aboutsummaryrefslogtreecommitdiffstats
path: root/scheduling/BTL_SEsimuref.v
blob: 4f472e3e07144ef6cf0cfa1a646912df131d91cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
(** Refinement of BTL_SEtheory data-structures
    in order to introduce (and prove correct) a lower-level specification of the simulation test.

    Ceci est un "bac à sable". 

    - On introduit une représentation plus concrète pour les types d'état symbolique [sistate] et [sstate].
    - Etant donné une spécification intuitive "*_simu" pour tester la simulation sur cette représentation des états symboliques,
      on essaye déjà de trouver les bonnes notions de raffinement "*_refines" qui permette de prouver les lemmes "*_simu_correct".
    - Il faudra ensuite vérifier que l'exécution symbolique préserve ces relations de raffinement !

    TODO: A REVOIR COMPLETEMENT.
    - introduire "fake" hash-consed values (à renommer en "refined" plutôt que "fake").

*)

Require Import Coqlib Maps Floats.
Require Import AST Integers Values Events Memory Globalenvs Smallstep.
Require Import Op Registers.
Require Import RTL BTL OptionMonad BTL_SEtheory.

(** * Refinement of data-structures and of the specification of the simulation test *)

Record sis_ok ctx (sis: sistate): Prop := {
  OK_PRE: (sis.(si_pre) ctx);
  OK_SMEM: eval_smem ctx sis.(si_smem) <> None;
  OK_SREG: forall (r: reg), eval_sval ctx (si_sreg sis r) <> None
}.
Local Hint Resolve OK_PRE OK_SMEM OK_SREG: core.
Local Hint Constructors sis_ok: core.

Lemma sem_sok ctx sis rs m:
  sem_sistate ctx sis rs m ->  sis_ok ctx sis.
Proof.
  unfold sem_sistate;
  econstructor;
  intuition congruence.
Qed.

(* NB: refinement of (symbolic) internal state *)
Record ristate := 
  { 
    (** [ris_smem] represents the current smem symbolic evaluations.
        (we also recover the history of smem in ris_smem)  *)
    ris_smem: smem;
    (** For the values in registers:
        1) we store a list of sval evaluations
        2) we encode the symbolic regset by a PTree + a boolean indicating the default sval *)
    ris_input_init: bool;
    ok_rsval: list sval;
    ris_sreg:> PTree.t sval
  }.

Definition ris_sreg_get (ris: ristate) r: sval :=
   match PTree.get r ris with
   | None => if ris_input_init ris then Sinput r else Sundef
   | Some sv => sv
   end.
Coercion ris_sreg_get: ristate >-> Funclass.

Record ris_ok ctx (ris: ristate) : Prop := {
   OK_RMEM: (eval_smem ctx (ris_smem ris)) <> None;
   OK_RREG: forall sv, List.In sv (ok_rsval ris) -> eval_sval ctx sv <> None
}.
Local Hint Resolve OK_RMEM OK_RREG: core.
Local Hint Constructors ris_ok: core.

Record ris_refines ctx (ris: ristate) (sis: sistate): Prop := {
  OK_EQUIV: sis_ok ctx sis <-> ris_ok ctx ris;
  MEM_EQ: ris_ok ctx ris ->  eval_smem ctx ris.(ris_smem) = eval_smem ctx sis.(si_smem);
  REG_EQ: ris_ok ctx ris -> forall r, eval_sval ctx (ris_sreg_get ris r) = eval_sval ctx (si_sreg sis r);
      (* the below invariant allows to evaluate operations in the initial memory of the path instead of the current memory *)
  VALID_PRESERV: forall m b ofs, eval_smem ctx sis.(si_smem) = Some m -> Mem.valid_pointer m b ofs = Mem.valid_pointer (cm0 ctx) b ofs
}.
Local Hint Resolve OK_EQUIV MEM_EQ REG_EQ VALID_PRESERV: core.
Local Hint Constructors ris_refines: core.

Record ris_simu ris1 ris2: Prop := {
  SIMU_FAILS: forall sv, List.In sv ris2.(ok_rsval) -> List.In sv ris1.(ok_rsval);
  SIMU_MEM: ris1.(ris_smem) = ris2.(ris_smem);
  SIMU_REG: forall r, ris_sreg_get ris1 r = ris_sreg_get ris2 r
}.
Local Hint Resolve SIMU_FAILS SIMU_MEM SIMU_REG: core.
Local Hint Constructors ris_simu: core.
Local Hint Resolve sge_match: core.

Lemma ris_simu_ok_preserv f1 f2 ris1 ris2 (ctx:simu_proof_context f1 f2):
  ris_simu ris1 ris2 -> ris_ok (bctx1 ctx) ris1 -> ris_ok (bctx2 ctx) ris2.
Proof.
  intros SIMU OK; econstructor; eauto.
  - erewrite <- SIMU_MEM; eauto.
    erewrite <- smem_eval_preserved; eauto.
  - intros; erewrite <- eval_sval_preserved; eauto.
Qed.

