aboutsummaryrefslogtreecommitdiffstats
path: root/scheduling/RTLpathSE_impl.v
blob: cda1c0794edec4e819acf2c7d520511f8884561e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
(** Implementation and refinement of the symbolic execution *)

Require Import Coqlib Maps Floats.
Require Import AST Integers Values Events Memory Globalenvs Smallstep.
Require Import Op Registers.
Require Import RTL RTLpath.
Require Import Errors.
Require Import RTLpathSE_theory RTLpathLivegenproof.
Require Import Axioms RTLpathSE_simu_specs.
Require Import RTLpathSE_simplify.

Local Open Scope error_monad_scope.
Local Open Scope option_monad_scope.

Require Import Impure.ImpHCons.
Import Notations.
Import HConsing.

Local Open Scope impure.
Local Open Scope hse.

Import ListNotations.
Local Open Scope list_scope.

Definition XDEBUG {A} (x:A) (k: A -> ?? pstring): ?? unit := RET tt. (* TO REMOVE DEBUG INFO *)
(*Definition XDEBUG {A} (x:A) (k: A -> ?? pstring): ?? unit := DO s <~ k x;; println ("DEBUG simu_check:" +; s). (* TO INSERT DEBUG INFO *)*)

Definition DEBUG (s: pstring): ?? unit := XDEBUG tt (fun _ => RET s).

(** * Implementation of Data-structure use in Hash-consing *)

Definition hsval_get_hid (hsv: hsval): hashcode :=
  match hsv with
  | HSinput _ hid => hid
  | HSop _ _ hid => hid
  | HSload _ _ _ _ _ hid => hid
  end.

Definition list_hsval_get_hid (lhsv: list_hsval): hashcode :=
  match lhsv with
  | HSnil hid => hid
  | HScons _ _ hid => hid
  end.

Definition hsmem_get_hid (hsm: hsmem): hashcode :=
  match hsm with
  | HSinit hid => hid
  | HSstore _ _ _ _ _ hid => hid
  end.

Definition hsval_set_hid (hsv: hsval) (hid: hashcode): hsval :=
  match hsv with
  | HSinput r _ => HSinput r hid
  | HSop o lhsv _ => HSop o lhsv hid
  | HSload hsm trap chunk addr lhsv _ => HSload hsm trap chunk addr lhsv hid
  end.

Definition list_hsval_set_hid (lhsv: list_hsval) (hid: hashcode): list_hsval :=
  match lhsv with
  | HSnil _ => HSnil hid
  | HScons hsv lhsv _ => HScons hsv lhsv hid
  end.

Definition hsmem_set_hid (hsm: hsmem) (hid: hashcode): hsmem :=
  match hsm with
  | HSinit _ => HSinit hid
  | HSstore hsm chunk addr lhsv srce _ => HSstore hsm chunk addr lhsv srce hid
  end.


Lemma hsval_set_hid_correct x y ge sp rs0 m0:
  hsval_set_hid x unknown_hid = hsval_set_hid y unknown_hid ->
  seval_hsval ge sp x rs0 m0 = seval_hsval ge sp y rs0 m0.
Proof.
  destruct x, y; intro H; inversion H; subst; simpl; auto.
Qed.
Local Hint Resolve hsval_set_hid_correct: core.

Lemma list_hsval_set_hid_correct x y ge sp rs0 m0:
  list_hsval_set_hid x unknown_hid = list_hsval_set_hid y unknown_hid ->
  seval_list_hsval ge sp x rs0 m0 = seval_list_hsval ge sp y rs0 m0.
Proof.
  destruct x, y; intro H; inversion H; subst; simpl; auto.
Qed.
Local Hint Resolve list_hsval_set_hid_correct: core.

Lemma hsmem_set_hid_correct x y ge sp rs0 m0:
  hsmem_set_hid x unknown_hid = hsmem_set_hid y unknown_hid ->
  seval_hsmem ge sp x rs0 m0 = seval_hsmem ge sp y rs0 m0.
Proof.
  destruct x, y; intro H; inversion H; subst; simpl; auto.
Qed.
Local Hint Resolve hsmem_set_hid_correct: core.

(** Now, we build the hash-Cons value from a "hash_eq".

  Informal specification: 
    [hash_eq] must be consistent with the "hashed" constructors defined above.

  We expect that hashinfo values in the code of these "hashed" constructors verify:
    (hash_eq (hdata x) (hdata y) ~> true) <-> (hcodes x)=(hcodes y)
*)


Definition hsval_hash_eq (sv1 sv2: hsval): ?? bool :=
  match sv1, sv2 with
  | HSinput r1 _, HSinput r2 _ => struct_eq r1 r2 (* NB: really need a struct_eq here ? *)
  | HSop op1 lsv1 _, HSop op2 lsv2 _  =>
     DO b1 <~ phys_eq lsv1 lsv2;;
     if b1
     then struct_eq op1 op2 (* NB: really need a struct_eq here ? *)
     else RET false
  | HSload sm1 trap1 chk1 addr1 lsv1 _, HSload sm2 trap2 chk2 addr2 lsv2 _ =>
     DO b1 <~ phys_eq lsv1 lsv2;;
     DO b2 <~ phys_eq sm1 sm2;;
     DO b3 <~ struct_eq trap1 trap2;;
     DO b4 <~ struct_eq chk1 chk2;;
     if b1 && b2 && b3 && b4
     then struct_eq addr1 addr2
     else RET false
  | _,_ => RET false
  end.


Lemma and_true_split a b: a && b = true <-> a = true /\ b = true.
Proof.
  destruct a; simpl; intuition.
Qed.

Lemma hsval_hash_eq_correct x y:
  WHEN hsval_hash_eq x y ~> b THEN 
   b = true -> hsval_set_hid x unknown_hid = hsval_set_hid y unknown_hid.
Proof.
  destruct x, y; wlp_simplify; try (rewrite !and_true_split in *); intuition; subst; try congruence.
Qed.
Global Opaque hsval_hash_eq.
Local Hint Resolve hsval_hash_eq_correct: wlp.

Definition list_hsval_hash_eq (lsv1 lsv2: list_hsval): ?? bool :=
  match lsv1, lsv2 with
  | HSnil _, HSnil _ => RET true
  | HScons sv1 lsv1' _, HScons sv2 lsv2' _  =>
     DO b <~ phys_eq lsv1' lsv2';;
     if b 
     then phys_eq sv1 sv2
     else RET false
  | _,_ => RET false
  end.

Lemma list_hsval_hash_eq_correct x y:
  WHEN list_hsval_hash_eq x y ~> b THEN 
   b = true -> list_hsval_set_hid x unknown_hid = list_hsval_set_hid y unknown_hid.
Proof.
  destruct x, y; wlp_simplify; try (rewrite !and_true_split in *); intuition; subst; try congruence.
Qed.
Global Opaque list_hsval_hash_eq.
Local Hint Resolve list_hsval_hash_eq_correct: wlp.

Definition hsmem_hash_eq (sm1 sm2: hsmem): ?? bool :=
  match sm1, sm2 with
  | HSinit _, HSinit _ => RET true
  | HSstore sm1 chk1 addr1 lsv1 sv1 _, HSstore sm2 chk2 addr2 lsv2 sv2 _ =>
     DO b1 <~ phys_eq lsv1 lsv2;;
     DO b2 <~ phys_eq sm1 sm2;;
     DO b3 <~ phys_eq sv1 sv2;;
     DO b4 <~ struct_eq chk1 chk2;;
     if b1 && b2 && b3 && b4
     then struct_eq addr1 addr2
     else RET false
  | _,_ => RET false
  end.

Lemma hsmem_hash_eq_correct x y:
  WHEN hsmem_hash_eq x y ~> b THEN 
   b = true -> hsmem_set_hid x unknown_hid = hsmem_set_hid y unknown_hid.
Proof.
  destruct x, y; wlp_simplify; try (rewrite !and_true_split in *); intuition; subst; try congruence.
Qed.
Global Opaque hsmem_hash_eq.
Local Hint Resolve hsmem_hash_eq_correct: wlp.


Definition hSVAL: hashP hsval := {| hash_eq := hsval_hash_eq; get_hid:=hsval_get_hid; set_hid:=hsval_set_hid |}. 
Definition hLSVAL: hashP list_hsval := {| hash_eq := list_hsval_hash_eq; get_hid:= list_hsval_get_hid; set_hid:= list_hsval_set_hid |}.
Definition hSMEM: hashP hsmem := {| hash_eq := hsmem_hash_eq; get_hid:= hsmem_get_hid; set_hid:= hsmem_set_hid |}.

Program Definition mk_hash_params: Dict.hash_params hsval :=
 {|
    Dict.test_eq := phys_eq;
    Dict.hashing := fun (ht: hsval) => RET (hsval_get_hid ht);
    Dict.log := fun hv =>
         DO hv_name <~ string_of_hashcode (hsval_get_hid hv);;
         println ("unexpected undef behavior of hashcode:" +; (CamlStr hv_name)) |}.
Obligation 1.
  wlp_simplify.
Qed.

(** ** various auxiliary (trivial lemmas) *)
Lemma hsilocal_refines_sreg ge sp rs0 m0 hst st:
  hsilocal_refines ge sp rs0 m0 hst st -> hsok_local ge sp rs0 m0 hst -> forall r, hsi_sreg_eval ge sp hst r rs0 m0 = seval_sval ge sp (si_sreg st r) rs0 m0.
Proof.
  unfold hsilocal_refines; intuition.
Qed.
Local Hint Resolve hsilocal_refines_sreg: core.

Lemma hsilocal_refines_valid_pointer ge sp rs0 m0 hst st:
  hsilocal_refines ge sp rs0 m0 hst st -> forall m b ofs, seval_smem ge sp st.(si_smem) rs0 m0 = Some m -> Mem.valid_pointer m b ofs = Mem.valid_pointer m0 b ofs.
Proof.
  unfold hsilocal_refines; intuition.
Qed.
Local Hint Resolve hsilocal_refines_valid_pointer: core.

Lemma hsilocal_refines_smem_refines ge sp rs0 m0 hst st:
  hsilocal_refines ge sp rs0 m0 hst st -> hsok_local ge sp rs0 m0 hst -> smem_refines ge sp rs0 m0 (hsi_smem hst) (st.(si_smem)).
Proof.
  unfold hsilocal_refines; intuition.
Qed.
Local Hint Resolve hsilocal_refines_smem_refines: core.

