aboutsummaryrefslogtreecommitdiffstats
path: root/scheduling/BTL_Livecheck.v
blob: d200b9bd93978f6ac4c182503abdbd966440d148 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
Require Import Coqlib Maps.
Require Import AST Integers Values Events Memory Globalenvs Smallstep Op Registers OptionMonad.
Require Import Errors RTL BTL BTLmatchRTL.


Local Open Scope lazy_bool_scope.

Local Open Scope option_monad_scope.

Fixpoint list_mem (rl: list reg) (alive: Regset.t) {struct rl}: bool :=
  match rl with
  | nil => true
  | r1 :: rs => Regset.mem r1 alive &&& list_mem rs alive
  end.

Definition reg_option_mem (or: option reg) (alive: Regset.t) :=
  match or with None => true | Some r => Regset.mem r alive end.

Definition reg_sum_mem (ros: reg + ident) (alive: Regset.t) :=
  match ros with inl r => Regset.mem r alive | inr s => true end.

(* NB: definition following [regmap_setres] in [RTL.step] semantics *)
Definition reg_builtin_res (res: builtin_res reg) (alive: Regset.t): Regset.t :=
  match res with
  | BR r => Regset.add r alive
  | _ => alive
  end.

Definition exit_checker (btl: code) (alive: Regset.t) (s: node): option unit :=
  SOME next <- btl!s IN
  ASSERT Regset.subset next.(input_regs) alive IN
  Some tt.

Fixpoint exit_list_checker (btl: code) (alive: Regset.t) (l: list node): bool :=
   match l with
   | nil => true
   | s :: l' => exit_checker btl alive s &&& exit_list_checker btl alive l'
   end.

Definition final_inst_checker (btl: code) (alive: Regset.t) (fin: final): option unit :=
  match fin with
  | Bgoto s =>
      exit_checker btl alive s
  | Breturn oreg =>
      ASSERT reg_option_mem oreg alive IN Some tt
  | Bcall _ ros args res s =>
      ASSERT list_mem args alive IN
      ASSERT reg_sum_mem ros alive IN
      exit_checker btl (Regset.add res alive) s
  | Btailcall _ ros args =>
      ASSERT list_mem args alive IN
      ASSERT reg_sum_mem ros alive IN Some tt
  | Bbuiltin _ args res s =>
      ASSERT list_mem (params_of_builtin_args args) alive IN
      exit_checker btl (reg_builtin_res res alive) s
  | Bjumptable arg tbl =>
      ASSERT Regset.mem arg alive IN
      ASSERT exit_list_checker btl alive tbl IN Some tt
  end.

(* This definition is the meet (infimum) subset of alive registers,
   used for conditions by the below checker.
   A None argument represents the neutral element for intersection. *)
Definition meet (o1 o2: option Regset.t): option Regset.t :=
  match o1, o2 with
  | None, _ => o2
  | _, None => o1
  | Some alive1, Some alive2 => Some (Regset.inter alive1 alive2)
  end.

Fixpoint body_checker (btl: code) (ib: iblock) (alive: Regset.t): option (option Regset.t) :=
  match ib with
  | Bseq ib1 ib2 =>
      SOME oalive1 <- body_checker btl ib1 alive IN
      SOME alive1 <- oalive1 IN
      body_checker btl ib2 alive1
  | Bnop _ => Some (Some alive)
  | Bop _ args dest _ =>
      ASSERT list_mem args alive IN
      Some (Some (Regset.add dest alive))
  | Bload _ _ _ args dest _ =>
      ASSERT list_mem args alive IN
      Some (Some (Regset.add dest alive))
  | Bstore _ _ args src _ =>
      ASSERT Regset.mem src alive IN
      ASSERT list_mem args alive IN
      Some (Some alive)
  | Bcond _ args ib1 ib2 _ =>
      ASSERT list_mem args alive IN
      SOME oalive1 <- body_checker btl ib1 alive IN
      SOME oalive2 <- body_checker btl ib2 alive IN
      Some (meet oalive1 oalive2)
  | BF fin _ =>
      SOME _ <- final_inst_checker btl alive fin IN
      Some None
  end.

(* This definition simply convert the result in an option unit *)
Definition iblock_checker (btl: code) (ib: iblock) (alive: Regset.t): option unit :=
  SOME _ <- body_checker btl ib alive IN Some tt.