Lemma ris_simu_correct f1 f2 ris1 ris2 (ctx:simu_proof_context f1 f2) sis1 sis2: 
  ris_simu ris1 ris2 ->
  ris_refines (bctx1 ctx) ris1 sis1 ->
  ris_refines (bctx2 ctx) ris2 sis2 ->
  sistate_simu ctx sis1 sis2.
Proof.
  intros RIS REF1 REF2 rs m SEM.
  exploit sem_sok; eauto.
  erewrite OK_EQUIV; eauto.
  intros ROK1.
  exploit ris_simu_ok_preserv; eauto.
  intros ROK2. generalize ROK2; erewrite <- OK_EQUIV; eauto.
  intros SOK2.
  destruct SEM as (PRE & SMEM & SREG).
  unfold sem_sistate; intuition eauto.
  + erewrite <- MEM_EQ, <- SIMU_MEM; eauto.
    erewrite <- smem_eval_preserved; eauto.
    erewrite MEM_EQ; eauto.
  + erewrite <- REG_EQ, <- SIMU_REG; eauto.
    erewrite <- eval_sval_preserved; eauto.
    erewrite REG_EQ; eauto.
Qed.

Inductive optrsv_refines ctx: (option sval) -> (option sval) -> Prop :=
  | RefSome rsv sv
     (REF:eval_sval ctx rsv = eval_sval ctx sv)
     :optrsv_refines ctx (Some rsv) (Some sv)
  | RefNone: optrsv_refines ctx None None
  .

Inductive rsvident_refines ctx: (sval + ident) -> (sval + ident) -> Prop :=
  | RefLeft rsv sv
     (REF:eval_sval ctx rsv = eval_sval ctx sv)
     :rsvident_refines ctx (inl rsv) (inl sv)
  | RefRight id1 id2
     (IDSIMU: id1 = id2)
     :rsvident_refines ctx (inr id1) (inr id2)
  .

Definition bargs_refines ctx (rargs: list (builtin_arg sval)) (args: list (builtin_arg sval)): Prop :=
  eval_list_builtin_sval ctx rargs = eval_list_builtin_sval ctx args.

Inductive rfv_refines ctx: sfval -> sfval -> Prop :=
  | RefGoto pc: rfv_refines ctx (Sgoto pc) (Sgoto pc)
  | RefCall sig rvos ros rargs args r pc
      (SV:rsvident_refines ctx rvos ros)
      (LIST:eval_list_sval ctx rargs = eval_list_sval ctx args)
      :rfv_refines ctx (Scall sig rvos rargs r pc) (Scall sig ros args r pc)
  | RefTailcall sig rvos ros rargs args
      (SV:rsvident_refines ctx rvos ros)
      (LIST:eval_list_sval ctx rargs = eval_list_sval ctx args)
      :rfv_refines ctx (Stailcall sig rvos rargs) (Stailcall sig ros args)
  | RefBuiltin ef lbra lba br pc
      (BARGS: bargs_refines ctx lbra lba)
      :rfv_refines ctx (Sbuiltin ef lbra br pc) (Sbuiltin ef lba br pc)
  | RefJumptable rsv sv lpc
      (VAL: eval_sval ctx rsv = eval_sval ctx sv)
      :rfv_refines ctx (Sjumptable rsv lpc) (Sjumptable sv lpc)
  | RefReturn orsv osv
      (OPT:optrsv_refines ctx orsv osv)
      :rfv_refines ctx (Sreturn orsv) (Sreturn osv)
.

Definition rfv_simu (rfv1 rfv2: sfval): Prop := rfv1 = rfv2.

Local Hint Resolve eval_sval_preserved list_sval_eval_preserved smem_eval_preserved eval_list_builtin_sval_preserved: core.

Lemma rvf_simu_correct f1 f2 rfv1 rfv2 (ctx: simu_proof_context f1 f2) sfv1 sfv2: 
  rfv_simu rfv1 rfv2 ->
  rfv_refines (bctx1 ctx) rfv1 sfv1 ->
  rfv_refines (bctx2 ctx) rfv2 sfv2 ->
  sfv_simu ctx sfv1 sfv2.
Proof.
  unfold rfv_simu; intros X REF1 REF2. subst.
  unfold bctx2; destruct REF1; inv REF2; simpl; econstructor; eauto.
  - (* call svid *)
    inv SV; inv SV0; econstructor; eauto.
    rewrite <- REF, <- REF0; eauto.
  - (* call args *)
    rewrite <- LIST, <- LIST0; eauto.
  - (* taillcall svid *)
    inv SV; inv SV0; econstructor; eauto.
    rewrite <- REF, <- REF0; eauto.
  - (* tailcall args *)
    rewrite <- LIST, <- LIST0; eauto.
  - (* builtin args *)
    unfold bargs_refines, bargs_simu in *.
    rewrite <- BARGS, <- BARGS0; eauto.
  - rewrite <- VAL, <- VAL0; eauto.
  - (* return *)
    inv OPT; inv OPT0; econstructor; eauto.
    rewrite <- REF, <- REF0; eauto.
Qed.

(* refinement of (symbolic) state *)
Inductive rstate :=
  | Rfinal (ris: ristate) (rfv: sfval)
  | Rcond (cond: condition) (rargs: list_sval) (rifso rifnot: rstate)
  | Rabort
  .