Lemma hsistate_refines_dyn_exits ge sp rs0 m0 hst st:
  hsistate_refines_dyn ge sp rs0 m0 hst st -> hsiexits_refines_dyn ge sp rs0 m0 (hsi_exits hst) (si_exits st).
Proof.
  unfold hsistate_refines_dyn; intuition.
Qed.
Local Hint Resolve hsistate_refines_dyn_exits: core.

Lemma hsistate_refines_dyn_local ge sp rs0 m0 hst st:
  hsistate_refines_dyn ge sp rs0 m0 hst st -> hsilocal_refines ge sp rs0 m0 (hsi_local hst) (si_local st).
Proof.
  unfold hsistate_refines_dyn; intuition.
Qed.
Local Hint Resolve hsistate_refines_dyn_local: core.

Lemma hsistate_refines_dyn_nested ge sp rs0 m0 hst st:
  hsistate_refines_dyn ge sp rs0 m0 hst st -> nested_sok ge sp rs0 m0 (si_local st) (si_exits st).
Proof.
  unfold hsistate_refines_dyn; intuition.
Qed.
Local Hint Resolve hsistate_refines_dyn_nested: core.

(** * Implementation of symbolic execution *)
Section CanonBuilding.

Variable hC_hsval: hashinfo hsval -> ?? hsval.

Hypothesis hC_hsval_correct: forall hs,
  WHEN hC_hsval hs ~> hs' THEN forall ge sp rs0 m0,
    seval_hsval ge sp (hdata hs) rs0 m0 = seval_hsval ge sp hs' rs0 m0.

Variable hC_list_hsval: hashinfo list_hsval -> ?? list_hsval.
Hypothesis hC_list_hsval_correct: forall lh,
  WHEN hC_list_hsval lh ~> lh' THEN forall ge sp rs0 m0,
    seval_list_hsval ge sp (hdata lh) rs0 m0 = seval_list_hsval ge sp lh' rs0 m0.

Variable hC_hsmem: hashinfo hsmem -> ?? hsmem.
Hypothesis hC_hsmem_correct: forall hm,
  WHEN hC_hsmem hm ~> hm' THEN forall ge sp rs0 m0,
    seval_hsmem ge sp (hdata hm) rs0 m0 = seval_hsmem ge sp hm' rs0 m0.

(* First, we wrap constructors for hashed values !*)

Definition reg_hcode := 1.
Definition op_hcode := 2.
Definition load_hcode := 3.

Definition hSinput_hcodes (r: reg) :=
   DO hc <~ hash reg_hcode;;
   DO hv <~ hash r;;
   RET [hc;hv].
Extraction Inline hSinput_hcodes.

Definition hSinput (r:reg): ?? hsval :=
   DO hv <~ hSinput_hcodes r;;
   hC_hsval {| hdata:=HSinput r unknown_hid; hcodes :=hv; |}.

Lemma hSinput_correct r:
  WHEN hSinput r ~> hv THEN forall ge sp rs0 m0,
    sval_refines ge sp rs0 m0 hv (Sinput r).
Proof.
  wlp_simplify.
Qed.
Global Opaque hSinput.
Local Hint Resolve hSinput_correct: wlp.

Definition hSop_hcodes (op:operation) (lhsv: list_hsval) :=
   DO hc <~ hash op_hcode;;
   DO hv <~ hash op;;
   RET [hc;hv;list_hsval_get_hid lhsv].
Extraction Inline hSop_hcodes.

Definition hSop (op:operation) (lhsv: list_hsval): ?? hsval :=
   DO hv <~ hSop_hcodes op lhsv;;
   hC_hsval {| hdata:=HSop op lhsv unknown_hid; hcodes :=hv |}.

Lemma hSop_fSop_correct op lhsv:
  WHEN hSop op lhsv ~> hv THEN forall ge sp rs0 m0,
    seval_hsval ge sp hv rs0 m0 = seval_hsval ge sp (fSop op lhsv) rs0 m0.
Proof.
  wlp_simplify.
Qed.
Global Opaque hSop.
Local Hint Resolve hSop_fSop_correct: wlp_raw.

Lemma hSop_correct op lhsv:
  WHEN hSop op lhsv ~> hv THEN forall ge sp rs0 m0 lsv sm m
   (MEM: seval_smem ge sp sm rs0 m0 = Some m)
   (MVALID: forall b ofs, Mem.valid_pointer m b ofs = Mem.valid_pointer m0 b ofs)
   (LR: list_sval_refines ge sp rs0 m0 lhsv lsv),
   sval_refines ge sp rs0 m0 hv (Sop op lsv sm).
Proof.
  generalize fSop_correct; simpl.
  intros X.
  wlp_xsimplify ltac:(intuition eauto with wlp wlp_raw).
  erewrite H, X; eauto.
Qed.
Local Hint Resolve hSop_correct: wlp.

Definition hSload_hcodes (hsm: hsmem) (trap: trapping_mode) (chunk: memory_chunk) (addr: addressing) (lhsv: list_hsval):=
   DO hc <~ hash load_hcode;;
   DO hv1 <~ hash trap;;
   DO hv2 <~ hash chunk;;
   DO hv3 <~ hash addr;;
   RET [hc; hsmem_get_hid hsm; hv1; hv2; hv3; list_hsval_get_hid lhsv].
Extraction Inline hSload_hcodes.

Definition hSload (hsm: hsmem) (trap: trapping_mode) (chunk: memory_chunk) (addr: addressing) (lhsv: list_hsval): ?? hsval :=
   DO hv <~ hSload_hcodes hsm trap chunk addr lhsv;;
   hC_hsval {| hdata := HSload hsm trap chunk addr lhsv unknown_hid; hcodes := hv |}.

Lemma hSload_correct hsm trap chunk addr lhsv:
  WHEN hSload hsm trap chunk addr lhsv ~> hv THEN forall ge sp rs0 m0 lsv sm
    (LR: list_sval_refines ge sp rs0 m0 lhsv lsv)
    (MR: smem_refines ge sp rs0 m0 hsm sm),
    sval_refines ge sp rs0 m0 hv (Sload sm trap chunk addr lsv).
Proof.
  wlp_simplify.
  rewrite <- LR, <- MR.
  auto.
Qed.
Global Opaque hSload.
Local Hint Resolve hSload_correct: wlp.

Definition hSnil (_: unit): ?? list_hsval :=
   hC_list_hsval {| hdata := HSnil unknown_hid; hcodes := nil |}.

Lemma hSnil_correct:
  WHEN hSnil() ~> hv THEN forall ge sp rs0 m0,
    list_sval_refines ge sp rs0 m0 hv Snil.
Proof.
  wlp_simplify.
Qed.
Global Opaque hSnil.
Local Hint Resolve hSnil_correct: wlp.

Definition hScons (hsv: hsval) (lhsv: list_hsval): ?? list_hsval :=
   hC_list_hsval {| hdata := HScons hsv lhsv unknown_hid; hcodes := [hsval_get_hid hsv; list_hsval_get_hid lhsv] |}.

Lemma hScons_correct hsv lhsv:
  WHEN hScons hsv lhsv ~> lhsv' THEN forall ge sp rs0 m0 sv lsv
    (VR: sval_refines ge sp rs0 m0 hsv sv)
    (LR: list_sval_refines ge sp rs0 m0 lhsv lsv),
    list_sval_refines ge sp rs0 m0 lhsv' (Scons sv lsv).
Proof.
  wlp_simplify.
  rewrite <- VR, <- LR.
  auto.
Qed.
Global Opaque hScons.
Local Hint Resolve hScons_correct: wlp.

Definition hSinit (_: unit): ?? hsmem :=
   hC_hsmem {| hdata := HSinit unknown_hid; hcodes := nil |}.

Lemma hSinit_correct:
  WHEN hSinit() ~> hm THEN forall ge sp rs0 m0,
    smem_refines ge sp rs0 m0 hm Sinit.
Proof.
  wlp_simplify.
Qed.
Global Opaque hSinit.
Local Hint Resolve hSinit_correct: wlp.

Definition hSstore_hcodes (hsm: hsmem) (chunk: memory_chunk) (addr: addressing) (lhsv: list_hsval) (srce: hsval):=
   DO hv1 <~ hash chunk;;
   DO hv2 <~ hash addr;;
   RET [hsmem_get_hid hsm; hv1; hv2; list_hsval_get_hid lhsv; hsval_get_hid srce].
Extraction Inline hSstore_hcodes.

Definition hSstore (hsm: hsmem) (chunk: memory_chunk) (addr: addressing) (lhsv: list_hsval) (srce: hsval): ?? hsmem :=
   DO hv <~ hSstore_hcodes hsm chunk addr lhsv srce;;
   hC_hsmem {| hdata := HSstore hsm chunk addr lhsv srce unknown_hid; hcodes := hv |}.

Lemma hSstore_correct hsm chunk addr lhsv hsv:
  WHEN hSstore hsm chunk addr lhsv hsv ~> hsm' THEN forall ge sp rs0 m0 lsv sm sv
    (LR: list_sval_refines ge sp rs0 m0 lhsv lsv)
    (MR: smem_refines ge sp rs0 m0 hsm sm)
    (VR: sval_refines ge sp rs0 m0 hsv sv),
    smem_refines ge sp rs0 m0 hsm' (Sstore sm chunk addr lsv sv).
Proof.
  wlp_simplify.
  rewrite <- LR, <- MR, <- VR.
  auto.
Qed.
Global Opaque hSstore.
Local Hint Resolve hSstore_correct: wlp.

Definition hsi_sreg_get (hst: PTree.t hsval) r: ?? hsval :=
   match PTree.get r hst with 
   | None => hSinput r
   | Some sv => RET sv
   end.

Lemma hsi_sreg_get_correct hst r:
  WHEN hsi_sreg_get hst r ~> hsv THEN forall ge sp rs0 m0 (f: reg -> sval)
    (RR: forall r, hsi_sreg_eval ge sp hst r rs0 m0 = seval_sval ge sp (f r) rs0 m0),
    sval_refines ge sp rs0 m0 hsv (f r).
Proof.
  unfold hsi_sreg_eval, hsi_sreg_proj; wlp_simplify; rewrite <- RR; try_simplify_someHyps.
Qed.
Global Opaque hsi_sreg_get.
Local Hint Resolve hsi_sreg_get_correct: wlp.

