aboutsummaryrefslogtreecommitdiffstats
path: root/scheduling/BTL_SEimpl.v
blob: 8f7881a57400af3ec7c38673a5b015452b964dfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
Require Import Coqlib AST Maps.
Require Import Op Registers.
Require Import RTL BTL Errors.
Require Import BTL_SEsimuref BTL_SEtheory OptionMonad.

Require Import Impure.ImpHCons.
Import Notations.
Import HConsing.

Local Open Scope option_monad_scope.
Local Open Scope impure.

Import ListNotations.
Local Open Scope list_scope.

(** Tactics *)

Ltac simplify_SOME x := repeat inversion_SOME x; try_simplify_someHyps.

(** Notations to make lemmas more readable *)
Notation "'sval_refines' ctx sv1 sv2" := (eval_sval ctx sv1 = eval_sval ctx sv2)
  (only parsing, at level 0, ctx at next level, sv1 at next level, sv2 at next level): hse.

Local Open Scope hse.

Notation "'list_sval_refines' ctx lsv1 lsv2" := (eval_list_sval ctx lsv1 = eval_list_sval ctx lsv2)
  (only parsing, at level 0, ctx at next level, lsv1 at next level, lsv2 at next level): hse.

Notation "'smem_refines' ctx sm1 sm2" := (eval_smem ctx sm1 = eval_smem ctx sm2)
  (only parsing, at level 0, ctx at next level, sm1 at next level, sm2 at next level): hse.

(** Debug printer *)
Definition XDEBUG {A} (x:A) (k: A -> ?? pstring): ?? unit := RET tt. (* TO REMOVE DEBUG INFO *)
(*Definition XDEBUG {A} (x:A) (k: A -> ?? pstring): ?? unit := DO s <~ k x;; println ("DEBUG simu_check:" +; s). (* TO INSERT DEBUG INFO *)*)

Definition DEBUG (s: pstring): ?? unit := XDEBUG tt (fun _ => RET s).

(** * Implementation of Data-structure use in Hash-consing *)

Definition sval_get_hid (sv: sval): hashcode :=
  match sv with
  | Sundef hid => hid
  | Sinput _ hid => hid
  | Sop _ _ hid => hid
  | Sload _ _ _ _ _ hid => hid
  end.

Definition list_sval_get_hid (lsv: list_sval): hashcode :=
  match lsv with
  | Snil hid => hid
  | Scons _ _ hid => hid
  end.

Definition smem_get_hid (sm: smem): hashcode :=
  match sm with
  | Sinit hid => hid
  | Sstore _ _ _ _ _ hid => hid
  end.

Definition sval_set_hid (sv: sval) (hid: hashcode): sval :=
  match sv with
  | Sundef _ => Sundef hid
  | Sinput r _ => Sinput r hid
  | Sop o lsv _ => Sop o lsv hid
  | Sload sm trap chunk addr lsv _ => Sload sm trap chunk addr lsv hid
  end.

Definition list_sval_set_hid (lsv: list_sval) (hid: hashcode): list_sval :=
  match lsv with
  | Snil _ => Snil hid
  | Scons sv lsv _ => Scons sv lsv hid
  end.

Definition smem_set_hid (sm: smem) (hid: hashcode): smem :=
  match sm with
  | Sinit _ => Sinit hid
  | Sstore sm chunk addr lsv srce _ => Sstore sm chunk addr lsv srce hid
  end.

(** Now, we build the hash-Cons value from a "hash_eq".

  Informal specification: 
    [hash_eq] must be consistent with the "hashed" constructors defined above.

  We expect that hashinfo values in the code of these "hashed" constructors verify:
    (hash_eq (hdata x) (hdata y) ~> true) <-> (hcodes x)=(hcodes y)
*)

Definition sval_hash_eq (sv1 sv2: sval): ?? bool :=
  match sv1, sv2 with
  | Sinput r1 _, Sinput r2 _ => struct_eq r1 r2 (* NB: really need a struct_eq here ? *)
  | Sop op1 lsv1 _, Sop op2 lsv2 _  =>
     DO b1 <~ phys_eq lsv1 lsv2;;
     if b1
     then struct_eq op1 op2 (* NB: really need a struct_eq here ? *)
     else RET false
  | Sload sm1 trap1 chk1 addr1 lsv1 _, Sload sm2 trap2 chk2 addr2 lsv2 _ =>
     DO b1 <~ phys_eq lsv1 lsv2;;
     DO b2 <~ phys_eq sm1 sm2;;
     DO b3 <~ struct_eq trap1 trap2;;
     DO b4 <~ struct_eq chk1 chk2;;
     if b1 && b2 && b3 && b4
     then struct_eq addr1 addr2
     else RET false
  | _,_ => RET false
  end.

Lemma and_true_split a b: a && b = true <-> a = true /\ b = true.
Proof.
  destruct a; simpl; intuition.
Qed.

Lemma sval_hash_eq_correct x y:
  WHEN sval_hash_eq x y ~> b THEN 
   b = true -> sval_set_hid x unknown_hid = sval_set_hid y unknown_hid.
Proof.
  destruct x, y; wlp_simplify; try (rewrite !and_true_split in *); intuition; subst; try congruence.
Qed.
Global Opaque sval_hash_eq.
Local Hint Resolve sval_hash_eq_correct: wlp.

Definition list_sval_hash_eq (lsv1 lsv2: list_sval): ?? bool :=
  match lsv1, lsv2 with
  | Snil _, Snil _ => RET true
  | Scons sv1 lsv1' _, Scons sv2 lsv2' _  =>
     DO b <~ phys_eq lsv1' lsv2';;
     if b 
     then phys_eq sv1 sv2
     else RET false
  | _,_ => RET false
  end.