Fixpoint list_iblock_checker (btl: code) (l: list (node*iblock_info)): bool :=
  match l with
  | nil => true
  | (_, ibf) :: l' => iblock_checker btl ibf.(entry) ibf.(input_regs) &&& list_iblock_checker btl l'
  end.

Lemma lazy_and_Some_true A (o: option A) (b: bool): o &&& b = true <-> (exists v, o = Some v) /\ b = true.
Proof.
  destruct o; simpl; intuition. 
  - eauto.
  - firstorder. try_simplify_someHyps.
Qed.

Lemma lazy_and_Some_tt_true (o: option unit) (b: bool): o &&& b = true <-> o = Some tt /\ b = true.
Proof.
   intros; rewrite lazy_and_Some_true; firstorder.
   destruct x; auto.
Qed.

Lemma list_iblock_checker_correct btl l:
  list_iblock_checker btl l = true ->
  forall e, List.In e l -> iblock_checker btl (snd e).(entry) (snd e).(input_regs) = Some tt.
Proof.
  intros CHECKER e H; induction l as [|(n & ibf) l]; intuition.
  simpl in * |- *. rewrite lazy_and_Some_tt_true in CHECKER. intuition (subst; auto).
Qed.

Definition liveness_checker_bool (f: BTL.function): bool :=
  f.(fn_code)!(f.(fn_entrypoint)) &&& list_iblock_checker f.(fn_code) (PTree.elements f.(fn_code)).

Definition liveness_checker (f: BTL.function): res unit :=
  match liveness_checker_bool f with
  | true => OK tt
  | false => Error (msg "BTL_Livecheck: liveness_checker failed")
  end.

Lemma decomp_liveness_checker f:
  liveness_checker f = OK tt ->
  exists ibf, f.(fn_code)!(f.(fn_entrypoint)) = Some ibf /\
  list_iblock_checker f.(fn_code) (PTree.elements f.(fn_code)) = true.
Proof.
  intros LIVE; unfold liveness_checker in LIVE.
  destruct liveness_checker_bool eqn:EQL; try congruence.
  clear LIVE. unfold liveness_checker_bool in EQL.
  rewrite lazy_and_Some_true in EQL; destruct EQL as [[ibf ENTRY] LIST].
  eexists; split; eauto.
Qed.

Lemma liveness_checker_correct f n ibf:
  liveness_checker f = OK tt ->
  f.(fn_code)!n = Some ibf ->
  iblock_checker f.(fn_code) ibf.(entry) ibf.(input_regs) = Some tt.
Proof.
  intros LIVE PC.
  apply decomp_liveness_checker in LIVE; destruct LIVE as [ibf' [ENTRY LIST]].
  exploit list_iblock_checker_correct; eauto.
  - eapply PTree.elements_correct; eauto.
  - simpl; auto.
Qed.

Lemma liveness_checker_entrypoint f:
  liveness_checker f = OK tt ->
  f.(fn_code)!(f.(fn_entrypoint)) <> None.
Proof.
  intros LIVE; apply decomp_liveness_checker in LIVE; destruct LIVE as [ibf' [ENTRY LIST]].
  unfold not; intros CONTRA. congruence.
Qed.

Definition liveness_ok_function (f: BTL.function): Prop := liveness_checker f = OK tt.

Inductive liveness_ok_fundef: fundef -> Prop :=
  | liveness_ok_Internal f: liveness_ok_function f -> liveness_ok_fundef (Internal f)
  | liveness_ok_External ef: liveness_ok_fundef (External ef).


Local Notation ext alive := (fun r => Regset.In r alive).

Definition ext_opt (oalive: option Regset.t): Regset.elt -> Prop :=
  match oalive with
  | Some alive => ext alive
  | None => fun _ => True
  end.

Lemma ext_opt_meet: forall r oalive1 oalive2,
  ext_opt (meet oalive1 oalive2) r ->
  ext_opt oalive1 r /\ ext_opt oalive2 r.
Proof.
  intros. destruct oalive1, oalive2;
  simpl in *; intuition.
  eapply Regset.inter_1; eauto.
  eapply Regset.inter_2; eauto.
Qed.

