root/riscV/PrepassSchedulingOracle.ml
blob: 53a81095075d80f42b1ebfda8755cd28a9a81c73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
open AST
open RTL
open Maps
open InstructionScheduler
open Registers
open PrepassSchedulingOracleDeps
   
let use_alias_analysis () = false
                          
let length_of_chunk = function
| Mint8signed
| Mint8unsigned -> 1
| Mint16signed
| Mint16unsigned -> 2
| Mint32
| Mfloat32
| Many32 -> 4
| Mint64
| Mfloat64 
| Many64 -> 8;;

let get_simple_dependencies (opweights : opweights) (seqa : (instruction*Regset.t) array) =
  let last_reg_reads : int list PTree.t ref = ref PTree.empty
  and last_reg_write : (int*int) PTree.t ref = ref PTree.empty
  and last_mem_reads : int list ref = ref []
  and last_mem_write : int option ref = ref None
  and last_branch : int option ref = ref None
  and last_non_pipelined_op : int array = Array.make
                                        opweights.nr_non_pipelined_units ( -1 )
  and latency_constraints : latency_constraint list ref = ref [] in
  let add_constraint instr_from instr_to latency =
    assert (instr_from <= instr_to);
    assert (latency >= 0);
    if instr_from = instr_to
    then (if latency = 0
          then ()
          else failwith "PrepassSchedulingOracle.get_dependencies: negative self-loop")
    else
      latency_constraints :=
        { instr_from = instr_from;
          instr_to = instr_to;
          latency = latency
        }:: !latency_constraints
  and get_last_reads reg =
    match PTree.get reg !last_reg_reads
     with Some l -> l
        | None -> [] in
  let add_input_mem i =
    if not (use_alias_analysis ())
    then
      begin
        begin
          (* Read after write *)
          match !last_mem_write with
          | None -> ()
          | Some j -> add_constraint j i 1
        end;
        last_mem_reads := i :: !last_mem_reads
      end
  and add_output_mem i =
    if not (use_alias_analysis ())
    then
      begin
        begin
          (* Write after write *)
          match !last_mem_write with
          | None -> ()
          | Some j -> add_constraint j i 1
        end;
        (* Write after read *)
        List.iter (fun j -> add_constraint j i 0) !last_mem_reads;
        last_mem_write := Some i;
        last_mem_reads := []
      end
  and add_input_reg i reg =
    begin
      (* Read after write *)
      match PTree.get reg !last_reg_write with
      | None -> ()
      | Some (j, latency) -> add_constraint j i latency
    end;
    last_reg_reads := PTree.set reg
                       (i :: get_last_reads reg)
                       !last_reg_reads
  and add_output_reg i latency reg =
    begin
      (* Write after write *)
      match PTree.get reg !last_reg_write with
      | None -> ()
      | Some (j, _) -> add_constraint j i 1
    end;
    begin
      (* Write after read *)
      List.iter (fun j -> add_constraint j i 0) (get_last_reads reg)
    end;
    last_reg_write := PTree.set reg (i, latency) !last_reg_write;
    last_reg_reads := PTree.remove reg !last_reg_reads
    in
  let add_input_regs i regs = List.iter (add_input_reg i) regs in
  let rec add_builtin_res i (res : reg builtin_res) =
    match res with
    | BR r -> add_output_reg i 10 r
    | BR_none -> ()
    | BR_splitlong (hi, lo) -> add_builtin_res i hi;
                               add_builtin_res i lo in
  let rec add_builtin_arg i (ba : reg builtin_arg) =
    match ba with
    | BA r -> add_input_reg i r
    | BA_int _ | BA_long _ | BA_float _ | BA_single _ -> ()
    | BA_loadstack(_,_) -> add_input_mem i
    | BA_addrstack _ -> ()
    | BA_loadglobal(_, _, _) -> add_input_mem i
    | BA_addrglobal _ -> ()
    | BA_splitlong(hi, lo) -> add_builtin_arg i hi;
                              add_builtin_arg i lo
    | BA_addptr(a1, a2) -> add_builtin_arg i a1;
                           add_builtin_arg i a2 in
  let irreversible_action i =
    match !last_branch with
    | None -> ()
    | Some j -> add_constraint j i 1 in
  let set_branch i =
    irreversible_action i;
    last_branch := Some i in
  let add_non_pipelined_resources i resources =
    Array.iter2
      (fun latency last ->
        if latency >= 0 && last >= 0 then add_constraint last i latency)
      resources last_non_pipelined_op;
    Array.iteri (fun rsc latency ->
        if latency >= 0
        then last_non_pipelined_op.(rsc) <- i) resources
  in
  Array.iteri
    begin
      fun i (insn, other_uses) ->
      List.iter (fun use ->
          add_input_reg i use)
        (Regset.elements other_uses);
      