Fixpoint hlist_args (hst: PTree.t hsval) (l: list reg): ?? list_hsval :=
  match l with
  | nil => hSnil()
  | r::l =>
    DO v <~ hsi_sreg_get hst r;;
    DO lhsv <~ hlist_args hst l;;
    hScons v lhsv
  end.

Lemma hlist_args_correct hst l:
  WHEN hlist_args hst l ~> lhsv THEN forall ge sp rs0 m0 (f: reg -> sval)
    (RR: forall r, hsi_sreg_eval ge sp hst r rs0 m0 = seval_sval ge sp (f r) rs0 m0),
    list_sval_refines ge sp rs0 m0 lhsv (list_sval_inj (List.map f l)).
Proof.
  induction l; wlp_simplify.
Qed.
Global Opaque hlist_args.
Local Hint Resolve hlist_args_correct: wlp.

(** Convert a "fake" hash-consed term into a "real" hash-consed term *)

Fixpoint fsval_proj hsv: ?? hsval :=
  match hsv with
  | HSinput r hc => 
    DO b <~ phys_eq hc unknown_hid;;
    if b 
    then hSinput r (* was not yet really hash-consed *)
    else RET hsv (* already hash-consed *)
  | HSop op hl hc => 
    DO b <~ phys_eq hc unknown_hid;;
    if b 
    then (* was not yet really hash-consed *) 
      DO hl' <~ fsval_list_proj hl;;
      hSop op hl'
    else RET hsv (* already hash-consed *)
  | HSload hm t chk addr hl _ => RET hsv (* FIXME ? *)
  end
with fsval_list_proj hsl: ?? list_hsval :=
  match hsl with
  | HSnil hc => 
    DO b <~ phys_eq hc unknown_hid;;
    if b 
    then hSnil() (* was not yet really hash-consed *)
    else RET hsl (* already hash-consed *)
  | HScons hv hl hc => 
    DO b <~ phys_eq hc unknown_hid;;
    if b 
    then (* was not yet really hash-consed *)
      DO hv' <~ fsval_proj hv;;
      DO hl' <~ fsval_list_proj hl;;
      hScons hv' hl' 
    else RET hsl (* already hash-consed *)
  end.

Lemma fsval_proj_correct hsv:
  WHEN fsval_proj hsv ~> hsv' THEN forall ge sp rs0 m0,
  seval_hsval ge sp hsv rs0 m0 = seval_hsval ge sp hsv' rs0 m0.
Proof.
 induction hsv using hsval_mut 
 with (P0 := fun lhsv => 
       WHEN fsval_list_proj lhsv ~> lhsv' THEN forall ge sp rs0 m0,
         seval_list_hsval ge sp lhsv rs0 m0 = seval_list_hsval ge sp lhsv' rs0 m0)
       (P1 := fun sm => True); try (wlp_simplify; tauto).
 - wlp_xsimplify ltac:(intuition eauto with wlp_raw wlp).
   rewrite H, H0; auto.
 - wlp_simplify; erewrite H0, H1; eauto.
Qed.
Global Opaque fsval_proj.
Local Hint Resolve fsval_proj_correct: wlp.

Lemma fsval_list_proj_correct lhsv:
  WHEN fsval_list_proj lhsv ~> lhsv' THEN forall ge sp rs0 m0,
  seval_list_hsval ge sp lhsv rs0 m0 = seval_list_hsval ge sp lhsv' rs0 m0.
Proof.
  induction lhsv; wlp_simplify.
  erewrite H0, H1; eauto.
Qed.
Global Opaque fsval_list_proj.
Local Hint Resolve fsval_list_proj_correct: wlp.


(** ** Assignment of memory *)
Definition hslocal_set_smem (hst:hsistate_local) hm :=
  {| hsi_smem := hm;
     hsi_ok_lsval := hsi_ok_lsval hst;
     hsi_sreg:= hsi_sreg hst
  |}.

Lemma sok_local_set_mem ge sp rs0 m0 st sm:
  sok_local ge sp rs0 m0 (slocal_set_smem st sm)
  <-> (sok_local ge sp rs0 m0 st /\ seval_smem ge sp sm rs0 m0 <> None).
Proof.
  unfold slocal_set_smem, sok_local; simpl; intuition (subst; eauto).
Qed.

Lemma hsok_local_set_mem ge sp rs0 m0 hst hsm:
  (seval_hsmem ge sp (hsi_smem hst) rs0 m0 = None -> seval_hsmem ge sp hsm rs0 m0 = None) ->
  hsok_local ge sp rs0 m0 (hslocal_set_smem hst hsm)
  <-> (hsok_local ge sp rs0 m0 hst /\ seval_hsmem ge sp hsm rs0 m0 <> None).
Proof.
  unfold hslocal_set_smem, hsok_local; simpl; intuition.
Qed.

Lemma hslocal_set_mem_correct ge sp rs0 m0 hst st hsm sm:
  (seval_hsmem ge sp (hsi_smem hst) rs0 m0 = None -> seval_hsmem ge sp hsm rs0 m0 = None) ->
  (forall m b ofs, seval_smem ge sp sm rs0 m0 = Some m -> Mem.valid_pointer m b ofs = Mem.valid_pointer m0 b ofs) ->
  hsilocal_refines ge sp rs0 m0 hst st ->
  (hsok_local ge sp rs0 m0 hst -> smem_refines ge sp rs0 m0 hsm sm) ->
  hsilocal_refines ge sp rs0 m0 (hslocal_set_smem hst hsm) (slocal_set_smem st sm).
Proof.
  intros PRESERV SMVALID (OKEQ & SMEMEQ' & REGEQ & MVALID) SMEMEQ.
  split; rewrite! hsok_local_set_mem; simpl; eauto; try tauto.
  rewrite sok_local_set_mem.
  intuition congruence.
Qed.

Definition hslocal_store (hst: hsistate_local) chunk addr args src: ?? hsistate_local :=
   let pt := hst.(hsi_sreg) in
   DO hargs <~ hlist_args pt args;;
   DO hsrc <~ hsi_sreg_get pt src;;
   DO hm <~ hSstore hst chunk addr hargs hsrc;;
   RET (hslocal_set_smem hst hm).

Lemma hslocal_store_correct hst chunk addr args src:
  WHEN hslocal_store hst chunk addr args src ~> hst' THEN forall ge sp rs0 m0 st
    (REF: hsilocal_refines ge sp rs0 m0 hst st),
    hsilocal_refines ge sp rs0 m0 hst' (slocal_store st chunk addr args src).
Proof.
  wlp_simplify.
  eapply hslocal_set_mem_correct; simpl; eauto.
  + intros X; erewrite H1; eauto.
    rewrite X. simplify_SOME z.
  + unfold hsilocal_refines in *; 
    simplify_SOME z; intuition. 
    erewrite <- Mem.storev_preserv_valid; [| eauto].
    eauto.
  + unfold hsilocal_refines in *; intuition eauto.
Qed.
Global Opaque hslocal_store.
Local Hint Resolve hslocal_store_correct: wlp.

(** ** Assignment of local state *)

Definition hsist_set_local (hst: hsistate) (pc: node) (hnxt: hsistate_local): hsistate :=
   {| hsi_pc := pc; hsi_exits := hst.(hsi_exits); hsi_local:= hnxt |}.

Lemma hsist_set_local_correct_stat hst st pc hnxt nxt:
  hsistate_refines_stat hst st ->
  hsistate_refines_stat (hsist_set_local hst pc hnxt) (sist_set_local st pc nxt).
Proof.
  unfold hsistate_refines_stat; simpl; intuition.
Qed.

Lemma hsist_set_local_correct_dyn ge sp rs0 m0 hst st pc hnxt nxt:
  hsistate_refines_dyn ge sp rs0 m0 hst st ->
  hsilocal_refines ge sp rs0 m0 hnxt nxt ->
  (sok_local ge sp rs0 m0 nxt -> sok_local ge sp rs0 m0 (si_local st)) ->
  hsistate_refines_dyn ge sp rs0 m0 (hsist_set_local hst pc hnxt) (sist_set_local st pc nxt).
Proof.
  unfold hsistate_refines_dyn; simpl.
  intros (EREF & LREF & NESTED) LREFN SOK; intuition.
  destruct NESTED as [|st0 se lse TOP NEST]; econstructor; simpl; auto.
Qed.

(** ** Assignment of registers *)

(** locally new symbolic values during symbolic execution *)
Inductive root_sval: Type :=
| Rop (op: operation)
| Rload (trap: trapping_mode) (chunk: memory_chunk) (addr: addressing)
.

Definition root_apply (rsv: root_sval) (lr: list reg) (st: sistate_local): sval :=
  let lsv := list_sval_inj (List.map (si_sreg st) lr) in
  let sm := si_smem st in
  match rsv with
  | Rop op => Sop op lsv sm
  | Rload trap chunk addr => Sload sm trap chunk addr lsv
  end.
Coercion root_apply: root_sval >-> Funclass.

Definition root_happly (rsv: root_sval) (lr: list reg) (hst: hsistate_local) : ?? hsval :=
  DO lhsv <~ hlist_args hst lr;;
  match rsv with
  | Rop op => hSop op lhsv
  | Rload trap chunk addr => hSload hst trap chunk addr lhsv
  end.

Lemma root_happly_correct (rsv: root_sval) lr hst:
  WHEN root_happly rsv lr hst ~> hv' THEN forall ge sp rs0 m0 st
    (REF:hsilocal_refines ge sp rs0 m0 hst st)
    (OK:hsok_local ge sp rs0 m0 hst),
    sval_refines ge sp rs0 m0 hv' (rsv lr st).
Proof.
   unfold hsilocal_refines, root_apply, root_happly; destruct rsv; wlp_simplify.
   unfold sok_local in *.
   generalize (H0 ge sp rs0 m0 (list_sval_inj (map (si_sreg st) lr)) (si_smem st)); clear H0.
   destruct (seval_smem ge sp (si_smem st) rs0 m0) as [m|] eqn:X; eauto.
   intuition congruence.
Qed.
Global Opaque root_happly.
Hint Resolve root_happly_correct: wlp.

Local Open Scope lazy_bool_scope.

(* NB: return [false] if the rsv cannot fail *)
Definition may_trap (rsv: root_sval) (lr: list reg): bool :=
  match rsv with 
  | Rop op => is_trapping_op op ||| negb (Nat.eqb (length lr) (args_of_operation op))  (* cf. lemma is_trapping_op_sound *)
  | Rload TRAP _ _  => true
  | _ => false
  end.