Inductive rst_simu: rstate -> rstate -> Prop :=
  | Rfinal_simu ris1 ris2 rfv1 rfv2
      (RIS: ris_simu ris1 ris2)
      (RFV: rfv_simu rfv1 rfv2)
      : rst_simu (Rfinal ris1 rfv1) (Rfinal ris2 rfv2)
  | Rcond_simu cond rargs rifso1 rifnot1 rifso2 rifnot2
      (IFSO: rst_simu rifso1 rifso2)
      (IFNOT: rst_simu rifnot1 rifnot2)
      : rst_simu (Rcond cond rargs rifso1 rifnot1) (Rcond cond rargs rifso2 rifnot2)
  | Rabort_simu: rst_simu Rabort Rabort
(* TODO: extension à voir dans un second temps !
  | Rcond_skip cond rargs rifso1 rifnot1 rst:
      rst_simu rifso1 rst ->
      rst_simu rifnot1 rst ->
      rst_simu (Rcond cond rargs rifso1 rifnot1) rst
*)
  .

(* Comment prend on en compte le ris en cours d'execution ??? *)

Inductive rst_refines ctx: rstate -> sstate -> Prop :=
  | Reffinal ris sis rfv sfv
      (RIS: ris_refines ctx ris sis)
      (RFV: ris_ok ctx ris -> rfv_refines ctx rfv sfv)
      : rst_refines ctx (Rfinal ris rfv) (Sfinal sis sfv)
  | Refcond cond rargs args sm rifso rifnot ifso ifnot
      (RCOND: seval_condition ctx cond rargs Sinit = seval_condition ctx cond args sm)
      (REFso: seval_condition ctx cond rargs Sinit = Some true -> rst_refines ctx rifso ifso)
      (REFnot: seval_condition ctx cond rargs Sinit = Some false -> rst_refines ctx rifnot ifnot)
      : rst_refines ctx (Rcond cond rargs rifso rifnot) (Scond cond args sm ifso ifnot)
  | Refabort
      : rst_refines ctx Rabort Sabort
  .

Local Hint Resolve ris_simu_correct rvf_simu_correct: core.

Lemma rst_simu_correct rst1 rst2:
   rst_simu rst1 rst2 ->
   forall f1 f2 (ctx: simu_proof_context f1 f2) st1 st2,
   rst_refines (bctx1 ctx) rst1 st1 ->
   rst_refines (bctx2 ctx) rst2 st2 ->
   sstate_simu ctx st1 st2.
Proof.
  induction 1; simpl; intros f1 f2 ctx st1 st2 REF1 REF2 sis1 svf1 SEM1;
  inv REF1; inv REF2; simpl in *; inv SEM1; auto.
  - (* final_simu *) 
    do 2 eexists; intuition; eauto.
    exploit sem_sok; eauto.
    erewrite OK_EQUIV; eauto.
    intros ROK1.
    exploit ris_simu_ok_preserv; eauto.
  - (* cond_simu *)
    destruct (seval_condition (bctx1 ctx) cond args sm) eqn: SCOND; try congruence.
    generalize RCOND0.
    erewrite <- seval_condition_preserved, RCOND by eauto.
    intros SCOND0; rewrite <- SCOND0 in RCOND0.
    erewrite <- SCOND0.
    destruct b; simpl.
    * exploit IHrst_simu1; eauto.
    * exploit IHrst_simu2; eauto.
Qed.


(* TODO: useless ?
Record routcome := rout {
   r_sis: ristate;
   r_sfv: sfval;
}.

Local Open Scope option_monad_scope.

Fixpoint run_sem_irstate ctx (rst:rstate): option routcome :=
  match rst with
  | Rfinal ris sfv => Some (rout ris sfv)
  | Rcond cond args ifso ifnot =>
     SOME b <- seval_condition ctx cond args Sinit IN
     run_sem_irstate ctx (if b then ifso else ifnot)
  | Rabort => None
  end.

(* Non: pas assez de "matching" syntaxique entre rst et st pour rst_simu_correct
Definition rst_refines ctx rst st:=
    (run_sem_isstate ctx st=None <-> run_sem_irstate ctx rst=None)
 /\ (forall ris rfv sis sfv, run_sem_irstate ctx rst = Some (rout ris rfv) -> run_sem_isstate ctx st = Some (sout sis sfv) ->
       (ris_refines ctx ris sis) /\ (ris_ok ctx ris -> rfv_refines ctx rfv sfv)).

*)
*)


(** * Refinement of the symbolic execution *)

Local Hint Constructors rfv_refines optrsv_refines rsvident_refines rsvident_refines: core.

Lemma eval_list_sval_refpreserv ctx args ris sis:
  ris_refines ctx ris sis ->
  ris_ok ctx ris ->
  eval_list_sval ctx (list_sval_inj (map ris args)) =
  eval_list_sval ctx (list_sval_inj (map sis args)).
Proof.
  intros REF OK.
  induction args; simpl; eauto.
  intros; erewrite REG_EQ, IHargs; eauto.
Qed.

Local Hint Resolve eval_list_sval_refpreserv: core.