      match insn with
      | Inop _ -> ()
      | Iop(op, inputs, output, _) ->
         add_non_pipelined_resources i
           (opweights.non_pipelined_resources_of_op op (List.length inputs));
         (if Op.is_trapping_op op then irreversible_action i);
         add_input_regs i inputs;
         add_output_reg i (opweights.latency_of_op op (List.length inputs)) output
      | Iload(trap, chunk, addressing, addr_regs, output, _) ->
         (if trap=TRAP then irreversible_action i);
         add_input_mem i;
         add_input_regs i addr_regs;
         add_output_reg i (opweights.latency_of_load trap chunk addressing (List.length addr_regs)) output
      | Istore(chunk, addressing, addr_regs, input, _) ->
         irreversible_action i;
         add_input_regs i addr_regs;
         add_input_reg i input;
         add_output_mem i
      | Icall(signature, ef, inputs, output, _) ->
         set_branch i;
         (match ef with
          | Datatypes.Coq_inl r -> add_input_reg i r
          | Datatypes.Coq_inr symbol -> ()
         );
         add_input_mem i;
         add_input_regs i inputs;
         add_output_reg i (opweights.latency_of_call signature ef) output;
         add_output_mem i;
         failwith "Icall"
      | Itailcall(signature, ef, inputs) ->
         set_branch i;
        (match ef with
          | Datatypes.Coq_inl r -> add_input_reg i r
          | Datatypes.Coq_inr symbol -> ()
         );
         add_input_mem i;
         add_input_regs i inputs;
         failwith "Itailcall"
      | Ibuiltin(ef, builtin_inputs, builtin_output, _) ->
         set_branch i;
         add_input_mem i;
         List.iter (add_builtin_arg i) builtin_inputs;
         add_builtin_res i builtin_output;
         add_output_mem i;
         failwith "Ibuiltin"
      | Icond(cond, inputs, _, _, _) ->
         set_branch i;
         add_input_mem i;
         add_input_regs i inputs
      | Ijumptable(input, _) ->
         set_branch i;
         add_input_reg i input;
         failwith "Ijumptable"
      | Ireturn(Some input) ->
         set_branch i;
         add_input_reg i input;
         failwith "Ireturn"
      | Ireturn(None) ->
         set_branch i;
         failwith "Ireturn none"
    end seqa;
  !latency_constraints;;

let resources_of_instruction (opweights : opweights) = function
  | Inop _ -> Array.map (fun _ -> 0) opweights.pipelined_resource_bounds
  | Iop(op, inputs, output, _) ->
     opweights.resources_of_op op (List.length inputs)
  | Iload(trap, chunk, addressing, addr_regs, output, _) ->
     opweights.resources_of_load trap chunk addressing (List.length addr_regs)
  | Istore(chunk, addressing, addr_regs, input, _) ->
     opweights.resources_of_store chunk addressing (List.length addr_regs)
  | Icall(signature, ef, inputs, output, _) ->
     opweights.resources_of_call signature ef
  | Ibuiltin(ef, builtin_inputs, builtin_output, _) ->
     opweights.resources_of_builtin ef
  | Icond(cond, args, _, _ , _) ->
     opweights.resources_of_cond cond (List.length args)
  | Itailcall _ | Ijumptable _ | Ireturn _ -> opweights.pipelined_resource_bounds
    
let print_sequence pp (seqa : instruction array) =
  Array.iteri (
      fun i (insn : instruction) ->
      PrintRTL.print_instruction pp (i, insn)) seqa;;

type unique_id = int
               
type 'a symbolic_term_node =
  | STop of Op.operation * 'a list
  | STinitial_reg of int
  | STother of int;;

type symbolic_term = {
    hash_id : unique_id;
    hash_ct : symbolic_term symbolic_term_node
  };;

let rec print_term channel term =
  match term.hash_ct with
  | STop(op, args) ->
     PrintOp.print_operation print_term channel (op, args)
  | STinitial_reg n -> Printf.fprintf channel "x%d" n
  | STother n -> Printf.fprintf channel "y%d" n;;

type symbolic_term_table = {
    st_table : (unique_id symbolic_term_node, symbolic_term) Hashtbl.t;
    mutable st_next_id : unique_id };;

let hash_init () = {
    st_table = Hashtbl.create 20;
    st_next_id = 0
  };;