Lemma lazy_orb_negb_false (b1 b2:bool):
  (b1 ||| negb b2) = false <-> (b1 = false /\ b2 = true).
Proof.
  unfold negb; explore; simpl; intuition (try congruence).
Qed.

Lemma seval_list_sval_length ge sp rs0 m0 (f: reg -> sval) (l:list reg):
  forall l', seval_list_sval ge sp (list_sval_inj (List.map f l)) rs0 m0 = Some l' ->
  Datatypes.length l = Datatypes.length l'.
Proof.
  induction l.
  - simpl. intros. inv H. reflexivity.
  - simpl. intros. destruct (seval_sval _ _ _ _ _); [|discriminate].
    destruct (seval_list_sval _ _ _ _ _) eqn:SLS; [|discriminate]. inv H. simpl.
    erewrite IHl; eauto.
Qed.

Lemma may_trap_correct (ge: RTL.genv) (sp:val) (rsv: root_sval) (rs0: regset) (m0: mem) (lr: list reg) st:
  may_trap rsv lr = false -> 
  seval_list_sval ge sp (list_sval_inj (List.map (si_sreg st) lr)) rs0 m0 <> None ->
  seval_smem ge sp (si_smem st) rs0 m0 <> None ->
  seval_sval ge sp (rsv lr st) rs0 m0 <> None.
Proof.
  destruct rsv; simpl; try congruence.
  - rewrite lazy_orb_negb_false. intros (TRAP1 & TRAP2) OK1 OK2.
    explore; try congruence.
    eapply is_trapping_op_sound; eauto.
    erewrite <- seval_list_sval_length; eauto.
    apply Nat.eqb_eq in TRAP2.
    assumption.
  - intros X OK1 OK2.
    explore; try congruence.
Qed.

(** simplify a symbolic value before assignment to a register *)
Definition simplify (rsv: root_sval) (lr: list reg) (hst: hsistate_local): ?? hsval :=
  match rsv with
  | Rop op =>
     match is_move_operation op lr with
     | Some arg => hsi_sreg_get hst arg (* optimization of Omove *)
     | None =>
       match target_op_simplify op lr hst with
       | Some fhv => fsval_proj fhv
       | None =>
         DO lhsv <~ hlist_args hst lr;;
         hSop op lhsv
       end
     end
  | Rload _ chunk addr => 
       DO lhsv <~ hlist_args hst lr;;
       hSload hst NOTRAP chunk addr lhsv
  end.

Lemma simplify_correct rsv lr hst:
  WHEN simplify rsv lr hst ~> hv THEN forall ge sp rs0 m0 st
    (REF: hsilocal_refines ge sp rs0 m0 hst st)
    (OK0: hsok_local ge sp rs0 m0 hst)
    (OK1: seval_sval ge sp (rsv lr st) rs0 m0 <> None),
    sval_refines ge sp rs0 m0 hv (rsv lr st).
Proof.
  destruct rsv; simpl; auto.
  - (* Rop *)
    destruct (is_move_operation _ _) eqn: Hmove.
    { wlp_simplify; exploit is_move_operation_correct; eauto.
      intros (Hop & Hlsv); subst; simpl in *.
      simplify_SOME z.
      * erewrite H; eauto.
      * try_simplify_someHyps; congruence.
      * congruence. }
    destruct (target_op_simplify _ _ _) eqn: Htarget_op_simp; wlp_simplify.
    { destruct (seval_list_sval _ _ _) eqn: OKlist; try congruence.
      destruct (seval_smem _ _ _ _ _) eqn: OKmem; try congruence.
      rewrite <- H; exploit target_op_simplify_correct; eauto. }
    clear Htarget_op_simp.
    generalize (H0 ge sp rs0 m0 (list_sval_inj (map (si_sreg st) lr)) (si_smem st)); clear H0.
    destruct (seval_smem ge sp (si_smem st) rs0 m0) as [m|] eqn:X; eauto.
    intro H0; clear H0; simplify_SOME z; congruence. (* absurd case *)
  - (* Rload *)
    destruct trap; wlp_simplify.
    erewrite H0; eauto.
    erewrite H; eauto.
    erewrite hsilocal_refines_smem_refines; eauto.
    destruct (seval_list_sval _ _ _ _) as [args|] eqn: Hargs; try congruence.
    destruct (eval_addressing _ _ _ _) as [a|] eqn: Ha; try congruence.
    destruct (seval_smem _ _ _ _) as [m|] eqn: Hm; try congruence.
    destruct (Mem.loadv _ _ _); try congruence.
Qed.
Global Opaque simplify.
Local Hint Resolve simplify_correct: wlp.

Definition red_PTree_set (r: reg) (hsv: hsval) (hst: PTree.t hsval): PTree.t hsval :=
  match hsv with
  | HSinput r' _ =>
     if Pos.eq_dec r r' 
     then PTree.remove r' hst
     else PTree.set r hsv hst
  | _ => PTree.set r hsv hst
  end.

Lemma red_PTree_set_correct (r r0:reg) hsv hst ge sp rs0 m0:
  hsi_sreg_eval ge sp (red_PTree_set r hsv hst) r0 rs0 m0 = hsi_sreg_eval ge sp (PTree.set r hsv hst) r0 rs0 m0.
Proof.
  destruct hsv; simpl; auto.
  destruct (Pos.eq_dec r r1); auto.
  subst; unfold hsi_sreg_eval, hsi_sreg_proj.
  destruct (Pos.eq_dec r0 r1); auto.
  - subst; rewrite PTree.grs, PTree.gss; simpl; auto.
  - rewrite PTree.gro, PTree.gso; simpl; auto.
Qed.

Lemma red_PTree_set_refines (r r0:reg) hsv hst sv st ge sp rs0 m0:
 hsilocal_refines ge sp rs0 m0 hst st ->
 sval_refines ge sp rs0 m0 hsv sv ->
 hsok_local ge sp rs0 m0 hst ->
 hsi_sreg_eval ge sp (red_PTree_set r hsv hst) r0 rs0 m0 = seval_sval ge sp (if Pos.eq_dec r r0 then sv else si_sreg st r0) rs0 m0.
Proof.
  intros; rewrite red_PTree_set_correct.
  exploit hsilocal_refines_sreg; eauto.
  unfold hsi_sreg_eval, hsi_sreg_proj.
  destruct (Pos.eq_dec r r0); auto.
  - subst. rewrite PTree.gss; simpl; auto.
  - rewrite PTree.gso; simpl; eauto.
Qed.

Lemma sok_local_set_sreg (rsv:root_sval) ge sp rs0 m0 st r lr:
  sok_local ge sp rs0 m0 (slocal_set_sreg st r (rsv lr st))
  <-> (sok_local ge sp rs0 m0 st /\ seval_sval ge sp (rsv lr st) rs0 m0 <> None).
Proof.
  unfold slocal_set_sreg, sok_local; simpl; split.
  + intros ((SVAL0 & PRE) & SMEM & SVAL).
    repeat (split; try tauto).
    - intros r0; generalize (SVAL r0); clear SVAL; destruct (Pos.eq_dec r r0); try congruence.
    - generalize (SVAL r); clear SVAL; destruct (Pos.eq_dec r r); try congruence.
  + intros ((PRE & SMEM & SVAL0) & SVAL).
    repeat (split; try tauto; eauto).
    intros r0;  destruct (Pos.eq_dec r r0); try congruence.
Qed.

Definition hslocal_set_sreg (hst: hsistate_local) (r: reg) (rsv: root_sval) (lr: list reg): ?? hsistate_local :=
  DO ok_lhsv <~
   (if may_trap rsv lr
    then DO hv <~ root_happly rsv lr hst;;
         XDEBUG hv (fun hv => DO hv_name <~ string_of_hashcode (hsval_get_hid hv);; RET ("-- insert undef behavior of hashcode:" +; (CamlStr hv_name))%string);;
         RET (hv::(hsi_ok_lsval hst))
    else RET (hsi_ok_lsval hst));;
  DO simp <~ simplify rsv lr hst;;
  RET {| hsi_smem := hst;
         hsi_ok_lsval := ok_lhsv;
         hsi_sreg := red_PTree_set r simp (hsi_sreg hst) |}.

Lemma hslocal_set_sreg_correct hst r rsv lr:
  WHEN hslocal_set_sreg hst r rsv lr ~> hst' THEN forall ge sp rs0 m0 st
    (REF: hsilocal_refines ge sp rs0 m0 hst st),
    hsilocal_refines ge sp rs0 m0 hst' (slocal_set_sreg st r (rsv lr st)).
Proof.
  wlp_simplify.
  + (* may_trap ~> true *)
    assert (X: sok_local ge sp rs0 m0 (slocal_set_sreg st r (rsv lr st)) <->
               hsok_local ge sp rs0 m0 {| hsi_smem := hst; hsi_ok_lsval := exta :: hsi_ok_lsval hst; hsi_sreg := red_PTree_set r exta0 hst |}).
    { rewrite sok_local_set_sreg; generalize REF.
      intros (OKeq & MEM & REG & MVALID); rewrite OKeq; clear OKeq.
      unfold hsok_local; simpl; intuition (subst; eauto);
      erewrite <- H0 in *; eauto; unfold hsok_local; simpl; intuition eauto.
    }
    unfold hsilocal_refines; simpl; split; auto.
    rewrite <- X, sok_local_set_sreg. intuition eauto.
    - destruct REF; intuition eauto.
    - generalize REF; intros (OKEQ & _). rewrite OKEQ in * |-; erewrite red_PTree_set_refines; eauto.
  + (* may_trap ~> false *)
    assert (X: sok_local ge sp rs0 m0 (slocal_set_sreg st r (rsv lr st)) <->
               hsok_local ge sp rs0 m0 {| hsi_smem := hst; hsi_ok_lsval := hsi_ok_lsval hst; hsi_sreg := red_PTree_set r exta hst |}).
    { 
      rewrite sok_local_set_sreg; generalize REF.
      intros (OKeq & MEM & REG & MVALID); rewrite OKeq.
      unfold hsok_local; simpl; intuition (subst; eauto).
      assert (X0:hsok_local ge sp rs0 m0 hst). { unfold hsok_local; intuition. }
      exploit may_trap_correct; eauto.
      * intro X1; eapply seval_list_sval_inj_not_none; eauto.
        assert (X2: sok_local ge sp rs0 m0 st). { intuition. }
        unfold sok_local in X2; intuition eauto.
      * rewrite <- MEM; eauto.
    }
    unfold hsilocal_refines; simpl; split; auto.
    rewrite <- X, sok_local_set_sreg. intuition eauto.
    - destruct REF; intuition eauto.
    - generalize REF; intros (OKEQ & _). rewrite OKEQ in * |-; erewrite red_PTree_set_refines; eauto.
Qed.
Global Opaque hslocal_set_sreg.
Local Hint Resolve hslocal_set_sreg_correct: wlp.