Lemma list_sval_hash_eq_correct x y:
  WHEN list_sval_hash_eq x y ~> b THEN 
   b = true -> list_sval_set_hid x unknown_hid = list_sval_set_hid y unknown_hid.
Proof.
  destruct x, y; wlp_simplify; try (rewrite !and_true_split in *); intuition; subst; try congruence.
Qed.
Global Opaque list_sval_hash_eq.
Local Hint Resolve list_sval_hash_eq_correct: wlp.

Definition smem_hash_eq (sm1 sm2: smem): ?? bool :=
  match sm1, sm2 with
  | Sinit _, Sinit _ => RET true
  | Sstore sm1 chk1 addr1 lsv1 sv1 _, Sstore sm2 chk2 addr2 lsv2 sv2 _ =>
     DO b1 <~ phys_eq lsv1 lsv2;;
     DO b2 <~ phys_eq sm1 sm2;;
     DO b3 <~ phys_eq sv1 sv2;;
     DO b4 <~ struct_eq chk1 chk2;;
     if b1 && b2 && b3 && b4
     then struct_eq addr1 addr2
     else RET false
  | _,_ => RET false
  end.

Lemma smem_hash_eq_correct x y:
  WHEN smem_hash_eq x y ~> b THEN 
   b = true -> smem_set_hid x unknown_hid = smem_set_hid y unknown_hid.
Proof.
  destruct x, y; wlp_simplify; try (rewrite !and_true_split in *); intuition; subst; try congruence.
Qed.
Global Opaque smem_hash_eq.
Local Hint Resolve smem_hash_eq_correct: wlp.

Definition hSVAL: hashP sval := {| hash_eq := sval_hash_eq; get_hid:=sval_get_hid; set_hid:=sval_set_hid |}. 
Definition hLSVAL: hashP list_sval := {| hash_eq := list_sval_hash_eq; get_hid:= list_sval_get_hid; set_hid:= list_sval_set_hid |}.
Definition hSMEM: hashP smem := {| hash_eq := smem_hash_eq; get_hid:= smem_get_hid; set_hid:= smem_set_hid |}.

(** * Implementation of symbolic execution *)
Section CanonBuilding.

Variable hC_sval: hashinfo sval -> ?? sval.

Hypothesis hC_sval_correct: forall s,
  WHEN hC_sval s ~> s' THEN forall ctx,
    sval_refines ctx (hdata s) s'.

Variable hC_list_sval: hashinfo list_sval -> ?? list_sval.
Hypothesis hC_list_sval_correct: forall lh,
  WHEN hC_list_sval lh ~> lh' THEN forall ctx,
    list_sval_refines ctx (hdata lh) lh'.

Variable hC_smem: hashinfo smem -> ?? smem.
Hypothesis hC_smem_correct: forall hm,
  WHEN hC_smem hm ~> hm' THEN forall ctx,
    smem_refines ctx (hdata hm) hm'.

(* First, we wrap constructors for hashed values !*)

Definition reg_hcode := 1.
Definition op_hcode := 2.
Definition load_hcode := 3.
Definition undef_code := 4.

Definition hSinput_hcodes (r: reg) :=
   DO hc <~ hash reg_hcode;;
   DO hv <~ hash r;;
   RET [hc;hv].
Extraction Inline hSinput_hcodes.

Definition hSinput (r:reg): ?? sval :=
   DO hv <~ hSinput_hcodes r;;
   hC_sval {| hdata:=Sinput r unknown_hid; hcodes :=hv; |}.

Lemma hSinput_correct r:
  WHEN hSinput r ~> hv THEN forall ctx,
    sval_refines ctx hv (Sinput r unknown_hid).
Proof.
  wlp_simplify.
Qed.
Global Opaque hSinput.
Local Hint Resolve hSinput_correct: wlp.

Definition hSop_hcodes (op:operation) (lsv: list_sval) :=
   DO hc <~ hash op_hcode;;
   DO hv <~ hash op;;
   RET [hc;hv;list_sval_get_hid lsv].
Extraction Inline hSop_hcodes.

Definition hSop (op:operation) (lsv: list_sval): ?? sval :=
   DO hv <~ hSop_hcodes op lsv;;
   hC_sval {| hdata:=Sop op lsv unknown_hid; hcodes :=hv |}.

Lemma hSop_fSop_correct op lsv:
  WHEN hSop op lsv ~> hv THEN forall ctx,
    sval_refines ctx hv (fSop op lsv).
Proof.
  wlp_simplify.
Qed.
Global Opaque hSop.
Local Hint Resolve hSop_fSop_correct: wlp_raw.

Lemma hSop_correct op lsv1:
  WHEN hSop op lsv1 ~> hv THEN forall ctx lsv2
   (LR: list_sval_refines ctx lsv1 lsv2),
   sval_refines ctx hv (Sop op lsv2 unknown_hid).
Proof.
  wlp_xsimplify ltac:(intuition eauto with wlp wlp_raw).
  rewrite <- LR. erewrite H; eauto.
Qed.
Local Hint Resolve hSop_correct: wlp.

Definition hSload_hcodes (sm: smem) (trap: trapping_mode) (chunk: memory_chunk) (addr: addressing) (lsv: list_sval):=
   DO hc <~ hash load_hcode;;
   DO hv1 <~ hash trap;;
   DO hv2 <~ hash chunk;;
   DO hv3 <~ hash addr;;
   RET [hc; smem_get_hid sm; hv1; hv2; hv3; list_sval_get_hid lsv].
Extraction Inline hSload_hcodes.