Lemma eval_builtin_sval_refpreserv ctx arg ris sis:
  ris_refines ctx ris sis ->
  ris_ok ctx ris ->
  eval_builtin_sval ctx (builtin_arg_map ris arg) = eval_builtin_sval ctx (builtin_arg_map sis arg).
Proof.
  intros REF OK; induction arg; simpl; eauto.
  + erewrite REG_EQ; eauto.
  + erewrite IHarg1, IHarg2; eauto.
  + erewrite IHarg1, IHarg2; eauto.
Qed.

Lemma bargs_refpreserv ctx args ris sis:
  ris_refines ctx ris sis ->
  ris_ok ctx ris ->
  bargs_refines ctx (map (builtin_arg_map ris) args) (map (builtin_arg_map sis) args).
Proof.
  unfold bargs_refines. intros REF OK.
  induction args; simpl; eauto.
  erewrite eval_builtin_sval_refpreserv, IHargs; eauto.
Qed.

Local Hint Resolve bargs_refpreserv: core.

Lemma exec_final_refpreserv ctx i ris sis:
  ris_refines ctx ris sis ->
  ris_ok ctx ris ->
  rfv_refines ctx (sexec_final_sfv i ris) (sexec_final_sfv i sis).
Proof.
  destruct i; simpl; unfold sum_left_map; try autodestruct; eauto.
Qed.

Definition ris_init: ristate := {| ris_smem:= Sinit; ris_input_init:=true; ok_rsval := nil; ris_sreg := PTree.empty _ |}.

Lemma ris_init_correct ctx:
  ris_refines ctx ris_init sis_init.
Proof.
  unfold ris_init, sis_init; econstructor; simpl in *; eauto.
  + split; destruct 1; econstructor; simpl in *; eauto.
    congruence.
  + destruct 1; simpl in *. unfold ris_sreg_get; simpl.
    intros; rewrite PTree.gempty; eauto.
  + try_simplify_someHyps.
Qed.

Definition rset_smem rm (ris:ristate): ristate :=
  {| ris_smem := rm;
     ris_input_init := ris.(ris_input_init);
     ok_rsval := ris.(ok_rsval);
     ris_sreg:= ris.(ris_sreg)
  |}.

Lemma ok_set_mem ctx sm sis:
  sis_ok ctx (set_smem sm sis)
  <-> (sis_ok ctx sis /\ eval_smem ctx sm <> None).
Proof.
  split; destruct 1; econstructor; simpl in *; eauto.
  intuition eauto.
Qed.

Lemma ok_rset_mem ctx rm (ris: ristate):
  (eval_smem ctx ris.(ris_smem) = None -> eval_smem ctx rm = None) ->
  ris_ok ctx (rset_smem rm ris)
  <-> (ris_ok ctx ris /\ eval_smem ctx rm <> None).
Proof.
   split; destruct 1; econstructor; simpl in *; eauto.
Qed.

Lemma rset_mem_correct ctx rm sm ris sis:
  (eval_smem ctx ris.(ris_smem) = None -> eval_smem ctx rm = None) ->
  (forall m b ofs, eval_smem ctx sm = Some m -> Mem.valid_pointer m b ofs = Mem.valid_pointer (cm0 ctx) b ofs) ->
  ris_refines ctx ris sis ->
  (ris_ok ctx ris -> eval_smem ctx rm = eval_smem ctx sm) ->
  ris_refines ctx (rset_smem rm ris) (set_smem sm sis).
Proof.
  destruct 3; intros.
  econstructor; eauto.
  + rewrite ok_set_mem, ok_rset_mem; intuition congruence.
  + rewrite ok_rset_mem; intuition eauto.
  + rewrite ok_rset_mem; intuition eauto.
Qed.

Definition rexec_store chunk addr args src ris: ristate :=
   let args := list_sval_inj (List.map (ris_sreg_get ris) args) in
   let src := ris_sreg_get ris src in
   let rm := Sstore ris.(ris_smem) chunk addr args src in
   rset_smem rm ris.

Lemma rexec_store_correct ctx chunk addr args src ris sis:
  ris_refines ctx ris sis ->
  ris_refines ctx (rexec_store chunk addr args src ris) (sexec_store chunk addr args src sis).
Proof.
  intros REF; eapply rset_mem_correct; simpl; eauto.
  + intros X; rewrite X. repeat autodestruct; eauto.
  + intros m b ofs; repeat autodestruct.
    intros; erewrite <- Mem.storev_preserv_valid; [| eauto].
    eauto.
  + intros OK; erewrite eval_list_sval_refpreserv, MEM_EQ, REG_EQ; eauto.
Qed.

(* TODO: reintroduire le "root_apply" ? *)

Definition rset_sreg r rsv (ris:ristate): ristate :=
  {| ris_smem := ris.(ris_smem);
     ris_input_init := ris.(ris_input_init);
     ok_rsval := rsv::ris.(ok_rsval); (* TODO: A CHANGER ? *)
     ris_sreg:= PTree.set r rsv ris.(ris_sreg) (* TODO: A CHANGER *)
  |}.