Lemma regset_add_spec live r1 r2: Regset.In r1 (Regset.add r2 live) <-> (r1 = r2 \/ Regset.In r1 live).
Proof.
  destruct (Pos.eq_dec r1 r2).
  - subst. intuition; eapply Regset.add_1; auto.
  - intuition. 
    * right. eapply Regset.add_3; eauto.
    * eapply Regset.add_2; auto.
Qed.

Local Hint Resolve Regset.mem_2 Regset.subset_2: core.

Lemma lazy_and_true (b1 b2: bool): b1 &&& b2 = true <-> b1 = true /\ b2 = true.
Proof.
  destruct b1; simpl; intuition.
Qed.

Lemma list_mem_correct (rl: list reg) (alive: Regset.t):
  list_mem rl alive = true -> forall r, List.In r rl -> ext alive r.
Proof.
  induction rl; simpl; try rewrite lazy_and_true; intuition subst; auto.
Qed.

Definition eqlive_reg (alive: Regset.elt -> Prop) (rs1 rs2: regset): Prop :=
 forall r, (alive r) -> rs1#r = rs2#r.

Lemma eqlive_reg_update (alive: Regset.elt -> Prop) rs1 rs2 r v: eqlive_reg (fun r1 => r1 <> r /\ alive r1) rs1 rs2 -> eqlive_reg alive (rs1 # r <- v) (rs2 # r <- v).
Proof.
  unfold eqlive_reg; intros EQLIVE r0 ALIVE.
  destruct (Pos.eq_dec r r0) as [H|H].
  - subst. rewrite! Regmap.gss. auto.
  - rewrite! Regmap.gso; auto.
Qed.

Lemma eqlive_reg_monotonic (alive1 alive2: Regset.elt -> Prop) rs1 rs2: eqlive_reg alive2 rs1 rs2 -> (forall r, alive1 r -> alive2 r) ->  eqlive_reg alive1 rs1 rs2.
Proof.
  unfold eqlive_reg; intuition.
Qed.

Lemma eqlive_reg_list (alive: Regset.elt -> Prop) args rs1 rs2: eqlive_reg alive rs1 rs2 -> (forall r, List.In r args -> (alive r)) -> rs1##args = rs2##args.
Proof.
  induction args; simpl; auto.
  intros EQLIVE ALIVE; rewrite IHargs; auto.
  unfold eqlive_reg in EQLIVE.
  rewrite EQLIVE; auto.
Qed.

Lemma eqlive_reg_listmem (alive: Regset.t) args rs1 rs2: eqlive_reg (ext alive) rs1 rs2 -> list_mem args alive = true -> rs1##args = rs2##args.
Proof.
  intros; eapply eqlive_reg_list; eauto.
  intros; eapply list_mem_correct; eauto.
Qed.

Inductive eqlive_stackframes: stackframe -> stackframe -> Prop :=
  | eqlive_stackframes_intro ibf res f sp pc rs1 rs2
      (LIVE: liveness_ok_function f)
      (ENTRY: f.(fn_code)!pc = Some ibf)
      (EQUIV: forall v, eqlive_reg (ext ibf.(input_regs)) (rs1 # res <- v) (rs2 # res <- v)):
       eqlive_stackframes (Stackframe res f sp pc rs1) (Stackframe res f sp pc rs2). 

Inductive eqlive_states: state -> state -> Prop :=
  | eqlive_states_intro 
      ibf st1 st2 f sp pc rs1 rs2 m
      (STACKS: list_forall2 eqlive_stackframes st1 st2)
      (LIVE: liveness_ok_function f)
      (PATH: f.(fn_code)!pc = Some ibf)
      (EQUIV: eqlive_reg (ext ibf.(input_regs)) rs1 rs2):
      eqlive_states (State st1 f sp pc rs1 m) (State st2 f sp pc rs2 m)
  | eqlive_states_call st1 st2 f args m
      (LIVE: liveness_ok_fundef f)
      (STACKS: list_forall2 eqlive_stackframes st1 st2):
      eqlive_states (Callstate st1 f args m) (Callstate st2 f args m)
  | eqlive_states_return st1 st2 v m
      (STACKS: list_forall2 eqlive_stackframes st1 st2):
      eqlive_states (Returnstate st1 v m) (Returnstate st2 v m).

Section FSEM_SIMULATES_CFGSEM.

Variable prog: BTL.program.

Let ge := Genv.globalenv prog.