Definition hSload (sm: smem) (trap: trapping_mode) (chunk: memory_chunk) (addr: addressing) (lsv: list_sval): ?? sval :=
   DO hv <~ hSload_hcodes sm trap chunk addr lsv;;
   hC_sval {| hdata := Sload sm trap chunk addr lsv unknown_hid; hcodes := hv |}.

Lemma hSload_correct sm1 trap chunk addr lsv1:
  WHEN hSload sm1 trap chunk addr lsv1 ~> hv THEN forall ctx lsv2 sm2
    (LR: list_sval_refines ctx lsv1 lsv2)
    (MR: smem_refines ctx sm1 sm2),
    sval_refines ctx hv (Sload sm2 trap chunk addr lsv2 unknown_hid).
Proof.
  wlp_simplify.
  rewrite <- LR, <- MR.
  auto.
Qed.
Global Opaque hSload.
Local Hint Resolve hSload_correct: wlp.

Definition hSundef_hcodes :=
   DO hc <~ hash undef_code;;
   RET [hc].
Extraction Inline hSundef_hcodes.

Definition hSundef : ?? sval :=
   DO hv <~ hSundef_hcodes;;
   hC_sval {| hdata:=Sundef unknown_hid; hcodes :=hv; |}.

Lemma hSundef_correct:
  WHEN hSundef ~> hv THEN forall ctx,
    sval_refines ctx hv (Sundef unknown_hid).
Proof.
  wlp_simplify.
Qed.
Global Opaque hSundef.
Local Hint Resolve hSundef_correct: wlp.

Definition hSnil (_: unit): ?? list_sval :=
   hC_list_sval {| hdata := Snil unknown_hid; hcodes := nil |}.

Lemma hSnil_correct:
  WHEN hSnil() ~> hv THEN forall ctx,
    list_sval_refines ctx hv (Snil unknown_hid).
Proof.
  wlp_simplify.
Qed.
Global Opaque hSnil.
Local Hint Resolve hSnil_correct: wlp.

Definition hScons (sv: sval) (lsv: list_sval): ?? list_sval :=
   hC_list_sval {| hdata := Scons sv lsv unknown_hid; hcodes := [sval_get_hid sv; list_sval_get_hid lsv] |}.

Lemma hScons_correct sv1 lsv1:
  WHEN hScons sv1 lsv1 ~> lsv1' THEN forall ctx sv2 lsv2
    (VR: sval_refines ctx sv1 sv2)
    (LR: list_sval_refines ctx lsv1 lsv2),
    list_sval_refines ctx lsv1' (Scons sv2 lsv2 unknown_hid).
Proof.
  wlp_simplify.
  rewrite <- VR, <- LR.
  auto.
Qed.
Global Opaque hScons.
Local Hint Resolve hScons_correct: wlp.

Definition hSinit (_: unit): ?? smem :=
   hC_smem {| hdata := Sinit unknown_hid; hcodes := nil |}.

Lemma hSinit_correct:
  WHEN hSinit() ~> hm THEN forall ctx,
    smem_refines ctx hm (Sinit unknown_hid).
Proof.
  wlp_simplify.
Qed.
Global Opaque hSinit.
Local Hint Resolve hSinit_correct: wlp.

Definition hSstore_hcodes (sm: smem) (chunk: memory_chunk) (addr: addressing) (lsv: list_sval) (srce: sval):=
   DO hv1 <~ hash chunk;;
   DO hv2 <~ hash addr;;
   RET [smem_get_hid sm; hv1; hv2; list_sval_get_hid lsv; sval_get_hid srce].
Extraction Inline hSstore_hcodes.

Definition hSstore (sm: smem) (chunk: memory_chunk) (addr: addressing) (lsv: list_sval) (srce: sval): ?? smem :=
   DO hv <~ hSstore_hcodes sm chunk addr lsv srce;;
   hC_smem {| hdata := Sstore sm chunk addr lsv srce unknown_hid; hcodes := hv |}.

Lemma hSstore_correct sm1 chunk addr lsv1 sv1:
  WHEN hSstore sm1 chunk addr lsv1 sv1 ~> sm1' THEN forall ctx lsv2 sm2 sv2
    (LR: list_sval_refines ctx lsv1 lsv2)
    (MR: smem_refines ctx sm1 sm2)
    (VR: sval_refines ctx sv1 sv2),
    smem_refines ctx sm1' (Sstore sm2 chunk addr lsv2 sv2 unknown_hid).
Proof.
  wlp_simplify.
  rewrite <- LR, <- MR, <- VR.
  auto.
Qed.
Global Opaque hSstore.
Local Hint Resolve hSstore_correct: wlp.

Definition hrs_sreg_get (hrs: ristate) r: ?? sval :=
   match PTree.get r hrs with
   | None => if ris_input_init hrs then hSinput r else hSundef
   | Some sv => RET sv
   end.

Lemma hrs_sreg_get_correct hrs r:
  WHEN hrs_sreg_get hrs r ~> sv THEN forall ctx (f: reg -> sval)
  (RR: forall r, sval_refines ctx (hrs r) (f r)),
  sval_refines ctx sv (f r).
Proof.
  unfold ris_sreg_get; wlp_simplify; rewrite <- RR; rewrite H; auto;
  rewrite H0, H1; simpl; auto.
Qed.
Global Opaque hrs_sreg_get.
Local Hint Resolve hrs_sreg_get_correct: wlp.