(** ** Execution of one instruction *)

Definition cbranch_expanse (prev: hsistate_local) (cond: condition) (args: list reg): ?? (condition * list_hsval) :=
    match target_cbranch_expanse prev cond args with
    | Some (cond', vargs) => 
      DO vargs' <~ fsval_list_proj vargs;;
      RET (cond', vargs')
    | None =>
      DO vargs <~ hlist_args prev args ;;
      RET (cond, vargs)
    end.

Lemma cbranch_expanse_correct hst c l:
 WHEN cbranch_expanse hst c l ~> r THEN forall ge sp rs0 m0 st
  (LREF : hsilocal_refines ge sp rs0 m0 hst st)
  (OK: hsok_local ge sp rs0 m0 hst),
  seval_condition ge sp (fst r) (hsval_list_proj (snd r)) (si_smem st) rs0 m0 =
  seval_condition ge sp c (list_sval_inj (map (si_sreg st) l)) (si_smem st) rs0 m0.
Proof.
  unfold cbranch_expanse.
  destruct (target_cbranch_expanse _ _ _) eqn: TARGET; wlp_simplify;
  unfold seval_condition; erewrite <- H; eauto.
  destruct p as [c' l']; simpl.
  exploit target_cbranch_expanse_correct; eauto.
Qed.
Local Hint Resolve cbranch_expanse_correct: wlp.
Global Opaque cbranch_expanse.

Definition hsiexec_inst (i: instruction) (hst: hsistate): ?? (option hsistate) := 
  match i with
  | Inop pc' => 
      RET (Some (hsist_set_local hst pc' hst.(hsi_local)))
  | Iop op args dst pc' =>
      DO next <~ hslocal_set_sreg hst.(hsi_local) dst (Rop op) args;;
      RET (Some (hsist_set_local hst pc' next))
  | Iload trap chunk addr args dst pc' =>
      DO next <~ hslocal_set_sreg hst.(hsi_local) dst (Rload trap chunk addr) args;;
      RET (Some (hsist_set_local hst pc' next))
  | Istore chunk addr args src pc' =>
      DO next <~ hslocal_store hst.(hsi_local) chunk addr args src;;
      RET (Some (hsist_set_local hst pc' next))
  | Icond cond args ifso ifnot _ =>
      let prev := hst.(hsi_local) in
      DO res <~ cbranch_expanse prev cond args;;
      let (cond, vargs) := res in
      let ex := {| hsi_cond:=cond; hsi_scondargs:=vargs; hsi_elocal := prev; hsi_ifso := ifso |} in
      RET (Some {| hsi_pc := ifnot; hsi_exits := ex::hst.(hsi_exits); hsi_local := prev |})
  | _ => RET None
  end.

Remark hsiexec_inst_None_correct i hst:
  WHEN hsiexec_inst i hst ~> o THEN forall st, o = None -> siexec_inst i st = None.
Proof.
  destruct i; wlp_simplify; congruence.
Qed.

Lemma seval_condition_refines hst st ge sp cond hargs args rs m:
  hsok_local ge sp rs m hst -> 
  hsilocal_refines ge sp rs m hst st ->
  list_sval_refines ge sp rs m hargs args ->
  hseval_condition ge sp cond hargs (hsi_smem hst) rs m
  = seval_condition ge sp cond args (si_smem st) rs m.
 Proof.
  intros HOK (_ & MEMEQ & _) LR. unfold hseval_condition, seval_condition.
  rewrite LR, <- MEMEQ; auto.
Qed.

Lemma sok_local_set_sreg_simp (rsv:root_sval) ge sp rs0 m0 st r lr:
  sok_local ge sp rs0 m0 (slocal_set_sreg st r (rsv lr st))
  -> sok_local ge sp rs0 m0 st.
Proof.
  rewrite sok_local_set_sreg; intuition.
Qed.

Local Hint Resolve hsist_set_local_correct_stat: core.

Lemma hsiexec_cond_noexp (hst: hsistate): forall l c0 n n0,
  WHEN DO res <~
       (DO vargs <~ hlist_args (hsi_local hst) l;; RET ((c0, vargs)));;
       (let (cond, vargs) := res in
        RET (Some
               {|
               hsi_pc := n0;
               hsi_exits := {|
                            hsi_cond := cond;
                            hsi_scondargs := vargs;
                            hsi_elocal := hsi_local hst;
                            hsi_ifso := n |} :: hsi_exits hst;
               hsi_local := hsi_local hst |})) ~> o0
  THEN (forall (hst' : hsistate) (st : sistate),
        o0 = Some hst' ->
        exists st' : sistate,
          Some
            {|
            si_pc := n0;
            si_exits := {|
                        si_cond := c0;
                        si_scondargs := list_sval_inj
                                          (map (si_sreg (si_local st)) l);
                        si_elocal := si_local st;
                        si_ifso := n |} :: si_exits st;
            si_local := si_local st |} = Some st' /\
          (hsistate_refines_stat hst st -> hsistate_refines_stat hst' st') /\
          (forall (ge : RTL.genv) (sp : val) (rs0 : regset) (m0 : mem),
           hsistate_refines_dyn ge sp rs0 m0 hst st ->
           hsistate_refines_dyn ge sp rs0 m0 hst' st')).
Proof.
  intros.
  wlp_simplify; try_simplify_someHyps; eexists; intuition eauto.
  - unfold hsistate_refines_stat, hsiexits_refines_stat in *; simpl; intuition.
    constructor; simpl; eauto.
    constructor.
  - destruct H0 as (EXREF & LREF & NEST).
    split.
    + constructor; simpl; auto.
      constructor; simpl; auto.
      intros; erewrite seval_condition_refines; eauto.
    + split; simpl; auto.
      destruct NEST as [|st0 se lse TOP NEST];
      econstructor; simpl; auto; constructor; auto.
Qed.

Lemma hsiexec_inst_correct i hst:
  WHEN hsiexec_inst i hst ~> o THEN forall hst' st,
   o = Some hst' ->
   exists st', siexec_inst i st = Some st'
    /\ (forall (REF:hsistate_refines_stat hst st), hsistate_refines_stat hst' st')
    /\ (forall ge sp rs0 m0 (REF:hsistate_refines_dyn ge sp rs0 m0 hst st), hsistate_refines_dyn ge sp rs0 m0 hst' st').
Proof.
  destruct i; simpl;
  try (wlp_simplify; try_simplify_someHyps; eexists; intuition eauto; fail).
  - (* refines_dyn Iop *)
    wlp_simplify; try_simplify_someHyps; eexists; intuition eauto.
    eapply hsist_set_local_correct_dyn; eauto.
    generalize (sok_local_set_sreg_simp (Rop o)); simpl; eauto.
  - (* refines_dyn Iload *)
    wlp_simplify; try_simplify_someHyps; eexists; intuition eauto.
    eapply hsist_set_local_correct_dyn; eauto.
    generalize (sok_local_set_sreg_simp (Rload t0 m a)); simpl; eauto.
  - (* refines_dyn Istore *)
    wlp_simplify; try_simplify_someHyps; eexists; intuition eauto.
    eapply hsist_set_local_correct_dyn; eauto.
    unfold sok_local; simpl; intuition.
  - (* refines_stat Icond *)
    wlp_simplify; try_simplify_someHyps; eexists; intuition eauto.
    + unfold hsistate_refines_stat, hsiexits_refines_stat in *; simpl; intuition.
      constructor; simpl; eauto.
      constructor.
    + destruct REF as (EXREF & LREF & NEST).
      split.
      * constructor; simpl; auto.
        constructor; simpl; auto.
        intros; erewrite seval_condition_refines; eauto.
      * split; simpl; auto.
        destruct NEST as [|st0 se lse TOP NEST];
        econstructor; simpl; auto; constructor; auto.
Qed.
Global Opaque hsiexec_inst.
Local Hint Resolve hsiexec_inst_correct: wlp.


Definition some_or_fail {A} (o: option A) (msg: pstring): ?? A :=
  match o with
  | Some x => RET x
  | None => FAILWITH msg
  end.

Fixpoint hsiexec_path (path:nat) (f: function) (hst: hsistate): ?? hsistate :=
  match path with
  | O => RET hst
  | S p =>
    let pc := hst.(hsi_pc) in
    XDEBUG pc (fun pc => DO name_pc <~ string_of_Z (Zpos pc);; RET ("- sym exec node: " +; name_pc)%string);;
    DO i <~ some_or_fail ((fn_code f)!pc) "hsiexec_path.internal_error.1";;
    DO ohst1 <~ hsiexec_inst i hst;;
    DO hst1 <~ some_or_fail ohst1 "hsiexec_path.internal_error.2";;
    hsiexec_path p f hst1
  end.

Lemma hsiexec_path_correct path f: forall hst,
  WHEN hsiexec_path path f hst ~> hst' THEN forall st
  (RSTAT:hsistate_refines_stat hst st),
  exists st', siexec_path path f st = Some st'
    /\ hsistate_refines_stat hst' st'
    /\ (forall ge sp rs0 m0 (REF:hsistate_refines_dyn ge sp rs0 m0 hst st), hsistate_refines_dyn ge sp rs0 m0 hst' st').
Proof.
  induction path; wlp_simplify; try_simplify_someHyps. clear IHpath.
  generalize RSTAT; intros (PCEQ & _) INSTEQ.
  rewrite <- PCEQ, INSTEQ; simpl.
  exploit H0; eauto. clear H0.
  intros (st0 & SINST & ISTAT & IDYN); erewrite SINST.
  exploit H1; eauto. clear H1.
  intros (st' & SPATH & PSTAT & PDYN).
  eexists; intuition eauto.
Qed.
Global Opaque hsiexec_path.
Local Hint Resolve hsiexec_path_correct: wlp.