Lemma ok_set_sreg ctx r sv sis:
  sis_ok ctx (set_sreg r sv sis)
  <-> (sis_ok ctx sis /\ eval_sval ctx sv <> None).
Proof.
  unfold set_sreg; split.
  + intros [(SVAL & PRE) SMEM SREG]; simpl in *; split.
    - econstructor; eauto.
      intros r0; generalize (SREG r0); destruct (Pos.eq_dec r r0); try congruence.
    - generalize (SREG r); destruct (Pos.eq_dec r r); try congruence.
  + intros ([PRE SMEM SREG] & SVAL).
    econstructor; simpl; eauto.
    intros r0;  destruct (Pos.eq_dec r r0); try congruence.
Qed.

Lemma ok_rset_sreg ctx r rsv ris:
  ris_ok ctx (rset_sreg r rsv ris)
  <-> (ris_ok ctx ris /\ eval_sval ctx rsv <> None).
Proof.
   split; destruct 1; econstructor; simpl in *; eauto.
   intuition subst; eauto.
   exploit OK_RREG; eauto.
Qed.

Lemma rset_reg_correct ctx r rsv sv ris sis:
  ris_refines ctx ris sis ->
  (ris_ok ctx ris -> eval_sval ctx rsv = eval_sval ctx sv) ->
  ris_refines ctx (rset_sreg r rsv ris) (set_sreg r sv sis).
Proof.
  destruct 1; intros.
  econstructor; eauto.
  + rewrite ok_set_sreg, ok_rset_sreg; intuition congruence.
  + rewrite ok_rset_sreg; intuition eauto.
  + rewrite ok_rset_sreg. intros; unfold rset_sreg, set_sreg, ris_sreg_get; simpl. intuition eauto.
    destruct (Pos.eq_dec _ _).
    * subst; rewrite PTree.gss; eauto.
    * rewrite PTree.gso; eauto.
Qed.

Definition rexec_op op args dst (ris:ristate): ristate :=
   let args := list_sval_inj (List.map ris args) in
   rset_sreg dst (Sop op args Sinit) ris.

Lemma rexec_op_correct ctx op args dst ris sis:
  ris_refines ctx ris sis ->
  ris_refines ctx (rexec_op op args dst ris) (sexec_op op args dst sis).
Proof.
  intros REF; eapply rset_reg_correct; simpl; eauto.
  intros OK; erewrite eval_list_sval_refpreserv; eauto.
  do 2 autodestruct; auto.
  + intros. erewrite <- op_valid_pointer_eq; eauto.
  + erewrite <- MEM_EQ; eauto.
    intros; exploit OK_RMEM; eauto. destruct 1.
Qed.

Definition rexec_load trap chunk addr args dst (ris:ristate): ristate :=
   let args := list_sval_inj (List.map ris args) in
   rset_sreg dst (Sload ris.(ris_smem) trap chunk addr args) ris.

Lemma rexec_load_correct ctx trap chunk addr args dst ris sis:
  ris_refines ctx ris sis ->
  ris_refines ctx (rexec_load trap chunk addr args dst ris) (sexec_load trap chunk addr args dst sis).
Proof.
  intros REF; eapply rset_reg_correct; simpl; eauto.
  intros OK; erewrite eval_list_sval_refpreserv, MEM_EQ; eauto.
Qed.

Lemma seval_condition_valid_preserv ctx cond args sm
  (OK: eval_smem ctx sm <> None)
  (VALID_PRESERV: forall m b ofs, eval_smem ctx sm = Some m -> Mem.valid_pointer m b ofs = Mem.valid_pointer (cm0 ctx) b ofs)
  :seval_condition ctx cond args sm = seval_condition ctx cond args Sinit.
Proof.
  unfold seval_condition; autodestruct; simpl; try congruence.
  intros EVAL_LIST.
  autodestruct; try congruence.
  intros.
  eapply cond_valid_pointer_eq; intros.
  exploit VALID_PRESERV; eauto.
Qed.

Lemma seval_condition_refpreserv ctx cond args ris sis:
  ris_refines ctx ris sis ->
  ris_ok ctx ris ->
  seval_condition ctx cond (list_sval_inj (map ris args)) Sinit =
  seval_condition ctx cond (list_sval_inj (map sis args)) Sinit.
Proof.
  intros; unfold seval_condition.
  erewrite eval_list_sval_refpreserv; eauto.
Qed.


(* transfer *)

Definition rseto_sreg r rsv (ris:ristate): ristate :=
  {| ris_smem := ris.(ris_smem);
     ris_input_init := ris.(ris_input_init);
     ok_rsval := ris.(ok_rsval);
     ris_sreg:= PTree.set r rsv ris.(ris_sreg) (* TODO: A CHANGER *)
  |}.

Lemma ok_rseto_sreg ctx r rsv ris:
  ris_ok ctx (rseto_sreg r rsv ris)
  <-> (ris_ok ctx ris).
Proof.
   split; destruct 1; econstructor; simpl in *; eauto.
Qed.