Fixpoint hlist_args (hrs: ristate) (l: list reg): ?? list_sval :=
  match l with
  | nil => hSnil()
  | r::l =>
    DO v <~ hrs_sreg_get hrs r;;
    DO lsv <~ hlist_args hrs l;;
    hScons v lsv
  end.

Lemma hlist_args_correct hrs l:
  WHEN hlist_args hrs l ~> lsv THEN forall ctx (f: reg -> sval)
    (RR: forall r, sval_refines ctx (hrs r) (f r)),
    list_sval_refines ctx lsv (list_sval_inj (List.map f l)).
Proof.
  induction l; wlp_simplify.
Qed.
Global Opaque hlist_args.
Local Hint Resolve hlist_args_correct: wlp.

(** Convert a "fake" hash-consed term into a "real" hash-consed term *)

Fixpoint fsval_proj sv: ?? sval :=
  match sv with
  | Sundef hc =>
      DO b <~ phys_eq hc unknown_hid;;
      if b then hSundef else RET sv
  | Sinput r hc => 
      DO b <~ phys_eq hc unknown_hid;;
      if b then hSinput r (* was not yet really hash-consed *)
      else RET sv (* already hash-consed *)
  | Sop op hl hc => 
      DO b <~ phys_eq hc unknown_hid;;
      if b then (* was not yet really hash-consed *) 
        DO hl' <~ fsval_list_proj hl;;
        hSop op hl'
      else RET sv (* already hash-consed *)
  | Sload hm t chk addr hl _ => RET sv (* FIXME TODO gourdinl ? *)
  end
with fsval_list_proj sl: ?? list_sval :=
  match sl with
  | Snil hc => 
      DO b <~ phys_eq hc unknown_hid;;
      if b then hSnil() (* was not yet really hash-consed *)
      else RET sl (* already hash-consed *)
  | Scons hv hl hc => 
      DO b <~ phys_eq hc unknown_hid;;
      if b then (* was not yet really hash-consed *)
        DO hv' <~ fsval_proj hv;;
        DO hl' <~ fsval_list_proj hl;;
        hScons hv' hl' 
      else RET sl (* already hash-consed *)
  end.

Lemma fsval_proj_correct sv:
  WHEN fsval_proj sv ~> sv' THEN forall ctx,
  sval_refines ctx sv sv'.
Proof.
 induction sv using sval_mut 
 with (P0 := fun lsv => 
       WHEN fsval_list_proj lsv ~> lsv' THEN forall ctx,
         eval_list_sval ctx lsv = eval_list_sval ctx lsv')
       (P1 := fun sm => True); try (wlp_simplify; tauto).
 - wlp_xsimplify ltac:(intuition eauto with wlp_raw wlp).
   rewrite H, H0; auto.
 - wlp_simplify; erewrite H0, H1; eauto.
Qed.
Global Opaque fsval_proj.
Local Hint Resolve fsval_proj_correct: wlp.

Lemma fsval_list_proj_correct lsv:
  WHEN fsval_list_proj lsv ~> lsv' THEN forall ctx,
  list_sval_refines ctx lsv lsv'.
Proof.
  induction lsv; wlp_simplify.
  erewrite H0, H1; eauto.
Qed.
Global Opaque fsval_list_proj.
Local Hint Resolve fsval_list_proj_correct: wlp.

(** ** Assignment of memory *)

Definition hrexec_store chunk addr args src hrs: ?? ristate :=
  DO hargs <~ hlist_args hrs args;;
  DO hsrc <~ hrs_sreg_get hrs src;;
  DO hm <~ hSstore hrs chunk addr hargs hsrc;;
  RET (rset_smem hm hrs).

Lemma hrexec_store_correct chunk addr args src hrs:
  WHEN hrexec_store chunk addr args src hrs ~> hrs' THEN forall ctx sis
  (REF: ris_refines ctx hrs sis),
  ris_refines ctx hrs' (sexec_store chunk addr args src sis).
Proof.
  wlp_simplify.
  eapply rset_mem_correct; simpl; eauto.
  - intros X; erewrite H1; eauto.
    rewrite X. simplify_SOME z.
  - intros X; inversion REF.
    erewrite H1; eauto.
Qed.

(** ** Assignment of registers *)

(** locally new symbolic values during symbolic execution *)
Inductive root_sval: Type :=
| Rop (op: operation)
| Rload (trap: trapping_mode) (chunk: memory_chunk) (addr: addressing)
.

Definition root_apply (rsv: root_sval) (lr: list reg) (st: sistate): sval :=
  let lsv := list_sval_inj (List.map (si_sreg st) lr) in
  let sm := si_smem st in
  match rsv with
  | Rop op => fSop op lsv
  | Rload trap chunk addr => fSload sm trap chunk addr lsv
  end.
Coercion root_apply: root_sval >-> Funclass.

Definition root_happly (rsv: root_sval) (lr: list reg) (hrs: ristate): ?? sval :=
  DO lsv <~ hlist_args hrs lr;;
  match rsv with
  | Rop op => hSop op lsv
  | Rload trap chunk addr => hSload hrs trap chunk addr lsv
  end.

Lemma root_happly_correct (rsv: root_sval) lr hrs:
  WHEN root_happly rsv lr hrs ~> sv THEN forall ctx sis
  (REF: ris_refines ctx hrs sis)
  (OK: ris_ok ctx hrs),
  sval_refines ctx sv (rsv lr sis).
Proof.
  unfold root_apply, root_happly; destruct rsv; wlp_simplify; inv REF;
  erewrite H0, H; eauto.
Qed.
Global Opaque root_happly.
Hint Resolve root_happly_correct: wlp.