Hypothesis all_fundef_liveness_ok: forall b f, Genv.find_funct_ptr ge b = Some f -> liveness_ok_fundef f.

Local Hint Constructors eqlive_stackframes eqlive_states final_step list_forall2 step: core.

Lemma eqlive_reg_update_gso alive rs1 rs2 res r: forall v : val,
  eqlive_reg (ext alive) rs1 # res <- v rs2 # res <- v ->
  res <> r -> Regset.In r alive ->
  rs1 # r = rs2 # r.
Proof.
  intros v REGS NRES INR. unfold eqlive_reg in REGS.
  specialize REGS with r. apply REGS in INR.
  rewrite !Regmap.gso in INR; auto.
Qed.

Lemma find_funct_liveness_ok v fd:
  Genv.find_funct ge v = Some fd -> liveness_ok_fundef fd.
Proof.
  unfold Genv.find_funct.
  destruct v; try congruence.
  destruct (Integers.Ptrofs.eq_dec _ _); try congruence.
  eapply all_fundef_liveness_ok; eauto.
Qed.

Lemma find_function_liveness_ok ros rs f:
  find_function ge ros rs = Some f -> liveness_ok_fundef f.
Proof.
  destruct ros as [r|i]; simpl.
  - intros; eapply find_funct_liveness_ok; eauto.
  - destruct (Genv.find_symbol ge i); try congruence.
    eapply all_fundef_liveness_ok; eauto.
Qed.

Lemma find_function_eqlive alive ros rs1 rs2:
  eqlive_reg (ext alive) rs1 rs2 ->
  reg_sum_mem ros alive = true ->
  find_function ge ros rs1 = find_function ge ros rs2.
Proof.
  intros EQLIVE.
  destruct ros; simpl; auto.
  intros H; erewrite (EQLIVE r); eauto.
Qed.

Lemma exit_checker_eqlive (btl: code) (alive: Regset.t) (pc: node) rs1 rs2:
  exit_checker btl alive pc = Some tt ->
  eqlive_reg (ext alive) rs1 rs2 -> 
  exists ibf, btl!pc = Some ibf /\ eqlive_reg (ext ibf.(input_regs)) rs1 rs2.
Proof.
  unfold exit_checker.
  inversion_SOME next.
  inversion_ASSERT. try_simplify_someHyps.
  repeat (econstructor; eauto).
  intros; eapply eqlive_reg_monotonic; eauto.
  intros; exploit Regset.subset_2; eauto.
Qed.

Lemma exit_list_checker_eqlive (btl: code) (alive: Regset.t) (tbl: list node) rs1 rs2 pc: forall n,
  exit_list_checker btl alive tbl = true ->  
  eqlive_reg (ext alive) rs1 rs2 -> 
  list_nth_z tbl n = Some pc ->
  exists ibf, btl!pc = Some ibf /\ eqlive_reg (ext ibf.(input_regs)) rs1 rs2.
Proof.
  induction tbl; simpl.
  - intros; try congruence.
  - intros n; rewrite lazy_and_Some_tt_true; destruct (zeq n 0) eqn: Hn.
    * try_simplify_someHyps; intuition.
      exploit exit_checker_eqlive; eauto.
    * intuition. eapply IHtbl; eauto.
Qed.

Lemma exit_checker_eqlive_update (btl: code) (alive: Regset.t) (pc: node) r rs1 rs2:
  exit_checker btl (Regset.add r alive) pc = Some tt ->  
  eqlive_reg (ext alive) rs1 rs2 ->
  exists ibf, btl!pc = Some ibf /\ (forall v, eqlive_reg (ext ibf.(input_regs)) (rs1 # r <- v) (rs2 # r <- v)).
Proof.
  unfold exit_checker.
  inversion_SOME next.
  inversion_ASSERT. try_simplify_someHyps.
  repeat (econstructor; eauto).
  intros; eapply eqlive_reg_update; eauto.
  eapply eqlive_reg_monotonic; eauto.
  intros r0 [X1 X2]; exploit Regset.subset_2; eauto.
  rewrite regset_add_spec. intuition subst.
Qed.