Lemma rseto_reg_correct ctx r rsv sv ris sis:
  ris_refines ctx ris sis ->
  (ris_ok ctx ris -> eval_sval ctx rsv <> None) ->
  (ris_ok ctx ris -> eval_sval ctx rsv = eval_sval ctx sv) ->
  ris_refines ctx (rseto_sreg r rsv ris) (set_sreg r sv sis).
Proof.
  destruct 1; intros.
  econstructor; eauto.
  + rewrite ok_set_sreg, ok_rseto_sreg; intuition congruence.
  + rewrite ok_rseto_sreg; intuition eauto.
  + rewrite ok_rseto_sreg. intros; unfold rseto_sreg, set_sreg, ris_sreg_get; simpl. intuition eauto.
    destruct (Pos.eq_dec _ _).
    * subst; rewrite PTree.gss; eauto.
    * rewrite PTree.gso; eauto.
Qed.

Fixpoint transfer_ris (inputs: list reg) (ris:ristate): ristate :=
  match inputs with
  | nil =>   {| ris_smem := ris.(ris_smem);
                ris_input_init := false;
                ok_rsval := ris.(ok_rsval);
                ris_sreg:= PTree.empty _
             |}
  | r::l => rseto_sreg r (ris_sreg_get ris r) (transfer_ris l ris)
  end.

Definition transfer_sis (inputs: list reg) (sis:sistate): sistate :=
   {| si_pre := fun ctx => (sis.(si_pre) ctx /\ forall r, eval_sval ctx (sis.(si_sreg) r) <> None);
      si_sreg := transfer_sreg inputs sis;
      si_smem := sis.(si_smem) |}.

Lemma ok_transfer_sis ctx inputs sis:
  sis_ok ctx (transfer_sis inputs sis)
  <-> (sis_ok ctx sis).
Proof.
  unfold transfer_sis. induction inputs as [|r l]; simpl.
  + split; destruct 1; econstructor; simpl in *; intuition eauto. congruence.
  + split.
    * destruct 1; econstructor; simpl in *; intuition eauto.
    * intros X; generalize X. rewrite <- IHl in X; clear IHl.
      intros [PRE SMEM SREG].
      econstructor; simpl; eauto.
      intros r0;  destruct (Pos.eq_dec r r0); try congruence.
      intros H; eapply OK_SREG; eauto.
Qed.

Lemma ok_transfer_ris ctx inputs ris:
  ris_ok ctx (transfer_ris inputs ris)
  <-> (ris_ok ctx ris).
Proof.
  induction inputs as [|r l]; simpl.
  + split; destruct 1; econstructor; simpl in *; intuition eauto.
  + rewrite ok_rseto_sreg. auto.
Qed.

Lemma transfer_ris_correct ctx inputs ris sis:
  ris_refines ctx ris sis ->
  ris_refines ctx (transfer_ris inputs ris) (transfer_sis inputs sis).
Proof.
  destruct 1; intros.
  induction inputs as [|r l].
  + econstructor; eauto.
    * erewrite ok_transfer_sis, ok_transfer_ris; eauto.
    * erewrite ok_transfer_ris; eauto.
    * erewrite ok_transfer_ris; simpl; unfold ris_sreg_get; simpl; eauto.
      intros; rewrite PTree.gempty. simpl; auto.
  + econstructor; eauto.
    * erewrite ok_transfer_sis, ok_transfer_ris; eauto.
    * erewrite ok_transfer_ris; simpl.
      intros; erewrite MEM_EQ. 2: eauto.
      - unfold transfer_sis; simpl; eauto.
      - rewrite ok_transfer_ris; simpl; eauto.
    * erewrite ok_transfer_ris; simpl.
      intros H r0.
      erewrite REG_EQ. 2: eapply rseto_reg_correct; eauto.
      - unfold set_sreg; simpl; auto.
        destruct (Pos.eq_dec _ _); simpl; auto.
      - intros. rewrite REG_EQ0; auto. apply OK_SREG; tauto.
      - rewrite ok_rseto_sreg, ok_transfer_ris. auto.
Qed.

Definition alt_tr_sis := poly_tr (fun f tbl or => transfer_sis (Regset.elements (pre_inputs f tbl or))).

Lemma tr_sis_alt_def f fi sis:
  alt_tr_sis f fi sis = tr_sis f fi sis.
Proof.
  unfold tr_sis, str_inputs. destruct fi; simpl; auto.
Qed.

Definition tr_ris := poly_tr (fun f tbl or => transfer_ris (Regset.elements (pre_inputs f tbl or))).

Local Hint Resolve transfer_ris_correct ok_transfer_ris: core.
Local Opaque transfer_ris.

Lemma ok_tr_ris ctx fi ris:
  ris_ok ctx (tr_ris (cf ctx) fi ris)
  <-> (ris_ok ctx ris).
Proof.
   destruct fi; simpl; eauto.
Qed.

Lemma ok_tr_ris_imp ctx fi ris:
  ris_ok ctx (tr_ris (cf ctx) fi ris)
  -> (ris_ok ctx ris).
Proof.
  rewrite ok_tr_ris; auto.
Qed.


Lemma tr_ris_correct ctx fi ris sis:
  ris_refines ctx ris sis ->
  ris_refines ctx (tr_ris (cf ctx) fi ris) (tr_sis (cf ctx) fi sis).
Proof.
  intros REF. rewrite <- tr_sis_alt_def.
  destruct fi; simpl; eauto.
Qed.

(** TODO: CHANTIER **)

Local Open Scope option_monad_scope.