Local Open Scope lazy_bool_scope.

(* NB: return [false] if the rsv cannot fail *)
Definition may_trap (rsv: root_sval) (lr: list reg): bool :=
  match rsv with 
  | Rop op => is_trapping_op op ||| negb (Nat.eqb (length lr) (args_of_operation op))  (* cf. lemma is_trapping_op_sound *)
  | Rload TRAP _ _  => true
  | _ => false
  end.

Lemma lazy_orb_negb_false (b1 b2:bool):
  (b1 ||| negb b2) = false <-> (b1 = false /\ b2 = true).
Proof.
  unfold negb. repeat autodestruct; simpl; intuition (try congruence).
Qed.

Lemma eval_list_sval_length ctx (f: reg -> sval) (l:list reg):
  forall l', eval_list_sval ctx (list_sval_inj (List.map f l)) = Some l' ->
  Datatypes.length l = Datatypes.length l'.
Proof.
  induction l.
  - simpl. intros. inv H. reflexivity.
  - simpl. intros. destruct (eval_sval _ _); [|discriminate].
    destruct (eval_list_sval _ _) eqn:SLS; [|discriminate]. inv H. simpl.
    erewrite IHl; eauto.
Qed.

Lemma may_trap_correct ctx (rsv: root_sval) (lr: list reg) st:
  may_trap rsv lr = false -> 
  eval_list_sval ctx (list_sval_inj (List.map (si_sreg st) lr)) <> None ->
  eval_smem ctx (si_smem st) <> None ->
  eval_sval ctx (rsv lr st) <> None.
Proof.
  destruct rsv; simpl; try congruence.
  - rewrite lazy_orb_negb_false. intros (TRAP1 & LEN) OK1 OK2.
    autodestruct; try congruence. intros.
    eapply is_trapping_op_sound; eauto.
    erewrite <- eval_list_sval_length; eauto.
    apply Nat.eqb_eq in LEN.
    assumption.
  - intros X OK1 OK2.
    repeat autodestruct; try congruence.
Qed.

(** simplify a symbolic value before assignment to a register *)
Definition simplify (rsv: root_sval) (lr: list reg) (hrs: ristate): ?? sval :=
  match rsv with
  | Rop op =>
     match is_move_operation op lr with
     | Some arg => hrs_sreg_get hrs arg (* optimization of Omove *)
     | None =>
         DO lsv <~ hlist_args hrs lr;;
         hSop op lsv
        (* TODO gourdinl
       match target_op_simplify op lr hrs with
       | Some fhv => fsval_proj fhv
       | None =>
         hSop op lhsv
           end*)
     end
  | Rload _ chunk addr => 
       DO lsv <~ hlist_args hrs lr;;
       hSload hrs NOTRAP chunk addr lsv
  end.

Lemma simplify_correct rsv lr hrs:
  WHEN simplify rsv lr hrs ~> hv THEN forall ctx sis
    (REF: ris_refines ctx hrs sis)
    (OK0: ris_ok ctx hrs)
    (OK1: eval_sval ctx (rsv lr sis) <> None),
    sval_refines ctx hv (rsv lr sis).
Proof.
  destruct rsv; simpl; auto.
  - (* Rop *)
    destruct (is_move_operation _ _) eqn: Hmove.
    { wlp_simplify; exploit is_move_operation_correct; eauto.
      intros (Hop & Hlsv); subst; simpl in *. inv REF.
      simplify_SOME z; erewrite H; eauto. }
    wlp_simplify; inv REF. erewrite H0; eauto.
  - (* Rload *)
    destruct trap; wlp_simplify; inv REF.
    + erewrite H0; eauto.
      erewrite H; [|eapply REG_EQ; eauto].
      erewrite MEM_EQ; eauto.
      repeat simplify_SOME z.
      * destruct (Memory.Mem.loadv _ _ _); try congruence.
      * rewrite H1 in OK1; congruence.
    + erewrite H0; eauto.
Qed.
Global Opaque simplify.
Local Hint Resolve simplify_correct: wlp.

Definition red_PTree_set (r: reg) (sv: sval) (hrs: ristate): PTree.t sval :=
  match (ris_input_init hrs), sv with
  | true, Sinput r' _ =>
      if Pos.eq_dec r r' 
      then PTree.remove r' hrs
      else PTree.set r sv hrs
  | false, Sundef _ =>
      PTree.remove r hrs
  | _, _ => PTree.set r sv hrs
  end.

Lemma red_PTree_set_correct (r r0:reg) sv (hrs: ristate) ctx:
  sval_refines ctx ((ris_sreg_set hrs (red_PTree_set r sv hrs)) r0) ((ris_sreg_set hrs (PTree.set r sv hrs)) r0).
Proof.
  unfold red_PTree_set, ris_sreg_set, ris_sreg_get; simpl.
  destruct (ris_input_init hrs) eqn:Hinit, sv; simpl; auto.
  1: destruct (Pos.eq_dec r r1); auto; subst;
     rename r1 into r.
  all: destruct (Pos.eq_dec r r0); auto;
       [ subst; rewrite PTree.grs, PTree.gss; simpl; auto |
         rewrite PTree.gro, PTree.gso; simpl; auto].
Qed.