Fixpoint hbuiltin_arg (hst: PTree.t hsval) (arg : builtin_arg reg): ?? builtin_arg hsval := 
  match arg with
  | BA r => 
         DO v <~ hsi_sreg_get hst r;;
         RET (BA v)
  | BA_int n => RET (BA_int n)
  | BA_long n => RET (BA_long n)
  | BA_float f0 => RET (BA_float f0)
  | BA_single s => RET (BA_single s)
  | BA_loadstack chunk ptr => RET (BA_loadstack chunk ptr)
  | BA_addrstack ptr => RET (BA_addrstack ptr)
  | BA_loadglobal chunk id ptr => RET (BA_loadglobal chunk id ptr)
  | BA_addrglobal id ptr => RET (BA_addrglobal id ptr)
  | BA_splitlong ba1 ba2 => 
    DO v1 <~ hbuiltin_arg hst ba1;;
    DO v2 <~ hbuiltin_arg hst ba2;;
    RET (BA_splitlong v1 v2)
  | BA_addptr ba1 ba2 => 
    DO v1 <~ hbuiltin_arg hst ba1;;
    DO v2 <~ hbuiltin_arg hst ba2;;
    RET (BA_addptr v1 v2)
  end.

Lemma hbuiltin_arg_correct hst arg:
  WHEN hbuiltin_arg hst arg ~> hargs THEN forall ge sp rs0 m0 (f: reg -> sval)
    (RR: forall r, hsi_sreg_eval ge sp hst r rs0 m0 = seval_sval ge sp (f r) rs0 m0),
    seval_builtin_sval ge sp (builtin_arg_map hsval_proj hargs) rs0 m0 = seval_builtin_sval ge sp (builtin_arg_map f arg) rs0 m0.
Proof.
  induction arg; wlp_simplify.
  + erewrite H; eauto.
  + erewrite H; eauto.
    erewrite H0; eauto.
  + erewrite H; eauto.
    erewrite H0; eauto.
Qed.
Global Opaque hbuiltin_arg.
Local Hint Resolve hbuiltin_arg_correct: wlp.

Fixpoint hbuiltin_args (hst: PTree.t hsval) (args: list (builtin_arg reg)): ?? list (builtin_arg hsval) :=
  match args with
  | nil => RET nil
  | a::l =>
    DO ha <~ hbuiltin_arg hst a;;
    DO hl <~ hbuiltin_args hst l;;
    RET (ha::hl)
    end.

Lemma hbuiltin_args_correct hst args:
  WHEN hbuiltin_args hst args ~> hargs THEN forall ge sp rs0 m0 (f: reg -> sval)
    (RR: forall r, hsi_sreg_eval ge sp hst r rs0 m0 = seval_sval ge sp (f r) rs0 m0),
    bargs_refines ge sp rs0 m0 hargs (List.map (builtin_arg_map f) args).
Proof.
  unfold bargs_refines, seval_builtin_args; induction args; wlp_simplify.
  erewrite H; eauto.
  erewrite H0; eauto.
Qed.
Global Opaque hbuiltin_args.
Local Hint Resolve hbuiltin_args_correct: wlp.

Definition hsum_left (hst: PTree.t hsval) (ros: reg + ident): ?? (hsval + ident) :=
  match ros with
  | inl r => DO hr <~ hsi_sreg_get hst r;; RET (inl hr) 
  | inr s => RET (inr s)
  end.

Lemma hsum_left_correct hst ros:
  WHEN hsum_left hst ros ~> hsi THEN forall ge sp rs0 m0 (f: reg -> sval)
    (RR: forall r, hsi_sreg_eval ge sp hst r rs0 m0 = seval_sval ge sp (f r) rs0 m0),
    sum_refines ge sp rs0 m0 hsi (sum_left_map f ros).
Proof.
  unfold sum_refines; destruct ros; wlp_simplify.
Qed.
Global Opaque hsum_left.
Local Hint Resolve hsum_left_correct: wlp.

Definition hsexec_final (i: instruction) (hst: PTree.t hsval): ?? hsfval :=
  match i with
  | Icall sig ros args res pc =>
    DO svos <~ hsum_left hst ros;;
    DO sargs <~ hlist_args hst args;;
    RET (HScall sig svos sargs res pc)
  | Itailcall sig ros args =>
    DO svos <~ hsum_left hst ros;;
    DO sargs <~ hlist_args hst args;;
    RET (HStailcall sig svos sargs)
  | Ibuiltin ef args res pc =>
    DO sargs <~ hbuiltin_args hst args;;
    RET (HSbuiltin ef sargs res pc)
  | Ijumptable reg tbl =>
    DO sv <~ hsi_sreg_get hst reg;;
    RET (HSjumptable sv tbl)
  | Ireturn or =>
    match or with
    | Some r => DO hr <~ hsi_sreg_get hst r;; RET (HSreturn (Some hr))
    | None => RET (HSreturn None)
    end
  | _ => RET (HSnone)
  end.

Lemma hsexec_final_correct (hsl: hsistate_local) i:
  WHEN hsexec_final i hsl ~> hsf THEN forall ge sp rs0 m0 sl
   (OK:  hsok_local ge sp rs0 m0 hsl)
   (REF: hsilocal_refines ge sp rs0 m0 hsl sl),
   hfinal_refines ge sp rs0 m0 hsf (sexec_final i sl).
Proof.
  destruct i; wlp_simplify; try econstructor; simpl; eauto.
Qed.
Global Opaque hsexec_final.
Local Hint Resolve hsexec_final_correct: wlp.

Definition init_hsistate_local (_:unit): ?? hsistate_local
  := DO hm <~ hSinit ();;
     RET {| hsi_smem := hm; hsi_ok_lsval := nil; hsi_sreg := PTree.empty hsval |}.

Lemma init_hsistate_local_correct:
  WHEN init_hsistate_local () ~> hsl THEN forall ge sp rs0 m0,
  hsilocal_refines ge sp rs0 m0 hsl init_sistate_local.
Proof.
  unfold hsilocal_refines; wlp_simplify.
  - unfold hsok_local; simpl; intuition. erewrite H in *; congruence.
  - unfold hsok_local, sok_local; simpl in *; intuition; try congruence.
  - unfold hsi_sreg_eval, hsi_sreg_proj. rewrite PTree.gempty. reflexivity.
  - try_simplify_someHyps.
Qed.
Global Opaque init_hsistate_local.
Local Hint Resolve init_hsistate_local_correct: wlp.

Definition init_hsistate pc: ?? hsistate
  := DO hst <~ init_hsistate_local ();;
     RET {| hsi_pc := pc; hsi_exits := nil; hsi_local := hst |}.

Lemma init_hsistate_correct pc:
  WHEN init_hsistate pc ~> hst THEN
      hsistate_refines_stat hst (init_sistate pc)
   /\ forall ge sp rs0 m0, hsistate_refines_dyn ge sp rs0 m0 hst (init_sistate pc).
Proof.
  unfold hsistate_refines_stat, hsistate_refines_dyn, hsiexits_refines_dyn; wlp_simplify; constructor.
Qed.
Global Opaque init_hsistate.
Local Hint Resolve init_hsistate_correct: wlp.

Definition hsexec (f: function) (pc:node): ?? hsstate :=
  DO path <~ some_or_fail ((fn_path f)!pc) "hsexec.internal_error.1";;
  DO hinit <~ init_hsistate pc;;
  DO hst <~ hsiexec_path path.(psize) f hinit;;
  DO i <~ some_or_fail ((fn_code f)!(hst.(hsi_pc))) "hsexec.internal_error.2";;
  DO ohst <~ hsiexec_inst i hst;;
  match ohst with
  | Some hst' => RET {| hinternal := hst'; hfinal := HSnone |}
  | None => DO hsvf <~ hsexec_final i hst.(hsi_local);;
            RET {| hinternal := hst; hfinal := hsvf |}
  end.

Lemma hsexec_correct_aux f pc:
  WHEN hsexec f pc ~> hst THEN
  exists st, sexec f pc = Some st /\ hsstate_refines hst st.
Proof.
  unfold hsstate_refines, sexec; wlp_simplify.
  - (* Some *)
   rewrite H; clear H.
   exploit H0; clear H0; eauto.
   intros (st0 & EXECPATH & SREF & DREF).
   rewrite EXECPATH; clear EXECPATH.
   generalize SREF. intros (EQPC & _).
   rewrite <- EQPC, H3; clear H3.
   exploit H4; clear H4; eauto.
   intros (st' & EXECL & SREF' & DREF').
   try_simplify_someHyps.
   eexists; intuition (simpl; eauto).
   constructor.
  - (* None *)
   rewrite H; clear H H4.
   exploit H0; clear H0; eauto.
   intros (st0 & EXECPATH & SREF & DREF).
   rewrite EXECPATH; clear EXECPATH.
   generalize SREF. intros (EQPC & _).
   rewrite <- EQPC, H3; clear H3.
   erewrite hsiexec_inst_None_correct; eauto.
   eexists; intuition (simpl; eauto).
Qed.

Global Opaque hsexec.

End CanonBuilding.

(** Correction of concrete symbolic execution wrt abstract symbolic execution *)
Theorem hsexec_correct
  (hC_hsval : hashinfo hsval -> ?? hsval)
  (hC_list_hsval : hashinfo list_hsval -> ?? list_hsval)
  (hC_hsmem : hashinfo hsmem -> ?? hsmem)
  (f : function) 
  (pc : node):
       WHEN hsexec hC_hsval hC_list_hsval hC_hsmem f pc ~> hst THEN forall
        (hC_hsval_correct: forall hs,
            WHEN hC_hsval hs ~> hs' THEN forall ge sp rs0 m0,
                seval_sval ge sp (hsval_proj (hdata hs)) rs0 m0 =
                seval_sval ge sp (hsval_proj hs') rs0 m0)
        (hC_list_hsval_correct: forall lh,
            WHEN hC_list_hsval lh ~> lh' THEN forall ge sp rs0 m0,
              seval_list_sval ge sp (hsval_list_proj (hdata lh)) rs0 m0 =
              seval_list_sval ge sp (hsval_list_proj lh') rs0 m0)
         (hC_hsmem_correct: forall hm,
            WHEN hC_hsmem hm ~> hm' THEN forall ge sp rs0 m0,
              seval_smem ge sp (hsmem_proj (hdata hm)) rs0 m0 =
              seval_smem ge sp (hsmem_proj hm') rs0 m0),
         exists st : sstate, sexec f pc = Some st /\ hsstate_refines hst st.
Proof.
  wlp_simplify.
  eapply hsexec_correct_aux; eauto.
Qed.
Local Hint Resolve hsexec_correct: wlp.