let ground_to_id = function
  | STop(op, l) -> STop(op, List.map (fun t -> t.hash_id) l)
  | STinitial_reg r -> STinitial_reg r
  | STother i -> STother i;;

let hash_node (table : symbolic_term_table) (term : symbolic_term symbolic_term_node) : symbolic_term =
  let grounded = ground_to_id term in
  match Hashtbl.find_opt table.st_table grounded with
  | Some x -> x
  | None ->
     let term' = { hash_id = table.st_next_id;
                   hash_ct = term } in
     (if table.st_next_id = max_int then failwith "hash: max_int");
     table.st_next_id <- table.st_next_id + 1;
     Hashtbl.add table.st_table grounded term';
     term';;

type access = {
    base : symbolic_term;
    offset : int64;
    length : int
  };;

let term_equal a b = (a.hash_id = b.hash_id);;

let access_of_addressing get_reg chunk addressing args =
  match addressing, args with
  | (Op.Aindexed ofs), [reg] -> Some
     { base = get_reg reg;
       offset = Camlcoq.camlint64_of_ptrofs ofs;
       length = length_of_chunk chunk
     }
  | _, _ -> None ;;
(* TODO: global *)

let symbolic_execution (seqa : instruction array) =
  let regs = ref PTree.empty
  and table = hash_init() in
  let assign reg term = regs := PTree.set reg term !regs
  and hash term = hash_node table term in
  let get_reg reg =
    match PTree.get reg !regs with
    | None -> hash (STinitial_reg (Camlcoq.P.to_int reg))
    | Some x -> x in
  let targets = Array.make (Array.length seqa) None in
  Array.iteri
    begin
      fun i insn ->
      match insn with
      | Iop(Op.Omove, [input], output, _) ->
         assign output (get_reg input)
      | Iop(op, inputs, output, _) ->
         assign output (hash (STop(op, List.map get_reg inputs)))

      | Iload(trap, chunk, addressing, args, output, _) ->
         let access = access_of_addressing get_reg chunk addressing args in
         targets.(i) <- access;
         assign output (hash (STother(i)))
        
      | Icall(_, _, _, output, _)
      | Ibuiltin(_, _, BR output, _) -> 
         assign output (hash (STother(i)))
        
      | Istore(chunk, addressing, args, va, _) ->
         let access = access_of_addressing get_reg chunk addressing args in
         targets.(i) <- access
                                          
      | Inop _ -> ()
      | Ibuiltin(_, _, BR_none, _) -> ()
      | Ibuiltin(_, _, BR_splitlong _, _) -> failwith "BR_splitlong"

      | Itailcall (_, _, _)
      |Icond (_, _, _, _, _)
      |Ijumptable (_, _)
      |Ireturn _ -> ()
    end seqa;
  targets;;

let print_access channel = function
  | None -> Printf.fprintf channel "any"
  | Some x -> Printf.fprintf channel "%a + %Ld" print_term x.base x.offset;;

let print_targets channel seqa =
  let targets = symbolic_execution seqa in
  Array.iteri
    (fun i insn ->
      match insn with
      | Iload _ -> Printf.fprintf channel "%d: load %a\n"
                      i print_access targets.(i) 
      | Istore _ -> Printf.fprintf channel "%d: store %a\n"
                       i print_access targets.(i)
      | _ -> ()
    ) seqa;;

let may_overlap a0 b0 =
  match a0, b0 with
  | (None, _)  | (_ , None) -> true
  | (Some a), (Some b) ->
     if term_equal a.base b.base
     then (max a.offset b.offset) <
          (min (Int64.add (Int64.of_int a.length) a.offset)
               (Int64.add (Int64.of_int b.length) b.offset))
     else match a.base.hash_ct, b.base.hash_ct with
          | STop(Op.Oaddrsymbol(ida, ofsa),[]),
            STop(Op.Oaddrsymbol(idb, ofsb),[]) ->
             (ida=idb) &&
               let ao = Int64.add a.offset (Camlcoq.camlint64_of_ptrofs ofsa)
               and bo = Int64.add b.offset (Camlcoq.camlint64_of_ptrofs ofsb) in
               (max ao bo) <
               (min (Int64.add (Int64.of_int a.length) ao)
                  (Int64.add (Int64.of_int b.length) bo))
          | STop(Op.Oaddrstack _, []),
            STop(Op.Oaddrsymbol _, [])
          | STop(Op.Oaddrsymbol _, []),
            STop(Op.Oaddrstack _, []) -> false
          | STop(Op.Oaddrstack(ofsa),[]),
            STop(Op.Oaddrstack(ofsb),[]) ->
               let ao = Int64.add a.offset (Camlcoq.camlint64_of_ptrofs ofsa)
               and bo = Int64.add b.offset (Camlcoq.camlint64_of_ptrofs ofsb) in
               (max ao bo) <
               (min (Int64.add (Int64.of_int a.length) ao)
                  (Int64.add (Int64.of_int b.length) bo))
          | _ -> true;;