Lemma red_PTree_set_refines (r r0:reg) ctx hrs sis sv1 sv2:
 ris_refines ctx hrs sis ->
 sval_refines ctx sv1 sv2 ->
 ris_ok ctx hrs ->
 sval_refines ctx (ris_sreg_set hrs (red_PTree_set r sv1 hrs) r0) (if Pos.eq_dec r r0 then sv2 else si_sreg sis r0).
Proof.
  intros REF SREF OK; rewrite red_PTree_set_correct.
  unfold ris_sreg_set, ris_sreg_get.
  destruct (Pos.eq_dec r r0).
  - subst; simpl. rewrite PTree.gss; simpl; auto.
  - inv REF; simpl. rewrite PTree.gso; simpl; eauto.
Qed.

Definition cbranch_expanse (prev: ristate) (cond: condition) (args: list reg): ?? (condition * list_sval) :=
  (* TODO gourdinl  
  match target_cbranch_expanse prev cond args with
    | Some (cond', vargs) => 
      DO vargs' <~ fsval_list_proj vargs;;
      RET (cond', vargs')
     | None =>*)
      DO vargs <~ hlist_args prev args ;;
      RET (cond, vargs).
    (*end.*)

Lemma cbranch_expanse_correct hrs c l:
 WHEN cbranch_expanse hrs c l ~> r THEN forall ctx sis
  (REF : ris_refines ctx hrs sis)
  (OK: ris_ok ctx hrs),
  eval_scondition ctx (fst r) (snd r) =
  eval_scondition ctx c (list_sval_inj (map (si_sreg sis) l)).
Proof.
  unfold cbranch_expanse.
  wlp_simplify; inv REF.
  unfold eval_scondition; erewrite <- H; eauto.
Qed.
Local Hint Resolve cbranch_expanse_correct: wlp.
Global Opaque cbranch_expanse.

Definition some_or_fail {A} (o: option A) (msg: pstring): ?? A :=
  match o with
  | Some x => RET x
  | None => FAILWITH msg
  end.

Definition hris_init: ?? ristate
  := DO hm <~ hSinit ();;
     RET {| ris_smem := hm; ris_input_init := true; ok_rsval := nil; ris_sreg := PTree.empty _ |}.

Lemma ris_init_correct:
  WHEN hris_init ~> hris THEN
  forall ctx, ris_refines ctx hris sis_init.
Proof.
  unfold hris_init, sis_init; wlp_simplify.
  econstructor; simpl in *; eauto.
  + split; destruct 1; econstructor; simpl in *;
    try rewrite H; try congruence; trivial.
  + destruct 1; simpl in *. unfold ris_sreg_get; simpl.
    intros; rewrite PTree.gempty; eauto.
Qed.

Definition hrset_sreg r lr rsv (hrs: ristate): ?? ristate :=
  DO ok_lsv <~
    (if may_trap rsv lr
     then DO hv <~ root_happly rsv lr hrs;;
          XDEBUG hv (fun hv => DO hv_name <~ string_of_hashcode (sval_get_hid hv);; RET ("-- insert undef behavior of hashcode:" +; (CamlStr hv_name))%string);;
          RET (hv::(ok_rsval hrs))
     else RET (ok_rsval hrs));;
  DO simp <~ simplify rsv lr hrs;;
  RET {| ris_smem := hrs.(ris_smem);
         ris_input_init := hrs.(ris_input_init);
         ok_rsval := ok_lsv;
         ris_sreg:= red_PTree_set r simp hrs |}.

Lemma ok_hrset_sreg (rsv:root_sval) ctx (st: sistate) r lr:
  si_ok ctx (set_sreg r (rsv lr st) st)
  <-> (si_ok ctx st /\ eval_sval ctx (rsv lr st) <> None).
Proof.
  unfold set_sreg; simpl; split.
  - intros. destruct H as [[OK_SV OK_PRE] OK_SMEM OK_SREG]; simpl in *.
    repeat (split; try tauto).
    + intros r0; generalize (OK_SREG r0); clear OK_SREG; destruct (Pos.eq_dec r r0); try congruence.
    + generalize (OK_SREG r); clear OK_SREG; destruct (Pos.eq_dec r r); try congruence.
  - intros (OK & SEVAL). inv OK.
    repeat (split; try tauto; eauto).
    intros r0; destruct (Pos.eq_dec r r0) eqn:Heq; simpl;
    rewrite Heq; eauto.
Qed.

(* TODO gourdinl move this in BTL_SEtheory? *)
Lemma eval_list_sval_inj_not_none ctx st: forall l,
  (forall r, List.In r l -> eval_sval ctx (si_sreg st r) = None -> False) ->
  eval_list_sval ctx (list_sval_inj (map (si_sreg st) l)) = None -> False.
Proof.
  induction l.
  - intuition discriminate.
  - intros ALLR. simpl.
    inversion_SOME v.
    + intro SVAL. inversion_SOME lv; [discriminate|].
      assert (forall r : reg, In r l -> eval_sval ctx (si_sreg st r) = None -> False).
      { intros r INR. eapply ALLR. right. assumption. }
      intro SVALLIST. intro. eapply IHl; eauto.
    + intros. exploit (ALLR a); simpl; eauto.
Qed.