Lemma exit_checker_eqlive_builtin_res (btl: code) (alive: Regset.t) (pc: node) rs1 rs2 (res:builtin_res reg):
  exit_checker btl (reg_builtin_res res alive) pc = Some tt ->
  eqlive_reg (ext alive) rs1 rs2 ->
  exists ibf, btl!pc = Some ibf /\ (forall vres, eqlive_reg (ext ibf.(input_regs)) (regmap_setres res vres rs1) (regmap_setres res vres rs2)).
Proof.
  destruct res; simpl.
  - intros; exploit exit_checker_eqlive_update; eauto.
  - intros; exploit exit_checker_eqlive; eauto.
    intros (ibf & PC & REGS).
    eexists; intuition eauto.
  - intros; exploit exit_checker_eqlive; eauto.
    intros (ibf & PC & REGS).
    eexists; intuition eauto.
Qed.

Local Hint Resolve in_or_app: local.
Lemma eqlive_eval_builtin_args alive rs1 rs2 sp m args vargs:
  eqlive_reg alive rs1 rs2 ->
  Events.eval_builtin_args ge (fun r => rs1 # r) sp m args vargs ->
  (forall r, List.In r (params_of_builtin_args args) -> alive r) ->
  Events.eval_builtin_args ge (fun r => rs2 # r) sp m args vargs.
Proof.
  unfold Events.eval_builtin_args.
  intros EQLIVE; induction 1 as [|a1 al b1 bl EVAL1 EVALL]; simpl.
  { econstructor; eauto. }
  intro X. 
  assert (X1: eqlive_reg (fun r => In r (params_of_builtin_arg a1)) rs1 rs2).
  { eapply eqlive_reg_monotonic; eauto with local. }
  lapply IHEVALL; eauto with local.
  clear X IHEVALL; intro X. econstructor; eauto.
  generalize X1; clear EVALL X1 X.
  induction EVAL1; simpl; try (econstructor; eauto; fail).
  - intros X1; erewrite X1; [ econstructor; eauto | eauto ].
  - intros; econstructor.
    + eapply IHEVAL1_1; eauto.
      eapply eqlive_reg_monotonic; eauto.
      simpl; intros; eauto with local.
    + eapply IHEVAL1_2; eauto.
      eapply eqlive_reg_monotonic; eauto.
      simpl; intros; eauto with local.
  - intros; econstructor.
    + eapply IHEVAL1_1; eauto.
      eapply eqlive_reg_monotonic; eauto.
      simpl; intros; eauto with local.
    + eapply IHEVAL1_2; eauto.
      eapply eqlive_reg_monotonic; eauto.
      simpl; intros; eauto with local.
Qed.

Lemma tr_inputs_eqlive_None f pc tbl ibf rs1 rs2
  (PC: (fn_code f) ! pc = Some ibf)
  (REGS: eqlive_reg (ext (input_regs ibf)) rs1 rs2)
  :eqlive_reg (ext (input_regs ibf)) (tid f (pc :: tbl) None rs1)
    (tr_inputs f (pc :: tbl) None rs2).
Proof.
  unfold eqlive_reg. intros r INR.
  unfold tid. rewrite tr_inputs_get.
  simpl. rewrite PC.
  exploit Regset.union_3. eapply INR.
  intros INRU. eapply Regset.mem_1 in INRU.
  erewrite INRU; eauto.
Qed.

Lemma tr_inputs_eqlive_list_None tbl: forall f pc n alive ibf rs1 rs2
  (REGS1: eqlive_reg (ext alive) rs1 rs2)
  (EXIT_LIST: exit_list_checker (fn_code f) alive tbl = true)
  (LIST: list_nth_z tbl n = Some pc)
  (PC: (fn_code f) ! pc = Some ibf)
  (REGS2: eqlive_reg (ext (input_regs ibf)) rs1 rs2),
  eqlive_reg (ext (input_regs ibf)) (tid f tbl None rs1)
    (tr_inputs f tbl None rs2).
Proof.
  induction tbl as [| pc' tbl IHtbl]; try_simplify_someHyps.
  autodestruct; try_simplify_someHyps.
  - intros; eapply tr_inputs_eqlive_None; eauto.
  - rewrite lazy_and_Some_tt_true in EXIT_LIST.
    destruct EXIT_LIST as [EXIT EXIT_REM].
    intros. unfold eqlive_reg. intros r INR.
    exploit (IHtbl f pc (Z.pred n) alive ibf rs1 rs2); eauto.
    unfold tid. rewrite !tr_inputs_get.
    exploit exit_checker_eqlive; eauto.
    intros (ibf' & PC' & REGS3).
    simpl; rewrite PC'. autodestruct.
    + intro INRU. apply Regset.mem_2 in INRU.
      intros EQR. eapply Regset.union_2 in INRU.
      eapply Regset.mem_1 in INRU. erewrite INRU; auto.
    + intros. autodestruct.
      rewrite (REGS2 r); auto.
Qed.