(*
(* TODO suboptimal quadratic algorithm *)
let get_alias_dependencies seqa =
  let targets = symbolic_execution seqa
  and deps = ref [] in
  let add_constraint instr_from instr_to latency =
    deps := { instr_from = instr_from;
              instr_to = instr_to;
              latency = latency
            }:: !deps in
  for i=0 to (Array.length seqa)-1
  do
    for j=0 to i-1
    do
      match seqa.(j), seqa.(i) with
      | (Istore _), ((Iload _) | (Istore _)) ->
         if may_overlap targets.(j) targets.(i)
         then add_constraint j i 1
      | (Iload _), (Istore _) ->
         if may_overlap targets.(j) targets.(i)
         then add_constraint j i 0
      | (Istore _ | Iload _), (Icall _ | Ibuiltin _)
      | (Icall _ | Ibuiltin _), (Icall _ | Ibuiltin _ | Iload _ | Istore _) ->
         add_constraint j i 1
      | (Inop _ | Iop _), _
      | _, (Inop _ | Iop _)
      | (Iload _), (Iload _) -> ()
    done
  done;
  !deps;;
 *)

let define_problem (opweights : opweights) (live_entry_regs : Regset.t)
      (typing : RTLtyping.regenv) reference_counting seqa =
  let simple_deps = get_simple_dependencies opweights seqa in
  { max_latency = -1;
    resource_bounds = opweights.pipelined_resource_bounds;
    live_regs_entry = live_entry_regs;
    typing = typing;
    reference_counting = Some reference_counting;
      instruction_usages = Array.map (resources_of_instruction opweights) (Array.map fst seqa);
    latency_constraints =
      (* if (use_alias_analysis ())
      then (get_alias_dependencies seqa) @ simple_deps
      else *) simple_deps };;

let zigzag_scheduler problem early_ones =
  let nr_instructions = get_nr_instructions problem in
  assert(nr_instructions = (Array.length early_ones));
  match list_scheduler problem with
  | Some fwd_schedule ->
     let fwd_makespan = fwd_schedule.((Array.length fwd_schedule) - 1) in
     let constraints' = ref problem.latency_constraints in
     Array.iteri (fun i is_early ->
         if is_early then
           constraints' :=  {
             instr_from = i;
             instr_to = nr_instructions ;
             latency = fwd_makespan - fwd_schedule.(i) } ::!constraints' )
       early_ones;
     validated_scheduler reverse_list_scheduler
       { problem with latency_constraints = !constraints' }
  | None -> None;;
  
let prepass_scheduler_by_name name problem early_ones =
  match name with
  | "zigzag" -> zigzag_scheduler problem early_ones
  | _ -> scheduler_by_name name problem
  
let schedule_sequence (seqa : (instruction*Regset.t) array)
      (live_regs_entry : Registers.Regset.t)
      (typing : RTLtyping.regenv)
      reference =
  let opweights = OpWeights.get_opweights () in
  try
    if (Array.length seqa) <= 1
    then None
    else
      begin
      let nr_instructions = Array.length seqa in
      (if !Clflags.option_debug_compcert > 6
       then Printf.printf "prepass scheduling length = %d\n" (Array.length seqa));
      let problem = define_problem opweights live_regs_entry
                      typing reference seqa in
      (if !Clflags.option_debug_compcert > 7
       then (print_sequence stdout (Array.map fst seqa);
             print_problem stdout problem));
      match prepass_scheduler_by_name
              (!Clflags.option_fprepass_sched)
              problem
              (Array.map (fun (ins, _) ->
                   match ins with
                   | Icond _ -> true
                   | _ -> false) seqa) with
      | None -> Printf.printf "no solution in prepass scheduling\n";
                None
      | Some solution ->
         let positions = Array.init nr_instructions (fun i -> i) in
         Array.sort (fun i j ->
             let si = solution.(i) and sj = solution.(j) in
             if si < sj then -1
             else if si > sj then 1
             else i - j) positions;
         Some positions
    end
  with (Failure s) ->
    Printf.printf "failure in prepass scheduling: %s\n" s;
    None;;