Lemma hrset_sreg_correct r lr rsv hrs:
  WHEN hrset_sreg r lr rsv hrs ~> hrs' THEN forall ctx sis
  (REF: ris_refines ctx hrs sis),
  ris_refines ctx hrs' (set_sreg r (rsv lr sis) sis).
Proof.
  wlp_simplify; inversion REF.
  - (* may_trap -> true *)
    assert (X: si_ok ctx (set_sreg r (rsv lr sis) sis) <->
               ris_ok ctx {| ris_smem := hrs;
                             ris_input_init := ris_input_init hrs;
                             ok_rsval := exta :: ok_rsval hrs;
                             ris_sreg := red_PTree_set r exta0 hrs |}).
    {
      rewrite ok_hrset_sreg, OK_EQUIV.
      split.
      + intros (ROK & SEVAL); inv ROK.
        assert (ROK: ris_ok ctx hrs) by (econstructor; eauto).
        econstructor; eauto; simpl.
        intuition (subst; eauto).
        erewrite H0 in *; eauto.
      + intros (OK_RMEM & OK_RREG); simpl in *.
        assert (ROK: ris_ok ctx hrs) by (econstructor; eauto).
        erewrite <- H0 in *; eauto. }
    split; auto; rewrite <- X, ok_hrset_sreg.
    + intuition eauto.
    + intros (SOK & SEVAL) r0.
      rewrite ris_sreg_set_access.
      erewrite red_PTree_set_refines; intuition eauto.
  - (* may_trap -> false *)
    assert (X: si_ok ctx (set_sreg r (rsv lr sis) sis) <->
               ris_ok ctx {| ris_smem := hrs;
                             ris_input_init := ris_input_init hrs;
                             ok_rsval := ok_rsval hrs;
                             ris_sreg := red_PTree_set r exta hrs |}).
    {
      rewrite ok_hrset_sreg, OK_EQUIV.
      split.
      + intros (ROK & SEVAL); inv ROK.
        econstructor; eauto.
      + intros (OK_RMEM & OK_RREG).
        assert (ROK: ris_ok ctx hrs) by (econstructor; eauto).
        split; auto.
        intros SNONE; exploit may_trap_correct; eauto.
        * intros LNONE; eapply eval_list_sval_inj_not_none; eauto.
          assert (SOK: si_ok ctx sis) by intuition.
          inv SOK. intuition eauto.
        * rewrite <- MEM_EQ; auto. }
    split; auto; rewrite <- X, ok_hrset_sreg.
    + intuition eauto.
    + intros (SOK & SEVAL) r0.
      rewrite ris_sreg_set_access.
      erewrite red_PTree_set_refines; intuition eauto.
Qed.

Fixpoint hrexec_rec f ib hrs (k: ristate -> ?? rstate): ?? rstate := 
  match ib with
  | BF fin _ => RET (Rfinal (tr_ris f fin hrs) (sexec_final_sfv fin hrs))
  (* basic instructions *)
  | Bnop _ => k hrs
  | Bop op args dst _ =>
      DO next <~ hrset_sreg dst args (Rop op) hrs;;
      k next
  | Bload TRAP chunk addr args dst _ =>
      DO next <~ hrset_sreg dst args (Rload TRAP chunk addr) hrs;;
      k next
  | Bload NOTRAP chunk addr args dst _ => RET Rabort
  | Bstore chunk addr args src _ =>
      DO next <~ hrexec_store chunk addr args src hrs;;
      k next
 (* composed instructions *)
  | Bseq ib1 ib2 =>
      hrexec_rec f ib1 hrs (fun hrs2 => hrexec_rec f ib2 hrs2 k)
  | Bcond cond args ifso ifnot _ =>
      DO res <~ cbranch_expanse hrs cond args;;
      let (cond, vargs) := res in
      DO ifso <~ hrexec_rec f ifso hrs k;;
      DO ifnot <~ hrexec_rec f ifnot hrs k;;
      RET (Rcond cond vargs ifso ifnot)
  end
  .

Definition hrexec f ib :=
  DO init <~ hris_init;;
  hrexec_rec f ib init (fun _ => RET Rabort).

Lemma hrexec_rec_correct1 ctx ib: 
  forall rk k
  (CONTh: forall sis lsis sfv, get_soutcome ctx (k sis) = Some (sout lsis sfv) ->  si_ok ctx lsis -> si_ok ctx sis)
  (CONT: forall hrs sis lsis sfv st,
    ris_refines ctx hrs sis ->
    k sis = st ->
    get_soutcome ctx (k sis) = Some (sout lsis sfv) ->
    si_ok ctx lsis ->
    WHEN rk hrs ~> ris' THEN
    rst_refines ctx ris' (k sis))
  hrs sis lsis sfv st
  (REF: ris_refines ctx hrs sis)
  (EXEC: sexec_rec (cf ctx) ib sis k = st)
  (SOUT: get_soutcome ctx st = Some (sout lsis sfv))
  (OK: si_ok ctx lsis),
  WHEN hrexec_rec (cf ctx) ib hrs rk ~> hrs THEN
  rst_refines ctx hrs st.
Proof.
  (*
  induction ib; wlp_simplify.
  - admit.
  - eapply CONT; eauto.
  - try_simplify_someHyps. intros OUT.
    eapply CONT; eauto.
    intuition eauto.
    econstructor; intuition eauto.
    inv REF. inv H2.
    intuition eauto.


  - (* load *) intros; subst; autodestruct; simpl in *; subst; eauto.
  - (* seq *)
    intros; subst.
    eapply IHib1. 3-6: eauto.
    + simpl. eapply sexec_rec_okpreserv; eauto.
    + intros; subst. eapply IHib2; eauto.
  - (* cond *)
    intros rk k CONTh CONT hrs sis lsis sfv st REF EXEC OUT OK. subst.
    assert (rOK: ris_ok ctx hrs). {
      erewrite <- OK_EQUIV. 2: eauto.
      eapply sexec_rec_okpreserv with (ib:=(Bcond cond args ib1 ib2 iinfo)); simpl; eauto.
    }
    generalize OUT; clear OUT; simpl.
    autodestruct.
    intros COND; generalize COND.
    erewrite <- eval_scondition_refpreserv; eauto.
    econstructor; try_simplify_someHyps.
     Qed.*)
Admitted.