(* TODO: est-ce qu'un type inductif serait plus simple ? Pas sûr à cause des raisonnements par continuation ? 

Un avantage du fixpoint, c'est que ça pourrait permettre de prouver les propriétés de history de façon plus incrémentale/modulaire.
*)

Fixpoint history ctx ib sis (k:sistate -> option (list sistate)): option (list sistate) := 
  match ib with
  | BF fin _ => Some (tr_sis (cf ctx) fin sis::nil)
  (* basic instructions *)
  | Bnop _ => k sis
  | Bop op args res _ => k (sexec_op op args res sis)
  | Bload TRAP chunk addr args dst _ => k (sexec_load TRAP chunk addr args dst sis)
  | Bload NOTRAP chunk addr args dst _ => None
  | Bstore chunk addr args src _ => k (sexec_store chunk addr args src sis)
 (* composed instructions *)
  | Bseq ib1 ib2 =>
      history ctx ib1 sis (fun sis2 => history ctx ib2 sis2 k)
  | Bcond cond args ifso ifnot _ =>
      let args := list_sval_inj (List.map sis args) in
      SOME b <- seval_condition ctx cond args sis.(si_smem) IN
      SOME oks <- history ctx (if b then ifso else ifnot) sis k IN 
      Some (sis::oks)
  end
  .

Inductive nested ctx: sistate -> list sistate -> Type :=
  ns_nil sis: nested ctx sis nil
| ns_cons sis1 sis2 lsis:
   (sis_ok ctx sis2 -> sis_ok ctx sis1) ->
   nested ctx sis2 lsis ->
   nested ctx sis1 (sis2::lsis)
   .
Local Hint Constructors nested: core.

(* TODO: A REVOIR !
Lemma nested_monotonic ok1 oks: 
  nested ok1 oks ->
  forall (ok2: Prop), (ok1 -> ok2) ->
  nested ok2 oks.
Proof.
  induction 1; simpl; eauto.
Qed.

Lemma history_nested ctx ib:
  forall k
  (CONT: forall sis hsis, (k sis) = Some hsis -> nested (sis_ok ctx sis) hsis)
  sis hsis 
  (RET: history ctx ib sis k = Some hsis),
  nested (sis_ok ctx sis) hsis.
Proof.
  induction ib; simpl; intros; try_simplify_someHyps.
  + econstructor; eauto. admit.
  + intros; eapply nested_monotonic; eauto.
    admit.
  + destruct trap; try_simplify_someHyps.
    intros;  eapply nested_monotonic; eauto.
    admit.
  + intros; eapply nested_monotonic; eauto.
    admit.
  + intros; eapply nested_monotonic. 2: eauto.
    eapply IHib1. 2: eauto.
    simpl; intros; eapply nested_monotonic; eauto.
  + repeat autodestruct; intros; try_simplify_someHyps.
Admitted.

Inductive is_last {A} (x:A): list A -> Prop :=
   is_last_refl: is_last x (x::nil)
 | is_last_cons a l (NXT: is_last x l): is_last x (a::l)
 .

Lemma nested_last_1 P oks (LAST: is_last P oks): forall ok
  (N: nested ok oks),
  P -> ok.
Proof.
  induction LAST; simpl; intros.
  + inv N; auto.
  + inv N; eauto.
    eapply IHLAST; eauto.
    eapply nested_monotonic; eauto.
Qed.

Lemma nested_last_all P oks (LAST: is_last P oks): forall ok
  (N: nested ok oks),
  P -> forall Q, List.In Q oks -> Q.
Proof.
  induction LAST; simpl; intros.
  + intuition subst. inv N; auto.
  + inv N.
    intuition subst.
    * eapply nested_last_1; eauto.
    * eapply IHLAST; eauto.
Qed.
Local Hint Constructors is_last: core.

Lemma run_sem_isstate_okcnd_last ctx ib: forall ks kok
  (CONT: forall sis1 sis2 sfv, run_sem_isstate ctx (ks sis1) = Some (sout sis2 sfv) -> exists hsis, kok sis1 = Some hsis /\ is_last (sis_ok ctx sis2) hsis)
  sis1 sis2 sfv
  (RUN: run_sem_isstate ctx (sexec_rec (cf ctx) ib sis1 ks) = Some (sout sis2 sfv))
  ,exists hsis, history ctx ib sis1 kok = Some hsis /\ is_last (sis_ok ctx sis2) hsis.
Proof.
  induction ib; simpl; intros; try_simplify_someHyps.
  + destruct trap; simpl; try_simplify_someHyps.
  + (* seq *)
    intros; eapply IHib1; eauto.
    simpl; intros; eapply IHib2; eauto.
  + (* cond *)
    autodestruct. intros; destruct b.
    - exploit IHib1; eauto.
      intros (hsis & OK & LAST).
      rewrite OK; simpl.
      eexists; split; eauto.
    - exploit IHib2; eauto.
      intros (hsis & OK & LAST).
      rewrite OK; simpl.
      eexists; split; eauto.
Qed.
*)

Inductive histOK ctx: list sistate -> sstate -> Prop :=
  | Final_ok sis sfv
      : histOK ctx (sis::nil) (Sfinal sis sfv)
  | Cond_ok b sis hsis cond args ifso ifnot
      (OK: (sis_ok ctx sis))
      (EVAL: seval_condition ctx cond args sis.(si_smem) = Some b)
      (REC: histOK ctx hsis (if b then ifso else ifnot))
      : histOK ctx (sis::hsis) (Scond cond args sis.(si_smem) ifso ifnot)
  .
Local Hint Constructors histOK: core.