Lemma tr_inputs_eqlive_update f pc ibf rs1 rs2 res
  (PC: (fn_code f) ! pc = Some ibf)
  :forall (v: val)
    (REGS: eqlive_reg (ext (input_regs ibf)) rs1 # res <- v rs2 # res <- v),
  eqlive_reg (ext (input_regs ibf))
    (tid f (pc :: nil) (Some res) rs1) # res <- v
    (tr_inputs f (pc :: nil) (Some res) rs2) # res <- v.
Proof.
  intros. apply eqlive_reg_update.
  unfold eqlive_reg. intros r (NRES & INR).
  unfold tid. rewrite tr_inputs_get.
  simpl. rewrite PC. assert (NRES': res <> r) by auto.
  clear NRES. exploit Regset.union_3. eapply INR.
  intros INRU. exploit Regset.remove_2; eauto.
  intros INRU_RES. eapply Regset.mem_1 in INRU_RES.
  erewrite INRU_RES. eapply eqlive_reg_update_gso; eauto.
Qed.

Local Hint Resolve tr_inputs_eqlive_None tr_inputs_eqlive_update: core.
Lemma cfgsem2fsem_finalstep_simu sp f stk1 stk2 s t fin alive rs1 m rs2
  (FSTEP: final_step tid ge stk1 f sp rs1 m fin t s)
  (LIVE: liveness_ok_function f)
  (REGS: eqlive_reg (ext alive) rs1 rs2)
  (FCHK: final_inst_checker (fn_code f) alive fin = Some tt)
  (STACKS: list_forall2 eqlive_stackframes stk1 stk2)
  :exists s',
    final_step tr_inputs ge stk2 f sp rs2 m fin t s'
    /\ eqlive_states s s'.
Proof.
  destruct FSTEP; try_simplify_someHyps; repeat inversion_ASSERT; intros.
  - (* Bgoto *)
    eexists; split.
    + econstructor; eauto.
    + exploit exit_checker_eqlive; eauto.
      intros (ibf & PC & REGS').
      econstructor; eauto.
  - (* Breturn *)
    eexists; split. econstructor; eauto.
    destruct or; simpl in *;
    try erewrite (REGS r); eauto.
  - (* Bcall *)
    exploit exit_checker_eqlive_update; eauto.
    intros (ibf & PC & REGS').
    eexists; split.
    + econstructor; eauto.
      erewrite <- find_function_eqlive; eauto.
    + erewrite eqlive_reg_listmem; eauto.
      eapply eqlive_states_call; eauto.
      eapply find_function_liveness_ok; eauto.
  - (* Btailcall *)
    eexists; split.
    + econstructor; eauto.
      erewrite <- find_function_eqlive; eauto.
    + erewrite eqlive_reg_listmem; eauto.
      eapply eqlive_states_call; eauto.
      eapply find_function_liveness_ok; eauto.
  - (* Bbuiltin *)
    exploit exit_checker_eqlive_builtin_res; eauto.
    intros (ibf & PC & REGS').
    eexists; split.
    + econstructor; eauto.
      eapply eqlive_eval_builtin_args; eauto.
      intros; eapply list_mem_correct; eauto.
    + repeat (econstructor; simpl; eauto).
      unfold regmap_setres. destruct res; simpl in *; eauto.
  - (* Bjumptable *)
    exploit exit_list_checker_eqlive; eauto.
    intros (ibf & PC & REGS').
    eexists; split.
    + econstructor; eauto.
      erewrite <- REGS; eauto.
    + repeat (econstructor; simpl; eauto).
      apply (tr_inputs_eqlive_list_None tbl f pc' (Int.unsigned n) alive ibf rs1 rs2);
      auto.
Qed.