(** * Implementing the simulation test with concrete hash-consed symbolic execution *)

Definition phys_check {A} (x y:A) (msg: pstring): ?? unit :=
  DO b <~ phys_eq x y;;
  assert_b b msg;;
  RET tt.

Definition struct_check {A} (x y: A) (msg: pstring): ?? unit :=
  DO b <~ struct_eq x y;;
  assert_b b msg;;
  RET tt.

Lemma struct_check_correct {A} (a b: A) msg:
  WHEN struct_check a b msg ~> _ THEN
  a = b.
Proof. wlp_simplify. Qed.
Global Opaque struct_check.
Hint Resolve struct_check_correct: wlp.

Definition option_eq_check {A} (o1 o2: option A): ?? unit :=
  match o1, o2 with
  | Some x1, Some x2 => phys_check x1 x2 "option_eq_check: data physically differ"
  | None, None => RET tt
  | _, _ => FAILWITH "option_eq_check: structure differs"
  end.

Lemma option_eq_check_correct A (o1 o2: option A): WHEN option_eq_check o1 o2 ~> _ THEN o1=o2.
Proof.
  wlp_simplify.
Qed.
Global Opaque option_eq_check.
Hint Resolve option_eq_check_correct:wlp.

Import PTree.

Fixpoint PTree_eq_check {A} (d1 d2: PTree.t A): ?? unit :=
  match d1, d2 with
  | Leaf, Leaf => RET tt
  | Node l1 o1 r1, Node l2 o2 r2 =>
      option_eq_check o1 o2;;
      PTree_eq_check l1 l2;;
      PTree_eq_check r1 r2
  | _, _ => FAILWITH "PTree_eq_check: some key is absent"
  end.

Lemma PTree_eq_check_correct A d1: forall (d2: t A),
 WHEN PTree_eq_check d1 d2 ~> _ THEN forall x, PTree.get x d1 = PTree.get x d2.
Proof.
  induction d1 as [|l1 Hl1 o1 r1 Hr1]; destruct d2 as [|l2 o2 r2]; simpl; 
  wlp_simplify. destruct x; simpl; auto.
Qed.
Global Opaque PTree_eq_check.
Local Hint Resolve PTree_eq_check_correct: wlp.

Fixpoint PTree_frame_eq_check {A} (frame: list positive) (d1 d2: PTree.t A): ?? unit :=
  match frame with
  | nil => RET tt
  | k::l => 
    option_eq_check (PTree.get k d1) (PTree.get k d2);;
    PTree_frame_eq_check l d1 d2
  end.

Lemma PTree_frame_eq_check_correct A l (d1 d2: t A):
 WHEN PTree_frame_eq_check l d1 d2 ~> _ THEN forall x, List.In x l -> PTree.get x d1 = PTree.get x d2.
Proof.
  induction l as [|k l]; simpl; wlp_simplify.
  subst; auto.
Qed.
Global Opaque PTree_frame_eq_check.
Local Hint Resolve PTree_frame_eq_check_correct: wlp.

Definition hsilocal_frame_simu_check frame hst1 hst2 : ?? unit :=
  DEBUG("? frame check");;
  phys_check (hsi_smem hst2) (hsi_smem hst1) "hsilocal_frame_simu_check: hsi_smem sets aren't equiv";;
  PTree_frame_eq_check frame (hsi_sreg hst1) (hsi_sreg hst2);;
  Sets.assert_list_incl mk_hash_params (hsi_ok_lsval hst2) (hsi_ok_lsval hst1);;
  DEBUG("=> frame check: OK").

Lemma setoid_in {A: Type} (a: A): forall l,
  SetoidList.InA (fun x y => x = y) a l ->
  In a l.
Proof.
  induction l; intros; inv H.
  - constructor. reflexivity.
  - right. auto.
Qed.

Lemma regset_elements_in r rs:
  Regset.In r rs ->
  In r (Regset.elements rs).
Proof.
  intros. exploit Regset.elements_1; eauto. intro SIN.
  apply setoid_in. assumption.
Qed.
Local Hint Resolve regset_elements_in: core.

Lemma hsilocal_frame_simu_check_correct hst1 hst2 alive:
  WHEN hsilocal_frame_simu_check (Regset.elements alive) hst1 hst2 ~> _ THEN
  hsilocal_simu_spec alive hst1 hst2.
Proof.
  unfold hsilocal_simu_spec; wlp_simplify. symmetry; eauto.
Qed.
Hint Resolve hsilocal_frame_simu_check_correct: wlp.
Global Opaque hsilocal_frame_simu_check.

Definition revmap_check_single (dm: PTree.t node) (n tn: node) : ?? unit :=
  DO res <~ some_or_fail (dm ! tn) "revmap_check_single: no mapping for tn";;
  struct_check n res "revmap_check_single: n and res are physically different".

Lemma revmap_check_single_correct dm pc1 pc2:
  WHEN revmap_check_single dm pc1 pc2 ~> _ THEN
  dm ! pc2 = Some pc1.
Proof.
  wlp_simplify. congruence.
Qed.
Hint Resolve revmap_check_single_correct: wlp.
Global Opaque revmap_check_single.

Definition hsiexit_simu_check (dm: PTree.t node) (f: RTLpath.function) (hse1 hse2: hsistate_exit): ?? unit :=
  struct_check (hsi_cond hse1) (hsi_cond hse2) "hsiexit_simu_check: conditions do not match";;
  phys_check (hsi_scondargs hse1) (hsi_scondargs hse2) "hsiexit_simu_check: args do not match";;
  revmap_check_single dm (hsi_ifso hse1) (hsi_ifso hse2);;
  DO path <~ some_or_fail ((fn_path f) ! (hsi_ifso hse1)) "hsiexit_simu_check: internal error";;
  hsilocal_frame_simu_check (Regset.elements path.(input_regs)) (hsi_elocal hse1) (hsi_elocal hse2).

Lemma hsiexit_simu_check_correct dm f hse1 hse2:
  WHEN hsiexit_simu_check dm f hse1 hse2 ~> _ THEN
  hsiexit_simu_spec dm f hse1 hse2.
Proof.
  unfold hsiexit_simu_spec; wlp_simplify.
Qed.
Hint Resolve hsiexit_simu_check_correct: wlp.
Global Opaque hsiexit_simu_check.

Fixpoint hsiexits_simu_check (dm: PTree.t node) (f: RTLpath.function) (lhse1 lhse2: list hsistate_exit) :=
  match lhse1,lhse2 with
  | nil, nil => RET tt
  | hse1 :: lhse1, hse2 :: lhse2 =>
    hsiexit_simu_check dm f hse1 hse2;;
    hsiexits_simu_check dm f lhse1 lhse2
  | _, _ => FAILWITH "siexists_simu_check:  lengths do not match"
  end.

Lemma hsiexits_simu_check_correct dm f: forall le1 le2,
  WHEN hsiexits_simu_check dm f le1 le2 ~> _ THEN
  hsiexits_simu_spec dm f le1 le2.
Proof.
  unfold hsiexits_simu_spec; induction le1; simpl; destruct le2; wlp_simplify; constructor; eauto.
Qed.
Hint Resolve hsiexits_simu_check_correct: wlp.
Global Opaque hsiexits_simu_check.

Definition hsistate_simu_check (dm: PTree.t node) (f: RTLpath.function) outframe (hst1 hst2: hsistate) :=
  hsiexits_simu_check dm f (hsi_exits hst1) (hsi_exits hst2);;
  hsilocal_frame_simu_check (Regset.elements outframe) (hsi_local hst1) (hsi_local hst2).

Lemma hsistate_simu_check_correct dm f outframe hst1 hst2:
  WHEN hsistate_simu_check dm f outframe hst1 hst2 ~> _ THEN
  hsistate_simu_spec dm f outframe hst1 hst2.
Proof.
  unfold hsistate_simu_spec; wlp_simplify.
Qed.
Hint Resolve hsistate_simu_check_correct: wlp.
Global Opaque hsistate_simu_check.


Fixpoint revmap_check_list (dm: PTree.t node) (ln ln': list node): ?? unit :=
  match ln, ln' with
  | nil, nil => RET tt
  | n::ln, n'::ln' => 
      revmap_check_single dm n n';;
      revmap_check_list dm ln ln'
  | _, _ => FAILWITH "revmap_check_list: lists have different lengths"
  end.

Lemma revmap_check_list_correct dm: forall lpc lpc',
  WHEN revmap_check_list dm lpc lpc' ~> _ THEN
  ptree_get_list dm lpc' = Some lpc.
Proof.
  induction lpc.
  - destruct lpc'; wlp_simplify.
  - destruct lpc'; wlp_simplify. try_simplify_someHyps.
Qed.
Global Opaque revmap_check_list.
Hint Resolve revmap_check_list_correct: wlp.


Definition svos_simu_check (svos1 svos2: hsval + ident) :=
  match svos1, svos2 with
  | inl sv1, inl sv2 => phys_check sv1 sv2 "svos_simu_check: sval mismatch"
  | inr id1, inr id2 => phys_check id1 id2 "svos_simu_check: symbol mismatch"
  | _, _ => FAILWITH "svos_simu_check: type mismatch"
  end.

Lemma svos_simu_check_correct svos1 svos2:
  WHEN svos_simu_check svos1 svos2 ~> _ THEN
  svos1 = svos2.
Proof.
  destruct svos1; destruct svos2; wlp_simplify.
Qed.
Global Opaque svos_simu_check.
Hint Resolve svos_simu_check_correct: wlp.


Fixpoint builtin_arg_simu_check (bs bs': builtin_arg hsval) :=
  match bs with
  | BA sv =>
    match bs' with
    | BA sv' => phys_check sv sv' "builtin_arg_simu_check: sval mismatch"
    | _ => FAILWITH "builtin_arg_simu_check: BA mismatch"
    end
  | BA_splitlong lo hi =>
    match bs' with
    | BA_splitlong lo' hi' =>
        builtin_arg_simu_check lo lo';;
        builtin_arg_simu_check hi hi'
    | _ => FAILWITH "builtin_arg_simu_check: BA_splitlong mismatch"
    end
  | BA_addptr b1 b2 =>
    match bs' with
    | BA_addptr b1' b2' =>
        builtin_arg_simu_check b1 b1';;
        builtin_arg_simu_check b2 b2'
    | _ => FAILWITH "builtin_arg_simu_check: BA_addptr mismatch"
    end
  | bs => struct_check bs bs' "builtin_arg_simu_check: basic mismatch"
  end.