(* TODO: pour prouver ça, faut généraliser avec nested + is_last en hypothèse ?  

Lemma run_sem_isstate_okentails ctx ib: forall ks kok
  (CONT: forall sis st, ks sis = st -> run_sem_isstate ctx st <> None -> exists hsis, kok sis = Some hsis /\ histOK ctx hsis st)
  sis st
  (EXEC: sexec_rec (cf ctx) ib sis ks = st)
  (OK: run_sem_isstate ctx st <> None)
  ,exists hsis, history ctx ib sis kok = Some hsis /\ histOK ctx hsis st.
Proof.
  induction ib; simpl; intros; subst; try_simplify_someHyps.
  + destruct trap; simpl in *; try_simplify_someHyps. congruence.
  + (* seq *)
    intros; eapply IHib1; eauto.
    simpl; intros; eapply IHib2; eauto.
  + (* cond *)
    simpl in *.
    autodestruct.
    intros; destruct b.
    - exploit IHib1; eauto.
      intros (hsis & OK1 & X).
      rewrite OK1; simpl.
      eexists; split; eauto.
      econstructor; eauto.
      admit.
    - exploit IHib2; eauto.
      intros (hsis & OK2 & LAST).
      rewrite OK2; simpl.
      eexists; split; eauto.
      econstructor; eauto.
      admit.
Admitted.
*)

(** RAFFINEMENT EXEC SYMBOLIQUE **)

Fixpoint rexec_rec f ib ris (k: ristate -> rstate): rstate := 
  match ib with
  | BF fin _ => Rfinal (tr_ris f fin ris) (sexec_final_sfv fin ris)
  (* basic instructions *)
  | Bnop _ => k ris
  | Bop op args res _ => k (rexec_op op args res ris)
  | Bload TRAP chunk addr args dst _ => k (rexec_load TRAP chunk addr args dst ris)
  | Bload NOTRAP chunk addr args dst _ => Rabort
  | Bstore chunk addr args src _ => k (rexec_store chunk addr args src ris)
 (* composed instructions *)
  | Bseq ib1 ib2 =>
      rexec_rec f ib1 ris (fun ris2 => rexec_rec f ib2 ris2 k)
  | Bcond cond args ifso ifnot _ =>
      let args := list_sval_inj (List.map ris args) in
      let ifso := rexec_rec f ifso ris k in
      let ifnot := rexec_rec f ifnot ris k in
      Rcond cond args ifso ifnot
  end
  .

Local Hint Resolve ris_init_correct exec_final_refpreserv tr_ris_correct ok_tr_ris_imp 
  rexec_op_correct rexec_load_correct rexec_store_correct: core.

Local Hint Constructors rst_refines: core.

Lemma rexec_rec_correct ctx ib: 
  forall kok rk k
  (CONT: forall ris sis hsis st, ris_refines ctx ris sis -> k sis = st -> kok sis = Some hsis -> histOK ctx hsis st -> rst_refines ctx (rk ris) (k sis))
  ris sis hsis st
  (REF: ris_refines ctx ris sis)
  (EXEC: sexec_rec (cf ctx) ib sis k = st)
  (OK1: history ctx ib sis kok = Some hsis)
  (OK2: histOK ctx hsis st)
  , rst_refines ctx (rexec_rec (cf ctx) ib ris rk) st.
Proof.
  induction ib; simpl; try (intros; subst; eauto; fail).
  - (* load *) intros; subst; autodestruct; simpl in *; subst; eauto.
  - (* seq *)
    intros; subst.
    eapply IHib1; eauto.
    simpl. intros; subst. eapply IHib2; eauto.
  - (* cond *)
    intros rk k kok CONT ris sis hsis st REF EXEC. subst.
    autodestruct.
    intros EQb.
    destruct (history _ _ _ _) eqn: EQl;
    intros; try_simplify_someHyps; intros.
    inv OK2.
    assert (rOK: ris_ok ctx ris). { erewrite <- OK_EQUIV; eauto. }
    try_simplify_someHyps; intros.
    generalize EVAL.
    erewrite seval_condition_valid_preserv, <- seval_condition_refpreserv; eauto.
    intros;
    econstructor; try_simplify_someHyps.
Qed.

Definition rexec f ib := rexec_rec f ib ris_init (fun _ => Rabort).

Lemma rexec_correct ctx ib hsis:
  history ctx ib sis_init (fun _ : sistate => None) = Some hsis ->
  histOK ctx hsis (sexec_rec (cf ctx) ib sis_init (fun _ : sistate => Sabort)) ->
  rst_refines ctx (rexec (cf ctx) ib) (sexec (cf ctx) ib).
Proof.
  unfold sexec; intros; eapply rexec_rec_correct; eauto.
  simpl; congruence.
Qed.