Lemma cfgsem2fsem_ibistep_simu_None sp f ib: forall rs1 m rs1' m'
  (ISTEP: iblock_istep ge sp rs1 m ib rs1' m' None)
  alive1 oalive2 rs2 (REGS: eqlive_reg (ext alive1) rs1 rs2)
  (BDY: body_checker (fn_code f) ib alive1 = Some (oalive2)),
  exists rs2',
    iblock_istep_run ge sp ib rs2 m = Some (out rs2' m' None)
    /\ eqlive_reg (ext_opt oalive2) rs1' rs2'.
Proof.
  induction ib; intros; try_simplify_someHyps;
  repeat inversion_ASSERT; intros; inv ISTEP.
  - (* Bnop *)
    inv BDY; eauto.
  - (* Bop *)
    erewrite <- eqlive_reg_listmem; eauto.
    try_simplify_someHyps; intros.
    repeat econstructor.
    apply eqlive_reg_update.
    eapply eqlive_reg_monotonic; eauto.
    intros r0; rewrite regset_add_spec. 
    intuition.
  - (* Bload *)
    erewrite <- eqlive_reg_listmem; eauto.
    try_simplify_someHyps; intros.
    destruct trap; inv LOAD;
    rewrite EVAL, LOAD0 || (autodestruct; try rewrite LOAD0; auto).
    all:
      repeat econstructor;
      apply eqlive_reg_update;
      eapply eqlive_reg_monotonic; eauto;
      intros r0; rewrite regset_add_spec; 
      intuition.
  - (* Bstore *)
    erewrite <- eqlive_reg_listmem; eauto.
    rewrite <- (REGS src); auto.
    try_simplify_someHyps; intros.
    rewrite STORE; eauto.
  - (* Bseq continue *)
    destruct (body_checker _ _ _) eqn:BDY1 in BDY; try discriminate.
    generalize BDY; clear BDY.
    inversion_SOME aliveMid; intros OALIVE BDY2. inv OALIVE.
    exploit IHib1; eauto.
    intros (rs2' & ISTEP1 & REGS1). rewrite ISTEP1; simpl.
    eapply IHib2; eauto.
  - (* Bcond *)
    generalize BDY; clear BDY.
    inversion_SOME oaliveSo; inversion_SOME oaliveNot; intros BDY1 BDY2 JOIN.
    erewrite <- eqlive_reg_listmem; eauto.
    rewrite EVAL.
    destruct b; [ exploit IHib1; eauto | exploit IHib2; eauto].
    all:
      intros (rs2' & ISTEP1 & REGS1);
      econstructor; split; eauto; inv JOIN;
      eapply eqlive_reg_monotonic; eauto;
      intros r EXTM; apply ext_opt_meet in EXTM; intuition.
Qed.

Lemma cfgsem2fsem_ibistep_simu_Some sp f stk1 stk2 ib: forall s t rs1 m rs1' m' fin
  (ISTEP: iblock_istep ge sp rs1 m ib rs1' m' (Some fin))
  (FSTEP: final_step tid ge stk1 f sp rs1' m' fin t s)
  alive1 oalive2 rs2 (REGS: eqlive_reg (ext alive1) rs1 rs2)
  (BDY: body_checker (fn_code f) ib alive1 = Some (oalive2))
  (LIVE: liveness_ok_function f)
  (STACKS: list_forall2 eqlive_stackframes stk1 stk2),
  exists rs2' s',
    iblock_istep_run ge sp ib rs2 m = Some (out rs2' m' (Some fin))
    /\ final_step tr_inputs ge stk2 f sp rs2' m' fin t s'
    /\ eqlive_states s s'.
Proof.
  induction ib; simpl; try_simplify_someHyps;
  repeat inversion_ASSERT; intros; inv ISTEP.
  - (* BF *)
    generalize BDY; clear BDY.
    inversion_SOME x; try_simplify_someHyps; intros FCHK.
    destruct x; exploit cfgsem2fsem_finalstep_simu; eauto.
    intros (s2 & FSTEP' & STATES); eauto.
  - (* Bseq stop *)
    destruct (body_checker _ _ _) eqn:BDY1 in BDY; try discriminate.
    generalize BDY; clear BDY.
    inversion_SOME aliveMid. intros OALIVE BDY2. inv OALIVE.
    exploit IHib1; eauto. intros (rs2' & s' & ISTEP1 & FSTEP1 & STATES).
    rewrite ISTEP1; simpl.
    do 2 eexists; intuition eauto.
  - (* Bseq continue *)
    destruct (body_checker _ _ _) eqn:BDY1 in BDY; try discriminate.
    generalize BDY; clear BDY.
    inversion_SOME aliveMid; intros OALIVE BDY2. inv OALIVE.
    exploit cfgsem2fsem_ibistep_simu_None; eauto.
    intros (rs2' & ISTEP1 & REGS'). rewrite ISTEP1; simpl; eauto.
  - (* Bcond *)
    generalize BDY; clear BDY.
    inversion_SOME oaliveSo; inversion_SOME oaliveNot; intros BDY1 BDY2 JOIN.
    erewrite <- eqlive_reg_listmem; eauto. rewrite EVAL.
    destruct b; eauto.
Qed.