Lemma builtin_arg_simu_check_correct: forall bs1 bs2,
  WHEN builtin_arg_simu_check bs1 bs2 ~> _ THEN
  builtin_arg_map hsval_proj bs1 = builtin_arg_map hsval_proj bs2.
Proof.
  induction bs1.
  all: try (wlp_simplify; subst; reflexivity).
  all: destruct bs2; wlp_simplify; congruence.
Qed.
Global Opaque builtin_arg_simu_check.
Hint Resolve builtin_arg_simu_check_correct: wlp.

Fixpoint list_builtin_arg_simu_check lbs1 lbs2 :=
  match lbs1, lbs2 with
  | nil, nil => RET tt
  | bs1::lbs1, bs2::lbs2 =>
    builtin_arg_simu_check bs1 bs2;;
    list_builtin_arg_simu_check lbs1 lbs2
  | _, _ => FAILWITH "list_builtin_arg_simu_check: length mismatch"
  end.

Lemma list_builtin_arg_simu_check_correct: forall lbs1 lbs2,
  WHEN list_builtin_arg_simu_check lbs1 lbs2 ~> _ THEN
  List.map (builtin_arg_map hsval_proj) lbs1 = List.map (builtin_arg_map hsval_proj) lbs2.
Proof.
  induction lbs1; destruct lbs2; wlp_simplify. congruence.
Qed.
Global Opaque list_builtin_arg_simu_check.
Hint Resolve list_builtin_arg_simu_check_correct: wlp.

Definition sfval_simu_check (dm: PTree.t node) (f: RTLpath.function) (pc1 pc2: node) (fv1 fv2: hsfval) :=
  match fv1, fv2 with
  | HSnone, HSnone => revmap_check_single dm pc1 pc2
  | HScall sig1 svos1 lsv1 res1 pc1, HScall sig2 svos2 lsv2 res2 pc2 =>
      revmap_check_single dm pc1 pc2;;
      phys_check sig1 sig2 "sfval_simu_check: Scall different signatures";;
      phys_check res1 res2 "sfval_simu_check: Scall res do not match";;
      svos_simu_check svos1 svos2;;
      phys_check lsv1 lsv2 "sfval_simu_check: Scall args do not match"
  | HStailcall sig1 svos1 lsv1, HStailcall sig2 svos2 lsv2 =>
      phys_check sig1 sig2 "sfval_simu_check: Stailcall different signatures";;
      svos_simu_check svos1 svos2;;
      phys_check lsv1 lsv2 "sfval_simu_check: Stailcall args do not match"
  | HSbuiltin ef1 lbs1 br1 pc1, HSbuiltin ef2 lbs2 br2 pc2 =>
      revmap_check_single dm pc1 pc2;;
      phys_check ef1 ef2 "sfval_simu_check: builtin ef do not match";;
      phys_check br1 br2 "sfval_simu_check: builtin br do not match";;
      list_builtin_arg_simu_check lbs1 lbs2
  | HSjumptable sv ln, HSjumptable sv' ln' =>
      revmap_check_list dm ln ln';;
      phys_check sv sv' "sfval_simu_check: Sjumptable sval do not match"
  | HSreturn osv1, HSreturn osv2 =>
      option_eq_check osv1 osv2
  | _, _ => FAILWITH "sfval_simu_check: structure mismatch"
  end.

Lemma sfval_simu_check_correct dm f opc1 opc2 fv1 fv2:
  WHEN sfval_simu_check dm f opc1 opc2 fv1 fv2 ~> _ THEN
  hfinal_simu_spec dm f opc1 opc2 fv1 fv2.
Proof.
  unfold hfinal_simu_spec; destruct fv1; destruct fv2; wlp_simplify; try congruence.
Qed.
Hint Resolve sfval_simu_check_correct: wlp.
Global Opaque sfval_simu_check.

Definition hsstate_simu_check (dm: PTree.t node) (f: RTLpath.function) outframe (hst1 hst2: hsstate) :=
  hsistate_simu_check dm f outframe (hinternal hst1) (hinternal hst2);;
  sfval_simu_check dm f (hsi_pc hst1) (hsi_pc hst2) (hfinal hst1) (hfinal hst2).

Lemma hsstate_simu_check_correct dm f outframe hst1 hst2:
  WHEN hsstate_simu_check dm f outframe hst1 hst2 ~> _ THEN
  hsstate_simu_spec dm f outframe hst1 hst2.
Proof.
  unfold hsstate_simu_spec; wlp_simplify.
Qed.
Hint Resolve hsstate_simu_check_correct: wlp.
Global Opaque hsstate_simu_check.

Definition simu_check_single (dm: PTree.t node) (f: RTLpath.function) (tf: RTLpath.function) (m: node * node): ?? unit :=
  let (pc2, pc1) := m in
  (* creating the hash-consing tables *)
  DO hC_sval <~ hCons hSVAL;;
  DO hC_list_hsval <~ hCons hLSVAL;;
  DO hC_hsmem <~ hCons hSMEM;;
  let hsexec := hsexec hC_sval.(hC) hC_list_hsval.(hC) hC_hsmem.(hC) in
  (* performing the hash-consed executions *)
  XDEBUG pc1 (fun pc => DO name_pc <~ string_of_Z (Zpos pc);; RET ("entry-point of input superblock: " +; name_pc)%string);;
  DO hst1 <~ hsexec f pc1;;
  XDEBUG pc2 (fun pc => DO name_pc <~ string_of_Z (Zpos pc);; RET ("entry-point of output superblock: " +; name_pc)%string);;
  DO hst2 <~ hsexec tf pc2;;
  DO path <~ some_or_fail ((fn_path f)!pc1) "simu_check_single.internal_error.1";;
  let outframe := path.(pre_output_regs) in
  (* comparing the executions *)
  hsstate_simu_check dm f outframe hst1 hst2.

Lemma simu_check_single_correct dm tf f pc1 pc2:
  WHEN simu_check_single dm f tf (pc2, pc1) ~> _ THEN
  sexec_simu dm f tf pc1 pc2.
Proof.
  unfold sexec_simu; wlp_simplify.
  exploit H2; clear H2. 1-3: wlp_simplify.
  intros (st2 & SEXEC2 & REF2). try_simplify_someHyps.
  exploit H3; clear H3. 1-3: wlp_simplify.
  intros (st3 & SEXEC3 & REF3). try_simplify_someHyps.
  eexists. eexists. split; eauto. split; eauto.
  intros ctx.
  eapply hsstate_simu_spec_correct; eauto.
Qed.
Global Opaque simu_check_single.
Global Hint Resolve simu_check_single_correct: wlp.

Fixpoint simu_check_rec (dm: PTree.t node) (f: RTLpath.function) (tf: RTLpath.function) lm : ?? unit :=
  match lm with
  | nil => RET tt
  | m :: lm => 
    simu_check_single dm f tf m;;
    simu_check_rec dm f tf lm
  end.

Lemma simu_check_rec_correct dm f tf lm:
  WHEN simu_check_rec dm f tf lm ~> _ THEN
  forall pc1 pc2, In (pc2, pc1) lm -> sexec_simu dm f tf pc1 pc2.
Proof.
  induction lm; wlp_simplify.
  match goal with
  | X: (_,_) = (_,_) |- _ => inversion X; subst
  end.
  subst; eauto.
Qed.
Global Opaque simu_check_rec.
Global Hint Resolve simu_check_rec_correct: wlp.

Definition imp_simu_check (dm: PTree.t node) (f: RTLpath.function) (tf: RTLpath.function): ?? unit :=
   simu_check_rec dm f tf (PTree.elements dm);;
   DEBUG("simu_check OK!").

Local Hint Resolve PTree.elements_correct: core.
Lemma imp_simu_check_correct dm f tf:
  WHEN imp_simu_check dm f tf ~> _ THEN
  forall pc1 pc2, dm ! pc2 = Some pc1 -> sexec_simu dm f tf pc1 pc2.
Proof.
  wlp_simplify.
Qed.
Global Opaque imp_simu_check.
Global Hint Resolve imp_simu_check_correct: wlp.

Program Definition aux_simu_check (dm: PTree.t node) (f: RTLpath.function) (tf: RTLpath.function): ?? bool :=
   DO r <~ 
     (TRY 
       imp_simu_check dm f tf;; 
       RET true
      CATCH_FAIL s, _ =>
       println ("simu_check_failure:" +; s);;
       RET false
      ENSURE (fun b => b=true -> forall pc1 pc2, dm ! pc2 = Some pc1 -> sexec_simu dm f tf pc1 pc2));;
   RET (`r).
Obligation 1.
  split; wlp_simplify. discriminate.
Qed.

Lemma aux_simu_check_correct dm f tf:
  WHEN aux_simu_check dm f tf ~> b THEN
  b=true -> forall pc1 pc2, dm ! pc2 = Some pc1 -> sexec_simu dm f tf pc1 pc2.
Proof.
  unfold aux_simu_check; wlp_simplify.
  destruct exta; simpl; auto.
Qed.

(* Coerce aux_simu_check into a pure function (this is a little unsafe like all oracles in CompCert). *)

Import UnsafeImpure.

Definition simu_check (dm: PTree.t node) (f: RTLpath.function) (tf: RTLpath.function) : res unit := 
  match unsafe_coerce (aux_simu_check dm f tf) with
  | Some true => OK tt
  | _ => Error (msg "simu_check has failed")
  end.

Lemma simu_check_correct dm f tf:
  simu_check dm f tf = OK tt ->
  forall pc1 pc2, dm ! pc2 = Some pc1 ->
  sexec_simu dm f tf pc1 pc2.
Proof.
  unfold simu_check.
  destruct (unsafe_coerce (aux_simu_check dm f tf)) as [[|]|] eqn:Hres; simpl; try discriminate.
  intros; eapply aux_simu_check_correct; eauto.
  eapply unsafe_coerce_not_really_correct; eauto.
Qed.