Definition hsexec (f: function) ib: ?? rstate :=
  hrexec f ib.

End CanonBuilding.

(** * Implementing the simulation test with concrete hash-consed symbolic execution *)

Definition phys_check {A} (x y:A) (msg: pstring): ?? unit :=
  DO b <~ phys_eq x y;;
  assert_b b msg;;
  RET tt.

Definition struct_check {A} (x y: A) (msg: pstring): ?? unit :=
  DO b <~ struct_eq x y;;
  assert_b b msg;;
  RET tt.

Lemma struct_check_correct {A} (a b: A) msg:
  WHEN struct_check a b msg ~> _ THEN
  a = b.
Proof. wlp_simplify. Qed.
Global Opaque struct_check.
Hint Resolve struct_check_correct: wlp.

Definition sfval_simu_check (sfv1 sfv2: sfval) := RET tt.

Fixpoint rst_simu_check (rst1 rst2: rstate) :=
  match rst1, rst2 with
  | Rfinal ris1 sfv1, Rfinal ris2 sfv2 =>
      sfval_simu_check sfv1 sfv2
  | Rcond cond1 lsv1 rsL1 rsR1, Rcond cond2 lsv2 rsL2 rsR2 =>
      struct_check cond1 cond2 "hsstate_simu_check: conditions do not match";;
      phys_check lsv1 lsv2 "hsstate_simu_check: args do not match";;
      rst_simu_check rsL1 rsL2;;
      rst_simu_check rsR1 rsR2
  | _, _ => FAILWITH "hsstate_simu_check: simu_check failed"
  end.

Lemma rst_simu_check_correct rst1 rst2:
  WHEN rst_simu_check rst1 rst2 ~> _ THEN
  rst_simu rst1 rst2.
Proof.
  induction rst1, rst2;
  wlp_simplify.
Admitted.
Hint Resolve rst_simu_check_correct: wlp.
Global Opaque rst_simu_check.

Definition simu_check_single (f1 f2: function) (ib1 ib2: iblock): ?? (option (node * node)) :=
  (* creating the hash-consing tables *)
  DO hC_sval <~ hCons hSVAL;;
  DO hC_list_hsval <~ hCons hLSVAL;;
  DO hC_hsmem <~ hCons hSMEM;;
  let hsexec := hsexec hC_sval.(hC) hC_list_hsval.(hC) hC_hsmem.(hC) in
  (* performing the hash-consed executions *)
  DO hst1 <~ hsexec f1 ib1;;
  DO hst2 <~ hsexec f2 ib2;;
  (* comparing the executions *)
  rst_simu_check hst1 hst2.

Lemma simu_check_single_correct (f1 f2: function) (ib1 ib2: iblock):
  WHEN simu_check_single f1 f2 ib1 ib2 ~> _ THEN
  symbolic_simu f1 f2 ib1 ib2.
Proof.
Admitted.
Global Opaque simu_check_single.
Global Hint Resolve simu_check_single_correct: wlp.

Fixpoint simu_check_rec (f1 f2: function) (ibf1 ibf2: iblock_info): ?? unit :=
  DO res <~ simu_check_single f1 f2 ibf1.(entry) ibf2.(entry);;
  let (pc1', pc2') := res in
  simu_check_rec pc1' pc2'.

Lemma simu_check_rec_correct dm f tf lm:
  WHEN simu_check_rec dm f tf lm ~> _ THEN
  forall pc1 pc2, In (pc2, pc1) lm -> sexec_simu dm f tf pc1 pc2.
Proof.
  induction lm; wlp_simplify.
  match goal with
  | X: (_,_) = (_,_) |- _ => inversion X; subst
  end.
  subst; eauto.
Qed.
Global Opaque simu_check_rec.
Global Hint Resolve simu_check_rec_correct: wlp.

Definition imp_simu_check (f tf: function): ?? unit :=
   simu_check_rec f tf ;;
   DEBUG("simu_check OK!").

Local Hint Resolve PTree.elements_correct: core.
Lemma imp_simu_check_correct f tf:
  WHEN imp_simu_check f tf ~> _ THEN
  forall sexec_simu f tf.
Proof.
  wlp_simplify.
Qed.
Global Opaque imp_simu_check.
Global Hint Resolve imp_simu_check_correct: wlp.

Program Definition aux_simu_check (f tf: function): ?? bool :=
   DO r <~ 
     (TRY 
       imp_simu_check f tf;; 
       RET true
      CATCH_FAIL s, _ =>
       println ("simu_check_failure:" +; s);;
       RET false
      ENSURE (sexec_simu f tf));;
   RET (`r).
Obligation 1.
  split; wlp_simplify. discriminate.
Qed.

Lemma aux_simu_check_correct f tf:
  WHEN aux_simu_check f tf ~> b THEN
  sexec_simu f tf.
Proof.
  unfold aux_simu_check; wlp_simplify.
  destruct exta; simpl; auto.
Qed.

(* Coerce aux_simu_check into a pure function (this is a little unsafe like all oracles in CompCert). *)

Import UnsafeImpure.

Definition simu_check (f tf: function) : res unit := 
  match unsafe_coerce (aux_simu_check f tf) with
  | Some true => OK tt
  | _ => Error (msg "simu_check has failed")
  end.