Lemma cfgsem2fsem_ibstep_simu stk1 stk2 f sp rs1 m rs2 ibf pc s1 t:
  iblock_step tid (Genv.globalenv prog) stk1 f sp rs1 m ibf.(entry) t s1 ->
  list_forall2 eqlive_stackframes stk1 stk2 ->
  eqlive_reg (ext (input_regs ibf)) rs1 rs2 ->
  liveness_ok_function f ->
  (fn_code f) ! pc = Some ibf ->
  exists s2 : state,
    iblock_step tr_inputs (Genv.globalenv prog) stk2 f sp rs2 m ibf.(entry) t s2 /\
    eqlive_states s1 s2.
Proof.
  intros STEP STACKS EQLIVE LIVE PC.
  assert (CHECKER: liveness_ok_function f) by auto.
  unfold liveness_ok_function in CHECKER.
  apply decomp_liveness_checker in CHECKER; destruct CHECKER as [ibf' [ENTRY LIST]].
  eapply PTree.elements_correct in PC as PCIN.
  eapply list_iblock_checker_correct in LIST as IBC; eauto.
  unfold iblock_checker in IBC. generalize IBC; clear IBC.
  inversion_SOME alive; intros BODY _.
  destruct STEP as (rs1' & m1' & fin' & ISTEP & FSTEP).
  exploit cfgsem2fsem_ibistep_simu_Some; eauto.
  intros (rs2' & s' & ISTEP' & FSTEP' & REGS).
  rewrite <- iblock_istep_run_equiv in ISTEP'. clear ISTEP.
  unfold iblock_step. repeat eexists; eauto.
Qed.

Local Hint Constructors step: core.

Lemma cfgsem2fsem_step_simu s1 s1' t s2:
  step tid (Genv.globalenv prog) s1 t s1' ->
  eqlive_states s1 s2 ->
  exists s2' : state,
    step tr_inputs (Genv.globalenv prog) s2 t s2' /\
    eqlive_states s1' s2'.
Proof.
  destruct 1 as [stack ibf f sp n rs m t s ENTRY STEP | | | ]; intros STATES.
  - (* iblock *)
    inv STATES; simplify_someHyps.
    intros.
    exploit cfgsem2fsem_ibstep_simu; eauto.
    intros (s2 & STEP2 & EQUIV2). 
    eexists; split; eauto.
  - (* function internal *)
    inv STATES; inv LIVE.
    apply liveness_checker_entrypoint in H0 as ENTRY.
    destruct ((fn_code f) ! (fn_entrypoint f)) eqn:EQENTRY; try congruence; eauto.
    eexists; split; repeat econstructor; eauto.
  - (* function external *)
    inv STATES; inv LIVE; eexists; split; econstructor; eauto.
  - (* return *)
    inv STATES.
    inversion STACKS as [|s1 st1 s' s2 STACK STACKS']; subst; clear STACKS.
    inv STACK.
    exists (State s2 f sp pc (rs2 # res <- vres) m); split.
    * apply exec_return.
    * eapply eqlive_states_intro; eauto.
Qed.

Theorem cfgsem2fsem: forward_simulation (cfgsem prog) (fsem prog).
Proof.
  eapply forward_simulation_step with eqlive_states; simpl; eauto.
  - destruct 1, f; intros; eexists; intuition eauto;
    repeat (econstructor; eauto).
  - intros s1 s2 r STATES FINAL; destruct FINAL.
    inv STATES; inv STACKS; constructor.
  - intros. eapply cfgsem2fsem_step_simu; eauto.
Qed.

End FSEM_SIMULATES_CFGSEM.